A Converse Theorem without Root Numbers

Shantanu Agarwal
University of lowa
shantanu-agarwal@uiowa.edu

March 11, 2022

What is a Converse Theorem?

"A converse theorem characterizes automorphic forms in terms of analytic properties of their L-functions."

A classical result

A classical result

- Let $f: \mathcal{H} \rightarrow \mathbb{C}$ have a Fourier expansion $f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}$

A classical result

- Let $f: \mathcal{H} \rightarrow \mathbb{C}$ have a Fourier expansion $f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}$
- Can associate to f the completed L-function

$$
\Lambda(s ; f)=(2 \pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_{n} n^{-s}
$$

A classical result

Theorem (Hecke '36)

f is a modular form for $\mathrm{SL}_{2}(\mathbb{Z})$ of weight k if and only if $\Lambda(s ; f)$
(i) has an analytic continuation to the whole s-plane
(ii) is bounded in vertical strips
(iii) satisfies the functional equation

$$
\Lambda(s ; f)=(-1)^{k / 2} \Lambda(k-s ; f)
$$

A classical result

Theorem (Hecke '36)

f is a modular form for $\mathrm{SL}_{2}(\mathbb{Z})$ of weight k if and only if $\Lambda(s ; f)$
(i) has an analytic continuation to the whole s-plane
(ii) is bounded in vertical strips
(iii) satisfies the functional equation

$$
\Lambda(s ; f)=(-1)^{k / 2} \Lambda(k-s ; f)
$$

The if part of this statement is a prototypical example of a Converse theorem.

Congruence subgroups with level

- What about congruence subgroups $\Gamma(N) \subset \mathrm{SL}_{2}(\mathbb{Z})$?

Congruence subgroups with level

- What about congruence subgroups $\Gamma(N) \subset \mathrm{SL}_{2}(\mathbb{Z})$?
- A single functional equation does not suffice in this case.

Congruence subgroups with level

- What about congruence subgroups $\Gamma(N) \subset \mathrm{SL}_{2}(\mathbb{Z})$?
- A single functional equation does not suffice in this case.
- Weil (1967) proved a converse theorem requiring a family of 'twisted' L-functions.

Weil's setup

- Two sequences $\lambda=\left\{\lambda_{n}\right\}$ and $\tilde{\lambda}=\left\{\tilde{\lambda}_{n}\right\}$ of complex numbers.

Weil's setup

- Two sequences $\lambda=\left\{\lambda_{n}\right\}$ and $\tilde{\lambda}=\left\{\tilde{\lambda}_{n}\right\}$ of complex numbers.
- Associate to them a pair of functions f, \tilde{f}

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{n} n^{\frac{k-1}{2}} e^{2 \pi i n z} \quad \text { and } \quad \tilde{f}(z)=\sum_{n=1}^{\infty} \tilde{\lambda}_{n} n^{\frac{k-1}{2}} e^{2 \pi i n z}
$$

Weil's setup

- Two sequences $\lambda=\left\{\lambda_{n}\right\}$ and $\tilde{\lambda}=\left\{\tilde{\lambda}_{n}\right\}$ of complex numbers.
- Associate to them a pair of functions f, \tilde{f}

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{n} n^{\frac{k-1}{2}} e^{2 \pi i n z} \quad \text { and } \quad \tilde{f}(z)=\sum_{n=1}^{\infty} \tilde{\lambda}_{n} n^{\frac{k-1}{2}} e^{2 \pi i n z}
$$

- Define the L-function twisted by the Dirichlet character χ

$$
\Lambda(s ; \lambda, \chi):=\Gamma_{\mathbb{C}}\left(s+\frac{k-1}{2}\right) \sum_{n=1}^{\infty} \lambda_{n} \chi(n) n^{-s}
$$

Weil's Converse theorem

Weil showed that if the L-functions defined above are 'nice' for every Dirichlet character χ with conductor q relatively prime to N and satisfy the functional equation

$$
\Lambda(s ; \lambda, \chi)=C_{\chi}\left(q^{2} N\right)^{\frac{1}{2}-s} \Lambda(1-s ; \tilde{\lambda}, \bar{\chi})
$$

then f is a modular form of level N and weight k.

Weil's Converse theorem

Weil showed that if the L-functions defined above are 'nice' for every Dirichlet character χ with conductor q relatively prime to N and satisfy the functional equation

$$
\Lambda(s ; \lambda, \chi)=C_{\chi}\left(q^{2} N\right)^{\frac{1}{2}-s} \Lambda(1-s ; \tilde{\lambda}, \bar{\chi})
$$

then f is a modular form of level N and weight k. The complex number $C_{\chi}=i^{k} \xi(q) \chi(-N) \tau(\chi) / \tau(\bar{\chi})$, with $\tau(\chi)$ the Gauss sum for χ and ξ the nebentypus character of f, is called the root number of the functional equation.

Representation theoretic statement

Jacquet and Langlands gave a Converse theorem in the language of automorphic representations.

Representation theoretic statement

Jacquet and Langlands gave a Converse theorem in the language of automorphic representations. Let

- k be a global field and \mathbb{A} its adele ring, and

Representation theoretic statement

Jacquet and Langlands gave a Converse theorem in the language of automorphic representations. Let

- k be a global field and \mathbb{A} its adele ring, and
- $\pi=\otimes \pi_{v}$ an irreducible admissible generic representation of $\mathrm{GL}_{2}(\mathbb{A})$.

Representation theoretic statement

Jacquet and Langlands gave a Converse theorem in the language of automorphic representations. Let

- k be a global field and \mathbb{A} its adele ring, and
- $\pi=\otimes \pi_{v}$ an irreducible admissible generic representation of $\mathrm{GL}_{2}(\mathbb{A})$.

Assume

- the central character χ of π is an idele class character, and

Representation theoretic statement

Jacquet and Langlands gave a Converse theorem in the language of automorphic representations. Let

- k be a global field and \mathbb{A} its adele ring, and
- $\pi=\otimes \pi_{v}$ an irreducible admissible generic representation of $\mathrm{GL}_{2}(\mathbb{A})$.

Assume

- the central character χ of π is an idele class character, and
- the L-function $L(s ; \pi)=\prod_{v} L\left(s ; \pi_{v}\right)$ converges in some right half plane.

Representation theoretic statement

Theorem (Jacquet and Langlands '70)

Suppose, for each idele class character ω, the twisted L-functions $L(s ; \pi \otimes \omega)$ and $L\left(s ; \check{\pi} \otimes \omega^{-1}\right)$ can be continued to entire functions of s, are bounded in vertical strips and satisfy the functional equation

$$
L(s ; \pi \otimes \omega)=\varepsilon(s ; \pi \otimes \omega) L\left(1-s ; \check{\pi} \otimes \omega^{-1}\right)
$$

Then π is a cuspidal automorphic representation.

Jacquet-Langlands proof (idea)

- For each $\xi=\otimes_{v} \xi_{v} \in V_{\pi}$ let $W_{\xi}=\prod_{v} W_{\xi_{v}} \in \mathcal{W}(\pi, \psi)$ and set

$$
\varphi_{\xi}(g)=\sum_{\gamma \in k^{\times}} W_{\xi}\left(\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right) g\right)
$$

This gives another embedding of π in a space of functions on $G(\mathbb{A})$.

Jacquet-Langlands proof (idea)

- For each $\xi=\otimes_{v} \xi_{v} \in V_{\pi}$ let $W_{\xi}=\prod_{v} W_{\xi_{v}} \in \mathcal{W}(\pi, \psi)$ and set

$$
\varphi_{\xi}(g)=\sum_{\gamma \in k^{\times}} W_{\xi}\left(\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right) g\right)
$$

This gives another embedding of π in a space of functions on $G(\mathbb{A})$.

- Show, for all g

$$
\varphi_{\xi}(w g)=\varphi_{\xi}(g)
$$

where $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. This shows φ_{ξ}, and hence π, is automorphic.

Can we relax the requirement of precise ε-factor?

Can we relax the requirement of precise ε-factor?

Theorem (Booker '19)

Let π be an irreducible admissible representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with automorphic central character and conductor N. Suppose each π_{v} is unitary and that π_{∞} is a discrete series or limit of discrete series representation. For each unitary idele class character ω of conductor q coprime to N, suppose the completed L-functions $\Lambda(s, \pi \otimes \omega)$ and $\Lambda\left(s, \check{\pi} \otimes \omega^{-1}\right)$ continue to entire functions on \mathbb{C}, are bounded in vertical strips and satisfy a functional equation of the form

$$
\Lambda(s, \pi \otimes \omega)=\epsilon_{\omega}\left(N q^{2}\right)^{\frac{1}{2}-s} \Lambda\left(1-s, \check{\pi} \otimes \omega^{-1}\right)
$$

for some complex number ϵ_{ω}. Then there is a cuspidal automorphic representation $\Pi=\otimes_{v} \Pi_{v}$ such that $\Pi_{\infty} \cong \pi_{\infty}$ and $\Pi_{v} \cong \pi_{v}$ at every finite v at which π_{v} is unramified.

What about an arbitrary global field?

What about an arbitrary global field?

- Does the theorem hold for any global field?

What about an arbitrary global field?

- Does the theorem hold for any global field?
- I prove a version for a rational function field

What about an arbitrary global field?

- Does the theorem hold for any global field?
- I prove a version for a rational function field
- The values for ϵ_{ω} require some additional (natural) constraints

The case of a rational function field

- $F=\mathbb{F}_{q}(t)$
- \mathbb{A} the adele ring of F
- Fix a place ∞ of F
- π an irreducible admissible generic representation of $G L_{2}(\mathbb{A})$ with conductor \mathfrak{a}, and automorphic central character χ

The case of a rational function field

Theorem (A)

For each unitary idele class character ω whose conductor \mathfrak{f} is disjoint from \mathfrak{a}, assume the L-function $L(s, \pi \otimes \omega)$ continues to a holomorphic function on \mathbb{C} and satisfies the functional equation

$$
L(s, \pi \otimes \omega)=\epsilon_{\omega}\left|\mathfrak{a f}^{2}\right|^{s-\frac{1}{2}} L\left(1-s, \check{\pi} \otimes \omega^{-1}\right)
$$

where the complex number ϵ_{ω} is such that
(i) if ω is unramified or ramified only at ∞, then $\epsilon_{\omega}=1$, and
(ii) for any unramified unitary idele class character ω^{\prime}, we have $\epsilon_{\omega^{\prime} \omega}=\epsilon_{\omega}$. Then there is a cuspidal automorphic representation Π so that $\Pi_{v} \cong \pi_{v}$ at all places v away from the support of the divisor \mathfrak{a}.

Key ingredients in the proof

- Basic idea of showing $\varphi_{\xi}(w g)=\varphi_{\xi}(g)$ remains the same

Key ingredients in the proof

- Basic idea of showing $\varphi_{\xi}(w g)=\varphi_{\xi}(g)$ remains the same
- Define a notion of twist of φ by a character mod a divisor

Key ingredients in the proof

- Basic idea of showing $\varphi_{\xi}(w g)=\varphi_{\xi}(g)$ remains the same
- Define a notion of twist of φ by a character mod a divisor
- Derive a functional equation for the Dirichlet series associated to these twisted variants of φ

Key ingredients in the proof

- Basic idea of showing $\varphi_{\xi}(w g)=\varphi_{\xi}(g)$ remains the same
- Define a notion of twist of φ by a character mod a divisor
- Derive a functional equation for the Dirichlet series associated to these twisted variants of φ
- Average the subsequent equality we get for the twisted φ and its dual over all unitary characters mod a fixed divisor

Key ingredients in the proof

- Basic idea of showing $\varphi_{\xi}(w g)=\varphi_{\xi}(g)$ remains the same
- Define a notion of twist of φ by a character mod a divisor
- Derive a functional equation for the Dirichlet series associated to these twisted variants of φ
- Average the subsequent equality we get for the twisted φ and its dual over all unitary characters mod a fixed divisor
- Primes in arithmetic progression in a rational function field

Twists mod a conductor

- Let $\xi^{0}=\otimes_{v} \xi_{v}^{0} \in V_{\pi}$, where ξ_{v}^{0} is the new vector in $V_{\pi_{v}}$. Like before, set

$$
\varphi_{\xi^{0}}(g)=\sum_{\gamma \in k^{\times}} W_{\xi^{0}}\left(\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right) g\right)
$$

- For ω an idele class character, define

$$
I\left(s ; \varphi_{\xi^{0}}, \omega\right)=\int_{\mathbb{A}^{x}} W_{\xi^{0}}\left(\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)\right) \omega(u)|u|^{s-\frac{1}{2}} d u
$$

Twists mod a conductor

- Let $\xi^{0}=\otimes_{v} \xi_{v}^{0} \in V_{\pi}$, where ξ_{v}^{0} is the new vector in $V_{\pi_{v}}$. Like before, set

$$
\varphi_{\xi^{0}}(g)=\sum_{\gamma \in k^{\times}} W_{\xi^{0}}\left(\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right) g\right)
$$

- For ω an idele class character, define

$$
I\left(s ; \varphi_{\xi^{0}}, \omega\right)=\int_{\mathbb{A}^{x}} W_{\xi^{0}}\left(\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)\right) \omega(u)|u|^{s-\frac{1}{2}} d u
$$

- If ω is ramified at any place π is unramified, this integral becomes zero.

Twists mod a conductor

To still be able to work with an explicit function in the integral representation and get something non-zero, we define a variant of $\varphi=\varphi_{\xi}$.

Twists mod a conductor

To still be able to work with an explicit function in the integral representation and get something non-zero, we define a variant of $\varphi=\varphi_{\xi^{0}}$. Let \mathfrak{f}_{0} be a divisor and τ an idele class character with conductor dividing f_{0}. Denote by $\varphi(x, y)$ the value $\varphi\left(\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right)\right)$.

Twists mod a conductor

To still be able to work with an explicit function in the integral representation and get something non-zero, we define a variant of $\varphi=\varphi_{\xi^{0}}$. Let \mathfrak{f}_{0} be a divisor and τ an idele class character with conductor dividing f_{0}. Denote by $\varphi(x, y)$ the value $\varphi\left(\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right)\right)$. On such matrices, we define the twist of φ by $\tau \bmod f_{0}$ as

$$
\varphi_{\tau, \mathrm{f}_{0}}(x, y)=\int_{\Pi_{\nu} \mathcal{O}_{v}^{x}} \tau(u) \varphi\left(\left(\begin{array}{cc}
x & y \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & w u \\
0 & 1
\end{array}\right)\right) d u
$$

where w is an adele given in terms of \mathfrak{f}_{0}.

Twists mod a conductor

Working with the integral $I\left(s ; \varphi_{\omega, f_{0}}, \omega\right)$ instead, we can pick out local L-factors of $L(s, \pi \otimes \omega)$ even at places where ω is ramified. By varying \mathfrak{f}_{0}, we get finer control on what terms in the Dirichlet series corresponding to $L(s, \pi \otimes \omega)$ we pick up.

Applications?

We can explore the role of root numbers in functional equations in the context converse theorems. The Langlands-Shahidi method gives a well developed theory of ε-factors, so I don't see any direct application. However, if we had a method of constructing L-functions that did not give precise ε-factors, converse theorems not requiring root numbers could be useful.

References

围 Andrew Booker (2019)
A converse theorem without root numbers
Mathematika 65(4), 862-873.
國 Hervé Jacquet and Robert Langlands (1970)
Automorphic Forms on GL (2)
Springer Lecture notes in Mathematics 114.
André Weil (1971)
Dirichlet Series and Automorphic Forms
Springer Lecture notes in Mathematics 189.

Thank You!

