Alcove Walks in Affine Flags & Matrix Coefficients

Elizabeth Milićević Haverford College

Midwest Representation Theory Conference March 13, 2022

Based on joint work with Yusra Naqvi, Petra Schwer, Anne Thomas; and Ben Brubaker

Local Fields:

- $F = \mathbb{F}_q((t))$
- $\mathcal{O} = \mathbb{F}_q[[t]]$
- project $\mathcal{O} \to \mathbb{F}_q$

Local Fields:

- $F = \mathbb{F}_q((t))$
- $\mathcal{O} = \mathbb{F}_q[[t]]$
- project $\mathcal{O} \to \mathbb{F}_q$

Groups over Local Fields:

- G split connected reductive group over \mathbb{F}_q
- Fix $G \supset B \supset T$ a Borel containing a split maximal torus

Local Fields:

- $F = \mathbb{F}_q((t))$
- $\mathcal{O} = \mathbb{F}_q[[t]]$
- project $\mathcal{O} \to \mathbb{F}_q$

Groups over Local Fields:

- G split connected reductive group over \mathbb{F}_q
- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- Iwahori subgroup I of G(F) is the inverse image of $B(\mathbb{F}_q)$ under the projection $G(\mathcal{O}) \to G(\mathbb{F}_q)$

Local Fields:

- $F = \mathbb{F}_q((t))$
- $\mathcal{O} = \mathbb{F}_q[[t]]$
- project $\mathcal{O} \to \mathbb{F}_q$

Groups over Local Fields:

- G split connected reductive group over \mathbb{F}_q
- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- Iwahori subgroup I of G(F) is the inverse image of $B(\mathbb{F}_q)$ under the projection $G(\mathcal{O}) \to G(\mathbb{F}_q)$

Definition

The affine flag variety is the quotient G(F)/I.

Local Fields:

- $F = \mathbb{F}_q((t))$
- $\mathcal{O} = \mathbb{F}_q[[t]]$
- project $\mathcal{O} \to \mathbb{F}_q$

Groups over Local Fields:

- G split connected reductive group over \mathbb{F}_q
- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- Iwahori subgroup I of G(F) is the inverse image of $B(\mathbb{F}_q)$ under the projection $G(\mathcal{O}) \to G(\mathbb{F}_q)$

Definition

The affine flag variety is the quotient G(F)/I.

Theorem (Affine Bruhat Decomposition)

$$G(F)/I = \bigsqcup_{w \in \widetilde{W}} IwI/I$$

Example $(G = SL_3)$

B is upper-triangular matrices and T is the diagonal matrices:

$$T = \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \subset B = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \subset G$$

Example $(G = SL_3)$

 ${\cal B}$ is upper-triangular matrices and ${\cal T}$ is the diagonal matrices:

$$T = \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \subset B = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \subset G$$

Given these choices, the Iwahori subgroup I is then

$$I = \left\{ \begin{pmatrix} \mathcal{O}^{\times} & \mathcal{O} & \mathcal{O} \\ t\mathcal{O} & \mathcal{O}^{\times} & \mathcal{O} \\ t\mathcal{O} & t\mathcal{O} & \mathcal{O}^{\times} \end{pmatrix} \right\} \subset G(F)$$

Example $(G = SL_3)$

 ${\cal B}$ is upper-triangular matrices and ${\cal T}$ is the diagonal matrices:

$$T = \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \subset B = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \subset G$$

Given these choices, the Iwahori subgroup I is then

$$I = \left\{ \begin{pmatrix} \mathcal{O}^{\times} & \mathcal{O} & \mathcal{O} \\ t\mathcal{O} & \mathcal{O}^{\times} & \mathcal{O} \\ t\mathcal{O} & t\mathcal{O} & \mathcal{O}^{\times} \end{pmatrix} \right\} \subset G(F)$$

 $\widetilde{W} = \widetilde{S_3}$ is the affine symmetric group

Example: $G = Sp_4$

Generated by three reflections s_0 , s_1 , and s_2 .

The result of applying s_0 to the base alcove \mathcal{A}_{\circ} .

The result of applying s_1 to $s_0(\mathcal{A}_{\circ})$ is $s_1s_0(\mathcal{A}_{\circ})$.

The result of applying s_2 to $s_1s_0(\mathcal{A}_{\circ})$ is $s_2s_1s_0(\mathcal{A}_{\circ})$.

Elements in $\widetilde{W} = N_G(T(F))/T(\mathcal{O})$ correspond to alcoves in \mathbb{R}^r .

Groups over Local Fields:

- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- The unipotent subgroups satisfy B = TU and $B^- = TU^-$
- The maximal compact subgroup is $K = G(\mathcal{O})$

Groups over Local Fields:

- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- The unipotent subgroups satisfy B = TU and $B^- = TU^-$
- The maximal compact subgroup is $K = G(\mathcal{O})$

Example $(G = SL_3)$

$$\boldsymbol{U} = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\} \subset \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} = B$$

$$\boldsymbol{U}^{-} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ * & * & 1 \end{pmatrix} \right\} \subset \left\{ \begin{pmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{pmatrix} \right\} = B^{-}$$

$$\boldsymbol{K} = \left\{ \begin{pmatrix} \mathcal{O}^{\times} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O}^{\times} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O}^{\times} \end{pmatrix} \right\} \subset \boldsymbol{G}(F)$$

"In mathematics you don't understand things. You just get used to them." —Jon von Neumann "In mathematics you don't understand things. You just get used to them." —Jon von Neumann

Definition

For λ an antidominant weight, the Whittaker coefficient is

$$W(t^{\lambda}) = \int_{U^{-}} v_{K}(ut^{\lambda})\psi(u)du,$$

where here

- $v_K \in \operatorname{Ind}_B^G(\chi)^K$ for χ a character of B trivial on K, and
- ψ a character of U^- .

Definition

For λ an antidominant weight, the Whittaker coefficient is

$$W(t^{\lambda}) = \int_{U^{-}} v_K(ut^{\lambda})\psi(u)du.$$

Definition

For λ an antidominant weight, the Whittaker coefficient is

$$W(t^{\lambda}) = \int_{U^{-}} v_{K}(ut^{\lambda})\psi(u)du.$$

To evaluate, we integrate over the double Iwasawa cells

$$C_{\lambda\mu} := U^- t^\lambda K \cap U^+ t^\mu K,$$

inside the affine Grassmannian G(F)/K.

Matrix Coefficients

Using $K = \bigcup_{w \in W} IwI$ and that λ is antidominant, we can write

$$U^{-}t^{\lambda}K = \bigcup_{w \in W} U^{-}t^{\lambda}wI = \bigcup_{\substack{w \in W\\v \in \widetilde{W}}} U^{-}t^{\lambda}wI \cap IvI.$$

Matrix Coefficients

Using $K = \bigcup_{w \in W} IwI$ and that λ is antidominant, we can write

$$U^{-}t^{\lambda}K = \bigcup_{w \in W} U^{-}t^{\lambda}wI = \bigcup_{\substack{w \in W\\v \in \widetilde{W}}} U^{-}t^{\lambda}wI \cap IvI.$$

Therefore, we get a decomposition of the double Iwasawa cells

$$C_{\lambda\mu} = U^{-}t^{\lambda}K \cap U^{+}t^{\mu}K$$
$$= \bigcup_{\substack{w,w' \in W\\v \in \widetilde{W}}} U^{-}t^{\lambda}wI \cap IvI \cap U^{+}t^{\mu}w'I.$$

We can then rewrite the Whittaker coefficient as

$$W(t^{\lambda}) = \frac{1}{\sum\limits_{w \in W} q^{\ell(w)}} \sum_{\substack{w, w' \in W \\ v \in \widetilde{W}}} \chi(t^{\mu}) \left(\int_{U^{-}t^{\lambda}wI \cap IvI \cap U^{+}t^{\mu}w'I} \psi(u)du \right).$$

We can then rewrite the Whittaker coefficient as

$$W(t^{\lambda}) = \frac{1}{\sum\limits_{w \in W} q^{\ell(w)}} \sum_{\substack{w, w' \in W \\ v \in \widetilde{W}}} \chi(t^{\mu}) \left(\int_{U^{-}t^{\lambda}wI \cap IvI \cap U^{+}t^{\mu}w'I} \psi(u)du \right).$$

Theorem (Brubaker-M)

For $SL_2(\mathbb{F}_q((t)))$, we recover Tokuyama's formula bijectively. Each Gelfand-Tsetlin pattern corresponds to a stratum in $C_{\lambda\mu}$; the statistics are recording its weighted volume.

Proof = labeled folded alcove walks

Definition

An *alcove walk* is a sequence of moves from an alcove to an adjacent alcove obtained by crossing an affine hyperplane.

An alcove walk corresponding to the word $s_2s_1s_2s_0s_1s_0$.

Theorem (Steinberg 1967, Parkinson-Ram-C. Schwer 2009)

{*labeled alcove walks*} \longleftrightarrow {*double cosets IwI/I*}

All points in $Sp_4(F)/I$ which lie in $Is_{212010}I$, varying $c_i \in \mathbb{F}_q$.

For each $w \in W$, the periodic orientation on hyperplanes induced by w is defined such that:

- **1** alcove w is on the positive side of H_{α} and
- **2** hyperplanes parallel to H_{α} have the same orientation.

Standard orientation on hyperplanes induced by w = 1

For each $w \in W$, the periodic orientation on hyperplanes induced by w is defined such that:

- 1 alcove w is on the positive side of H_{α} and
- **2** hyperplanes parallel to H_{α} have the same orientation.

Opposite orientation on hyperplanes induced by $w = w_0$

Definition

A fold is **positive** if the fold occurs on the positive side of the hyperplane, with respect to a fixed periodic orientation.

Rules for creating folded alcove walks:

- 1 Can only do positive folds.
- **2** Must fold tail-to-tip.

Positively folding an alcove walk with the opposite orientation.

Elizabeth Milićević Alcove Walks in Affine Flags & Matrix Coefficients

Theorem (Parkinson-Ram-C. Schwer 2009)

For any $x, y \in \widetilde{W}$,

 $\begin{cases} \begin{array}{l} \textit{positively folded labeled alcove walks} \\ \textit{folded from } x \textit{ ending at } y = t^{\lambda}w \end{cases} \longleftrightarrow UyI \cap IxI. \end{cases}$

Theorem (Parkinson-Ram-C. Schwer 2009)

For any $x, y \in \widetilde{W}$,

 $\begin{cases} \begin{array}{l} \textit{positively folded labeled alcove walks} \\ \textit{folded from } x \textit{ ending at } y = t^{\lambda}w \end{cases} \longleftrightarrow UyI \cap IxI. \end{cases}$

Theorem (Parkinson-Ram-C. Schwer 2009)

For any $x, y \in \widetilde{W}$,

 $\begin{cases} w_0 \text{-positively folded labeled alcove walks} \\ \text{folded from } x \text{ ending at } y = t^\lambda w \end{cases} \longleftrightarrow \underbrace{U^- yI \cap IxI}_{}.$

Theorem (Parkinson-Ram-C. Schwer 2009)

For any $x, y \in \widetilde{W}$,

 $\begin{cases} \begin{array}{l} \textit{positively folded labeled alcove walks} \\ \textit{folded from } x \textit{ ending at } y = t^{\lambda}w \end{cases} \longleftrightarrow \begin{matrix} UyI \cap IxI. \end{cases}$

Theorem (Parkinson-Ram-C. Schwer 2009)

For any $x, y \in \widetilde{W}$,

 $\begin{cases} w_0\text{-positively folded labeled alcove walks} \\ \text{folded from } x \text{ ending at } y = t^\lambda w \end{cases} \longleftrightarrow \underbrace{U^- yI \cap IxI}_{}.$

Remark: These theorems have also been substantially generalized in joint work with Naqvi, P. Schwer, and Thomas.

 $\begin{cases} w_0 \text{-positively folded labeled alcove walks} \\ \text{folded from } x \text{ ending at } y = t^\lambda w \end{cases} \longleftrightarrow \frac{U^- t^\lambda wI \cap IxI}{U^- t^\lambda wI \cap IxI}$

Example

In $SL_2(\mathbb{F}_q((t)))$,

 $\begin{cases} w_0 \text{-positively folded labeled alcove walks} \\ \text{folded from } x \text{ ending at } y = t^\lambda w \end{cases} \longleftrightarrow \frac{U^- t^\lambda wI \cap IxI}{U^- t^\lambda wI \cap IxI}$

Example

In $SL_2(\mathbb{F}_q((t)))$, the elements of $U^-(F)$ such that

$$U^-t^{(1,-1)}I\cap It^{(3,-3)}sI\neq \emptyset$$

 $\begin{cases} w_0 \text{-positively folded labeled alcove walks} \\ \text{folded from } x \text{ ending at } y = t^\lambda w \end{cases} \longleftrightarrow \frac{U^- t^\lambda wI \cap IxI}{U^- t^\lambda wI \cap IxI}$

Example

In $SL_2(\mathbb{F}_q((t)))$, the elements of $U^-(F)$ such that

$$U^-t^{(1,-1)}I\cap It^{(3,-3)}sI\neq \emptyset$$

are precisely

$$\left\{ \begin{bmatrix} 1 & 0\\ at^4 + bt^3 & 1 \end{bmatrix} \middle| a \in \mathbb{F}_q^{\times}, b \in \mathbb{F}_q \right\} \subseteq U^{-}(\mathcal{O}).$$

 $\begin{cases} w_0 \text{-positively folded labeled alcove walks} \\ \text{folded from } x \text{ ending at } y = t^\lambda w \end{cases} \longleftrightarrow \frac{U^- t^\lambda wI \cap IxI}{U^- t^\lambda wI \cap IxI}$

Example

In $SL_2(\mathbb{F}_q((t)))$, the elements of $U^-(F)$ such that

$$U^{-}t^{(1,-1)}I \cap It^{(3,-3)}sI \neq \emptyset$$

are precisely

$$\left\{ \begin{bmatrix} 1 & 0\\ at^4 + bt^3 & 1 \end{bmatrix} \middle| a \in \mathbb{F}_q^{\times}, b \in \mathbb{F}_q \right\} \subseteq U^{-}(\mathcal{O}).$$

 ψ is trivial on \mathcal{O} , and so this path contributes 0 to $W(t^{(1,-1)})$.

To compute $W(t^{\lambda})$ in general:

• First find all walks indexing points in $U^- t^{\lambda} w I \cap I v I$.

To compute $W(t^{\lambda})$ in general:

- First find all walks indexing points in $U^- t^{\lambda} w I \cap I v I$.
- Among those, see which ones also correspond to walks indexing points in $U^+ t^\mu w' I \cap IvI$.

To compute $W(t^{\lambda})$ in general:

- First find all walks indexing points in $U^- t^{\lambda} w I \cap I v I$.
- Among those, see which ones also correspond to walks indexing points in $U^+ t^\mu w' I \cap IvI$.
- Read off the labelings of the walks from both steps to evaluate the character ψ on the unipotent part.

To compute $W(t^{\lambda})$ in general:

- First find all walks indexing points in $U^- t^{\lambda} w I \cap I v I$.
- Among those, see which ones also correspond to walks indexing points in $U^+t^{\mu}w'I \cap IvI$.
- Read off the labelings of the walks from both steps to evaluate the character ψ on the unipotent part.

Theorem (Brubaker-M)

For $SL_2(\mathbb{F}_q((t)))$, we recover Tokuyama's formula bijectively. Each Gelfand-Tsetlin pattern corresponds to a stratum in $C_{\lambda\mu}$; the statistics are recording its weighted volume.

To compute $W(t^{\lambda})$ in general:

- First find all walks indexing points in $U^- t^{\lambda} w I \cap I v I$.
- Among those, see which ones also correspond to walks indexing points in $U^+t^{\mu}w'I \cap IvI$.
- Read off the labelings of the walks from both steps to evaluate the character ψ on the unipotent part.

Theorem (Brubaker-M)

For $SL_2(\mathbb{F}_q((t)))$, we recover Tokuyama's formula bijectively. Each Gelfand-Tsetlin pattern corresponds to a stratum in $C_{\lambda\mu}$; the statistics are recording its weighted volume.

These combinatorial tools provide a flexible (and fun!) framework for many vast generalizations of this mini theorem.

Thank you!