Alcove Walks in Affine Flags \& Matrix Coefficients

Elizabeth Milićević Haverford College

Midwest Representation Theory Conference March 13, 2022

Based on joint work with Yusra Naqvi, Petra Schwer, Anne Thomas; and Ben Brubaker

Affine Flag Varieties

Local Fields:

- $F=\mathbb{F}_{q}((t))$
- $\mathcal{O}=\mathbb{F}_{q}[[t]]$
- project $\mathcal{O} \rightarrow \mathbb{F}_{q}$

Affine Flag Varieties

Local Fields:

- $F=\mathbb{F}_{q}((t))$
- $\mathcal{O}=\mathbb{F}_{q}[[t]]$
- project $\mathcal{O} \rightarrow \mathbb{F}_{q}$

Groups over Local Fields:

- G split connected reductive group over \mathbb{F}_{q}
- Fix $G \supset B \supset T$ a Borel containing a split maximal torus

Affine Flag Varieties

Local Fields:

- $F=\mathbb{F}_{q}((t))$
- $\mathcal{O}=\mathbb{F}_{q}[[t]]$
- project $\mathcal{O} \rightarrow \mathbb{F}_{q}$

Groups over Local Fields:

- G split connected reductive group over \mathbb{F}_{q}
- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- Iwahori subgroup I of $G(F)$ is the inverse image of $B\left(\mathbb{F}_{q}\right)$ under the projection $G(\mathcal{O}) \rightarrow G\left(\mathbb{F}_{q}\right)$

Affine Flag Varieties

Local Fields:

- $F=\mathbb{F}_{q}((t))$
- $\mathcal{O}=\mathbb{F}_{q}[[t]]$
- project $\mathcal{O} \rightarrow \mathbb{F}_{q}$

Groups over Local Fields:

- G split connected reductive group over \mathbb{F}_{q}
- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- Iwahori subgroup I of $G(F)$ is the inverse image of $B\left(\mathbb{F}_{q}\right)$ under the projection $G(\mathcal{O}) \rightarrow G\left(\mathbb{F}_{q}\right)$

Definition

The affine flag variety is the quotient $G(F) / I$.

Affine Flag Varieties

Local Fields:

- $F=\mathbb{F}_{q}((t))$
- $\mathcal{O}=\mathbb{F}_{q}[[t]]$
- project $\mathcal{O} \rightarrow \mathbb{F}_{q}$

Groups over Local Fields:

- G split connected reductive group over \mathbb{F}_{q}
- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- Iwahori subgroup I of $G(F)$ is the inverse image of $B\left(\mathbb{F}_{q}\right)$ under the projection $G(\mathcal{O}) \rightarrow G\left(\mathbb{F}_{q}\right)$

Definition

The affine flag variety is the quotient $G(F) / I$.

Theorem (Affine Bruhat Decomposition)

$$
G(F) / I=\bigsqcup_{w \in \widetilde{W}} I w I / I
$$

Affine Flag Varieties

Example $\left(G=\mathrm{SL}_{3}\right)$

B is upper-triangular matrices and T is the diagonal matrices:

$$
T=\left\{\left(\begin{array}{ccc}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right)\right\} \subset B=\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right)\right\} \subset G
$$

Affine Flag Varieties

Example $\left(G=\mathrm{SL}_{3}\right)$

B is upper-triangular matrices and T is the diagonal matrices:

$$
T=\left\{\left(\begin{array}{ccc}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right)\right\} \subset B=\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right)\right\} \subset G
$$

Given these choices, the Iwahori subgroup I is then

$$
I=\left\{\left(\begin{array}{ccc}
\mathcal{O}^{\times} & \mathcal{O} & \mathcal{O} \\
t \mathcal{O} & \mathcal{O}^{\times} & \mathcal{O} \\
t \mathcal{O} & t \mathcal{O} & \mathcal{O}^{\times}
\end{array}\right)\right\} \subset G(F)
$$

Affine Flag Varieties

Example $\left(G=\mathrm{SL}_{3}\right)$

B is upper-triangular matrices and T is the diagonal matrices:

$$
T=\left\{\left(\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right)\right\} \subset B=\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right)\right\} \subset G
$$

Given these choices, the Iwahori subgroup I is then

$$
I=\left\{\left(\begin{array}{ccc}
\mathcal{O}^{\times} & \mathcal{O} & \mathcal{O} \\
t \mathcal{O} & \mathcal{O}^{\times} & \mathcal{O} \\
t \mathcal{O} & t \mathcal{O} & \mathcal{O}^{\times}
\end{array}\right)\right\} \subset G(F)
$$

$\widetilde{W}=\widetilde{S_{3}}$ is the affine symmetric group

Affine Flag Varieties

Example: $G=S p_{4}$

Generated by three reflections s_{0}, s_{1}, and s_{2}.

Affine Flag Varieties

The result of applying s_{0} to the base alcove \mathcal{A}_{\circ}.

Affine Flag Varieties

The result of applying s_{1} to $s_{0}\left(\mathcal{A}_{\circ}\right)$ is $s_{1} s_{0}\left(\mathcal{A}_{\circ}\right)$.

Affine Flag Varieties

The result of applying s_{2} to $s_{1} s_{0}\left(\mathcal{A}_{\circ}\right)$ is $s_{2} s_{1} s_{0}\left(\mathcal{A}_{\circ}\right)$.

Affine Flag Varieties

Elements in $\widetilde{W}=N_{G}(T(F)) / T(\mathcal{O})$ correspond to alcoves in \mathbb{R}^{r}.

Affine Flag Varieties

Groups over Local Fields:

- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- The unipotent subgroups satisfy $B=T U$ and $B^{-}=T U^{-}$
- The maximal compact subgroup is $K=G(\mathcal{O})$

Affine Flag Varieties

Groups over Local Fields:

- Fix $G \supset B \supset T$ a Borel containing a split maximal torus
- The unipotent subgroups satisfy $B=T U$ and $B^{-}=T U^{-}$
- The maximal compact subgroup is $K=G(\mathcal{O})$

Example $\left(G=\mathrm{SL}_{3}\right)$

$$
\begin{gathered}
U=\left\{\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)\right\} \subset\left\{\left(\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right)\right\}=B \\
U^{-}=\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
* & 1 & 0 \\
* & * & 1
\end{array}\right)\right\} \subset\left\{\left(\begin{array}{lll}
* & 0 & 0 \\
* & * & 0 \\
* & * & *
\end{array}\right)\right\}=B^{-} \\
K=\left\{\left(\begin{array}{ccc}
\mathcal{O}^{\times} & \mathcal{O} & \mathcal{O} \\
\mathcal{O} & \mathcal{O}^{\times} & \mathcal{O} \\
\mathcal{O} & \mathcal{O} & \mathcal{O}^{\times}
\end{array}\right)\right\} \subset G(F)
\end{gathered}
$$

Matrix Coefficients

"In mathematics you don't understand things. You just get used to them."
-Jon von Neumann

Matrix Coefficients

"In mathematics you don't understand things. You just get used to them." -Jon von Neumann

Definition

For λ an antidominant weight, the Whittaker coefficient is

$$
W\left(t^{\lambda}\right)=\int_{U^{-}} v_{K}\left(u t^{\lambda}\right) \psi(u) d u
$$

where here

- $v_{K} \in \operatorname{Ind}_{B}^{G}(\chi)^{K}$ for χ a character of B trivial on K, and
- ψ a character of U^{-}.

Matrix Coefficients

Definition

For λ an antidominant weight, the Whittaker coefficient is

$$
W\left(t^{\lambda}\right)=\int_{U^{-}} v_{K}\left(u t^{\lambda}\right) \psi(u) d u
$$

Matrix Coefficients

Definition

For λ an antidominant weight, the Whittaker coefficient is

$$
W\left(t^{\lambda}\right)=\int_{U^{-}} v_{K}\left(u t^{\lambda}\right) \psi(u) d u
$$

To evaluate, we integrate over the double Iwasawa cells

$$
C_{\lambda \mu}:=U^{-} t^{\lambda} K \cap U^{+} t^{\mu} K
$$

inside the affine Grassmannian $G(F) / K$.

Matrix Coefficients

Using $K=\bigcup_{w \in W} I w I$ and that λ is antidominant, we can write

$$
U^{-} t^{\lambda} K=\bigcup_{w \in W} U^{-} t^{\lambda} w I=\bigcup_{\substack{w \in W \\ v \in W}} U^{-} t^{\lambda} w I \cap I v I
$$

Using $K=\bigcup_{w \in W} I w I$ and that λ is antidominant, we can write

$$
U^{-} t^{\lambda} K=\bigcup_{w \in W} U^{-} t^{\lambda} w I=\bigcup_{\substack{w \in W \\ v \in W}} U^{-} t^{\lambda} w I \cap I v I
$$

Therefore, we get a decomposition of the double Iwasawa cells

$$
\begin{aligned}
C_{\lambda \mu} & =U^{-} t^{\lambda} K \cap U^{+} t^{\mu} K \\
& =\bigcup_{\substack{w, w^{\prime} \in W \\
v \in \widetilde{W}}} U^{-} t^{\lambda} w I \cap I v I \cap U^{+} t^{\mu} w^{\prime} I
\end{aligned}
$$

Matrix Coefficients

We can then rewrite the Whittaker coefficient as

$$
W\left(t^{\lambda}\right)=\frac{1}{\sum_{w \in W} q^{\ell(w)}} \sum_{\substack{w, w^{\prime} \in W \\ v \in W}} \chi\left(t^{\mu}\right)\left(\int_{U^{-} t^{\lambda} w I \cap I v I \cap U^{+} t^{\mu} w^{\prime} I} \psi(u) d u\right)
$$

Matrix Coefficients

We can then rewrite the Whittaker coefficient as

$$
W\left(t^{\lambda}\right)=\frac{1}{\sum_{w \in W} q^{\ell(w)}} \sum_{\substack{w, w^{\prime} \in W \\ v \in W}} \chi\left(t^{\mu}\right)\left(\int_{U^{-} t^{\lambda} w I \cap I v I \cap U^{+} t^{\mu} w^{\prime} I} \psi(u) d u\right)
$$

Theorem (Brubaker-M)

For $S L_{2}\left(\mathbb{F}_{q}((t))\right)$, we recover Tokuyama's formula bijectively. Each Gelfand-Tsetlin pattern corresponds to a stratum in $C_{\lambda \mu}$; the statistics are recording its weighted volume.

Proof $=$ labeled folded alcove walks

Labeled Folded Alcove Walks

Definition

An alcove walk is a sequence of moves from an alcove to an adjacent alcove obtained by crossing an affine hyperplane.

An alcove walk corresponding to the word $s_{2} s_{1} s_{2} s_{0} s_{1} s_{0}$.

Labeled Folded Alcove Walks

Theorem (Steinberg 1967, Parkinson-Ram-C. Schwer 2009)

$\{$ labeled alcove walks $\} \longleftrightarrow\{$ double cosets $I w I / I\}$

All points in $S p_{4}(F) / I$ which lie in $I s_{212010} I$, varying $c_{i} \in \mathbb{F}_{q}$.

Labeled Folded Alcove Walks

For each $w \in W$, the periodic orientation on hyperplanes induced by w is defined such that:
(1) alcove w is on the positive side of H_{α} and
(2) hyperplanes parallel to H_{α} have the same orientation.

Standard orientation on hyperplanes induced by $w=1$

Labeled Folded Alcove Walks

For each $w \in W$, the periodic orientation on hyperplanes induced by w is defined such that:
(1) alcove w is on the positive side of H_{α} and
(2) hyperplanes parallel to H_{α} have the same orientation.

Opposite orientation on hyperplanes induced by $w=w_{0}$

Labeled Folded Alcove Walks

Definition

A fold is positive if the fold occurs on the positive side of the hyperplane, with respect to a fixed periodic orientation.

Rules for creating folded alcove walks:
(1) Can only do positive folds.
(2) Must fold tail-to-tip.

Labeled Folded Alcove Walks

Positively folding an alcove walk with the opposite orientation.

Labeled Folded Alcove Walks

Theorem (Parkinson-Ram-C. Schwer 2009)
For any $x, y \in \widetilde{W}$,
$\left\{\begin{array}{c}\text { positively folded labeled alcove walks } \\ \text { folded from } x \text { ending at } y=t^{\lambda} w\end{array}\right\} \longleftrightarrow U y I \cap I x I$.

Labeled Folded Alcove Walks

Theorem (Parkinson-Ram-C. Schwer 2009)
For any $x, y \in \widetilde{W}$,

$$
\left\{\begin{array}{c}
\text { positively folded labeled alcove walks } \\
\text { folded from } x \text { ending at } y=t^{\lambda} w
\end{array}\right\} \longleftrightarrow U y I \cap I x I .
$$

Theorem (Parkinson-Ram-C. Schwer 2009)

For any $x, y \in \widetilde{W}$,
$\left\{\begin{array}{c}w_{0} \text {-positively folded labeled alcove walks } \\ \text { folded from } x \text { ending at } y=t^{\lambda} w\end{array}\right\} \longleftrightarrow U^{-} y I \cap I x I$.

Labeled Folded Alcove Walks

Theorem (Parkinson-Ram-C. Schwer 2009)
For any $x, y \in \widetilde{W}$,
$\left\{\begin{array}{c}\text { positively folded labeled alcove walks } \\ \text { folded from } x \text { ending at } y=t^{\lambda} w\end{array}\right\} \longleftrightarrow U y I \cap I x I$.

Theorem (Parkinson-Ram-C. Schwer 2009)

For any $x, y \in \widetilde{W}$,
$\left\{\begin{array}{c}w_{0} \text {-positively folded labeled alcove walks } \\ \text { folded from } x \text { ending at } y=t^{\lambda} w\end{array}\right\} \longleftrightarrow U^{-} y I \cap I x I$.

Remark: These theorems have also been substantially generalized in joint work with Naqvi, P. Schwer, and Thomas.

Alcove Walks \& Matrix Coefficients

$\left\{\begin{array}{c}w_{0} \text {-positively folded labeled alcove walks } \\ \text { folded from } x \text { ending at } y=t^{\lambda} w\end{array}\right\} \longleftrightarrow U^{-} t^{\lambda} w I \cap I x I$

Example

In $S L_{2}\left(\mathbb{F}_{q}((t))\right)$,

Alcove Walks \& Matrix Coefficients

$\left\{\begin{array}{c}w_{0} \text {-positively folded labeled alcove walks } \\ \text { folded from } x \text { ending at } y=t^{\lambda} w\end{array}\right\} \longleftrightarrow U^{-} t^{\lambda} w I \cap I x I$

Example

In $S L_{2}\left(\mathbb{F}_{q}((t))\right)$, the elements of $U^{-}(F)$ such that

$$
U^{-} t^{(1,-1)} I \cap I t^{(3,-3)} s I \neq \emptyset
$$

Alcove Walks \& Matrix Coefficients

$\left\{\begin{array}{c}w_{0} \text {-positively folded labeled alcove walks } \\ \text { folded from } x \text { ending at } y=t^{\lambda} w\end{array}\right\} \longleftrightarrow U^{-} t^{\lambda} w I \cap I x I$

Example

In $S L_{2}\left(\mathbb{F}_{q}((t))\right)$, the elements of $U^{-}(F)$ such that

$$
U^{-} t^{(1,-1)} I \cap I t^{(3,-3)} s I \neq \emptyset
$$

are precisely

$$
\left\{\left.\left[\begin{array}{cc}
1 & 0 \\
a t^{4}+b t^{3} & 1
\end{array}\right] \right\rvert\, a \in \mathbb{F}_{q}^{\times}, b \in \mathbb{F}_{q}\right\} \subseteq U^{-}(\mathcal{O})
$$

Alcove Walks \& Matrix Coefficients

$\left\{\begin{array}{c}w_{0} \text {-positively folded labeled alcove walks } \\ \text { folded from } x \text { ending at } y=t^{\lambda} w\end{array}\right\} \longleftrightarrow U^{-} t^{\lambda} w I \cap I x I$

Example

In $S L_{2}\left(\mathbb{F}_{q}((t))\right)$, the elements of $U^{-}(F)$ such that

$$
U^{-} t^{(1,-1)} I \cap I t^{(3,-3)} s I \neq \emptyset
$$

are precisely

$$
\left\{\left.\left[\begin{array}{cc}
1 & 0 \\
a t^{4}+b t^{3} & 1
\end{array}\right] \right\rvert\, a \in \mathbb{F}_{q}^{\times}, b \in \mathbb{F}_{q}\right\} \subseteq U^{-}(\mathcal{O})
$$

ψ is trivial on \mathcal{O}, and so this path contributes 0 to $W\left(t^{(1,-1)}\right)$.

Alcove Walks \& Matrix Coefficients

To compute $W\left(t^{\lambda}\right)$ in general:

- First find all walks indexing points in $U^{-} t^{\lambda} w I \cap I v I$.

Alcove Walks \& Matrix Coefficients

To compute $W\left(t^{\lambda}\right)$ in general:

- First find all walks indexing points in $U^{-} t^{\lambda} w I \cap I v I$.
- Among those, see which ones also correspond to walks indexing points in $U^{+} t^{\mu} w^{\prime} I \cap I v I$.

Alcove Walks \& Matrix Coefficients

To compute $W\left(t^{\lambda}\right)$ in general:

- First find all walks indexing points in $U^{-} t^{\lambda} w I \cap I v I$.
- Among those, see which ones also correspond to walks indexing points in $U^{+} t^{\mu} w^{\prime} I \cap I v I$.
- Read off the labelings of the walks from both steps to evaluate the character ψ on the unipotent part.

Alcove Walks \& Matrix Coefficients

To compute $W\left(t^{\lambda}\right)$ in general:

- First find all walks indexing points in $U^{-} t^{\lambda} w I \cap I v I$.
- Among those, see which ones also correspond to walks indexing points in $U^{+} t^{\mu} w^{\prime} I \cap I v I$.
- Read off the labelings of the walks from both steps to evaluate the character ψ on the unipotent part.

Theorem (Brubaker-M)

For $S L_{2}\left(\mathbb{F}_{q}((t))\right)$, we recover Tokuyama's formula bijectively. Each Gelfand-Tsetlin pattern corresponds to a stratum in $C_{\lambda \mu}$; the statistics are recording its weighted volume.

Alcove Walks \& Matrix Coefficients

To compute $W\left(t^{\lambda}\right)$ in general:

- First find all walks indexing points in $U^{-} t^{\lambda} w I \cap I v I$.
- Among those, see which ones also correspond to walks indexing points in $U^{+} t^{\mu} w^{\prime} I \cap I v I$.
- Read off the labelings of the walks from both steps to evaluate the character ψ on the unipotent part.

Theorem (Brubaker-M)

For $S L_{2}\left(\mathbb{F}_{q}((t))\right)$, we recover Tokuyama's formula bijectively. Each Gelfand-Tsetlin pattern corresponds to a stratum in $C_{\lambda \mu}$; the statistics are recording its weighted volume.

These combinatorial tools provide a flexible (and fun!) framework for many vast generalizations of this mini theorem.

Alcove Walks \& Matrix Coefficients

