

Exercises in Geometry II University of Bonn, Summer Semester 2018 Dozent: PD Dr. Fernando Galaz-Garcia Assistant: Saskia Roos Sheet 6

1. The index form [4 points]

Let $\gamma : [0, l] \to (M, g)$ be a unit speed geodesic. Recall that for any pair of proper normal vector fields V, W along γ the index form is given by

$$I(V,W) = \int_{a}^{b} (\langle D_{t}V, D_{t}W \rangle - \langle R(V,\dot{\gamma})\dot{\gamma}, W \rangle) dt.$$

Show that the index form can also be written as

$$I(V,W) = -\int_{a}^{b} \langle D_{t}^{2}V + R(V,\dot{\gamma})\dot{\gamma}, W \rangle dt - \sum_{i=1}^{k} \langle \Delta_{i}D_{t}V, W(a_{i}) \rangle,$$

where $\{a_i\}$ are the points where V is not smooth and $\Delta_i D_t V$ is the jump in $D_t V$ at $t = a_i$.

2. The null space of the index form [4 points]

Recall the index form from the previous exercise.

- a) Show that the null space of I is exactly the set of Jacobi fields along γ vanishing at $\gamma(a)$ and $\gamma(b)$. Specifically, V is a Jacobi field if and only if I(V, W) = 0 for all W.
- b) Show that I has a nontrivial null space if and only if $\gamma(a)$ is conjugate to $\gamma(b)$. The dimension of the null space is the order of the conjugate point $\gamma(b)$.

3. The injectivity radius

- a) Is the injectivity radius of a complete, compact Riemannian manifold (M, g) always positive? Prove this or provide a counter example.
- b) Give an example of a complete Riemannian manifold $({\cal M},g)$ whose injectivity radius is zero.

4. Orientable surfaces of constant negative curvature [4 points]

Show that every compact orientable surface of genus $g \ge 2$ without boundary admits a metric of constant negative curvature.

Hint: Use the Gauß–Bonnet Theorem to show that each such surface can be realized as the identification space obtained from a regular polygon P with 4g geodesic sides making an angle of $\pi/2g$ in the hyperbolic plane H^2 , whose sides are glued together via isometries, i.e. the universal cover is H^2 .

Due on Tuesday, June 19.

Homepage of the lecture: https://www.math.uni-bonn.de/people/galazg/