
EXISTENCE AND REGULARITY OF STEADY-STATE SOLUTIONS OF

THE NAVIER-STOKES EQUATIONS ARISING FROM IRREGULAR

DATA

GAEL DIEBOU YOMGNE

Abstract. We analyze the forced incompressible stationary Navier-Stokes flow in Rn
+,

n ≥ 2. Existence of a unique solution satisfying a global integrabilty property measured
in tent spaces is established for small data in homogenous Sobolev space with − 1

2
-degree

of smoothness. Moreover, the pressure and the first-order derivative of the velocity field
are shown to be locally Hölder continuous.
Our approach is based on the analysis of the inhomogeneous Stokes system for which we
derive a new solvability result involving Dirichlet data in Triebel-Lizorkin classes with
negative amount of smoothness and is of independent interest.
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1. Introduction

The steady state (forced) incompressible Navier-Stokes equations in a domain Ω ⊂ Rn,
n ≥ 2 is the following system{

−∆u+∇π + u · ∇u = F in Ω

div u = 0 in Ω
(NS)
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where u : Ω → Rn is the unknown velocity field, π : Ω → R is the unknown scalar pressure
and F : Ω → Rn is a given external force. This system is supplemented by the boundary
condition

(1.1) u = f on ∂Ω

where f = (f1, ..., fn) is a prescribed vector field satisfying (in the case Ω smooth bounded)

the compatibility condition

∫
∂Ω
f · Ndσ(Q) with N = (N1, · · · , Nn) being the outer unit

normal vector at the boundary.

Probably, the first striking result regarding the solvability of the Dirichlet problem for
the Navier-Stokes equations was obtained by Leray [19]. In a bounded three dimensional
domain, he showed the existence of a weak solution (u, π) ∈ W 1,q(Ω) × Lq(Ω) provided

f ∈ W 1−1/q,q(∂Ω) and F ∈ W−1,q(Ω), q ∈ [2,∞). Although n = 3 is the physically most
relevant dimension, this result remains true in any dimension. Also, any weak solution is
known to be smooth (see e.g. [25] in the case n = 2, 3 and nonhomogeneous smooth data,
[12] in the case n = 4 and f = 0 on ∂Ω and the monograph [10] for a complete theory). As
for uniqueness of weak solutions, it seems that a smallness assumption on the given data is
necessary and a recent result by Luo [20] predicts that this condition cannot be dropped.

There have been growing interest in recent years in the analysis of the Navier-Stokes
equations subject to low regularity data. By this, we mean that f satisfies a weaker
regularity than that needed in order for generalized weak solutions to exit. In such a
context, does problem (NS)-(1.1) admits a solution? In the affirmative case, what are the
qualitative properties of such solutions? Prescribing boundary value with low regularity
forces one to consider a notion of solution weaker than weak solutions. A good candidate,
roughly speaking is obtained by testing (NS) against a suitable divergence-free smooth
vector field and performing two successive integration by parts. This idea to the best of our
knowledge first appeared in [2]. When Ω ⊂ Rn, n = 2, 3 is a C2 regular bounded domain,

the author in [21] constructed such a solution in L2n/(n−1)(Ω) provided f ∈ L2(∂Ω) (with

arbitrarily large norm) and F ∈ W−1,2n/(n−1)(Ω). Existence, uniqueness and regularity of
very weak solutions (u, π) in the class Lq(Ω)×W−1,q(Ω) have been obtained in [7, 11] under

certain smallness conditions on f ∈ W−1/q,q(∂Ω) and F ∈ W−1,r(Ω) with 1 < r ≤ q < ∞,
1/r ≤ 1/n+ 1/q. These results were generalized in [18] where the author gave a complete
theory for very weak solutions of (NS)-(1.1). In particular, refining the definition of very
weak solutions and using some ideas from the preceding references, the author showed the
existence of (u, π) ∈ Ln(Ω) × W−1,n(Ω) for arbitrary large data f and forcing term F

for n = 3, 4. In two-dimensions, he proved existence of (u, π) ∈ Lq0(Ω) × W−1,1/q0(Ω),
2 < q0 < 3. Moreover, he investigated the regularity of these solutions and also derived
uniqueness results under suitable smallness assumptions. The existence theory for very
weak solutions in unbounded domains (the half-space, exterior domains, ect.) seems to be
more subtle. In general, similar methods as those employed for instance in [18] which rely
on duality arguments and functional analytic tools cannot be carried out. We refer the
reader to [9] for an interesting discussion pertaining to generalized (weak) solutions – we
point out however, some recent existence results for the linear Stokes problem in half-space
domain [8] and in exterior domains [17].

This paper aims at establishing the solvability theory for (NS) in the case Ω = Rn
+

(with possible adaptation of the ideas to the case of bounded smooth domains) by means
of novel ideas. The techniques employed here are new and complement those introduced
by H. Koch and the author in [30] for the analysis of elliptic ”critical” problems subject to
low regularity data. In addition, they can be invoked to study similar questions for other
semilinear elliptic equations.
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Assume Ω = Rn
+, we seek for velocity field of the form u = v+w where v solves the linear

Stokes equation with Dirichlet data f while w solves the inhomogeneous Stokes problem
with zero boundary data and source term F + u · ∇u. Odqvist [24] proved that v assumes
an integral representation, it is the Stokes extension of f to Rn

+ (see Section 2). We look
for f in a large class of distributions on Rn−1 for which v is well-defined and has f as trace
in a suitable sense. On one hand, (NS) is scaling (and translation) invariant with respect
to the maps

uλ(x) = λu(λx), πλ(x) = λ2π(λx), λ > 0

for appropriately rescaled external force and boundary data. On the other hand, we want
to have u in the local Lebesgue space L2

loc in order to make sense of the equation. From

these observations, we are led to the consideration of v in T 2(n−1),2, a scale of tent spaces
introduced by Coifmann, Meyer and Stein in [6]. Thanks to the work by Triebel [28],
we know that v must have a distributional trace f in the homogeneous negative Sobolev
space Ḣ−1/2,2(n−1)(Rn−1). By the same token, the pressure π is sought for in the weighted

tent space T
2(n−1),2
−1/(n−1) (see below for the definition of weighted tent spaces). Tent spaces

naturally arise in the analysis of linear elliptic equations and systems, see e.g. [4, 15] and
references therein. We quote the recent work [30] where these spaces are used in the context
of nonlinear systems.

Our main result states that there exits a unique solution of (NS)-(1.1) in a suitable

framework under a smallness condition on f ∈ Ḣ−1/2,2(n−1)(Rn−1). A more general state-
ment involving Dirichlet data in homogeneous Triebel-Lizorkin spaces is obtained. In both
cases, the solutions constructed satisfy some global integrability property, expressed in
terms of tent norms and it is further shown that these solutions enjoy a higher regularity
locally. This latter feature is derived from the pointwise decay rate of the velocity field
near the boundary. In order to derive all the previous results, we study the inhomogeneous
Stokes problem in Rn

+ (which plays a fundamental role in the analysis of (NS) when the
flow takes place in an exterior region, a channel or a pipe) and derived key estimates of
the solution for prescribed data in the homogeneous Triebel-Lizorkin class with negative
amount of smoothness.

1.1. Tent spaces and functional settings. Throughout, a point x ∈ Rn
+ will typically

be denoted by (x′, xn), x
′ ∈ Rn−1 and xn > 0. For R > 0, BR(x

′) is the closed ball with
radius R > 0 and center at x′ ∈ Rn−1. Given α > 0, define the cone (nontangential region)
with vertex at x′ ∈ Rn−1 by

Γα(x
′) := {(y′, yn) ∈ Rn

+ : |x′ − y′| < αyn}.

We simply use the notation Γ when α = 1. Given a ball B = BR(x
′), we denote by

T (B) = BR(x
′)× (0, diam(BR(x

′))) the Carleson box over BR(x
′). For q ∈ [1,∞), consider

the functionals Aq, Cq defined for F measurable in Rn
+ by

(1.2)

AqF (x
′) =

(∫∫
Γ (x′)

|F (y′, yn)|qs−(n−1)dy′dyn

)1/q

, A∞F (x
′) = ess sup

(y′,yn)∈Γ (x′)
|F (y′, yn)|

(1.3) CqF (x
′) = sup

B∋x′

(∫∫
T (B)

|F (y′, yn)|qdyndy′
)1/q

.

The membership of each of these functionals in a Lebesgue space gives rise to a scale of
functions space first introduced by Coifman, Meyer and Stein [6]. We point out here the
use of a different normalization in (1.2) and (1.3). Let p, q ∈ [1,∞). The tent space T p,q
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collects all functions F ∈ Lq
loc(R

n
+) for which AqF ∈ Lp(Rn−1). We equip this space with

the norm

(1.4) ∥F∥T p,q := ∥AqF∥Lp(Rn−1).

When p = ∞, the space T∞,q is defined by

T∞,q = {F ∈ Lq
loc(R

n
+) : Cq ∈ L∞(Rn−1)}.

The space T∞,q is intrinsically linked to Carleson measures. In fact, it is the space of
functions F ∈ Lq

loc(R
n
+) for which dµ(y′, yn) = |F |qdy′dyn is a Carleson measure in Rn

+.
For any q ∈ [1,∞) and p ∈ (1,∞], T p,q is a Banach space having the space of functions
in Lq(Rn

+) with compact support as a dense subspace. This property together with the
completeness of T p,q for any q ∈ [1,∞] follows from Lemma 1.5 below.

Lemma 1.5. Let K be a compact set in Rn
+ and assume that F ∈ T p,q for p, q ∈ [1,∞).

Then

C1∥1KF∥T p,q ≤ ∥F∥Lq(K) ≤ C2∥F∥T p,q(1.6)

where the constant C1, C2 only depend on p, q, n and K.

Out of convenience, we defer the proof of Lemma 1.5 to the Appendix.

Remark 1.7. We also remark that change of aperture in the cone does not affect the tent
norm. In other words, if

Aα
q F (x

′) :=

(∫∫
Γα(x′)

|F (y′, yn)|qs−(n−1)dy′dyn

)1/q

, α > 0

then

∥Aα
q ∥Lp(Rn−1) ≈ ∥Aβ

qF∥Lp(Rn−1)(1.8)

where the implicit constant depends on p, q and α, β ∈ (0,∞). See [6, Proposition 4, p.
309] which remains valid for q ̸= 2.

For s ∈ R, we say that F : Rn
+ → R belongs to the weighted tent spaces [1, 15], which

we denote by T p,q
s if

(y′, yn) 7→ y−(n−1)ν
n F (y′, yn) ∈ T p,q.

We easily verify that ∥F∥T p,q
ν

:=
∥∥y(1−n)s

n F
∥∥
T p,q defines a norm on T p,q

s . Moreover, for
s1, s2 ∈ R such that s2 < s1 and 1 ≤ p1 < p2 ≤ ∞, q ∈ (0,∞] the following continuous
embedding holds (see [1, Lemma 2.21])

(1.9) T p1q
s1 ⊂ T p2q

s2

provided s2 − s1 =
1

p2
− 1

p1
. Recall Hölder’s inequality in weighted tent spaces.

Lemma 1.10. Let pi, qi, ri ∈ [1,∞], si ∈ R and denote by p′i the conjugate exponent of pi,
i ∈ {1, 2, 3}. If f ∈ T p1,q1

s1 and g ∈ T p2,q2
s2 , then fg ∈ T p0,q0

s0 and it holds that

(1.11) ∥fg∥T p0,q0
s0

≤ C∥f∥T p1,q1
s1

∥g∥T p1,q2
s2

provided s0 = s1 + s2.

This lemma can be proved via a direct argument – there is also another strategy relying
on factorization of tent spaces, see [14]. It is long-established that there is an intrinsic
connection between weighted tent spaces and Triebel-Lizorkin spaces which we now recall
its definition.
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Let us denote by S(Rn−1) the class of Schwartz (smooth rapidly decreasing) functions
on Rn−1 and S ′(Rn−1) its topological dual space endowed with the weak-⋆ topology. Define
the space

Ṡ(Rn−1) = {f ∈ S(Rn−1)
∣∣ ∫

xγf(x)dx = 0, ∀γ ∈ Nn}

which inherits the topology of S(Rn−1) as subspace. This space may be identified with
the space of Schwartz functions whose Fourier transforms vanish together with all their
derivatives at the origin. Its dual space is denoted by Ṡ ′(Rn−1). Let φ be a cut-off function
given by

φ(ξ) =


1 if |ξ| ≤ 1

smooth if 1 < |ξ| ≤ 2

0 if |ξ| > 2.

Let ψ(ξ) = φ(ξ)− φ(2ξ) and define ψj(ξ) = ψ(2−jξ), j ∈ Z so that∑
j∈Z

ψj(ξ) = 1, ξ ∈ Rn−1 \ {0}.

Let us denote by Ff the Fourier transform of f on Rn−1 and ∆̇j = F−1(ψjF) the homo-

geneous Littlewood-Paley operator. Let f ∈ Ṡ ′(Rn−1). For s ∈ R; p, q ∈ [1,∞) we say that

f belongs to the Triebel-Lizorkin space Ḟ s
p,q(Rn−1) if

∥f∥Ḟ s
p,q(Rn−1) =

∥∥∥∥( ∞∑
j=−∞

2−jsq
∣∣∆̇jf

∣∣q)1/q∥∥∥∥
Lp(Rn−1)

<∞.

This space is of Banach type and is equivalent to the Sobolev space Ḣs,p(Rn−1) whenever
q = 2 and 1 < p < ∞. Moreover, for 1 ≤ q1, q2 ≤ ∞ and −∞ < s2 < s1 < ∞ we have the
continuous inclusion

Ḟ s1
p1,q1(R

n−1) ⊂ Ḟ s2
p2,q2(R

n−1)

provided p1, p2 ∈ (1,∞) with s1 − n−1
p1

= s2 − n−1
p2

.

Definition 1.12. For q ∈ ( n
n−1 ,∞), n ≥ 2 we define Xq as the space of vector fields

u : Rn
+ → Rn satisfying ∥u∥Xq <∞ and Zq := {π : Rn

+ → R
∣∣ ∥π∥Zq <∞} where

∥u∥Xq = sup
xn>0

x
1

q−1
n ∥u(·, xn)∥L∞(Rn−1) + ∥u∥T p,q

and

∥π∥Zq := ∥π∥T p,q
s0
, s0 = − 1

n− 1
, p = (n− 1)(q − 1)q.

Definition 1.13. Let 1 ≤ η < τ <∞. We say that F : Rn
+ → Rn belongs to Yτ,η if

∥F∥Yτ,η = sup
xn>0

x
1
η
+n−1

τ
n ∥F (·, xn)∥L∞(Rn−1) + ∥F∥T τ,η

is finite.

Note that either of the expression ∥·∥Xq or ∥·∥Zq defines a norm onXq and Zq respectively.
It can also be easily verified that they are Banach spaces. For convenience, when q = 2, we
will specially denote the spaces Xq and Zq by X and Z, respectively.
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1.2. Main results. Our first result deals with the well-posedness theory. In what follows,
the dimension is assumed larger or equals to 3 unless otherwise stated.

Theorem 1.14. Assume that F = 0. System (NS) has a unique solution (u, π) in a small

closed ball of X× Z provided the data f has a sufficiently small [Ḣ− 1
2
,2(n−1)(Rn−1)]n-norm.

In presence of the forcing term, our main finding reads as follows.

Theorem 1.15. Let 1 < η < τ < ∞ such that
1

η
+
n− 1

τ
= 3. There exist ε > 0

and κ := κ(ε) > 0 such that for every f ∈ [Ḣ− 1
2
,2(n−1)(Rn−1)]n and F ∈ Yτ,η satisfying

∥f∥
Ḣ− 1

2 ,2(n−1)(Rn−1)
+ ∥F∥Yτ,η < ε, Eq. (NS) has a solution (u, π) in X × Z which is the

only one among those satisfying the condition ∥u∥X + ∥π∥Z ≤ 2κ.

Existence of solutions in Xq × Zq for any 2 < q < ∞ is a consequence of Theorem 1.15
together with an improved regularity result. In more details, the statement reads as follows.

Theorem 1.16. Let 2 < q < ∞, η > 1 as in Theorem 1.15 and 1 < η1 < τ1 < ∞. Given

f in
[
Ḣ− 1

2
,2(n−1) ∩ Ḟ s

p,q(Rn−1)
]n

and F ∈ Yτ,η ∩Yτ1,η1, there exist εq ∈ (0, ε) and κq > 0
such that if ∥f∥

Ḣ− 1
2 ,2(n−1)(Rn−1)

+ ∥F∥Yτ,η < εq then there exists a solution (u, π) of (NS)

in the space Xq × Zq which is unique in the ball

B2κq(0) = {(u, π) ∈ X× Z : ∥u∥X + ∥π∥Z ≤ 2κq}

provided 1
η1

+ n−1
τ1

= 2 + 1
q−1 , s = −1

q and p = (n− 1)(q − 1)q.

The uniqueness of the pressure as claimed in the previous results should be understood
up to an additive constant. We also record the following regularity result which arises as a
consequence of the local boundedness property of the velocity field.

Theorem 1.17. If (u, π) ∈ X × Z is the solution of the Navier-Stokes equation (NS)
constructed in Theorem 1.15 (or (u, π) ∈ Xq ×Zq obtained in Theorem 1.16), then (u, π) ∈
[C1,α

loc (R
n
+)]

n ×C0,α
loc (R

n
+). In addition, if F is identically zero, then the solution is infinitely

locally smooth, u ∈ [C∞
loc(Rn

+)]
n × C∞

loc(Rn
+).

Remark 1.18. It is easy to see that Theorem 1.15 in the precise form stated above fails to
hold in two dimensions. This is due to the presence of the forcing term F as the required
condition on η and τ will fail to hold if n = 2. However, a close inspection reveals that the
two-dimensional (unforced) Navier-Stokes equations is well-posed in our functional setting.
Theorem 1.16 shows that if f is taken in a slightly more regular space, then the solution
(u, π) has a better global integrability property.

2. Auxiliary results

This section is devoted to the analysis of the Dirichlet problem for the following system
−∆u+∇π = F + div H in Rn

+

div u = 0 in Rn
+

u = f on ∂Rn
+

(S)

for given vector fields f, F and tensor H. Our goal is to prove that (S) admits a solution
(u, π) in the target space Xq ×Zq whose norm can be estimated by the norms of f , F and
H in suitable functions spaces. To this end, for better readability we simply separate the
study into two parts: the homogeneous case (f = 0) and the inhomogeneous case (F = 0,
H = 0).
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2.1. Homogeneous Stokes system and linear estimates. Consider the Stokes opera-
tor LS acting on pair of functions (u, π) ∈ [D ′(Rn)]n × D ′(Rn), n ≥ 2 and given by

LS(u, π) =
(
−∆u1 + ∂1π, · · · ,−∆un + ∂nπ,

n∑
i=1

∂iui
)
.

A fundamental solution of the Stokes operator LS in Rn is a pair (E,b) with E = (Eij)
n
i,j=1

in Mn×n[S ′(Rn)] and b = (b1, ..., bn) ∈ [S ′(Rn)]n satisfying coordinate-wise the equations
−∆Eij + ∂ibj = δijδ in S ′(Rn), i, j ∈ {1, ..., n}
n∑

k=1

Ekj = 0 in S ′(Rn), j ∈ {1, ..., n}.

Applying the Fourier transform to both sides of each of the above equations yields the
following explicit expressions
(2.1)

Eij(x) =
1

2ωn−1

[
1

(n− 2)

δij
|x|n−2

+
xixj
|x|n

]
, bj = − 1

ωn−1

xj
|x|n

; x ∈ Rn−1 \{0}, i, j ∈ {1, ..., n}.

where ωn−1 is the surface area of the unit sphere in Rn−1. Details of explicit computations
leading to (2.1) can be found in [23, Chap. 10]. Now, let us consider the homogeneous
Stokes system 

−∆u+∇π = 0 in Rn
+

div u = 0 in Rn
+

u = f on ∂Rn
+.

(2.2)

With the convolution being understood in a component wise sense, define

(2.3) Hf(x′, xn) = (Kxn ∗ f)(x′), Ef(x′, xn) = (kxn ∗ f)(x′)
where

Kxn(x
′) = (Kij(x

′, xn))1≤i,j≤n and kxn(x
′) = (k1(x, xn), ..., kn(x

′, xn))

are commonly referred to as the Odqvist kernels [24] – each entry of the tensors assuming
an explicit form in terms of (2.1) via the formulas

(2.4) Kij(x) = 2(∂xnEij + ∂jEin + δjnbi) =
2n

ωn−1

xnxixj
|x|n+2

and

(2.5) kj(x) = 4∂jbn =
1

ωn−1
∂j

4xn
|x|n

.

For the derivation of these kernels, the interested reader may as well consult the articles
[24, 27]. Note that if f belongs to the weighted Lebesgue space L1

(
Rn−1, dx′

(1+|x′|)n
)
, then

u = Hf and π = Ef are both meaningful as absolutely convergent integrals and (u, π) is
the unique solution of Eq. (2.2) decaying at infinity. This is no longer the case if f is merely
a generic distribution. In fact, the Stokes extension H does not map S ′(Rn−1) into itself in
general (for example, in one dimension f(x′) = x′2 ∈ S ′(R) but Hf /∈ S ′(R)). However, it

can be shown that if f ∈ Ṡ ′(Rn−1), then so are Hf and Ef . Poisson extensions of Schwartz
distributions have been studied by H. Triebel [28] – they characterize almost all scale of
Triebel-Lizorkin spaces on Rn−1 using tent spaces. In particular, the following equivalence
holds true

(2.6) ∥f∥
Ḟ

− 1
q

p,q (Rn−1)
∼

∥∥∥∥Aq[Pxn ∗ f ]
∥∥∥∥
Lp(Rn−1)

, p = q(q − 1(n− 1))
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where 1 < q < ∞ and Pxn(x
′) = cnxn(|x′|2 + x2n)

−n
2 (with cn normalizing constant such

that Pxn has a normalized L1-norm equals to 1) is the Poisson kernel for the Laplacian in
Rn
+.

Lemma 2.7. Given q ∈ ( n
n−1 ,∞), n ≥ 2 and set p = (n − 1)q(q − 1). There exists a

constant C := C(n, q) > 0 such that

∥Hf∥Xq + ∥Ef∥Zq + sup
xn>0

xq/(q−1)
n ∥Ef(·, xn)∥L∞(Rn−1) ≤ C∥f∥

Ḟ
− 1

q
p,q (Rn−1)

(2.8)

for all f ∈ [Ḟ
− 1

q
p,q (Rn−1)]n where Hf and Ef are defined as in (2.3).

We state two more auxiliary results which will be useful in the demonstration of Lemma
2.7.

Lemma 2.9 (Averaging Lemma). Assume that F ∈ Lq
loc(R

n
+), q ≥ 1. We have∫

Rn−1

∫∫
Γ (x′)

|F (y′, yn)|q
dy′dyn

yn−1
n

dx′ = µ

∫
Rn
+

|F (y)|qdy

where µ > 0 only depends on n, the dimension.

The proof of this identity follows from a simple application of Fubini–Tonelli’s Theorem.

Lemma 2.10. Let K ⊂ Rn
+ compact set and E(K) = {x′ ∈ Rn−1 : K ∩ Γ (x′) ̸= Ø}. Then

E(K) is open, its Lebesgue measure |E(K)| is finite and only depends on K.

Proof. Let x ∈ E(K), there exists (y′, yn) ∈ Rn
+ with (y, yn) ∈ K and y′ ∈ B(x′, yn).

Putting R = yn − |x′ − y′| > 0, it plainly follows that B(x′, R) ⊂ E(K). Moving on, we
remark that E(K) is actually bounded. Moreover, since K is compact, we may assume
without loss of generality that K = Bθ(z

′)× [a, b] for some a, b, θ > 0 with a < b and thus
a simple covering argument implies that |E(K)| ≤ Cθn for some constant C > 0. □

Now we are ready to prove Lemma 2.7.

Proof of Lemma 2.7. By a direct computation, each coefficient of the matrix K satisfies the
pointwise estimate

∣∣∇kKij(x
′, xn)

∣∣ ≤ cx−k
n Pxn(x

′), k = 0, 1 for each i, j = 1, · · · , n. Also,
from the explicit expression

kj(x
′, xn) =

4

ωn−1

{ xnxj

|x|n+2 if j = 1, ..., n− 1
nx2

n−|x|2
n|x|n+2 if j = n

we verify that |kj(x′, xn)| ≤ Cx−1
n Pxn(x

′) for all (x′, xn) ∈ Rn
+. Let (u, π) = (H(f), E(f))

be a solution to Eq. (2.2). For x ∈ Rn
+ fixed, the interior estimate (see e.g. [26]) for the

linear Stokes problem together with Lemma 2.9 allow us to write

|π(x)|q ≤ C|Bxn/2(x)|
−1

∫
Bxn/2(x)

|π(y′, yn)|qdy′dyn

≤ C|Bxn/2(x)|
−1

∫
Bxn/2(x)

|y−1
n (Pyn ∗ f)|qdy′dyn

≤ C|Bxn/2(x)|
−1

∫
Bxn (x

′)×[xn/3,2xn]
|y−1

n (Pyn ∗ f)|qdy′dyn

≤ Cx−(n+q)
n

∫
Rn−1

∫ ∞

0

∫
Byn (z

′)
1Byn (x

′)×[xn/3,2xn](y
′, yn)|Pyn ∗ f |q dy

′dyn

yn−1
n

dz′
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≤ Cx−(n+q)
n

∥∥Aq[Pyn ∗ f ]
∥∥q
Lp(Rn−1)

∣∣∣∣E(
Bxn(x

′)× [xn/3, 2xn]
)∣∣∣∣ p−q

p

≤ Cx
−1−q− (n−1)q

p
n ∥f∥q

Ḟ
−1/q
p,q (Rn−1)

.

Observe that we have used Hölder’s inequality and Lemma 2.10 to get the estimate before
the last and the choice p = q(n−1)(q−1) yields the desired bound. From the above remark
on the kernel kj , one has

∥π∥T p,q
1

=

∥∥∥∥(∫∫
Γ (·)

|ynπ(y′, yn)|q
dy′dyn

yn−1
n

)1/q∥∥∥∥
Lp(Rn−1)

≤ C

∥∥∥∥(∫∫
Γ (·)

|Pyn ∗ f |q dy
′dyn

yn−1
n

)1/q∥∥∥∥
Lp(Rn−1)

≤ C∥f∥
Ḟ

−1/q
p,q (Rn−1)

.

The latter bound is a consequence of the extrinsic characterization (2.6). The same obser-
vation pertaining to the velocity field gives ∥u∥T p,q ≤ C∥f∥

Ḟ
−1/q
p,q (Rn−1)

. It then remains to

establish the bound

(2.11) sup
xn>0

x
1

q−1
n ∥u(·, xn)∥L∞(Rn−1) ≤ C∥f∥

Ḟ
− 1

q
p,q (Rn−1)

.

Let fj in Ḟ
− 1

q
p,q (Rn−1) and write ui(x) = Kij(·, xn) ∗ fj(x′), i = 1, ..., n with the summation

convention so that by the mean value property for the velocity field [26, Theorem 4.5] and
with the same notation as above

|ui(x)| ≤ −
∫
Bxn/2(x)

|ui(y)|dy +
1

2
−
∫
Bxn/2(x)

|π(z)||zi − xi|dz := I + II, i = 1, 2, ..., n.

Using Hölder’s inequality and Lemma 2.9, we estimate I as follows:

Iq ≤ Cx−(n−1)
n

∫
Bxn/2(x)

|Pxn ∗ fj |qdy

≤ Cx−(n−1)
n

∫
Rn−1

∫∫
Γ (z′)

1Bxn/2(x)(y)|Pxn ∗ fj |qy−(n−1)
n dydz′

≤ Cx−(n−1)
n

∥∥Pxn ∗ fj
∥∥q
T p,q

∣∣∣∣E(
Bxn

2
(x′)× [xn/3, 2xn]

)∣∣∣∣ p−q
p

≤ Cxq/(q−1)
n ∥f∥q

Ḟ
1/q
p,q (Rn−1)

.(2.12)

In order to estimate the integral II := 1
2−
∫
Bxn/2(x)

|π(z)||zi − xi|dz, we use the fact that if

z ∈ Bxn/2(x), then Bxn/2(z) ⊂ Bxn(x). Indeed, we have

II ≤ |Bxn/2(x)|
−1

∫
Bxn/2(x)

(
−
∫
Bxn/2(z)

|π(y)|dy
)
|zi − xi|dz

≤ C|Bxn(x)|−1

(
−
∫
Bxn (x)

|π(y)|qdy
)1/q ∫

Bxn/2(x)
|z − x|dz

≤ C|Bxn(x)|−1

(
−
∫
Bxn (x)

|π(y)|qdy
)1/q ∫ xn/2

0
σndσ

≤ x
− 1

q−1
n ∥f∥

Ḟ
1/q
p,q (Rn−1)

(2.13)
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Combining (2.12) and (2.13), we obtain (2.11). This achieves the proof of Theorem 2.7. □

2.2. Inhomogeneous Stokes system. Consider the operators G and Ψ in Rn
+ respectively

defined by

G (F,H)(x) =

∫
Rn
+

G(x, y)F (y)dy −
∫
Rn
+

∇yG(x, y)H(y)dy,

Ψ(F,H)(x) =

∫
Rn
+

g(x, y)F (y)dy −
∫
Rn
+

∇yg(x, y)H(y)dy

whenever the integrals make sense for almost every x ∈ Rn
+. Recall that the kernels

G(x, y) = (Gij(x, y))
n
i,j=1 and g(x, y) = (gj(x, y))

n
j=1, (x ̸= y) are the Green tensor for

the Stokes operator in Rn
+, that is, coordinates-wise the function satisfying

−∆xGij + ∂igj = δxδij in Rn
+

∂iGij = 0 in Rn
+

Gij(x, ·)
∣∣
∂Rn

+
= 0.

(2.14)

in the sense of distributions where δx is the Dirac distribution with mass at x ∈ Rn
+, Under

mild assumptions on F and H, the vector-valued functions v = G (F,H) and w = Ψ(F,H)
satisfy the system of equations

−∆v +∇w = F + div H in Rn
+

div v = 0 in Rn
+

v = 0 on ∂Rn
+

(2.15)

Refined properties of Green matrices were recently obtained by the authors in [16] relying
on ideas introduced earlier in the articles [22] (for n = 2, 3) and [10] (for the general case).
For our purpose we will need the following properties which include sharp pointwise decay
bounds.

Lemma 2.16. The Green tensor G is symmetric, Gij(x, y) = Gji(y, x) for all x, y ∈ Rn
+

and satisfies together with g the pointwise estimates

∣∣∇α
x∇β

yGij(x, y)
∣∣ ≤ CN


|x− y|−(n−2+N)

xnyn
|x− y|n+N

if αn = βn = 0

xn
|x− y|n−1+N

if αn = 0

for α, β ∈ Nn, |α|+ |β| = N.

(2.17)

∣∣∇αgj(x, y)
∣∣ ≤ Cα|x− y|−(n−1)−|α|, α ∈ Nn

0 , j = 1, ..., n(2.18)

for n ≥ 2, where the constants are independent of x and y.

These inequalities find their applicability in our next result which deals with the mapping
properties of the potentials G and Ψ. Recall the space Yτ,η introduced in Section 1.

Proposition 2.19. Fix n ≥ 3 and assume that q ∈ ( n
n−1 ,∞). Let 1 < η < τ < ∞ and

1 ≤ σ < Λ < p <∞ satisfy the condition

1

η
+
n− 1

τ
= 2 +

1

q − 1
= 1 +

1

σ
+
n− 1

Λ
.

For all F ∈ Yτ,η and H ∈ YΛ,σ we have G (F,H) ∈ Xq, Ψ(F,H) ∈ Zq and it holds that

(2.20) ∥G (F,H)∥Xq + ∥Ψ(F,H)∥Zq ≤ C(∥F∥Yτ,η + ∥H∥YΛ,σ)

for some constant C := C(n, q) > 0 independent of F and H.
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Remark 2.21. The proof of the above result reveals that elliptic estimates of the form

sup
xn>0

x
1

q−1
+|α|

n

∥∥∂αx′u(·, xn)
∥∥
L∞(Rn−1)

≤ C(∥F∥Yτ,η + ∥H∥YΛ,σ)(2.22)

are valid for u solution of the Stokes equation (2.15) for each multi-index α ∈ Nn
0 . However,

it is not clear whether vertical derivatives of u enjoy this property. In fact, we are relying
heavily on (2.17) which seems to fail in the case αn ̸= 0 or βn ̸= 0, see [16, Remark 2.6].
We also point that in absence of the forcing term F , Proposition 2.19 holds true in two
dimensions.

The proof of the proposition essentially relies on two auxiliary results, one of which
deals with the mapping properties in mixed Lebesgue spaces of the operator Gβ defined for
0 < β < n by

GβF (y) =

∫
Rn
+

F (z)dz

|y − z|n−β
(2.23)

whenever the integral exists for almost all y ∈ Rn
+. For p, q ∈ [1,∞], let us denote by

LpLq(Rn
+) the mixed Lebesgue space of function F : Rn

+ → R with the property that
x′ 7→ F (x′, ·) ∈ Lp(Rn−1) and xn 7→ F (·, xn) ∈ Lq(R+) and equip it with the norm

∥F∥LpLq(Rn
+) =

∥∥∥F (·, xn)∥Lq(R+,dxn)

∥∥
Lp(Rn−1)

.

Lemma 2.24. Let 0 < β < n and 1 < τ < ∞. Assume that 1 ≤ η ≤ q ≤ p < ∞ are such
that

(2.25)
1

η
< β +

1

q
,

n− 1

p
=
n− 1

τ
+

1

η
− 1

q
− β.

Then the operator Gβ is bounded from LτLη(Rn
+) into L

pLq(Rn
+).

Recall the Riesz potential Iα of order α ∈ (0, n), that is, the convolution operator with
the kernel |x|α−n, x ∈ Rn \ {0}.

Proof. Along the lines of the proof of [29, Lemma 2.2], take F ∈ LτLη(Rn
+) and let F̃ be

the zero extension of F to Rn. For 1 ≤ η <∞ and 1 < τ <∞ we have

∥GβF∥LpLq(Rn
+) =

∥∥∥∥∥∥GβF (y
′, ·)

∥∥
Lq(R+)

∥∥∥∥
Lp(Rn−1)

.

Let x′ ∈ Rn−1 and set S(x′, s) = (|x′|2+s2)−
n−β
2 , s > 0. For 1 ≤ θ <∞ such that 1

η +
1
θ ≥ 1

we use Minkowski’s inequality to arrive at∥∥GβF (y
′, ·)

∥∥
Lq(R+)

=

∥∥∥∥∫
Rn
+

|F (z′, zn)|dz′dzn
(|y′ − z′|2 + | · −zn|2)

n−β
2

∥∥∥∥
Lq(R+)

=

∥∥∥∥∫
Rn−1

(
S(|y′ − z′|, ·) ∗ |F̃ |(z′)

)
(yn)dy

′
∥∥∥∥
Lq(R+,dyn)

≤ C

∫
Rn−1

∥∥(S(|y′ − z′|, ·) ∗ |F̃ |)(z′, ·)∥Lq(R+)dz
′

≤ C

∫
Rn−1

∥∥S(|y′ − z′|, ·)
∥∥
Lθ(R+)

∥F (z′, ·)∥Lη(R+)dz
′

≤ C[Iβ+ 1
θ
−1∥F (·, yn)∥Lη(R+,dyn)](y

′), y′ ∈ Rn−1
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where 1
q + 1 = 1

θ +
1
η . Thus, if

n−1
p = n−1

τ − (β + 1
θ − 1), then by the boundedness of Iα in

Lebesgue spaces, we find that

∥GβF∥LpLq(Rn
+) ≤ C

∥∥Iβ− 1
θ
−1∥F (y

′, ·)∥Lη(R+)

∥∥
Lp(Rn−1,dy′)

≤ C
∥∥F∥∥

LτLη(Rn
+)
.

□

Remark 2.26. In the sequel, we will need a weighted analogue of (2.24) of the form∥∥∥∥∥∥GβF (·, yn)
∥∥
Lq(R+,yqndyn)

∥∥∥∥
Lp(Rn−1)

≤ C

∥∥∥∥∥∥F (·, yn)∥∥Lη(R+,ybηn dyn)

∥∥∥∥
Lr(Rn−1)

(2.27)

which holds for all functions F such that (x′, xn) 7→ xbnF ∈ LrLη(Rn
+) under the conditions

2 +
1

q
= (n− 1)

(
1

r
− 1

p

)
+

1

η
+ b− (β − 1)

1 < r < p <∞, b ≥ 1

n > β + 2 + 1
q −

1
η − b.

(2.28)

In fact, one may use the same strategy as before to prove (2.27). If a ≥ 1 and δ > 1 are
such that

1

δ
+ a = (n− 1)

(
1

r
− 1

p

)
− (β − 1),

then using the weighted convolution inequality [13, Theorem 1.2] for n = 1, we obtain∥∥GβF (y
′, ·)

∥∥
Lq(R+,yqndyn)

≤ C

∫
Rn−1

∥S(|y′ − z′|, ·)∥Lδ(R+,yaδn dyn)∥F (z
′, ·)∥

Lη(R+,ybηn )
dz′

≤ I 1
δ
+a+β−1∥F (·, yn)∥Lη(R+,ybηn dyn)

(y′), y′ ∈ Rn−1.

This, in conjunction with (2.28) gives the desired bound.

We are now ready to prove Proposition 2.19 and we divide the proof in two steps.

Step 1. The Bound

(2.29) ∥G (F,H)∥Xq ≤ C(∥F∥Yτ,η + ∥H∥YΛ,σ).

Let 1 < η <∞ and 1 < τ <∞ such that 1
η +

n−1
τ = 2+ 1

q−1 . Pick F in Yτ,η and H ∈ YΛ,σ.

We first prove that

(2.30) sup
xn>0

x1/(q−1)
n ∥G (F,H)(·, xn)∥L∞(Rn−1) ≤ ∥F∥Yτ,η .

Fix x′ ∈ Rn−1 and xn > 0 and write∫
Rn
+

G(x′, xn, y)F (y)dy = J1 + J2 + J3 + J4

where

J1 =

∫
Bxn (x

′)

∫ xn/2

0
G(x, y)F (y)dy, J2 =

∫
Bxn (x

′)

∫ 2xn

xn/2
G(x, y)F (y)dy,

J3 =

∫
Rn−1\Bxn (x

′)

∫ 2xn

0
G(x, y)F (y)dy, J4 =

∫
Rn−1

∫ ∞

2xn

G(x, y)F (y)dy.
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Next, we estimate each of these integrals by means of the pointwise inequalities from Lemma
2.16. Indeed, starting with J1 and using the summation convention, we have

|J1| ≤
∫
Bxn (x

′)

∫ xn/2

0
|Gij(x

′, xn, y)||Fj(y)|dy

≤ C

∫
Bxn (x

′)

∫ xn/2

0

|F (y)|
(|x′ − y′|2 + (xn − yn)2)

n−2
2

dyndy
′

≤ Cx−(n−2)
n x

n
η′
n

(∫
Bxn (x

′)

∫ xn/2

0
|F (y)|ηdyndy′

)1/η

≤ Cx
−(n−2)+ n

η′
n

(∫
Rn−1

∫∫
Γ (x′)∩Bxn (x

′)×(0,xn/2)
|F (y)|ηy−(n−1)

n dyndy
′dz′

)1/η

≤ Cx
−(n−2)+ n

η′
n ∥F∥T τ,η

∣∣E(Bxn/2(x
′)× (0, xn/2))

∣∣ τ−η
τη

≤ Cx
2−n−1

τ
− 1

η
n ∥F∥T τ,η .

where we have utilized Hölder’s inequality in order to derive the third and fifth bounds in
the above chain of estimates and 1

η′ +
1
η = 1. On the other hand,

|J2| ≤
∫
Bxn (x

′)

∫ 2xn

xn/2
|Gij(x, y)||Fj(y)|dy

≤ C

∫
Bxn (x

′)

∫ 2xn

xn/2
|x− y|−(n−2)|Fj(y)|dy

≤ C sup
yn>0

x
n−1
τ

+ 1
η

n ∥F (·, yn)∥L∞(Rn−1)

∫
Bxn (x

′)

∫ 2xn

xn/2

y
− 1

η
−n−1

τ
n dyndy

′

[|x′ − y′|2 + (xn − yn)2](n−2)/2

≤ Cx
− 1

η
−n−1

τ
n ∥F∥Yτ,η

∫
Bxn (x

′)

∫ 2xn

xn/2
|x′ − y′|−(n−2)dyndy

′

≤ Cx
1− 1

η
−n−1

τ
n ∥F∥Yτ,η

∫
Bxn (x

′)
|x′ − y′|−(n−2)dy

≤ Cx
2− 1

η
−n−1

τ
n ∥F∥Yτ,η .

Similarly as above, by Lemma 2.9 and Hölder’s inequality, we find that

|J3| ≤
∫
Rn−1\Bxn (x

′)

∫ 2xn

0
|Gij(x, y)||Fj(y)|dy

≤ Cxn

∫
Rn−1\Bxn (x

′)

∫ 2xn

0
|x− y|−(n−1)|Fj(y)|dy

≤ Cxn

∞∑
k=1

∫
2kBxn (x

′)\2k−1Bxn (x
′)

∫ 2xn

0
|x− y|−(n−1)|Fj(y)|dy

≤ Cx2−n+n/η′
n

∞∑
k=1

2
−(k−1)(n−1)+

(n−1)k

η′

(∫
2kBxn (x

′)

∫ 2xn

0
|Fj(y)|ηdyndy′

) 1
η

≤ Cx
2−n

η
+

(n−1)(τ−η)
τη

n

[ ∫
Rn−1

(∫∫
Γ (z′)

|Fj(y)|η
dy

yn−1
n

)τ/η

dz′
] 1

τ
( ∞∑

k=1

2−
k(n−1)

τ

)
≤ Cx

2− 1
η
−n−1

τ
n ∥F∥Yτ,η .



14 GAEL DIEBOU YOMGNE

Again, by using the Green matrix bounds, we bound J4 as follows

|J4| ≤
∫
Rn−1

∫ ∞

2xn

|Gij(x, y)||Fj(y)|dy

≤ C

∫
Rn−1

∫ ∞

2xn

xnyn|Fj(y)|
|x− y|n

dy

≤ C

∫
Rn−1

∫ ∞

2xn

|Fj(y)|dyndy′[
|x′ − y′|2 + y2n

]n
2

≤ C sup
xn>0

x
1
η
+n−1

τ
n ∥F (·, xn)∥L∞(Rn−1)

(∫ ∞

2xn

xny
− 1

η
−n−1

τ
n dyn

)(∫
Rn−1

dz′[
|z′|2 + 1

]n
2

)
≤ Cx

2− 1
η
−n−1

τ
n ∥F∥Yτ,η .

In the same vein, we establish the weighted gradient sup-norm estimate

(2.31) sup
xn>0

xq/(q−1)
n

∥∥∥∥∫
Rn
+

∇yG(·, xn, y)H(y)dy

∥∥∥∥
L∞(Rn−1)

≤ C∥H∥YΛ,σ .

Decompose the solid integral in the above estimate into four parts to get

L1 =

∫
Bxn (x

′)

∫ xn/2

0
∇yG(x, y)H(y)dy, L2 =

∫
Bxn (x

′)

∫ 2xn

xn/2
∇yG(x, y)H(y)dy,

L3 =

∫
Rn−1\Bxn (x

′)

∫ 2xn

0
∇yG(x, y)H(y)dy, L4 =

∫
Rn−1

∫ ∞

2xn

∇yG(x, y)H(y)dy.

Suppose 1
σ + n−1

Λ = 1
η + n−1

τ − 1. Utilizing (2.17) and Hölder’s inequality, we arrive at

|L1| ≤
∫
Bxn (x

′)

∫ xn/2

0
|∇yG(x, y)||H(y)|dy

≤ C

∫
Bxn (x

′)

∫ xn/2

0

|H(y′, yn)|
(|x′ − y′|2 + (xn − yn)2)

n−1
2

dyndy
′

≤ Cx
1− 1

σ
−n−1

Λ
n ∥AqH∥LΛ(Rn−1)

≤ Cx
1− 1

σ
−n−1

Λ
n ∥H∥YΛ,σ

Next, noticing that |∇Gij(x, ·)| belongs to the weak-Lebesgue space L
n

n−1
,∞(Rn

+) uniformly
for all x ∈ Rn

+, it follows that

|L2| ≤
∫
Bxn (x

′)

∫ 2xn

xn/2
|∇yG(x, y)H(y)|dy

≤ C sup
xn>0

x
1
σ
+n−1

Λ
n ∥H(·, xn)∥L∞(Rn−1)

∫
Bxn (x

′)

∫ 2xn

xn/2
y
− 1

σ
−n−1

Λ
n |∇yG(x, y)|dyndy′

≤ Cx
− 1

σ
−n−1

Λ
n sup

xn>0
x

1
σ
+n−1

Λ
n ∥H(·, xn)∥L∞(Rn−1)∥∇yG(x, ·)∥L1(Bxn (x

′)×[xn/2,2xn])

≤ Cx
1− 1

σ
−n−1

Λ
n ∥H∥YΛ,σ .

Recall here that for any p > 1 the belonging of f to Lp,∞(Rn−1) is equivalent to the
condition

sup
E⊂Rn−1

|E|1/p−1

∫
E
|f(y)|dy <∞
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where the supremum runs over all open set E of Rn−1. We argue as before to bound L3

|L3| ≤
∫
Rn−1\Bxn (x

′)

∫ 2xn

0
|∇yG(x, y)H(y)|dyndy′

≤
∞∑
k=1

∫
2kBxn (x

′)\2k−1Bxn (x
′)

∫ 2xn

0
|∇yG(x, y)||H(y)|dyndy′

≤ C
∞∑
k=1

∫
2kBxn (x

′)\2k−1Bxn (x
′)

∫ 2xn

0
|x− y|−n+1|H(y)|dyndy′

≤ Cx
1−n

σ
n

∞∑
k=1

2−(n−1)k+
k(n−1)

σ′

(∫
Rn−1

∫∫
Γ (z′)∩[2kBxn (x

′)×(0,2xn)]
|H(y)|σ dyndy

′

yn−1
n

dz′
) 1

σ

≤ Cx
−(n−1)+ n

σ′+
(Λ−σ)
Λσ

n
n

∞∑
k=1

2−(k−1)(n−1)+
k(n−1)

σ′ +k(n−1)
(Λ−σ)
σΛ ∥AσH∥LΛ(Rn−1)

≤ Cx
1− 1

σ
−n−1

Λ
n ∥H∥TΛ,σ

∞∑
k=1

2−
(n−1)

Λ
k

≤ Ct
2− 1

η
−n−1

τ ∥H∥YΛ,σ .

Finally, observe that for yn > 2xn, we have yn − xn >
1
2yn so that by the third bound in

(2.17), we find that

|L4| ≤
∫
Rn−1

∫ ∞

2xn

|∇yG(x, y)||H(y)|dy

≤ C

∫
Rn−1

∫ ∞

2xn

xn|H(y)|dyndy′[
|x′ − y′|2 + (xn − yn)2

]n
2

≤ C

∫
Rn−1

∫ ∞

2xn

xn|H(y)|dyndy′[
|x′ − y′|2 + y2n

]n
2

≤ C sup
xn>0

x
1
σ
+n−1

Λ
n ∥H(·, xn)∥L∞(Rn−1)

(∫
Rn−1

dy′

(|y′|2 + 1)
n
2

)(∫ ∞

2xn

xny
− 1

σ
−n−1

Λ
−1

n dyn

)
≤ Ct1−

1
σ
−n−1

Λ ∥H∥YΛ,σ .

Summing up all the above inequalities, one obtains (2.30). Next, we show that

∥G (F,H)∥Tnq(q−1),q ≤ C(∥F∥T τ,η + ∥H∥TΛ,σ).(2.32)

Write

∥G (F,H)∥T p,q ≤
∥∥∥∥∫

Rn
+

G(·, y)F (y)dy
∥∥∥∥
T p,q

+

∥∥∥∥∫
Rn
+

∇yG(·, y)H(y)dy

∥∥∥∥
T p,q

:= I + II.

Fix x′ ∈ Rn−1 and yn > 0 and let’s decompose F ∈ Lη
loc(R

n
+) into three parts

F = F1B4yn (x
′)×(0,4yn] + F1B4yn (x

′)×(4yn,∞) + F1(Rn−1\B4yn (x
′))×(0,∞) = F1 + F2 + F3

and write

I := Σ1 +Σ2 +Σ3, Σi =

∥∥∥∥∫
Rn
+

G(·, y)Fi(y)dy

∥∥∥∥
T p,q

, i = 1, 2, 3.

We dispose of I3 using the following
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Claim 2.33. For all x′ ∈ Rn−1 and yn > 0, there exists C > 0 independent on x′ and yn
such that

A(x′, yn) ≤ CG2

(
−
∫
Byn (·)

|F (z′, ·)|dz′
)
(x′, yn).

Here,

A(x′, yn) =

(
−
∫
Byn (x

′)

∣∣∣∣ ∫
Rn
+

G(y, z)F3(z)dz

∣∣∣∣qdy′) 1
q

, (x′, yn) ∈ Rn
+.

Proof. We have

A(x′, yn) =

(
−
∫
Byn (x

′)

(∫
Rn
+

|G(y, z)||F3(z)|dz
)q

dy′
)1/q

≤ C

(
−
∫
Byn (x

′)

(∫ ∞

0

∫
Rn−1\B4yn (x

′)

|F (z′, zn)|dz′dzn
(|y′ − z′|2 + |yn − zn|2)

n−2
2

)q

dy′
)1/q

≤ C

(
−
∫
Byn (x

′)

(∫ ∞

0

∫
{|x′−z′|>4yn}

|F (z′, zn)|dz′dzn
(|y′ − z′|2 + |yn − zn|2)

n−2
2

−
∫
Byn (z

′)
dw

)q

dy′
) 1

q

≤ C

(
−
∫
Byn (x

′)

(∫ ∞

0

∫
{|x′−w|>3yn}

−
∫
Byn (w)

|F (z′, zn)|dz′dwdzn
(|y′ − z′|2 + |yn − zn|2)

n−2
2

)q

dy′
)1/q

≤ C

(
−
∫
Byn (x

′)

(∫ ∞

0

∫
{|x′−w|>3yn}

(|x′ − w|2 + |yn − zn|2)
−(n−2)

2 ·

−
∫
Byn (w)

[
(|x′ − w|2 + |yn − zn|2)
(|y′ − z′|2 + |yn − zn|2)

]n−2
2

|F (z′, zn)|dz′dwdzn
)q

dy

) 1
q

≤ C

(
−
∫
Byn (x

′)

(∫ ∞

0

∫
{|x′−w|>3yn}

(|x′ − w|2 + |yn − zn|2)
−(n−2)

2 ·

−
∫
Byn (w)

|F (z′, zn)|dz′dwdzn
)q

dy′
)1/q

≤ C

∫ ∞

0

∫
{|x′−w|>3yn}

(|x′ − w|2 + |yn − zn|2)
−(n−2)

2

(
−
∫
Byn (w)

|F (z′, zn)|dz′
)
dwdzn

≤ C

∫
Rn
+

(|x′ − w|2 + |yn − zn|2)
−(n−2)

2

(
−
∫
Byn (w)

|F (z′, zn)|dz′
)
dwdzn

≤ CG2

(
−
∫
Byn (·)

|F (z′, ·)|dz′
)
(x′, yn).

□

Applying Lemma 2.24 and Jensen’s inequality, the above claim clearly implies that

Σ3 = ∥A∥LpLq(Rn
+) ≤ C

∥∥∥∥G2

(
−
∫
Byn (·)

|F (z′, ·)|dz′
)∥∥∥∥

LpLq(Rn
+)

≤ C

∥∥∥∥−∫
Byn (·)

|F (z′, yn)|dz′
∥∥∥∥
LpLq(Rn

+)

≤ C∥F∥T τ,η .
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To bound Σ2, we first observe that∣∣∣∣ ∫
Rn
+

G(y, z)F2(z)dz

∣∣∣∣ ≤ CynAηF (x
′)

(∫ ∞

4yn

∫
B4yn (x

′)

z
n−1
η−1
n dz′dzn

(|y′ − z′|2 + |yn − zn|2)
(n−1)η′

2

) 1
η′

≤ Cy
2− 1

η
n AηF (x

′), x′ ∈ B(y′, yn).(2.34)

On the other hand, this inequality also implies the pointwise bound∣∣∣∣ ∫
Rn
+

G(y, z)F2(z)dz

∣∣∣∣ ≤ Cy
− 1

q−1
n ∥AηF∥Lτ (Rn−1), y′ ∈ B(x′, yn).(2.35)

Let M > 0 to be determined later. Using (2.34) and (2.35), we find that∫ ∞

0
−
∫
Byn (x

′)

∣∣∣∣ ∫
Rn
+

G(y, z)F2(z)dz

∣∣∣∣qdy′dyn ≤
∫ M

0
−
∫
Byn (x

′)

∣∣∣∣ ∫
Rn
+

G(y, z)F2(z)dz

∣∣∣∣qdy′dyn+∫ ∞

M
−
∫
Byn (x

′)

∣∣∣∣ ∫
Rn
+

G(y, z)F2(z)dz

∣∣∣∣qdy′dyn
≤ CM

1+(2− 1
η
)q
[AηF (x

′)]q +M
− 1

q−1 ∥F∥qT τ,η .

Optimizing this inequality with respect to M , that is taking M =

(
∥F∥T τ,η

AηF (x′)

) τ
n−1

, we

arrive at(∫ ∞

0
−
∫
Byn (x

′)

∣∣∣∣ ∫
Rn
+

G(y, z)F2(z)dz

∣∣∣∣qdy′dyn) 1
q

≤ C∥F∥
1− τ

q(n−1)(q−1)

T τ,η [AηF (x
′)]

τ
q(n−1)(q−1) .

Taking the Lp-norm on both sides of the inequality, we conclude that

Σ2 ≤ C∥F∥T τ,η .

Finally, estimating Σ1 goes through a duality argument. Let r = (n − 1)(q − 1) and

φ ∈ Lr′(Rn−1), φ ≥ 0 and define the operator

Mtφ(x
′) = t−(n−1)

∫
Bt(x′)

φ(y′)dy′, t > 0.

If ⟨·, ·⟩ denotes the duality bracket between Lp(Rn−1) and its dual Lp′(Rn−1), then〈
Aq

q

[ ∫
Rn
+

G(·, z)F1(z)dz

]
, φ

〉
=

∫
Rn−1

∫ ∞

0

∫
Byn (x

′)

∣∣∣∣ ∫
Rn
+

G(y, z)F1(z)dz

∣∣∣∣q dy′dynyn−1
n

φ(x′)dx′

≤ C

∫
Rn−1

∫ ∞

0
−
∫
Byn (y

′)
φ(x′)dx′[G2|F |(y′, yn)]qdy′dyn

≤ C

∫
Rn−1

∫ ∞

0
[G2|F |(y′, yn)]qMynφ(y

′)dy′dyn

≤ C∥G2F∥qLpLq(Rn
+)∥M·φ∥Lr′L∞(Rn

+)

≤ C∥G2F∥qLpLq(Rn
+)∥Mφ∥Lr′ (Rn−1).

Applying Lemma 2.24, the fact that

∫ ∞

0
|F (y′, yn)|qdy′ ≤ lim inf

α→0
[Aα

q F (y
′)]q (which is a

consequence of the Lebesgue differentiation Theorem and Fatou lemma), the boundedness
of the Hardy-Littlewood maximal function in Lebesgue spaces successively, we obtain〈

Aq
q

[ ∫
Rn
+

G(·, z)F1(z)dz

]
, φ

〉
≤ ∥F∥qT τ,η∥φ∥Lr′ (Rn−1) ∀φ ∈ Lr′(Rn−1),
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from which it plainly follows that

Σ1 ≤ C∥F∥T τ,η .

We equally estimate II splitting H into three components exactly as before and follow the
same procedure (details are left to the interested reader). This yields∥∥∥∥∫

Rn
+

∇yG(·, y)H(y)dy

∥∥∥∥
T p,q

≤ C∥H∥TΛ,σ .

Summarizing, we see that (2.29) holds true. This finishes Step 1.

Step 2. The estimate

∥Ψ(F,H)∥Zq ≤ C
(
∥F∥Yτ,η + ∥H∥YΛ,σ

)
(2.36)

for all F ∈ Yτ,η and H ∈ YΛ,σ. We have

∥Ψ(F,H)∥T p,q
s0

≤
∥∥∥∥∫

Rn
+

g(·, y)F (y)dy
∥∥∥∥
T p,q
s0

+

∥∥∥∥∫
Rn
+

∇yg(·, y)H(y)dy

∥∥∥∥
T p,q
s0

:= III + IV.

Let F1, F2 and F3 as above and write correspondingly

III ≤ III1 + III2 + III3, IIIi =

∥∥∥∥∫
Rn
+

g(·, y)Fi(y)dy

∥∥∥∥
T p,q
s0

, i = 1, 2, 3.

Since (see proof of Claim 2.33)(
−
∫
Byn (x

′)

∣∣∣∣ ∫
Rn
+

g(y, z)F3(z)dz

∣∣∣∣qdy′) 1
q

≤ cG1

(
−
∫
Byn (·)

|F (z′, ·)|dz′
)
(x′, yn), (x′, yn) ∈ Rn

+.

Now let τ < r < ∞ such that 1
r + 1

n−1 ≤ 1
τ . Invoking (2.27) with β = 1 and b =

(n− 1)(1/τ − 1/r) together with Jensen’s inequality we arrive at

III3 ≤ C

∥∥∥∥∥∥G1

(
−
∫
Byn (·)

|F (z′, ·)|dz′
)∥∥

Lq(R+,yqndyn)

∥∥∥∥
Lp(Rn−1)

≤ C

(∫
Rn−1

(∫ ∞

0
−
∫
Byn (x

′)
|ybnF (z′, yn)|ηdz′dyn

) r
η

dx′
) 1

r

≤ C∥F∥T τ,η .

The last inequality follows from the embedding (1.9) (with s1 = 0, s2 = − b
n−1 , q = η,

p1 = τ and p2 = r). Moving on, we use (2.18) and Hölder’s inequality to get the pointwise
bound∣∣∣∣ ∫

Rn
+

g(y, z)F2(z)dz

∣∣∣∣ ≤ C|G1F2(y)|

≤ CAηF (x
′)

(∫ ∞

4yn

∫
B4yn (x

′)

z
n−1
η−1
n dz′dzn

(|y′ − z′|2 + |yn − zn|2)
(n−1)η′

2

) 1
η′

≤ Cy
1− 1

η
n AηF (x

′), x′ ∈ Byn(y
′)(2.37)

from which it follows that∣∣∣∣ ∫
Rn
+

g(y, z)F2(z)dz

∣∣∣∣ ≤ Cy
− q

q−1
n ∥AηF∥Lτ (Rn−1), y′ ∈ B(x′, yn).(2.38)
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Therefore, for M > 0 to be determined later, we have∫ ∞

0
−
∫
Byn (x

′)
yqn

∣∣∣∣ ∫
Rn
+

g(y, z)F2(z)dz

∣∣∣∣qdy′dyn ≤
∫ M

0
−
∫
Byn (x

′)
yqn

∣∣∣∣ ∫
Rn
+

g(y, z)F2(z)dz

∣∣∣∣qdy′dyn+∫ ∞

M
−
∫
Byn (x

′)
yqn

∣∣∣∣ ∫
Rn
+

g(y, z)F2(z)dz

∣∣∣∣qdy′dyn
≤ CM

1+(2− 1
η
)q
[AηF (x

′)]q +M
− 1

q−1 ∥F∥qT τ,η .

The choice M =

(
∥F∥T τ,η

AηF (x′)

) τ
n−1

yields

(∫ ∞

0
−
∫
Byn (x

′)
yqn

∣∣∣∣ ∫
Rn
+

g(y, z)F2(z)dz

∣∣∣∣qdy′dyn) 1
q

≤ C∥F∥
1− τ

(n−1)q(q−1)

T τ,η [AηF (x
′)]

τ
(n−1)q(q−1) .

Hence, (after taking the Lp-norm on both sides of the previous inequality)

III2 ≤ C∥F∥T τ,η .

We also claim that

III1 ≤ C∥F∥T τ,η .

In fact, setting V F (y, yn) = yn

∫
Rn
+

g(y, z)F1(z)dz, for all ϕ ∈ Lr(Rn−1) we have that

〈
Aq

q(V F ), φ

〉
=

∫
Rn−1

∫ ∞

0

∫
Byn (x

′)

∣∣V F1(y
′, yn)

∣∣q dy′dyn
yn−1
n

ϕ(x′)dx′

≤ C

∫
Rn−1

∫ ∞

0
−
∫
Byn (y

′)
ϕ(x′)dx′[yn(G1|F |)(y′, yn)]qdy′dyn

≤ C

∫
Rn−1

∫ ∞

0
[yn(G1|F |)(y′, yn)]qMynϕ(y

′)dy′dyn

≤ C
∥∥(y′, yn) 7→ ynG1|F |

∥∥q
LpLq(Rn

+)
∥M·ϕ∥Lr′L∞(Rn

+)

≤ C∥F∥q
Tm,η

− b
n−1

∥Mϕ∥Lr′ (Rn−1)

≤ C∥F∥qT τ,η∥ϕ∥Lr′ (Rn−1).

Note that the penultimate inequality follows from Remark 2.26 with m ∈ (1, r) is such that
1
τ ≤ 1

m − 1
n−1 and b = (n − 1)( 1τ − 1

m) while the last bound comes from (1.9). Collecting
and summing up all the estimates on the Σi’s, we find that∥∥∥∥∫

Rn
+

g(·, y)F (y)dy
∥∥∥∥
T p,q

≤ C∥F∥T τ,η .

The remaining estimate reads∥∥∥∥∫
Rn
+

∇yg(·, y)H(y)dy

∥∥∥∥
T p,q

≤ C∥H∥TΛ,σ .

The argument used here is similar to the previous one. In fact, for (y′, yn) ∈ Rn
+ we write

yn

∣∣∣∣ ∫
Rn
+

∇zg(y, z)H(z)dz

∣∣∣∣ ≤ 3∑
k=1

Γk(y
′, yn),
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with

Γ1(y
′, yn) = yn

∫
Rn−1\B4yn (y

′)

∫ ∞

0
|∇zg(y, z)||H(z)|dz

Γ2(y
′, yn) = yn

∫
B4yn (y

′)

∫ ∞

4yn

|∇zg(y, z)||H(z)|dz

Γ3(y
′, yn) = yn

∫
B4yn (y

′)

∫ 4yn

0
|∇zg(y, z)||H(z)|dz.

It is easy to see that |Γ1(y′, yn)| ≤ G1H(y′, yn) for any (y′, yn) ∈ Rn
+. Then, by Step 1 and

in particular (2.32), we deduce the desired estimate. Next, we show that

∥Γ2∥T p,q ≤ C∥H∥TΛ,σ .(2.39)

To achieve this, let us primarily observe that

|Γ2(y′, yn)| ≤ CynA
5
4
σH(x′)

(∫ ∞

4yn

∫
B4yn (x

′)

z
n−1
σ−1
n dz′dzn

(|y′ − z′|2 + |yn − zn|2)
nσ′
2

) 1
σ′

≤ Cy
1− 1

σ
n A

5
4
σH(x′), x′ ∈ B(y′, yn).

Taking the Λ-power of both sides of the last inequality and integrating with respect to the
variable x′

|Γ2(y′, yn)| ≤ Cy
1− 1

σ
−n−1

Λ
n

∥∥A 5
4
σH

∥∥
LΛ(Rn−1)

≤ C∥H∥TΛ,σ , y′ ∈ B(x′, yn).

Let δ > 0. The preceding inequalities imply∫ ∞

0
−
∫
Byn (x

′)

∣∣Γ2(y′, yn)∣∣qdy′dyn ≤
(∫ δ

0
+

∫ ∞

δ

)
−
∫
Byn (x

′)

∣∣Γ2(y′, yn)∣∣qdy′dyn
≤ Cδ1+

q
σ′ [AσH(x′)]q + δ1−

(
n−1
Λ

− 1
σ′

)
q∥H∥q

TΛ,σ .

Optimizing with respect to δ (i.e. choosing δ =

(
∥H∥TΛ,σ/A

5
4
σH(x′)

) Λ
n−1

) yields

(∫ ∞

0
−
∫
Byn (x

′)

∣∣Γ2(y′, yn)∣∣qdy′dyn) 1
q

≤ C∥H∥
Λ

n−1
(1+ 1

q
− 1

σ
)

TΛ,σ

[
A

5
4
σH(x′)

]1− Λ
n−1

(1+ 1
q
− 1

σ
)
.

Taking the Lp-norm on both sides and using Remark 1.7 gives (2.39). Finally, the T p,q-
norm of Γ3 is controlled from above by a constant multiple of ∥H∥TΛ,σ . This is derived
from a simple duality argument. The proof of Proposition 2.19 is now complete.

We can now summarize the findings obtained above into a single theorem establishing
the well-posedness of System (S) for boundary data in the scale of Triebel-Lizorkin space
with negative amount of smoothness. We say that a pair (u, π) is a solution to (S) if u and
π satisfy the relations

(2.40) u(x) = Hf(x) + G (F,H)(x), π(x) = Ef(x) + Ψ(F,H)(x), x ∈ Rn
+.

Theorem 2.41. Assume that the positive numbers η, Λ, σ, p, q are as in Lemma 2.19. Then

for any f ∈ [Ḟ
−1/q
p,q (Rn−1)]n, F ∈ Yτ,η and H ∈ YΛ,σ, the Stokes system (S) has a solution

(u, π) ∈ Zq× ∈ Xq (in the sense made precise in (2.40)) which obeys

(2.42) ∥u∥Xq + ∥π∥Zq ≤ C(∥f∥
Ḟ

− 1
q

p,q (Rn−1)
+ ∥F∥Yτ,η + ∥H∥YΛ,σ)

for some constant C > 0 independent of f , F and H.
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Remark 2.43. Practically, Theorem 2.41 can easily be extended to the case where the vector
field u is not necessarily solenoidal, i.e. div u = ϕ using the formulation derived in [27,
formula 2.32], see also [5] so that our result gives an alternative approach to the Dirichlet
problem for the Stokes system (to be compared to [3] and [8] wherein the analysis is carried
out in weigthed Sobolev spaces and Lebesgue spaces, respectively). These estimates of the
velocity field and the pressure in tent and weighted tent framework respectively against
boundary data in low regularity spaces are new and generalize well-known results. In fact,

our boundary class Ḟ
− 1

q
p,q (Rn−1) contains the homogeneous Sobolev space Ḣs,r(Rn−1) for

−1/q < s and
n− 1

r
− s =

1

q − 1
.

3. Proofs of main results

Here, we prove Theorems 1.15 and 1.16 relying on preliminary results obtained in Section
2.

Proof of Theorem 1.15. Let f ∈ [Ḣ− 1
2
,2(n−1)(Rn−1)]n with n > 2 and assume F ∈ Yτ,η

for 1 < η < τ < ∞ with
1

η
+
n− 1

τ
= 3.. Equip the Banach space X × Z by the norm

∥ · ∥ := ∥ · ∥X + ∥ · ∥Z and introduce the operators L defined by

L (u, π) =
(
Hf + G [F, u⊗ u], E(f) + Ψ[F, u⊗ u]

)
where H and E are given by (2.3). A solution of Eq. (NS) according to Definition 2.40 is
a couple (u, π) satisfying the fixed point equation

(u, π) = L (u, π) in Rn
+.(3.1)

Using a Banach fixed point argument, we wish to show that the latter equation admits a
solution in X×Z. Take another couple (v, π′) ∈ X×Z solution of (NS) associated to the
same data and forcing term and use Proposition 2.19 with q = 2, (Λ, σ) = (n− 1, 1) to get∥∥L (u, π)− L (v, π′)

∥∥ =
∥∥G (0, u⊗ u− v ⊗ v)

∥∥
X
+
∥∥Ψ(0, u⊗ u− v ⊗ v

∥∥
Z

≤ C∥u⊗ u− v ⊗ v∥Yn−1,1

≤ C(∥u⊗ (u− v)∥Yn−1,1 + ∥(u− v)⊗ v∥Yn−1,1)

≤ C( sup
xn>0

x2n
∥∥[u⊗ (u− v)](·, xn)

∥∥
L∞(Rn−1)

+ ∥u⊗ (u− v)∥Tn−1,1+

sup
xn>0

x2n∥[(u− v)⊗ v](·, xn)∥L∞(Rn−1) + ∥(u− v)⊗ v∥Tn−1,1)

≤ C
(
sup
xn>0

xn∥u(·, xn)∥L∞(Rn−1) sup
xn>0

xn∥(u− v)(·, xn)∥L∞(Rn−1)+

sup
xn>0

xn∥(u− v)(·, xn)∥L∞(Rn−1) sup
xn>0

xn∥v(·, xn)∥L∞(Rn−1)+

∥u∥T 2(n−1),2∥u− v∥T 2(n−1),2 + ∥u− v∥T 2(n−1),2∥v∥T 2(n−1),2

)
≤ C∥u− v∥X(∥u∥X + ∥v∥X).(3.2)

In light of Lemma 2.7 (applied with q = 2) we find that∥∥L (u, π)
∥∥ ≤ K

(
∥u∥2X + ∥Hf∥X + ∥G [F, 0]∥X + ∥E(f)∥Z + ∥Ψ[F, 0]∥Z

)
≤ K(∥u∥2X + ∥f∥Ḣ−1/2,2(n−1)(Rn−1) + ∥F∥Yτ,η).(3.3)

Now pick ε > 0 such that ∥f∥Ḣ−1/2,2(n−1)(Rn−1)+∥F∥Yτ,η ≤ ε. If ε is sufficiently small, then

it readily follows from (3.2) and (3.3) that L has a unique fixed point in a closed ball of
X× Z centered at the origin with radius cε for some c > 0. □
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Proof of Theorem 1.16. Let 2 < q < ∞ and put p = (n− 1)q(q − 1). Further let 1 < η1 <
τ1 <∞ and 1 < σ < Λ such that

(3.4)
1

η1
+
n− 1

τ1
= 1 +

1

σ
+
n− 1

Λ
= 2 +

1

q − 1
.

Assume f ∈ Ḣ− 1
2
,2(n−1) ∩ Ḟ

− 1
q

p,q (Rn−1) and F ∈ Yτ1,η1 ∩Yτ,η. We remark that the solution
found above may be realized as the unique limit in X × Z of the following sequence of
approximations given by

(u1, π1) = (H(f), E(f)); (uj+1, πj+1) = (G [F, uj ⊗ uj ] + u1,Ψ[F, uj ⊗ uj ] + π1), j = 1, 2, · · ·

Each element of this sequence belongs to Xq × Zq. In fact, since (u1, π1) ∈ Xq × Zq (see
Lemma 2.7) one may proceed via an induction argument to prove the claim. Choose (σ,Λ)
such that 1

σ = 1
2 + 1

q ,
1
Λ = 1

2(n−1) +
1
p and invoke Proposition 2.19, Hölder’s inequality in

tent spaces simultaneously to have for each j,

∥(uj+1, πj+1)∥Xq×Zq = ∥G [F, uj ⊗ uj ] + u1∥Xq + ∥Ψ[F, uj ⊗ uj ] + πj∥Zq

≤ C
(
∥u1∥Xq + ∥G [F, uj ⊗ uj ]∥Xq + ∥π1∥Zq + ∥Ψ[F, uj ⊗ uj ]∥Zq

)
≤ C

(
∥f∥

Ḟ
− 1

q
p,q (Rn−1)

+ ∥F∥Yτ1,η1 + ∥uj ⊗ uj∥YΛ,σ

)
≤ C

(
∥f∥

Ḟ
− 1

q
p,q (Rn−1)

+ ∥F∥Yτ1,η1 + ∥uj∥T 2(n−1),2∥uj∥T p,q+

sup
xn>0

x
1
η
+n−1

Λ
n ∥uj ⊗ uj(·, xn)∥L∞(Rn−1)

)
≤ C

(
∥f∥

Ḟ
− 1

q
p,q (Rn−1)

+ ∥F∥Yτ1,η1 + sup
xn>0

x
1

q−1
n ∥uj(·, xn)∥L∞(Rn−1)·

sup
xn>0

xn∥uj(·, xn)∥L∞(Rn−1) + ∥uj∥T 2(n−1),2∥uj∥T p,q

)
≤ C

(
∥f∥

Ḟ
− 1

q
p,q (Rn−1)

+ ∥F∥Yτ1,η1 + ∥uj∥X∥uj∥Xq

)
so that if (uj , πj) ∈ Xq×Zq, then so is (uj+1, πj+1). Next, we show that the latter sequence
is Cauchy in Xq × Zq. We estimate (wj , qj) = (uj+1 − uj , πj+1 − πj), j = 1, 2, ...

∥(wj , qj)∥Xq×Zq =
∥∥G [0, uj ⊗ uj − uj−1 ⊗ uj−1]

∥∥
Xq +

∥∥Ψ[0, uj ⊗ uj − uj−1 ⊗ uj−1]
∥∥
Zq

≤ c∥uj ⊗ uj − uj−1 ⊗ uj−1∥YΛ,η

≤ c∥uj ⊗ wj−1 + wj−1 ⊗ uj−1∥YΛ,η

≤ c∥wj−1∥Xq(∥uj∥X + ∥uj−1∥X)

≤ c∥(wj−1, qj−1)∥Xq×Zq(∥uj∥X + ∥uj−1∥X).

Let ε > 0 be as in Theorem 1.15 and take 0 < εq < ε. If ∥f∥
Ḣ− 1

2 ,2(n−1) + ∥F∥Yτ,η ≤ εq,

then the conclusion of Theorem 1.15 shows that ∥uj∥X ≤ 2κq, κq = κq(εq). Whence,

∥(wj , qj)∥Xq×Zq ≤ c22κq∥(wj−1, qj−1)∥Xq×Zq .

With εq > 0 chosen sufficiently small with c22κq < 1, a simple iteration of the previous
inequality yields

∥(wj , qj)∥Xq×Zq ≤ (c22κq)
j−1∥(w1, q1)∥Xq×Zq

thus implying the convergence of the sequence (wj , qj) inXq×Zq. The limit of this sequence
solves (NS) and by uniqueness, it is the same as that constructed in Theorem 1.15. □
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4. Appendix

Here we sketch the proof of Lemma 1.5. Let K ⊂ Rn
+ be a compact set. Then by Lemma

2.10 we know that E(K) = {x′ ∈ Rn−1 : K ∩ Γ (x′) ̸= Ø} has a finite Lebesgue measure.
Let us denote by 1K the characteristic function of the compact set K. If p ≤ q, then via
Hölder’s inequality, one obtains

∥1Kf∥T p,q =

(∫
Rn−1

(∫∫
Γ (x′)

1K |f |qy1−n
n dy′dyndx

′
)p/q

dx′
)1/p

=

(∫
E(K)

(∫∫
Γ (x′)

|f |qy1−n
n dy′dyndx

′
)p/q

dx′
)1/p

≤
(∫

E(K)

∫∫
Γ (x′)

|f |qy1−n
n dy′dyndx

′
)1/q∣∣E(K)

∣∣ 1p− 1
q

≤
∣∣E(K)

∣∣ 1p− 1
q

(∫
Rn−1

∫∫
Γ (x′)∩K

|f |qy1−n
n dy′dyndx

′
)1/q

≤
∣∣E(K)

∣∣ 1p− 1
q ∥f∥Lq(K).

Moving on, for q < p, applying Minkowski’s inequality implies

∥1Kf∥T p,q =

(∫
Rn−1

(∫∫
Γ (x′)

1K |f |qy1−n
n dy′dyn

)p/q

dx′
)1/p

=

(∫
Rn−1

(∫
Rn−1

∫ ∞

0
1Byn (y

′)(x
′)1K(y′, yn)|f |qy1−n

n dyndy
′
)p/q

dx′
)1/p

≤ CK

(∫
Rn−1

∫ ∞

0
1K |f |qdy′dyndx′

)1/q

≤ CK∥f∥Lq(K).

Assuming that p ≤ q, we use Lemma 2.9 and Minkowski’s inequality simultaneously to get

∥f∥Lq(K) =

(∫
Rn
+

1K |f |qdy′dyn
)1/q

≤ C

(∫
Rn−1

∫∫
Γ (x′)

1K |f |qy1−n
n dy′dyndx

′
)1/q

≤ CK

(∫
Rn−1

∫∫
Γ (x′)

y
(n−1)p

q
n 1K |f |qy1−n

n dy′dyndx
′
)1/q

≤ CK

(∫
Rn−1

(∫∫
Γ (x′)

|f |qy1−n
n dy′dyn

)p/q

dx′
)1/p

≤ CK∥f∥T p,q .

When p > q, the desired bound follows from Hölder’s inequality. Indeed, we have

∥f∥Lq(K) =

(∫
Rn
+

1K |f |qdy′dyn
)1/q

≤ C

(∫
Rn−1

∫∫
Γ (x′)

1K |f |qy1−n
n dy′dyndx

′
)1/q
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≤ C

(∫
E(K)

∫∫
Γ (x′)

|f |qy1−n
n dy′dyndx

′
)1/q

≤ C

(∫
Rn−1

(∫∫
Γ (x′)

|f |qy1−n
n dy′dyn

)p/q

dx′
)1/p∣∣E(K)

∣∣ 1q− 1
p

≤ C
∣∣E(K)

∣∣ 1q− 1
p ∥f∥T p,q .
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