On the Intersection of Local Arthur Packets for Classical Groups II

Chi-Heng Lo

Purdue University

March 11, 2022

- L-packet of Arthur type
- "The" local Arthur parameter

Main results

Main results

Chi-Heng Lo (Purdue University) Arthur Packets for Classical Groups II

Extended multi-segments

• An extended multi-segment is given by picture as the following example.

$$\mathcal{E}_0 = egin{pmatrix} 1 & 2 & 3 & 4 \ \ominus & \ominus & \ominus \ & \lhd & arphi \end{pmatrix}_
ho.$$

• For each \mathcal{E} , we use rectangles to specify non-empty entries in each row, and call them the support of \mathcal{E} . For example,

$$\operatorname{supp}(\mathcal{E}_0) = \left(\begin{array}{ccc} 1 & 2 & 3 & 4\\ \hline \ominus & \ominus & \ominus\\ & \hline & \Box & \\ \end{array}\right)_{\rho} = \{[3,1]_{\rho}, [4,3]_{\rho}\}$$

• From the support of an extended multi-segment \mathcal{E} , we may associate a local Arthur parameter $\psi_{\mathcal{E}}$. For example,

$$\psi_{\mathcal{E}_0} = \rho \otimes S_5 \otimes S_3 + \rho \otimes S_8 \otimes S_2.$$

Chi-Heng Lo (Purdue University)

Extended multi-segments

$$\mathcal{E}_{0} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \ominus & \oplus & \ominus \\ & \lhd & \triangleright \end{pmatrix}_{\rho}.$$

• We may associate a representation $\pi(\mathcal{E})$ (zero or irreducible) to each extended multi-segment \mathcal{E} . For example,

$$\pi(\mathcal{E}_0) = L(\Delta_{\rho}[3, -4]; \pi(1^-, 2^+, 3^-)).$$

If $\pi(\mathcal{E})$ is nonzero, we have $\pi(\mathcal{E}) \in \Pi_{\psi_{\mathcal{E}}}$.

• Conversely, if $\pi \in \Pi_{\psi}$, then there exists an \mathcal{E} with $\psi_{\mathcal{E}} = \psi$ and $\pi = \pi(\mathcal{E})$.

Main results

• Given a representation π . Suppose $\{\psi \mid \pi \in \Pi_{\psi}\} = \{\psi_1, \cdots, \psi_n\}$ $(n \ge 1)$. Then we can find $\mathcal{E}_1, \cdots, \mathcal{E}_n$ such that $\pi(\mathcal{E}_i) = \pi$ and $\psi_{\mathcal{E}_i} = \psi_i$.

• Our main results answer the following problems.

- Study the relation between $\mathcal{E}_i, \mathcal{E}_j$. Given \mathcal{E}_1 , construct the set $\{\mathcal{E}_1, \dots, \mathcal{E}_n\}$.
- Determine an arbitrary π is of Arthur type or not. In the affirmative case, construct an \mathcal{E}_i .

Operators

• A key ingredient of our main theorem is the following four operators on extended multi-segments.

name	notation	affect on representation
Row exchange	R _i	$\pi(\mathcal{E}) = \pi(R_i(\mathcal{E}))$
Union-intersection	ui _i	$\pi(\mathcal{E}) = \pi(\mathit{ui}_i(\mathcal{E}))$
Aubert-Zelevinsky dual	dual	$\pi(\mathit{dual}(\mathcal{E})) = \widehat{\pi(\mathcal{E})}$
Partial dual	dual ⁺ , dual ⁻	$\pi(\mathcal{E})=\pi(\mathit{dual}^\pm_i(\mathcal{E}))$

where $\widehat{\pi}$ is the Aubert-Zelevinsky dual defined by

$$\widehat{\pi} := \varepsilon \sum_{P} (-1)^{\dim(A_P)} [\operatorname{Ind}_{P}^{G_n}(Jac_P(\pi))],$$

for some $\varepsilon \in \{\pm 1\}$. Aubert showed that $\widehat{\widehat{\pi}} = \pi$.

• In particular, we have $\pi(dual \circ ui_k \circ dual(\mathcal{E})) = \widehat{\pi(\mathcal{E})} = \pi(\mathcal{E}).$

Row Exchange

• Row exchange R_i exchanges the support of the *i*-th row and i + 1-th row.

- It does not change the local Arthur parameter, but only changes the summation order.
- Consider

We have $\pi(\mathcal{E}) = \pi(R_1(\mathcal{E})) = L(\Delta_{\rho}[3,-4];\pi(1^-,2^+,3^-)).$

Union-Intersection

or

• Union-intersection u_i changes the support of the *i*-th and i + 1-th rows into their union and intersection.

- This operator changes the local Arthur parameter.
- ui_i is not always applicable on \mathcal{E} . It depends on the combinatorial data of \mathcal{E} . Atobe's result that ui_i preserves representation gives that

$$\mathit{ui}_i$$
 is applicable on $\mathcal{E} \Longrightarrow \pi(\mathcal{E}) \in \Pi_{\psi_{\mathcal{E}}} \cap \Pi_{\psi_{\mathit{ui}_i(\mathcal{E})}}.$

Union-Intersection

Consider

$$\mathcal{E} = \begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 3 \\ \ominus & \oplus & \\ & & \ominus \end{pmatrix}_{\rho}, ui_1(\mathcal{E}) = \begin{pmatrix} 1 & 2 & 3 & 0 \\ \oplus & \oplus & \oplus \end{pmatrix}_{\rho}.$$

We have $\pi(\mathcal{E}) = \pi(ui_1(\mathcal{E})) = L(\pi(1^-, 2^+, 3^-)) \in \Pi_{\psi} \cap \Pi_{ui_1(\psi)}$, where

$$\psi = \rho \otimes S_4 \otimes S_2 + \rho \otimes S_7 \otimes S_1,$$

$$ui_1(\psi) = \rho \otimes S_5 \otimes S_3.$$

Main results

Aubert-Zelevinsky Dual

- Suppose supp $(\mathcal{E}) = \{ [A_1, B_1]_{\rho}, \cdots, [A_n, B_n]_{\rho} \}$. Then supp $(dual(\mathcal{E})) = \{ [A_n, -B_n]_{\rho}, \cdots, [A_1, -B_1]_{\rho} \}$.
- Consider

$$\mathcal{E} = \begin{pmatrix} -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ (\lhd & \lhd & \ominus & \rhd & \rhd & \rhd \\ & & \lhd & \oplus & \flat & \\ & & & \Theta & & \end{pmatrix}_{\rho}.$$

Then

$$\begin{split} \mathsf{supp}(\mathcal{E}) &= \{[3,-3]_{\rho}, [1,-1]_{\rho}, [0,0]_{\rho}\}\\ \mathsf{supp}(\mathit{dual}(\mathcal{E})) &= \{[0,0]_{\rho}, [1,1]_{\rho}, [3,3]_{\rho}\}, \end{split}$$

and

$$\mathit{dual}(\mathcal{E}) = egin{pmatrix} 0 & 1 & 2 & 3 \ \ominus & & & \ \oplus & & & \ \oplus & & & \ominus \end{pmatrix}_{
ho}.$$

We have $\pi(\mathit{dual}(\mathcal{E})) = \widehat{\pi(\mathcal{E})}$ (as proved in Atobe's work).

Chi-Heng Lo (Purdue University)

Arthur Packets for Classical Groups II

dual o ui o dual

$$\mathcal{E} = \begin{pmatrix} -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \lhd & \lhd & \ominus & \rhd & \rhd & \rhd \\ & & \lhd & \ominus & & \ddots & \\ & & & \ominus & & \end{pmatrix}_{\rho}, \ dual(\mathcal{E}) = \begin{pmatrix} \ominus & & & \\ & \ominus & & \\ & & & \ominus \end{pmatrix}_{\rho}.$$

• ui_1 is applicable on $dual(\mathcal{E})$, where

$$\begin{array}{cccc} 0 & 1 & 2 & 3 \\ ui_1 \circ dual(\mathcal{E}) = & \begin{pmatrix} \ominus & \oplus & \\ & & \ominus \end{pmatrix}_{\rho}, \\ \mathcal{E}' := dual \circ ui_1 \circ dual(\mathcal{E}) = & \begin{pmatrix} -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \lhd & \lhd & \ominus & \rhd & \rhd & \triangleright \\ & & \oplus & \ominus & & \ominus \end{pmatrix}_{\rho}. \\ \text{We have } \pi(\mathcal{E}) = \pi(\mathcal{E}') = L(\Delta_{\rho}[-3, -3]; \pi(0^-, 1^+, 2^-)). \end{array}$$

Chi-Heng Lo (Purdue University)

Partial dual

dual⁺_i is applicable only if B_i = 1/2, and dual⁻_i is applicable only if B_i = -1/2. When it is applicable, it changes the support as follows.

Consider

$$\mathcal{E}_1 = \ \begin{pmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{3}{2} & \frac{5}{2} \\ & \ominus & \oplus \\ & & & \ominus \end{pmatrix}_\rho, \ \mathcal{E}_2 = \ \begin{pmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{3}{2} & \frac{5}{2} \\ \oplus & \ominus & \oplus \\ & & & \ominus \end{pmatrix}_\rho.$$

We have
$$\mathcal{E}_2 = dual_1^+(\mathcal{E}_1)$$
 and $\mathcal{E}_1 = dual_1^-(\mathcal{E}_2)$, and $\pi(\mathcal{E}_1) = \pi(\mathcal{E}_2) = \pi\left(\left(\frac{1}{2}\right)^-, \left(\frac{3}{2}\right)^+, \left(\frac{5}{2}\right)^-\right)$.

Main Theorem

• We can now state our main theorem.

```
Theorem (Hazeltine, Liu, and L.)
```

Suppose that $\pi(\mathcal{E}) = \pi(\mathcal{E}') \neq 0$. Then \mathcal{E} and \mathcal{E}' are related by a composition of the following four types of operators:

- row exchange,
- union-intersection,
- dual o ui o dual,
- partial dual

and their inverses.

• Recently, Atobe has a logically equivalent theorem.

Canonical Form

- The main idea behind the proof is to construct a specific extended multi-segment from *E*, which we call *E*_{can}, the canonical form of *E*.
- The construction is roughly as follows.

$$\mathcal{E} \xrightarrow{\text{all possible } ui} \mathcal{E}^{min} \xrightarrow{\text{some } dual \circ ui \circ dual} \xrightarrow{possibly once } \mathcal{E}_{can}$$

Theorem (Hazeltine, Liu and L.)

• Suppose that
$$\pi(\mathcal{E}) \neq 0$$
. Then

$$\pi(\mathcal{E}) = \pi(\mathcal{E}') \Longleftrightarrow \mathcal{E}_{can} = \mathcal{E}'_{can}.$$

• By reversing the construction of \mathcal{E}_{can} , we give a precise formula/algorithm for the set

$$\Psi(\mathcal{E}) := \{\mathcal{E}' \mid \pi(\mathcal{E}') = \pi(\mathcal{E})\} / (\text{row exchanges}).$$

Main results

Algorithm for representation of Arthur type

• Furthermore, we gave an algorithm

L-data of
$$\pi(\mathcal{E}) \longmapsto \psi_{\mathcal{E}_{can}}$$
,

which uniquely characterizes \mathcal{E}_{can} by the representation theoretic properties of $\pi(\mathcal{E})$.

• Applying exactly the same algorithm to an arbitrary representation π , we have an algorithm for determining π is of Arthur type or not.

$$L\text{-data of } \pi \longmapsto \begin{cases} 0 \text{ (if some steps are not applicable)} \\ \Rightarrow \pi \text{ is not of Arthur type.} \\ \\ \psi \Rightarrow \begin{cases} \pi \notin \Pi_{\psi} \quad \Rightarrow \pi \text{ is not of Arthur type.} \\ \\ \pi \in \Pi_{\psi} \quad \Rightarrow \pi \text{ is of Arthur type.} \end{cases}$$

• We remark that this algorithm is different from the one given by Atobe recently.

Main results

Example

Applications

Applications

Chi-Heng Lo (Purdue University) Arthur Packets for Classical Groups II

L-packet of Arthur type: Definition

• Let $\psi = \bigoplus_i \rho_i \otimes_i S_{a_i} \otimes S_{b_i}$ be a local Arthur parameter. We may associate an *L*-parameter ϕ_{ψ} by

$$\phi_{\psi} := \bigoplus_{i} \left(\bigoplus_{j=0}^{b_i-1}
ho_i | \cdot |^{rac{b_i-1}{2}-j} \otimes S_{a_i}
ight)$$

Then the local Arthur packet Π_{ψ} contains the *L*-packet $\Pi_{\phi_{\psi}}$.

• The map $\psi \mapsto \phi_{\psi}$ is injective. We say an *L*-parameter ϕ is of Arthur type if it is in the image of this map.

19/32

L-packet of Arthur type: Problem

The first application is to answer the following natural problem.

Problem

Give a criterion on the combinatorial data \mathcal{E} such that $\pi(\mathcal{E}) \in \Pi_{\phi_{\psi_{\mathcal{E}}}}$.

L-packet of Arthur type: Statement

Definition

We say an extended multi-segment \mathcal{E} satisfies (L) if after row exchanges, it satisfies the following conditions.

- The middle point of each row is non-decreasing.
- Every row has maximal pairs of triangles.
- Circles at the same column have the same sign.

Theorem (Hazeltine, Liu and L.)

(a) If \mathcal{E} satisfies (L), then $\pi(\mathcal{E}) \neq 0$. In this case, the L-data of $\pi(\mathcal{E})$ can be directly read from the picture of \mathcal{E} (after row exchanges).

(b) $\pi(\mathcal{E}) \in \prod_{\phi_{\psi_{\mathcal{E}}}}$ if and only if \mathcal{E} satisfies (L).

L-packet of Arthur type: Example

Consider

We have

 $\psi_{\mathcal{E}} = \rho \otimes S_6 \otimes S_4 + \rho \otimes S_5 \otimes S_3 + \rho \otimes S_5 \otimes S_1 + \rho \otimes S_5 \otimes S_1,$

and

$$\pi(\mathcal{E}) = L(\Delta_{\rho}[1, -4], \Delta_{\rho}[1, -3], \Delta_{\rho}[2, -3]; \pi(2^{+}, 2^{+}, 2^{+})),$$

and $\pi(\mathcal{E}) \in \Pi_{\phi_{\psi_{\mathcal{E}}}}.$

Chi-Heng Lo (Purdue University)

L-packet of Arthur type: Non-example

• $\Psi(\pi) = \{\mathcal{E} \mid \pi(\mathcal{E}) = \pi\}/(\text{row exchanges}) = \{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}, \text{ where }$

• None of them satisfy (L), so π is not in any *L*-packet of Arthur type.

"The" local Arthur parameter: Problem

- A representation of Arthur type can live in multiple local Arthur packets.
- Our second application answers the following problem.

Problem

Given π of Arthur type, specify a distinguished member $\psi(\pi)$ in the set $\{\psi \mid \pi \in \Pi_{\psi}\}$ with the requirement

$$\pi \in \Pi_{\phi_{\psi}}$$
 for some $\psi \Rightarrow \psi(\pi) = \psi$.

"The" local Arthur parameter: Observation

• Let $\pi = \pi(\mathcal{E})$. To specify a distinguished member in $\{\psi \mid \pi \in \Pi_{\psi}\}$ is the same as to specify a distinguished member in

$$\Psi(\mathcal{E}) := \{\mathcal{E}' \mid \pi(\mathcal{E}) = \pi(\mathcal{E}')\}/(\text{row exchanges}).$$

- Since a representation lives in only one L-packet, there exists at most one element *E'* in Ψ(*E*) satisfying (L). If such *E'* exists, then π(*E*) ∈ Π_{φψ_{E'}}, and the requirement implies ψ(π(*E*)) = ψ_{E'}.
- If there is no such \mathcal{E}' , then the *L*-parameter of $\pi(\mathcal{E})$ is not of Arthur type. To define $\psi(\pi(\mathcal{E}))$ in this case, we need another condition weaker than (L).

Absolutely maximal

Definition

Suppose $\pi(\mathcal{E}) \neq 0$. We say \mathcal{E} is absolutely maximal if

- (a) No ui^{-1} is applicable on \mathcal{E} .
- (b) No *ui* is applicable on $dual(\mathcal{E})$.
- (c) No $dual_i^-$ is applicable on \mathcal{E} .
 - \bullet Intuitively, if ${\mathcal E}$ is absolutely maximal, $\psi_{{\mathcal E}}$ is the most "tempered" one in the set

 $\{\psi \mid \pi(\mathcal{E}) \in \Pi_{\psi}\}.$

Proposition

Suppose $\pi(\mathcal{E}) \neq 0$. Then

 \mathcal{E} satisfies (L) $\Longrightarrow \mathcal{E}$ is absolutely maximal.

"The" local Arthur parameter: Statement

• The last piece to define "the" local Arthur parameter is the following theorem.

Theorem (Hazeltine, Liu and L.)

Suppose $\pi(\mathcal{E}) \neq 0$. Then there exists **exactly one** absolutely maximal member in the set

$$\Psi(\mathcal{E}) = \{\mathcal{E}' \mid \pi(\mathcal{E}') = \pi(\mathcal{E})\}/(\text{row exchanges}),$$

which we denote by \mathcal{E}^{max} , the max form of \mathcal{E} .

• This suggests the following definition.

Definition

Suppose $\pi = \pi(\mathcal{E})$. We define "the" local Arthur parameter of π by

$$\psi(\pi) := \psi_{\mathcal{E}^{\max}}.$$

"The" local Arthur parameter: Example

• Let ρ be the trivial representation. We consider three local Arthur parameters of $\operatorname{Sp}_{10}(F)$,

$$\begin{split} \psi_1 &= \rho \otimes S_1 \otimes S_7 + \rho \otimes S_2 \otimes S_2, \\ \psi_2 &= \rho \otimes S_1 \otimes S_7 + \rho \otimes S_1 \otimes S_1 + \rho \otimes S_3 \otimes S_1, \\ \psi_3 &= \rho \otimes S_1 \otimes S_7 + \rho \otimes S_1 \otimes S_3 + \rho \otimes S_1 \otimes S_1. \end{split}$$

There are seven representations in $\Pi_{\psi_1} \cup \Pi_{\psi_2} \cup \Pi_{\psi_3}$. We denote them by π_1, \dots, π_7 .

"The" local Arthur parameter: Example

• We visualize them in the following picture.

• Ellipses are local Arthur packets. Rectangles are *L*-packets. The color of representations indicate "the" local Arthur parameters of them. Representations and *L*-packets in black are not of Arthur type.

• $\{\mathcal{E} \mid \pi(\mathcal{E}) = \pi_1\}/(\text{row exchanges}) = \{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$ where

• Since $dual \circ ui_2 \circ dual(\mathcal{E}_3) = \mathcal{E}_1$ and $ui_2^{-1}(\mathcal{E}_1) = \mathcal{E}_2$, \mathcal{E}_2 is the only absolutely maximal element. Thus $\psi(\pi_1) = \psi_2$.

• $\{\mathcal{E} \mid \pi(\mathcal{E}) = \pi_2\}/(\text{row exchanges}) = \{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$, where

Since dual ∘ ui₂ ∘ dual(𝔅₃) = 𝔅₁ and ui₂⁻¹(𝔅₁) = 𝔅₂, 𝔅₂ is the only absolutely maximal element. Thus ψ(π₂) = ψ₂. Also, 𝔅₂ satisfies (L), so π₂ ∈ Π_{φψ₂}.

- The End.
- Thank you!