On the Intersection of Local Arthur Packets for Classical Groups I

Alex Hazeltine

Purdue University

March 11, 2022

Notation

- We fix a non-Archimedean field F and let G_n be the split group $\operatorname{Sp}_{2n}(F)$ or $\operatorname{SO}_{2n+1}(F)$.
- We let W_F be the Weil group, \widehat{G}_n be the complex dual group of G_n .
- When $G_n = \operatorname{Sp}_{2n}(F)$, we have $\widehat{G}_n = \operatorname{SO}_{2n+1}(\mathbb{C})$.
- When G_n is the split group $SO_{2n+1}(F)$, we have $\widehat{G}_n = Sp_{2n}(\mathbb{C})$.

Notation

- For an irreducible unitary supercuspidal representation ρ of GL_d(F)
 x, y ∈ ℝ such that x − y ∈ ℤ_{≥0}, we let Δ_ρ[x, y] be the unique irreducible subrepresentation of ρ| · |^x × · · · × ρ| · |^y.
- For a smooth representation of G_n , π , of finite length, we let $[\pi]$ denote its semi-simplification and the socle, $soc(\pi)$, denote the maximal semi-simple subrepresentation of π .
- Let P_d be a standard parabolic subgroup of G_n with Levi subgroup isomorphic to GL_d × G_{n-d} and x ∈ ℝ. The ρ| · |^x-derivative of π, denoted D_{ρ|·|^x}(π), is a semisimple representation satisfying

$$[Jac_{P_d}(\pi)] = \rho|\cdot|^{\times} \otimes D_{\rho|\cdot|^{\times}}(\pi) + \sum_i \tau_i \otimes \pi_i$$

where the sum is over all irreducible representations τ_i of $\operatorname{GL}_d(F)$ such that $\tau_i \ncong \rho |\cdot|^{\times}$.

Arthur Packets

Theorem (Arthur)

The discrete spectrum of square integrable automorphic forms are partitioned by global Arthur packets.

- The representations in the global Arthur packets are defined as the tensor products of representations coming from local Arthur packets.
- However, unlike the global case, local Arthur packets are not necessarily disjoint.

Arthur's Construction

- Local Arthur packets are parameterized by local Arthur parameters. These are \widehat{G}_n -conjugacy classes of admissible homomorphisms $\psi: W_F \times \operatorname{SL}_2(\mathbb{C}) \times \operatorname{SL}_2(\mathbb{C}) \to \widehat{G}_n$ such that ψ has bounded image on W_F .
- For simplicity, assume $G_n = \operatorname{Sp}_{2n}$. Then $\widehat{G}_n = \operatorname{SO}_{2n+1}(\mathbb{C})$ and there is a $\operatorname{GL}_{2n+1}(\mathbb{C})$ -conjugacy class of embeddings $\widehat{G}_n \hookrightarrow \operatorname{GL}_{2n+1}(\mathbb{C})$.

Arthur's Construction

- Local Arthur packets are parameterized by local Arthur parameters. These are \widehat{G}_n -conjugacy classes of admissible homomorphisms $\psi: W_F \times \operatorname{SL}_2(\mathbb{C}) \times \operatorname{SL}_2(\mathbb{C}) \to \widehat{G}_n$ such that ψ has bounded image on W_F .
- For simplicity, assume $G_n = \operatorname{Sp}_{2n}$. Then $\widehat{G}_n = \operatorname{SO}_{2n+1}(\mathbb{C})$ and there is a $\operatorname{GL}_{2n+1}(\mathbb{C})$ -conjugacy class of embeddings $\widehat{G}_n \hookrightarrow \operatorname{GL}_{2n+1}(\mathbb{C})$.
- Thus we may view ψ as a local Arthur parameter of GL_{2n+1} . Such ψ is necessarily selfdual.
- Local Arthur packets of GL_{2n+1} are singletons and hence we can associate a representation π_{ψ} of GL_{2n+1} to ψ .

Arthur's Construction

- Local Arthur packets are parameterized by local Arthur parameters. These are G
 _n-conjugacy classes of admissible homomorphisms ψ : W_F × SL₂(ℂ) × SL₂(ℂ) → G
 _n such that ψ has bounded image on W_F.
- For simplicity, assume $G_n = \operatorname{Sp}_{2n}$. Then $\widehat{G}_n = \operatorname{SO}_{2n+1}(\mathbb{C})$ and there is a $\operatorname{GL}_{2n+1}(\mathbb{C})$ -conjugacy class of embeddings $\widehat{G}_n \hookrightarrow \operatorname{GL}_{2n+1}(\mathbb{C})$.
- Thus we may view ψ as a local Arthur parameter of GL_{2n+1} . Such ψ is necessarily selfdual.
- Local Arthur packets of GL_{2n+1} are singletons and hence we can associate a representation π_{ψ} of GL_{2n+1} to ψ .
- Arthur associates a "multi-set" Π_{ψ} to ψ consisting of irreducible smooth representations of Sp_{2n} such that a linear combination of characters in Π_{ψ} transfers to the twisted character of π_{ψ} .

Intersections of Local Arthur Packets

- The intersection of local Arthur packets provides complications in various theories.
- For example, consider the non-tempered Gan-Gross-Prasad conjectures. To be precise, for both the *L*-packet and Arthur packet, we should consider all relevant pure inner forms of the groups involved. We call the corresponding packets the Vogan *L*-packet and Vogan *A*-packet.
- For simplicity, let $G_1 = SO_{2n+1}$ and $G_2 = SO_{2n}$ and ψ_1 and ψ_2 be a relevant pair of local Arthur parameters for G_1 and G_2 respectively.

Intersections of Local Arthur Packets

- The intersection of local Arthur packets provides complications in various theories.
- For example, consider the non-tempered Gan-Gross-Prasad conjectures. To be precise, for both the *L*-packet and Arthur packet, we should consider all relevant pure inner forms of the groups involved. We call the corresponding packets the Vogan *L*-packet and Vogan *A*-packet.
- For simplicity, let $G_1 = SO_{2n+1}$ and $G_2 = SO_{2n}$ and ψ_1 and ψ_2 be a relevant pair of local Arthur parameters for G_1 and G_2 respectively.
- There is an injection from local Arthur parameters to L-parameters which we denote by $\psi \mapsto \phi_{\psi}$. We denote the corresponding Vogan *L*-packet by $\Pi_{\phi_{\psi}}$.

Conjecture (Gan, Gross, Prasad)

There exists a unique representation $\pi_1 \times \pi_2 \in \Pi_{\phi_{\psi_1}} \times \Pi_{\phi_{\psi_2}}$ such that $\dim \operatorname{Hom}_{\operatorname{SO}_{2n}}(\pi_1 \otimes \pi_2, \mathbb{C}) \neq 0$. Moreover, $\dim \operatorname{Hom}_{\operatorname{SO}_{2n}}(\pi_1 \otimes \pi_2, \mathbb{C}) = 1$.

Alex Hazeltine (Purdue University)

Arthur Packets for Classical Groups

Intersections of Local Arthur Packets

- The uniqueness property of the previous conjecture is expected since Vogan *L*-packets are disjoint. If we enlarge the conjecture to include Vogan A-packets, then we lose the uniqueness.
- For $G_1 = SO_{2n+1}$ and $G_2 = SO_{2n}$, Gan, Gross, and Prasad demonstrated a relevant pair of non-tempered local Arthur parameters ψ_1 and ψ_2 which have $\dim Hom_{SO_{2n}}(\pi_1 \otimes \pi_2, \mathbb{C}) = 1$ for a supercuspidal representation $\pi_1 \times \pi_2 \in \Pi_{\psi_1} \times \Pi_{\psi_2}$. Consequently, $\pi_1 \times \pi_2 \notin \Pi_{\phi_{\psi_1}} \times \Pi_{\phi_{\psi_2}}$.

Intersections of Local Arthur Packets

- The uniqueness property of the previous conjecture is expected since Vogan *L*-packets are disjoint. If we enlarge the conjecture to include Vogan A-packets, then we lose the uniqueness.
- For $G_1 = SO_{2n+1}$ and $G_2 = SO_{2n}$, Gan, Gross, and Prasad demonstrated a relevant pair of non-tempered local Arthur parameters ψ_1 and ψ_2 which have $\dim Hom_{SO_{2n}}(\pi_1 \otimes \pi_2, \mathbb{C}) = 1$ for a supercuspidal representation $\pi_1 \times \pi_2 \in \Pi_{\psi_1} \times \Pi_{\psi_2}$. Consequently, $\pi_1 \times \pi_2 \notin \Pi_{\phi_{\psi_1}} \times \Pi_{\phi_{\psi_2}}$.
- However, there exists tempered local Arthur parameters ψ'_1 and ψ'_2 such that $\pi_1 \times \pi_2 \in \Pi_{\psi'_1} \times \Pi_{\psi'_2} = \Pi_{\phi_{\psi'_1}} \times \Pi_{\phi_{\psi'_2}}$.
- By the previous conjecture, there should a be a unique representation $\pi'_1 \times \pi'_2$ in the Vogan *L*-packet with dimHom_{SO2n} $(\pi'_1 \otimes \pi'_2, \mathbb{C}) = 1$.
- Thus, there should be at least 2 representations in the local Arthur packet $\Pi_{\psi_1} \times \Pi_{\psi_2}$ satisfying the restriction problem. The failure of uniqueness is due to the local Arthur packets having nontrivial

intersections.

Alex Hazeltine (Purdue University)

Mœglin's Construction

- Mœglin gave an explicit construction of Π_ψ and showed that it was multiplicity free.
- Mœglin's first reduced the general case to the good parity case. We decompose a local Arthur parameter

$$\psi = \bigoplus_{
ho} \bigoplus_{i \in I_{
ho}}
ho \otimes S_{a_i} \otimes S_{b_i}$$

where

- ρ is an irreducible unitary supercuspidal representation of some GL_d
 which is identified with an irreducible bounded representation of W_F
 via the local Langlands correspondence for GL_d;
- ▶ S_a is the unique irreducible representation of $SL_2(\mathbb{C})$ of dimension *a*;
- I_{ρ} is an appropriate indexing set.
- We say ψ is of good parity if every summand $\rho \otimes S_a \otimes S_b$ is self-dual and of the same type as ψ .

Mœglin's Construction

Theorem (Mœglin)

Let ψ be a local Arthur parameter. We have the decomposition

$$\psi = \psi_1 \oplus \psi_0 \oplus \psi_1^{\vee}$$

where ψ_1 is a local Arthur parameter which is not of good parity, ψ_0 is a local Arthur parameter of good parity, and ψ_1^{\vee} denotes the dual of ψ_1 . Furthermore, for $\pi \in \Pi_{\psi_0}$ the induced representation $\pi_{\psi_1} \rtimes \pi$ is irreducible, independent of choice of ψ_1 , and we have

$$\Pi_{\psi} = \{ \pi_{\psi_1} \rtimes \pi \, | \, \pi \in \Pi_{\psi_0} \}.$$

• Hence, if we know the construction of local Arthur packets of good parity, then we know the general case.

Arthur's Classification of Tempered Representations

• A local Arthur parameter ψ is tempered if $b_i = 1$ for every summand.

Theorem (Arthur)

Any irreducible tempered representation of G_n lies in Π_{ψ} for some tempered local Arthur parameter ψ . Moreover, if ψ_1 and ψ_2 are two non-isomorphic tempered local Arthur parameters, then

$$\Pi_{\psi_1} \cap \Pi_{\psi_2} = \emptyset.$$

Finally, if one fixes a choice of Whittaker datum for G_n and ψ is tempered, then there is a bijective map between the tempered local Arthur packet Π_{ψ} and the characters of the component group \widehat{S}_{ψ} .

Hereinafter, we implicitly fix a choice of Whittaker datum for G_n . When ψ is tempered and of good parity, we write $\pi(\psi, \varepsilon)$ for the element of Π_{ψ} corresponding to $\varepsilon \in \widehat{S}_{\psi}$ via the bijection in the above theorem.

Alex Hazeltine (Purdue University)

Mœglin's Construction

• The rest of Mœglin's construction is as follows:

$$\left\{ \begin{array}{c} \text{discrete} \\ \text{tempered} \end{array} \right\} \rightarrow \left\{ \text{elementary} \right\} \rightarrow \left\{ \begin{array}{c} \text{discrete} \\ \text{diagonal} \\ \text{restriction} \end{array} \right\} \rightarrow \left\{ \text{good parity} \right\}$$

- Local Arthur packets of tempered parameters are known by the previous theorem of Arthur.
- Elementary parameters are those with $a_i = 1$ or $b_i = 1$ for every summand. To obtain elementary local Arthur packets from tempered local Arthur packets, Mœglin uses generalized Aubert involutions.
- Local Arthur parameters of discrete diagonal restriction are those for which the sets $\left[\frac{a_i+b_i}{2}-1, \left|\frac{a_i-b_i}{2}\right|\right]$ are disjoint for any $i \in I_{\rho}$. To obtain these packets, Mœglin takes certain socles.
- Finally, local Arthur packets of good parity can be recovered from those of discrete diagonal restriction by taking certain derivatives.

Alex Hazeltine (Purdue University)

Atobe's Construction

- The computation, in terms of the Langlands classification, of the local Arthur packets for elementary and discrete diagonal restriction cases are difficult generally.
- As a remedy, Atobe gave a refinement of Mœglin's construction:

$$\left\{\begin{array}{c} \text{discrete} \\ \text{tempered} \end{array}\right\} \rightarrow \left\{\begin{array}{c} \text{non-negative} \\ \text{discrete} \\ \text{diagonal} \\ \text{restriction} \end{array}\right\} \rightarrow \left\{\text{good parity}\right\}$$

 We say that a local Arthur parameter ψ is non-negative if a_i ≥ b_i for any i ∈ I_ρ and every ρ.

• An *extended multi-segment* for *G_n* is an equivalence class of multi-sets of extended segments

$$\mathcal{E} = \bigcup_{\rho} \{ ([A_i, B_i]_{\rho}, I_i, \eta_i) \}_{i \in (I_{\rho}, >)}$$

such that

- I_{ρ} is a totally ordered finite set with a fixed admissible order >;
- $A_i + B_i \ge 0$ for all ρ and $i \in I_{\rho}$;
- as a representation of $W_F \times \operatorname{SL}_2(\mathbb{C}) \times \operatorname{SL}_2(\mathbb{C})$,

$$\psi_{\mathcal{E}} = \bigoplus_{\rho} \bigoplus_{i \in I_{\rho}} \rho \otimes S_{\mathbf{a}_i} \otimes S_{\mathbf{b}_i}$$

where $(a_i, b_i) = (A_i + B_i + 1, A_i - B_i + 1)$, is a local Arthur parameter for G_n of good parity.

Satifies the sign condition

$$\prod_{\rho} \prod_{i \in I_{\rho}} (-1)^{\left[\frac{b_i}{2}\right] + l_i} \eta_i^{b_i} = 1.$$

Alex Hazeltine (Purdue University)

• Let ρ be the trivial representation. The pictograph

$$\mathcal{E}= egin{pmatrix} -1 & 0 & 1 & 2 & 3 \ arphi & \ominus & \oplus & \ominus & arphi \ & & arphi & arphi & arphi & arphi \end{pmatrix}_
ho$$

corresponds to the extended multi-segment

 $\mathcal{E} = \{([A_i, B_i]_{\rho}, l_i, \eta_i)\}_{i=1<2} \text{ of } \operatorname{Sp}_{26} \text{ where } A_1 = A_2 = 3, B_1 = -1, \\ B_2 = 2, l_1 = l_2 = 1, \eta_1 = -1, \text{ and } \eta_2 = 1. \text{ The } A_i\text{'s and } B_i\text{'s denote the endpoints of the pictograph, } l_i\text{'s denote the number of triangles, } \\ \text{and } \eta_i\text{'s denote the first sign.}$

The associated local Arthur parameter is

$$\psi_{\mathcal{E}} = \rho \otimes S_3 \otimes S_5 + \rho \otimes S_6 \otimes S_2.$$

Suppose *E* is an extended multi-segment such that for any *ρ*, if there exists *i* ∈ *I_ρ* with *B_i* < 0, then the admissible order on *I_ρ* satisfies the following:

if
$$B_i \ge B_j$$
, then $i > j$. (P')

We first suppose that $\ensuremath{\mathcal{E}}$ satisfies

- $B_i \ge 0$ for any $i \in I_\rho$ (i.e. $\psi_{\mathcal{E}}$ is non-negative)
- ▶ for $i > j \in I_{\rho}$, $B_i > A_j$ (i.e. $\psi_{\mathcal{E}}$ is of discrete diagonal restriction).

In this case, Atobe has defined an irreducible representation $\pi(\mathcal{E})$.

• Suppose \mathcal{E} is an extended multi-segment such that for any ρ , if there exists $i \in I_{\rho}$ with $B_i < 0$, then the admissible order on I_{ρ} satisfies the following:

if
$$B_i \ge B_j$$
, then $i > j$. (P')

We first suppose that $\ensuremath{\mathcal{E}}$ satisfies

• $B_i \ge 0$ for any $i \in I_\rho$ (i.e. $\psi_{\mathcal{E}}$ is non-negative)

▶ for $i > j \in I_{\rho}$, $B_i > A_j$ (i.e. $\psi_{\mathcal{E}}$ is of discrete diagonal restriction).

In this case, Atobe has defined an irreducible representation $\pi(\mathcal{E})$.

• In general, let $t_i \in \mathbb{Z}_{\geq 0}$ such that $\mathcal{E}' = \bigcup_{\rho} ([A_i + t_i, B_i + t_i], I_i, \eta_i)_{i \in (I_{\rho}, >)}$ satisfies above conditions. Then we define

$$\pi(\mathcal{E}) = \circ_{\rho} \circ_{i \in I_{\rho}} \left(D_{\rho| \cdot |B_{i+1}, \dots, A_{i+1}} \circ \dots \circ D_{\rho| \cdot |B_{i+t_{i}}, \dots, A_{i+t_{i}}} \right) (\pi(\mathcal{E}')),$$

where if $I_{\rho} = \{1 < \cdots < n\}$, we write $\circ_{i \in I_{\rho}} D_i = D_n \circ \cdots \circ D_1$.

In this case, either π(ε) is irreducible or zero (Bin Xu gives an explicit condition on ε which determines if π(ε) ≠ 0).

Atobe's Construction

Langlands Classification

- The Langlands classification for G_n states that any irreducible smooth representation π of G_n is a unique irreducible subrepresentation of $\Delta_{\rho_1}[x_1, y_1] \times \cdots \times \Delta_{\rho_r}[x_r, y_r] \rtimes \pi'$ where
 - ρ_i is an irreducible unitary supercuspidal representation of GL_{d_i} ,
 - ► $x_1 + y_1 \le x_2 + y_2 \le \cdots \le x_r + y_r < 0$,
 - and π' is a tempered representation.

We write $\pi = L(\Delta_{\rho_1}[x_1, y_1], \dots, \Delta_{\rho_r}[x_r, y_r]; \pi').$

Langlands Classification

- The Langlands classification for G_n states that any irreducible smooth representation π of G_n is a unique irreducible subrepresentation of $\Delta_{\rho_1}[x_1, y_1] \times \cdots \times \Delta_{\rho_r}[x_r, y_r] \rtimes \pi'$ where
 - ρ_i is an irreducible unitary supercuspidal representation of GL_{d_i} ,
 - ► $x_1 + y_1 \le x_2 + y_2 \le \cdots \le x_r + y_r < 0$,
 - and π' is a tempered representation.

We write $\pi = L(\Delta_{\rho_1}[x_1, y_1], \dots, \Delta_{\rho_r}[x_r, y_r]; \pi').$

• In particular, when $\psi = \bigoplus_{i=1}^{n} \rho \otimes S_{a_i} \otimes S_1$ is a tempered local Arthur parameter, for $\varepsilon \in \widehat{S}_{\psi}$, we write $\varepsilon(\rho \otimes S_{a_i}) = \epsilon_i \in \{\pm 1\}$. Let $\pi' = \pi(\psi, \varepsilon) \in \Pi_{\psi}$ be the representation corresponding to ε via Arthur's theorem and $x_i = \frac{a_i - 1}{2}$ for $i \in I_{\rho}$. Then we write

$$\pi(x_1^{\epsilon_1},\ldots,x_n^{\epsilon_n})=\pi(\psi,\varepsilon).$$

• We will use this notation in several examples.

Atobe's Construction

Atobe's Reformulation

• Let ρ be the trivial representation. Consider

$$\mathcal{E}=egin{pmatrix} -1 & 0 & 1 & 2 & 3 \ @ arphi & \ominus & \ominus & arphi \ & arphi & arphi & arphi & arphi \ & arphi & arphi & arphi \ \end{pmatrix}_
ho.$$

Then we shift to

We compute $\pi(\mathcal{E}') = L(\Delta_{\rho}[0, -4], \Delta_{\rho}[5, -6]; \pi(1^{-}, 2^{+}, 3^{-}))$ and $\pi(\mathcal{E}) = L(\Delta_{\rho}[1, -3], \Delta_{\rho}[2, -3]; \pi(0^{-}, 1^{+}, 2^{-})).$

Theorem (Atobe)

Let ψ be a local Arthur parameter of good parity and $\Psi(\psi)$ be the set of extended multi-segments $\mathcal{E} = \bigcup_{\rho} \{ ([A_i, B_i]_{\rho}, l_i, \eta_i) \}_{i \in (I_{\rho}, >)}$ such that $\psi_{\mathcal{E}} = \psi$ and if $B_i < 0$ for some $i \in I_{\rho}$, then the admissible order satisfies (P'). Then

$$\Pi_{\psi} = \{\pi(\mathcal{E}) | \mathcal{E} \in \Psi(\psi)\} \setminus \{0\}.$$

Theorem (Atobe)

Let ψ be a local Arthur parameter of good parity and $\Psi(\psi)$ be the set of extended multi-segments $\mathcal{E} = \bigcup_{\rho} \{ ([A_i, B_i]_{\rho}, l_i, \eta_i) \}_{i \in (I_{\rho}, >)}$ such that $\psi_{\mathcal{E}} = \psi$ and if $B_i < 0$ for some $i \in I_{\rho}$, then the admissible order satisfies (P'). Then

$$\Pi_{\psi} = \{\pi(\mathcal{E}) | \mathcal{E} \in \Psi(\psi)\} \setminus \{0\}.$$

• Thus, the construction data ${\mathcal E}$ determines the local Arthur packet.

Intersection of Local Arthur Packets

- Suppose that π(ε) ≠ 0. Atobe recently defined operators on extended multi-segments which classify the set {ε' | π(ε) = π(ε')}.
- Jointly with Liu and Lo, we give a different set of operators on extended multi-segments which classify the set $\{\mathcal{E}' \mid \pi(\mathcal{E}) = \pi(\mathcal{E}')\}$.

Theorem (Atobe; H., Liu, and Lo)

We can determine all the local Arthur packets to which a fixed representation belongs. Consequently, we can determine all the local Arthur packets which intersect a fixed local Arthur packet.

Applications

Theorem (H., Liu, and Lo)

- Given any local Arthur parameter ψ, we give a formula to count the number of tempered representations inside Π_ψ and describe their L-data.
- **2** We prove the enhanced Shahidi conjecture. That is, a local Arthur packet Π_{ψ} contains a generic member if and only if ψ is tempered.
- Solution We determine all \mathcal{E} such that $\pi(\mathcal{E})$ is in the L-packet associated with $\psi_{\mathcal{E}}$.
- For a representation π of Arthur type, we give a conjectural definition of "the" local Arthur parameter ψ(π) of π, such that

- The End.
- Thank you!