

On Restrictions of Representations for GSpin

Midwest Representation Theory Conference

Melissa Emory joint with Shuichiro Takeda March 13, 2022

University of Toronto

Multiplicity at most one theorems

- F: a non-archimedean local field of characteristic zero
- G : a reductive group over F
- $H \subseteq G$: a reductive subgroup
- π, σ irreducible admissible representations of G and H, resp. Question - "How many times σ " appears as a quotient of π , when $\pi|_{H}$? namely, to know the dimension

 $\dim_{\mathbb{C}} \operatorname{Hom}_{H}(\pi, \sigma)$

• When is this space at most one? This can be formulated as

 $\dim_{\mathbb{C}} \operatorname{Hom}_{H}(\pi, \sigma) \leq 1$

This assertion is referred to as a "multiplicity at most one theorem".

Spherical harmonics give a decomposition of the functions of the 2-sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

as a representation of SO(3).

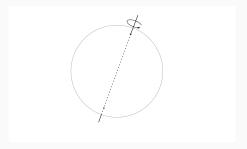
Let W_{ℓ} be the vector space of homogeneous polynomials f(x, y, z) of degree ℓ which are harmonic on \mathbb{R}^3

$$\Delta(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$

The W_ℓ is an irreducible representation of SO(3) of dimension $2\ell + 1$ and $\mathcal{F}(S^2) = \bigoplus_{\ell \ge 0} W_\ell$

An Example: Spherical Harmonics

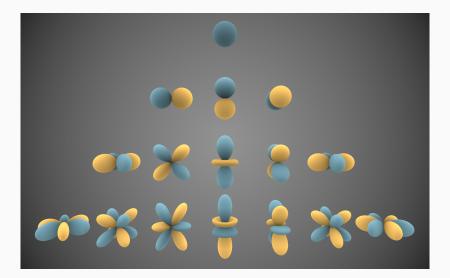
The subgroup pf SO(3) which fixes a point on the 2-sphere is isomorphic to the rotation group SO(2).



The restriction of W_{ℓ} decomposes as a sum of one-dimensional representations

$$\operatorname{Res}_{\mathsf{SO}(2)} W_{\ell} = \bigoplus_{-\ell \le m \le \ell} \chi_m, \quad \chi_m(z) = z^m.$$

An example: Spherical Harmonics



Let F be a field with characteristic not equal to 2 and (V, q) be a quadratic space.

The tensor algebra is denoted

$$T(V) := \bigoplus_{k=0}^{\infty} V^{\otimes k} = F \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots$$

Denote

$$I(q) = \langle v \otimes v - q(v) \cdot 1 \rangle \in T(V), \ v \in V.$$

The Clifford algebra: C(V) = T(V)/I(q).

The definition of GSpin

C(V) = T(V)/I(q) is a graded algebra - inherited by $T(V)_{+} = \coprod_{n \text{ even}} M^{\otimes n}, T(V)_{-} = \coprod_{n \text{ odd}} M^{\otimes n}$

Then

$$C(V) = T(V)_+/I(q)_+ \bigoplus T(V)_-/I(q)_-$$

and

$$C(V) = C^+(V) \oplus C^-(V)$$

which we call the even Clifford algebra and the odd part of the Clifford algebra, respectively.

Note that

dim
$$C^+(V) = \dim C^-(V) = 2^{n-1}$$

Definition

$$\mathsf{GSpin}(V) = \{g \in C^+(V)^{\times} : gVg^{-1} = V\}$$

A group (we call) GPin

Definition

$$\mathsf{GSpin}(V) = \{g \in C^+(V)^{\times} : gVg^{-1} = V\}$$

Let α be the automorphism $\alpha : C(V) \rightarrow C(V)$ where

$$\alpha|_{\mathcal{C}+(\mathcal{V})}=1$$
 and $\alpha|_{\mathcal{C}^-(\mathcal{V})}=-1$

Definition

$$\mathsf{GPin}(V) = \{g \in C(V)^{\times} : \alpha(g)Vg^{-1} = V\}$$

$$1 \longrightarrow F^{\times} \longrightarrow \operatorname{GPin}(V) \longrightarrow \operatorname{O}(V) \longrightarrow 1$$

$$1 \longrightarrow F^{\times} \longrightarrow \mathsf{GSpin}(V) \longrightarrow \mathsf{SO}(V) \longrightarrow 1$$

The Clifford norm

C(V) is equipped with a natural involution

$$(v_1...v_k)^* = v_k...v_1.$$

For all $x \in C(V)$, the Clifford conjugation is

$$\overline{x} := \alpha(x)^* = \alpha(x^*)$$

giving rise to the Clifford norm

$$N: C(V) \to C(V), \quad N(x) = x\overline{x}.$$

The Clifford norm descends to $O(V) \rightarrow F^{\times}/F^{\times 2}$ because $N(z) \in F^{\times 2}$ for $z \in Z^0 = F^{\times}$, which is called the spinor norm

$$\mathsf{Pin}(V) := \mathsf{ker}(N : \mathsf{GPin}(V) \to F^{\times})$$

We hope that you like commutative diagrams of group schemes!!

$$1 \longrightarrow \mathsf{GL}_1 \longrightarrow \mathsf{GPin}(V) \longrightarrow \mathsf{O}(V) \longrightarrow 1$$

$$1 \longrightarrow \{\pm 1\} \longrightarrow \mathsf{Pin}(V) \longrightarrow \mathsf{O}(V) \longrightarrow 1$$

$$\operatorname{Spin}(V) := \operatorname{GSpin}(V) \cap \operatorname{Pin}(V)$$

$$1 \longrightarrow \mathsf{GL}_1 \longrightarrow \mathsf{GSpin}(V) \longrightarrow \mathsf{SO}(V) \longrightarrow 1$$

$$1 \longrightarrow \{\pm 1\} \longrightarrow \mathsf{Spin}(V) \longrightarrow \mathsf{SO}(V) \longrightarrow 1$$

- A step beyond classical groups
- Representation theory of GSpin subsumes that of SO
- Shimura varieties work around using work for SO
- Relationship with the Langlands dual group of similitude groups
 - Let \widehat{G} be the dual group of the group G.
 - The *L*-group of *G* is denoted ${}^{L}G$ and ${}^{L}G \cong \widehat{G} \rtimes W_{F}$

G	Ĝ	G	Ĝ
$ \begin{array}{c} GL_m\\ SO_{2m+1}\\ SO_{2m} \end{array} $	$\operatorname{GL}_m(\mathbb{C})$	SL _m	$PGL_m(\mathbb{C})$
	$\operatorname{Sp}_{2m}(\mathbb{C})$	GSp _{2m}	$GSpin_{2m+1}(\mathbb{C})$
	$\operatorname{SO}_{2m}(\mathbb{C})$	GSO _{2m}	$GSpin_{2m}(\mathbb{C})$

• (2010) -(non-archimedean) Aizenbud, Gourevitch, Rallis, Schiffman proved a multiplicity at most one theorem for the pairs

 $(G, H) = (GL_{n+1}, GL_n), (U_{n+1}, U_n), \text{ and } (O_{n+1}, O_n)$

• (2012) -(non-archimedean) Waldspurger proved for

 $(G,H) = (SO_{n+1},SO_n)$

• (2012) -(archimedean) Sun and Zhu

Multiplicity at most one theorems have many applications, some of them are

- Local and global liftings of automorphic representations
- Automorphic descent
- Determination of L-functions
- The relative trace formula
- A first step in proving the local Gan-Gross-Prasad conjecture

- Let F be a nonarchimedean local field of characteristic zero
- Assume $W \subseteq V$ is a nondegenerate subspace of dimension n-1

```
Main Theorem (E., Takeda)

Let

(G, H) = (\operatorname{GPin}(V), \operatorname{GPin}(W)) \text{ or } (\operatorname{GSpin}(V), \operatorname{GSpin}(W))

. For all \pi \in \operatorname{Irr}(G) and \tau \in \operatorname{Irr}(H), we have

\dim_{\mathbb{C}}(\operatorname{Hom}_{H}(\pi, \tau) \leq 1
```

Note that $\omega_{\pi} \neq \omega_{\tau}$ on Z^0 , then the Hom space is automatically zero.

The involution

Suppose that we are not in the case where $\dim_F V = 2k$ with k odd. First, let

$$sign: \operatorname{GPin}(V) \to \{\pm 1\}$$

be the homomorphism which sends the nonidentity component to -1, so that its kernel is GSpin(V).

We define our involution

$$\sigma_n(g) = \begin{cases} g^* & \text{if } n = 2k \\ sign(g)^{k+1}g^* & \text{if } n = 2k-1. \end{cases}$$

Two essential properties of σ_n

- 1. σ_n fixes $Z_{\text{GPin}(V)}$ pointwise
- 2. For each semisimple $g \in \operatorname{GSpin}(V), \sigma_n(g)$ and g are conjugate in $\operatorname{GPin}(V)$

Vanishing Theorem

Recall, we have an orthogonal basis

$$e_1, \ldots e_{n-1}e_n$$

and

$$W = \mathsf{Span}\{e_1, \ldots, e_{n-1}\}.$$

Let E be a quadratic extension over F. We define

 $\beta: V \to V$

by sending $a_1e_1 + \cdots + a_ne_n$ to $\overline{a_1}e_1 + \cdots + \overline{a_n}e_n$ so that $\beta^2 = 1$. We define

$$\widetilde{\operatorname{GSpin}}(V) = \langle g, e_n^k \beta : g \in \operatorname{GSpin}(V) \rangle$$

with the relations $g\beta = \beta g$ for all $g \in \operatorname{GSpin}(V)$ and $\beta^2 = 1$.

Let χ be the character

$$\chi: \widetilde{\mathsf{GSpin}}(V) \longrightarrow \{\pm 1\}$$

that sends β to -1.

Recall that we want to show

Main Theorem (E., Takeda)

For all $\pi \in Irr(GSpin(V))$ and $\tau \in Irr(GSpin(W))$, we have

 $\dim_{\mathbb{C}}(\operatorname{Hom}_{\operatorname{GSpin}(W)}(\pi,\tau) \leq 1.$

Let $\mathcal{S}'(\operatorname{GSpin}(V))^{\widetilde{\operatorname{GSpin}}(W),\chi}$ be the space of distributions on which $\widetilde{\operatorname{GSpin}}(W)$ acts via χ . The main technical part is to prove

Vanishing Theorem (E., Takeda)

 $\mathcal{S}'(\operatorname{GSpin}(V))^{\widetilde{\operatorname{GSpin}}(W),\chi} = 0$

Vanishing Theorem implies Main Theorem

Uses Cor 1.1 from AGRS. Let G be an lctd group and H ⊆ G a closed subgroup, both unimodular. Assume there exits an involution σ : G → G such that σ(H) = H and every distribution on G invariant under the conjugation action of H is also fixed by σ; namely if T ∈ S'(G)^H, then σ · T = T, where the action of σ on T is defined in the obvious way. Then for all π ∈ Irr(G) and τ ∈ Irr(H), we have

$$\dim_{\mathbb{C}} \operatorname{Hom}_{H}(\pi, \tau^{\vee}) \cdot \dim_{\mathbb{C}} \operatorname{Hom}_{H}(\pi^{\vee}, \tau) \leq 1,$$

• For $\pi \in Irr(GSpin(V))$, we have

$$\pi^{\vee} \simeq \begin{cases} \omega_{\pi}^{-1} \otimes \pi, & \text{ if } n = 2k \text{ with } k \text{ even, or } n = 2k + 1; \\ \omega_{\pi}^{-1} \otimes \pi^{\delta}, & \text{ if } n = 2k \text{ with } k \text{ odd}, \end{cases}$$

where π^{δ} is the representation obtained by twisting π by any $\delta \in \operatorname{GPin}(V) \smallsetminus \operatorname{GSpin}(V)$.

Vanishing Theorem (E., Takeda)

$$\mathcal{S}'(\operatorname{GSpin}(V))^{\widetilde{\operatorname{GSpin}}(W),\chi} = 0$$

- Classical groups (AGRS, Waldspurger) Induction argument which boils down to the centralizer of a semisimple element. For GL(n), U(n), O(n), SO(n), it is a direct product.
- For GSpin the centralizer of a semisimple element has a part which is not a direct product, i.e.

$$\{(g_1,\ldots,g_m)\in\mathsf{GSpin}(V_1) imes\cdots imes\mathsf{GSpin}(V_m):N(g_1)=N(g_2)\cdots=N(g_m)\}$$

Vanishing Theorem (E., Takeda)

$$\mathcal{S}'(\operatorname{GSpin}(V))^{\widetilde{\operatorname{GSpin}}(W),\chi} = 0$$

• Reduces to showing

$$\mathcal{S}'(\operatorname{GSpin}(V) \times V)^{\operatorname{GSpin}(V),\chi} = 0$$

using Frobenius descent, and then Harish-Chandra's descent

 We use that the involution σ_n and g are conjugate in GSpin(V) and prove some isomorphisms to reduce to AGRS and Waldspurger The local Gan-Gross-Prasad conjecture asserts when

 $\dim_{\mathbb{C}}\operatorname{Hom}_{H}(\pi,\sigma)=1$

Several ingredients to the proof

- Multiplicity at most one theorem
- Endoscopic Classification of Representations
- local GGP proof

As with Arthur, we assume our group is quasi-split. From BIRS conference, it appears there is a way to handle inner forms using a method of Kaletha or Gan using a theta correspondence.

Gee-Taibi: Arthur's multiplicity formula for GSp₄ and restriction to Sp₄

- $\operatorname{GSpin}_{2n+1}$: Split group
- GSpin^{α}_{2n}: Quasi-split group, where $\alpha \in F^{\times}/(F^{\times})^2$.
- We have the spin double cover

$$0 \longrightarrow \mu_2 \longrightarrow \operatorname{Spin}_{2n}^{\alpha} \longrightarrow \operatorname{SO}_{2n}^{\alpha} \longrightarrow 0$$

Set

$$\operatorname{GSpin}_{2n}^{\alpha} := (\operatorname{Spin}_{2n}^{\alpha} \times GL_1)/\mu_2$$

• Let $\mu : \operatorname{GL}_1 \to Z(G)$ be dual to the similitude factor $\hat{\mu} : \hat{G} \to \mathbb{C}^{\times}$.

• Recall that
$${}^{L}G = \hat{G} \rtimes W_{F}$$

- When $\operatorname{GSpin}_{2n}^{\alpha}, \alpha \neq 1$, then the action of W_F factors through $\operatorname{Gal}(F(\sqrt{\alpha}/F) = \{1, \sigma\})$
- σ acts by outer conjugation on GSO_{2n} and 1 ⋊ σ is the element of O_{2n}(ℂ) that switches e_n and e_{n+1} and fixes the other e_i.
- We have the standard representation

$$Std_G : {}^L G \to \operatorname{GL}_N(\mathbb{C}) \times \operatorname{GL}_1(\mathbb{C})$$

Endoscopic datum for a connected reductive group G over a local field F is a tuple (H,\mathcal{H},s,ξ)

- H is a quasi-split connected group over F
- $\xi:\hat{H}\rightarrow\hat{G}$ is a continuous embedding
- \mathcal{H} is a closed subgroup of ${}^{L}G$ that surjects onto W_{F} with kernel $\xi(\hat{H})$ such that the induced outer action of W_{F} on $\xi(\hat{H})$ coincides with the usual one on \hat{H} transported by ξ and such that there exists a continuous splitting $W_{F} \to \mathcal{H}$
- $s \in \hat{G}$ is a semisimple element whose connected centralizer in \hat{G} is $\xi(\hat{H})$ and such that the map $W_F \to \hat{G}$ induced by $h \in \mathcal{H} \mapsto shs^{-1}h^{-1}$ takes values in $Z(\hat{G})$ and is trivial in $H^1(W_F, Z(G))$

Endoscopic groups for GSpin

If $G = \text{GSpin}_{2n+1}$, then $H = (\text{GSpin}_{2a+1} \times \text{GSpin}_{2b+1})/\text{GL}_1$ with a + b = n, $ab \neq 0$ If $G = \operatorname{GSpin}_{2n}^{\alpha}$, then $H = (\operatorname{GSpin}_{22}^{\beta} \times \operatorname{GSpin}_{24}^{\gamma}) / \operatorname{GL}_{1}$ where a + b = n, $\beta \gamma = \alpha$, $\beta \neq 1$ if a = 1 and $\gamma = 1$ if b = 1. Let

$$\theta: GL_N \times GL_1 \to GL_N \times GL_1$$

 $(g, x) \mapsto (J^t g^{-1} J^{-1}, x \det g)$

- θ fixes the pinning of G
- $GL_N \times GL_1 \rtimes \{\theta\}$ is the connected component of $GL_N \times GL_1 \rtimes \langle \theta \rangle$

Thank you!!