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1 Introduction
My research lies mainly in harmonic analysis. Up to now, I have worked on three different problems. The
first two are variations on Carleson’s theorem on almost everywhere convergence of the Fourier series. The
last one is related to sparse operators: a topic that has emerged in the recent decade in connection to
weighted inequalities.

For the first problem, I consider a perturbation of the classical trigonometric system. One can replace
the factors z of the Taylor expansion of a function holomorphic in the unit disk by other Möbius transforms
mapping the unit disk to itself. If the zeros of these Möbius transforms coincide with the zeros of the
function, this decomposition leads to the so-called non-linear phase unwinding decomposition. Due to very
fast convergence at numerical experiments [Nah00], the latter has been in the center of some recent activity
[CS17; CP19]. On the other hand, freezing the zeros of Möbius transforms generates a complete orthonormal
system for the Hardy spaces Hp that is called the Malmquist-Takenaka system. In [Mna22a], I study the
question of almost everywhere convergence for the Malmquist-Takenaka series applying the techniques of
the polynomial Carleson theorem of Lie [Lie11] and Zorin-Kranich [Zor21].

The second, my more recent, project is about the non-linear Fourier transform (NLFT), an object at the
junction of many areas of analysis and PDE such as the Schrödinger operator, the KdV equation, orthogonal
polynomials, etc. In a recent breakthrough paper [Pol21], Alexei Poltoratski proved almost everywhere
convergence of the NLFT for L2 potentials. This gave a partial answer to the question of Muscalu, Tao
and Thiele [MTT02] whether the corresponding Carleson operator is bounded on weak-L2. Poltoratski’s
methods are qualitative and rely on complex analysis, in particular, on the so-called de Branges functions.
In [Mna22a], I quantify parts of Poltoratski’s proof by bringing into play the Hardy-Littlewood maximal
function of the spectral density to control the error terms in the asymptotic estimates. These estimates
allow us to push a little more towards the conjectured weak-L2 bound of the Carleson operator. They also
lead to an interesting structural result about the zeros of the de Branges functions.

My third project is about weighted estimates of sparse operators. The sparse operators were introduced
by Lerner [Ler12] a decade ago in connection to the A2 theorem. Due to their simplicity and majorization
properties, the sparse operators are the modern tool for proving sharp weighted inequalities. In [Mna22c],
I consider a version of a sparse operator, where the averages are replaced by maximal averages. I prove
weighted L2 bounds for this operators. The difficulty in this situation is proving the sharpness of the easy
upper bound. The novelty of my result is the construction of a weight that does the job.

Next, I will elaborate on each of the projects in a little more detail.
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2 Perturbations of Fourier series
The Fourier series can be though of as the Taylor expansion of an Hp function restricted to the unit circle.
For F ∈ Hp, we can consider

F1(z) :=
F (z)− F (0)

z
, (2.1)

then iterate the procedure on F1 to obtain

F (z) = F (0) + F1(0)z + · · ·+ Fn(0)z
n + · · · .

Let us change the procedure (2.1) with the Blaschke factorization, i.e. factoring out all the zeros. Let

F (z)− F (0) = B1(z)F1(z), (2.2)

where F1 ∈ Hp does not have any zeros in the unit disk. Iterating this procedure leads to the formal series

F (z) = F (0) + F1(0)B1(z) + · · ·+ Fn(0)B1(z) . . . Bn(z) + · · · , (2.3)

called the non-linear phase unwinding decomposition. Numerical simulations from Nahon’s dissertation
[Nah00], where he introduced this object, suggest that for a generic function the series should converge very
fast. Most of the few mathematically rigorous results known for this object are obtained by Coifman and
Steinerberger [CS17], who, in particular, prove the convergence in fractional Sobolev spaces if the original
function is slightly better. The unwinding series was also independently discovered and studied by Qian
[Qia14] and others who apply it to Information theory. The following questions remain open.

Question 1. Does the unwinding series (2.3) converge almost everywhere for Hp functions?

Question 2. Does the unwinding series converge back to the initial function ”fast” for ”most functions”?

The intuitive reason of the expected fast convergence is that the zeros of the decomposing functions are
adapted to the decomposed function. Now let us freeze those zeros. Let an be a sequence of points in the
unit disk, then we replace the procedure (2.1) by

Fn(z)− Fn(an) =
z − an
1− anz

Fn+1(z). (2.4)

The latter generates the Blaschke products and the Malmquist-Takenaka (MT) system defines as

Bn(z) :=

n∏
j=1

z − an
1− anz

, ϕn(z) := Bn(z) ·
√
1− |an|2
1− anz

, n = 0, 1, 2, . . . . (2.5)

If an ≡ 0, the MT system (ϕn)
∞
n=0 turns into the classical trigonometric system. In general, it is still an

orthonormal system and, as shown by Coifman and Péyriere [CP19] is complete in Hp if∑
(1− |an|) = ∞. (2.6)

In [Mna22a], I study the following question.
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Question 3. For which sequences (an)∞n=0, does the MT series converge almost everywhere for Hp functions,
i.e.

n∑
j=0

⟨f, ϕn⟩ϕn
n→∞−−−−→ f a.e., for all f ∈ Hp? (2.7)

By standard techniques this question follows from the corresponding estimates for the maximal partial
sum operator, which is equivalent to the operator

T (an)f(eix) = sup
N

1

2π

∣∣∣∣∣∣
π∫

−π

f(eiy)
BN (eiy)−1

sin x−y
2

dy

∣∣∣∣∣∣ . (2.8)

The operator (2.8) shares many similarities with the polynomial Carleson operator defined as

Tdf(x) = sup
degP≤d

∣∣∣∣∣∣
∫
R

f(y)e−iP (y) dy

x− y

∣∣∣∣∣∣ , (2.9)

where the sup is taken over all polynomials up to the degree d. In 2011, Lie [Lie11], proved the boundedness
of the polynomial Carleson operator in Lp, 1 < p < ∞. Then, in 2017, Zorin-Kranich [Zor21] simplified the
proof.

In [Mna22a], I observe that the phases of the modulations of the two aforementioned Carleson-type oper-
ators, namely, the polynomials and the phases of the Blaschke products, share certain uniformity/compactness
properties, that turn out to be sufficient for the boundedness of the Carleson-type operators. Thus, applying
the technique of the polynomial Carleson theorem, I give the following partial answers to Question 3.

Theorem 4. Let 0 < r < 1 and let (an)∞n=1 be an arbitrary sequence such that |an|≤ r for all n, then

∥T (an)∥L2(T)→L2(T)≲
√
log

1

1− r
. (2.10)

Moreover, this estimate is sharp, i.e. there exists a sequence (an) with |an|≤ r such that

∥T (an)∥L2(T)→L2(T)≳
√
log

1

1− r
. (2.11)

Theorem 5. Let an be inside the triangle with vertices (1, 0), ( 12 ,
1
2 ) and ( 12 ,−

1
2 ) for all n, then

∥T∥L2(T)→L2(T)≲ 1. (2.12)

In [Mna22a], we also prove certain Lp bounds and a conformally invariant version of Theorem 4.
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3 The non-linear Fourier transform
Another way to look at the Fourier transform is as a solution to an ODE. More precisely, let f ∈ L1(R) and
consider the equation ∂tG(t, x) = e−2ixtf(t)G(t, x)

G(−∞, x) = 1.
(3.1)

There exists a unique solution to (3.1) and it almost recovers the classical Fourier transform of f , i.e.

exp(f̂(x)) = G(∞, x).

One can consider matrix-valued analogs of the above equation such as
∂tG(t, x) =

 0 e−2ixtf(t)

e2ixtf(t) 0

G(t, x),

G(−∞, x) = I

(3.2)

where G is a 2×2 matrix. We call the unique solution to the above equation the non-linear Fourier transform
(NLFT) of f . It is well-known that the solution of (3.2) takes values in SU(1, 1), that is

G(t, x) =

(
a(t, x) b(t, x)

b(t, x) a(t, x)

)
and |a(t, x)|2−|b(t, x)|2= 1. (3.3)

The NLFT has many similarities with the classical Fourier transform. For example, it takes translations to
certain modulations and vice versa. It also scales in L1 but, unlike the classical one, it does not scale in
other Lp’s. A fundamental property of the NLFT is the analog of the Plancherel identity, that is

∥
√
log|a(∞, ·)|∥L2(R)=

√
π

2
∥f∥L2(R). (3.4)

From the work of Christ and Kiselev [CK02] on the spectral theory of the one-dimensional Schrödinger
operator, one can deduce [TT12] Hausdorff-Young and Menshov-Paley-Zygmund inequalities for the NLFT
for 1 ≤ p < 2. For p = 2 the analogues estimate, the non-linear version of the Carleson theorem, was
conjectured by Muscalu, Tao and Thiele in [MTT02], where they proved it for the Cantor group model of
the NLFT.

Conjecture 6. Let f ∈ L2(R), then

|{x ∈ R : sup
t

√
log|a(t, x)| > λ}|≲ 1

λ2
∥f∥22. (3.5)

In connection to Conjecture 6, there has been a recent breakthrough by Poltoratski.

Theorem 7 ([Pol21]). Let f ∈ L2(R+) be real-valued, then |a(t, ·)|, |b(t, ·)| and b(t,·)
a(t,·) converge almost every-

where as t → +∞.

Poltoratski uses complex analysis and, in particular, de Branges functions which are the continuous
analogs of orthogonal polynomial on the unit circle [Den06]. His methods are purely qualitative and do not
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address Conjecture 6. He shows that the zeros of the de Branges function

E(t, z) := e−itz(a(t, z) + b(t, z)) (3.6)

near the point x ∈ R asymptotically control the behavior of E(t, x). In particular, |E(t, x)|, |a(t, x)| and
|b(t, x)| converge if the closest zero of E(t, ·) to x converges to infinity in the time-scaled distance. Then, he
proves that this happens for almost every point x ∈ R.

In my paper [Mna22b], I quantify the arguments of Poltoratski and obtain estimates of the de Branges
function through the Hardy-Littlewood maximal function of the spectral density. For f ∈ L1, the spectral
density is defined as

w(x) := ℜ
(
1− b(∞, x)/a(∞, x)

1 + b(∞, x)/a(∞, x)

)
. (3.7)

If ∥f∥1≤ 1, then it is not difficult to check that

∥w − 1∥∞≤ ∥f∥1, ∥w − 1∥2≤ ∥f∥2.

One of the two main estimates in [Mna22b] is the following.

Theorem 8. There exist δ,D > 0 such that the following holds. Let x ∈ R and t > 0. If f ∈ L1(R+) with
compact support is such that ∥f∥1≤ δ and if z0 is the closest zero of E(t, ·) to the point x, then∣∣∣|E(t, x)|− 1√

w(x)

∣∣∣ ≤ D(M(w − 1)(x)|logM(w − 1)(x)|) 1
4 +

D√
t|z0 − x|

, (3.8)

where M denotes the Hardy-Littlewood maximal function.

The above theorem gives a good estimate of E(t, x) when its zeros are far away from x. We also have an
estimate when the zeros are close to x, but as it looks more technical we do not state it here. As a corollary
to our estimates for E, we obtain the following structural result about its zeros.

Corollary 9. There exists δ > 0 such that, if ∥f∥1≤ δ, then there are no zeros of E(t, ·) in the region
{z : |ℑz|≤ 1

t }.

My estimates quantify the first part of Poltoratski’s proof of Theorem 7. At the moment, I work on the
quantification of the second part, which leads to the following non-optimal weak-type bounds for the NLFT.

Conjecture 10. There exists δ > 0 and D > 0 such that if f ∈ L2(R+) ∩ L1(R+) with ∥f∥1≤ δ, then for
0 < λ < 1

|{x ∈ R : sup
t

√
log|a(t, x)| > λ}|≤ D

λ33
∥f∥22. (3.9)

As the NLFT scales exclusively in L1, the inequality (3.9) does not imply the optimal inequality (3.5)
like in the linear case. Furthermore, even though all our results assume the smallness of the L1 norm of the
potential, Conjecture 6 with this restriction is still strong enough to imply the linear Carleson theorem.
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4 Weighted estimates for Sparse operators
It is well known from 1970’s works of Muckenhoupt [Muc72] and others, that the Hardy-Littlewood maximal
function, Caldéron-Zygmund operators, etc. are bounded on weighted Lp spaces if and only if the underlying
weight is in the Muckenhoupt’s Ap class. The question of the sharp dependence of those operator norms on
the weight has a more recent history. For the maximal function, Buckley [Buc93] showed in 1993 that the
following inequality is sharp in the dependence on the Ap characteristic of the weight

∥M∥Lp(w)→Lp(w)≲ [w]Ap
. (4.1)

For CZ operators the same question was known under the name of the A2 conjecture and, after a number of
contributions by many authors, was finally settled in 2010 by Hytönen [Hyt10] who proved

∥T∥Lp(w)→Lp(w)≤ [w]
max(1, 1

p−1 )

Ap
. (4.2)

In 2012 Lerner [Ler12] introduced the sparse operators to give a simplified proof of the A2 theorem.
We call a family S of balls in Rn (γ-)sparse, for some 0 < γ < 1, if there exists pairwise disjoint subsets
EB ⊂ B ∈ S, such that |EB |≥ γ|B|. For a sparse family the associated sparse operator is the defined as

ASf(x) :=
∑
B∈S

(
1

|B|

∫
B

|f |
)
· 1B(x). (4.3)

It is fairly easy to prove the inequality (4.2) for the sparse operators, namely,

∥AS∥Lp(w)→Lp(w)≤ [w]
max(1, 1

p−1 )

Ap
. (4.4)

On the other hand, the sparse operators pointwise dominate CZ operators [LN15; CR16]. More specifically,
for a CZ operator T and f ∈ L1

loc there exist sparse families (Sj)
3n

j=1 such that

|Tf(x)|≲
∑
j

ASj
f(x) for a.e. x. (4.5)

The combination of these two facts immediately implies the A2 theorem.

In the paper [Mna22c], I study the sharp weighted estimates of the following version of the sparse
operators. Let

MB(f) := sup
A⊃B

1

|A|

∫
A

|f |,

and let S be a sparse family, then we define the associated strong-sparse operator as

A∗
Sf(x) :=

∑
B∈S

MB(f) · 1B(x). (4.6)

Question 11. What are is the sharp dependence of ∥AS∥Lp(w)→Lp(w) on the Ap characteristic of w?

One trivially has the estimate
A∗

Sf(x) ≤ ASMf(x) (4.7)
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for any x. Hence, the sharp weighted estimates for the maximal and sparse operators (4.1) and (4.4) imply

∥A∗
S∥L2(w)→L2(w)≤ ∥AS∥L2(w)→L2(w)∥M∥L2(w)→L2(w)≲ [w]2A2

. (4.8)

It turns out that (4.8) is sharp, however the classical examples of A2 weights such as the power weights are
not good enough to realize the upper bound.

Theorem 12. There exists an A2 weight that realizes the upper bound of (4.8). That is, the following
inequalit is sharp

∥A∗
S∥L2(w)→L2(w)≲ [w]2A2

. (4.9)

In [Mna22c], I also prove the weighted weak bounds, as well as some improved strong bounds for sparse
families with certain restrictions.

5 Future directions
My main current project is concerned with Conjecture 10 as a step towards Conjecture 6. Also by the end
of my PhD, I hope to have an answer for Question 1.

I consider all three projects described above to be entry points for me into very exciting areas of
harmonic analysis and not only. I am generally open to anything interesting and whether I will immerse
myself into those areas deeper or move on to something new depends on the opportunities that will come
along.
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