The Cohomology of GU_n local Shimura varieties

Alexander Bertoloni Meli (with Kieu Hieu Nguyen)

March 12, 2022

Alexander Bertoloni Meli (with Kieu Hieu Ng<mark>The Cohomology of *GU_n* local Shimura variet</mark>

Langlands Conjectures:

$$\left\{\begin{array}{c} \text{automorphic} \\ \text{representations of } G \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \widehat{G} - \text{valued} \\ \text{Galois representations} \end{array}\right\}$$

Langlands Conjectures:

$$\left\{ \begin{array}{c} \text{automorphic} \\ \text{representations of } G \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \widehat{G} - \text{valued} \\ \text{Galois representations} \end{array} \right\}$$

Key Idea

These correspondences can be constructed/studied via the cohomology of certain moduli spaces

"
$$\rho$$
 part of $H^*(Sh) \simeq \rho \boxtimes \sigma_{\rho}$ "

Langlands Conjectures:

$$\left\{ \begin{array}{c} \text{automorphic} \\ \text{representations of } G \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \widehat{G} - \text{valued} \\ \text{Galois representations} \end{array} \right\}$$

Key Idea

These correspondences can be constructed/studied via the cohomology of certain moduli spaces

"
$$\rho$$
 part of $H^*(Sh) \simeq \rho \boxtimes \sigma_{\rho}$ "

Langlands Conjectures:

$$\left\{ \begin{array}{c} \text{automorphic} \\ \text{representations of } G \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \widehat{G} - \text{valued} \\ \text{Galois representations} \end{array} \right\}$$

Key Idea

These correspondences can be constructed/studied via the cohomology of certain moduli spaces

"
$$\rho$$
 part of $H^*(Sh) \simeq \rho \boxtimes \sigma_{\rho}$ "

• number fields: modular curves (GL₂), Shimura varieties

Langlands Conjectures:

$$\left\{ \begin{array}{c} \text{automorphic} \\ \text{representations of } G \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \widehat{G} - \text{valued} \\ \text{Galois representations} \end{array} \right\}$$

Key Idea

These correspondences can be constructed/studied via the cohomology of certain moduli spaces

"
$$\rho$$
 part of $H^*(Sh) \simeq \rho \boxtimes \sigma_{\rho}$ "

- number fields: modular curves (GL₂), Shimura varieties
- *p*-adic fields: Lubin–Tate spaces (*GL_n*), Rapoport–Zink spaces, local Shimura varieties, moduli of shtuka

Key Idea in Practice

Alexander Bertoloni Meli (with Kieu Hieu Ng<mark>The Cohomology of *GU_n* local Shimura variet</mark>

(日) (同) (三) (三)

• **number fields**: *GL*₂ (Deligne), *GL*_n (Langlands,..., Shin), *GSp*_{2n}, *GSO*_{2n} (Kret-Shin) via the *Langlands-Kottwitz method*.

・ 同 ト ・ 三 ト ・ 三

- **number fields**: *GL*₂ (Deligne), *GL_n* (Langlands,..., Shin), *GSp*_{2n}, *GSO*_{2n} (Kret–Shin) via the *Langlands–Kottwitz method*.
- p-adic fields: GL₂ (Deligne, Carayol), GL_n (Harris-Taylor)

- **number fields**: *GL*₂ (Deligne), *GL*_n (Langlands,..., Shin), *GSp*_{2n}, *GSO*_{2n} (Kret-Shin) via the *Langlands-Kottwitz method*.
- *p*-adic fields: *GL*₂ (Deligne, Carayol), *GL_n* (Harris–Taylor)
- Compare different constructions of Local Langlands Correspondence (LLC)

- **number fields**: *GL*₂ (Deligne), *GL_n* (Langlands,..., Shin), *GSp*_{2n}, *GSO*_{2n} (Kret–Shin) via the *Langlands–Kottwitz method*.
- *p*-adic fields: *GL*₂ (Deligne, Carayol), *GL_n* (Harris–Taylor)
- Compare different constructions of Local Langlands Correspondence (LLC)
 - GL_n (Fargues-Scholze): Harris-Taylor \leftrightarrow Fargues-Scholze

- **number fields**: *GL*₂ (Deligne), *GL*_n (Langlands,..., Shin), *GSp*_{2n}, *GSO*_{2n} (Kret–Shin) via the *Langlands–Kottwitz method*.
- *p*-adic fields: *GL*₂ (Deligne, Carayol), *GL_n* (Harris–Taylor)
- Compare different constructions of Local Langlands Correspondence (LLC)
 - GL_n (Fargues–Scholze): Harris–Taylor \leftrightarrow Fargues–Scholze
 - inner forms of GL_n (Hansen–Kaletha–Weinstein): Harris–Taylor ↔ Fargues–Scholze

- **number fields**: *GL*₂ (Deligne), *GL*_n (Langlands,..., Shin), *GSp*_{2n}, *GSO*_{2n} (Kret–Shin) via the *Langlands–Kottwitz method*.
- *p*-adic fields: *GL*₂ (Deligne, Carayol), *GL_n* (Harris–Taylor)
- Compare different constructions of Local Langlands Correspondence (LLC)
 - GL_n (Fargues–Scholze): Harris–Taylor \leftrightarrow Fargues–Scholze
 - inner forms of GL_n (Hansen–Kaletha–Weinstein): Harris–Taylor ↔ Fargues–Scholze
 - GSp_4 (Hamann): Gan-Takeda \leftrightarrow Fargues-Scholze

Alexander Bertoloni Meli (with Kieu Hieu Ng<mark>The Cohomology of *GU*n local Shimura variet</mark>

• We study GU_n/\mathbb{Q}_p , *n* odd, E/\mathbb{Q}_p deg 2 unramified.

イロト イ団ト イヨト イヨト 三日

- We study GU_n/\mathbb{Q}_p , *n* odd, E/\mathbb{Q}_p deg 2 unramified.
- We deduce LLC from work of Mok on U_n

- We study GU_n/\mathbb{Q}_p , *n* odd, E/\mathbb{Q}_p deg 2 unramified.
- We deduce LLC from work of Mok on U_n
- The datum (GU_n, µ) determines a *basic* local Shimura variety whose cohomology H^{*}_c(M_µ) has an action of GU_n(Q_p) × GU_n(Q_p) × W_{E_µ}
 µ ∈ X_{*}(GU_n), minuscule

- We study GU_n/\mathbb{Q}_p , *n* odd, E/\mathbb{Q}_p deg 2 unramified.
- We deduce LLC from work of Mok on U_n
- The datum (GU_n, μ) determines a basic local Shimura variety whose cohomology H^{*}_c(M_μ) has an action of GU_n(Q_p) × GU_n(Q_p) × W_{E_μ}
 - $\mu \in X_*(GU_n)$, minuscule
- The pertinent cohomology object to us is:

$$\begin{aligned} \operatorname{Mant}_{\mu} : \operatorname{Groth}(GU_n(\mathbb{Q}_p)) &\to \operatorname{Groth}(GU_n(\mathbb{Q}_p) \times W_{E_{\mu}}) \\ ``\operatorname{Mant}_{\mu}(\rho) \text{ is the } \rho\text{-isotypic part of } H^*_c(\mathbb{M}_{\mu}) ``\end{aligned}$$

- We study GU_n/\mathbb{Q}_p , *n* odd, E/\mathbb{Q}_p deg 2 unramified.
- We deduce LLC from work of Mok on U_n
- The datum (GU_n, µ) determines a *basic* local Shimura variety whose cohomology H^{*}_c(M_µ) has an action of GU_n(Q_p) × GU_n(Q_p) × W_{E_µ}
 µ ∈ X_{*}(GU_n), minuscule
- The pertinent cohomology object to us is:

$$\begin{aligned} \operatorname{Mant}_{\mu} : \operatorname{Groth}(GU_n(\mathbb{Q}_p)) \to \operatorname{Groth}(GU_n(\mathbb{Q}_p) \times W_{E_{\mu}}) \\ ``\operatorname{Mant}_{\mu}(\rho) \text{ is the } \rho\text{-isotypic part of } H^*_c(\mathbb{M}_{\mu}) ``\end{aligned}$$

We study ρ∈ Irr(GU_n(ℚ_p)) such that φ_ρ : W_{ℚ_p} → ^LGU_n is supercuspidal.

< 回 > < 三 > < 三 >

Main Theorem

・ロト ・四ト ・ヨト ・ヨト

Theorem (BM–Nguyen)

Let φ be supercuspidal and $\rho \in \Pi_{\varphi}$. Then $Mant_{\mu}(\rho)$ has an explicit description in terms of LLC:

$$\operatorname{Mant}_{\mu}(\rho) = \sum_{\rho' \in \Pi_{\varphi}} \rho' \boxtimes \operatorname{Hom}_{\mathcal{S}_{\varphi}}(\tau_{\rho',\rho}, \mathbf{r}_{\mu} \circ \varphi).$$

This verifies the Kottwitz Conjecture in this case.

Theorem (BM-Nguyen)

Let φ be supercuspidal and $\rho \in \Pi_{\varphi}$. Then $Mant_{\mu}(\rho)$ has an explicit description in terms of LLC:

$$\operatorname{Mant}_{\mu}(\rho) = \sum_{\rho' \in \Pi_{\varphi}} \rho' \boxtimes \operatorname{Hom}_{\mathcal{S}_{\varphi}}(\tau_{\rho',\rho}, r_{\mu} \circ \varphi).$$

This verifies the Kottwitz Conjecture in this case.

Application (work in progress with Hamman and Nguyen) Mok LLC and Fargues–Scholze LLC are compatible for GU_n as above.

For the rest of the talk, we focus on the GU_3 -case (Mieda–Ito)

<ロ> (日) (日) (日) (日) (日)

For the rest of the talk, we focus on the GU_3 -case (Mieda–Ito) and fix

$$\mu: z \mapsto \binom{z}{1}_1 \in U_3(\overline{\mathbb{Q}_p}) \subset GU_3(\overline{\mathbb{Q}_p})$$

with associated "highest weight rep"

$$r_{\mu}: \widehat{GU}_3 \rtimes W_E \to GL(V),$$

dim V = 3

(人間) トイヨト イヨト

For the rest of the talk, we focus on the GU_3 -case (Mieda–Ito) and fix

$$\mu: z \mapsto \binom{z}{1} \in U_3(\overline{\mathbb{Q}_p}) \subset GU_3(\overline{\mathbb{Q}_p})$$

with associated "highest weight rep"

$$r_{\mu}: \widehat{GU}_{3} \rtimes W_{E} \to GL(V),$$
$$\dim V = 3$$

LLC known explicitly in this case (Rogawski)

For the rest of the talk, we focus on the GU_3 -case (Mieda–Ito) and fix

$$\mu: z \mapsto \binom{z}{1} \in U_3(\overline{\mathbb{Q}_p}) \subset GU_3(\overline{\mathbb{Q}_p})$$

$$r_{\mu}: \widehat{GU}_3 \rtimes W_E \to GL(V),$$

dim V = 3

- LLC known explicitly in this case (Rogawski)
- Supercuspidal L-packets are:

For the rest of the talk, we focus on the GU_3 -case (Mieda–Ito) and fix

$$\mu: z \mapsto \binom{z}{1} \in U_3(\overline{\mathbb{Q}_p}) \subset GU_3(\overline{\mathbb{Q}_p})$$

$$r_{\mu}: \widehat{GU}_3 \rtimes W_E \to GL(V),$$

dim V = 3

- LLC known explicitly in this case (Rogawski)
- Supercuspidal L-packets are:

For the rest of the talk, we focus on the GU_3 -case (Mieda–Ito) and fix

$$\mu: z \mapsto \binom{z}{1} \in U_3(\overline{\mathbb{Q}_p}) \subset GU_3(\overline{\mathbb{Q}_p})$$

$$r_{\mu}: \widehat{GU}_{3} \rtimes W_{E} \to GL(V),$$

dim V = 3

- LLC known explicitly in this case (Rogawski)
- Supercuspidal L-packets are:
 - Size 1: $r_{\mu} \circ \varphi|_{W_E}$ is irreducible

For the rest of the talk, we focus on the GU_3 -case (Mieda–Ito) and fix

$$\mu: z \mapsto \binom{z}{1} \in U_3(\overline{\mathbb{Q}_p}) \subset GU_3(\overline{\mathbb{Q}_p})$$

$$r_{\mu}: \widehat{GU}_{3} \rtimes W_{E} \to GL(V),$$

dim V = 3

- LLC known explicitly in this case (Rogawski)
- Supercuspidal L-packets are:
 - Size 1: $r_{\mu} \circ \varphi|_{W_E}$ is irreducible
 - Size 2: $r_{\mu} \circ \varphi|_{W_E}$ has irreducible factors of dimension 2 and 1.

GU₃-case

For the rest of the talk, we focus on the GU_3 -case (Mieda–Ito) and fix

$$\mu: z \mapsto \binom{z}{1}_1 \in U_3(\overline{\mathbb{Q}_p}) \subset GU_3(\overline{\mathbb{Q}_p})$$

$$r_{\mu}: \widehat{GU}_{3} \rtimes W_{E} \to GL(V),$$

dim V = 3

- LLC known explicitly in this case (Rogawski)
- Supercuspidal L-packets are:
 - Size 1: $r_{\mu} \circ \varphi|_{W_E}$ is irreducible
 - Size 2: $r_{\mu} \circ \varphi|_{W_E}$ has irreducible factors of dimension 2 and 1.
 - Size 4: $r_{\mu} \circ \varphi|_{W_E}$ is a sum of three characters.

• Recall that in LLC, *L*-packets are controlled by rep theory of the centralizer group $S_{\varphi} = Z_{\widehat{GU_n}}(\varphi)$

Key Idea

The decomposition of $Mant_{\mu}(\rho)$ is also determined by rep theory of S_{φ} . In particular: the action of S_{φ} on V via r_{μ} .

• Recall that in LLC, *L*-packets are controlled by rep theory of the centralizer group $S_{\varphi} = Z_{\widehat{GU_n}}(\varphi)$

Key Idea

The decomposition of $Mant_{\mu}(\rho)$ is also determined by rep theory of S_{φ} . In particular: the action of S_{φ} on V via r_{μ} .

ullet In the Size 1 case, $S_{\!\varphi}$ acts trivially on V and we simply get

 $\operatorname{Mant}_{\mu}(\rho) = \rho \boxtimes r_{\mu} \circ \varphi|_{W_{E}}$

• In Size 2 case, we have $\Pi_{\varphi} = \{\rho_1, \rho_2\}.$

イロト イヨト イヨト イヨト

- In Size 2 case, we have $\Pi_{\varphi} = \{\rho_1, \rho_2\}.$
- LLC associates these to characters of

$$S_{\varphi} = \langle \begin{pmatrix} -1 \\ & \\ & -1 \end{pmatrix} \times \mathbb{C}^{\times} \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}.$$

WLOG we assume $\iota : \rho_1 \mapsto \chi_{triv}, \rho_2 \mapsto \chi_{sgn}$

(日) (周) (三) (三)

- In Size 2 case, we have $\Pi_{\varphi} = \{\rho_1, \rho_2\}.$
- LLC associates these to characters of

$$S_{\varphi} = \langle \begin{pmatrix} -1 \\ & \\ & -1 \end{pmatrix} \times \mathbb{C}^{\times} \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}.$$

WLOG we assume $\iota : \rho_1 \mapsto \chi_{\text{triv}}, \rho_2 \mapsto \chi_{\text{sgn}}$ • $S_{\varphi} \times W_E$ acts on V via $r_{\mu}, r_{\mu} \circ \varphi$ and get

 $V \cong \chi_{\mathrm{triv}} \boxtimes \eta_{\mathrm{dim\,1}} \oplus \chi_{\mathrm{sgn}} \boxtimes \eta_{\mathrm{dim\,2}}$

- In Size 2 case, we have $\Pi_{\varphi} = \{\rho_1, \rho_2\}.$
- LLC associates these to characters of

$$S_{\varphi} = \langle \begin{pmatrix} -1 \\ & \\ & -1 \end{pmatrix} \times \mathbb{C}^{\times} \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}.$$

WLOG we assume
$$\iota : \rho_1 \mapsto \chi_{triv}, \rho_2 \mapsto \chi_{sgn}$$

• $S_{\varphi} \times W_E$ acts on V via $r_{\mu}, r_{\mu} \circ \varphi$ and get
 $V \cong \chi_{triv} \boxtimes \eta_{\dim 1} \oplus \chi_{sgn} \boxtimes \eta_{\dim 2}$

We get

$$Mant_{\mu}(\rho_{1}) = \rho_{1} \boxtimes \eta_{\dim 1} + \rho_{2} \boxtimes \eta_{\dim 2}$$
$$Mant_{\mu}(\rho_{2}) = \rho_{1} \boxtimes \eta_{\dim 2} + \rho_{2} \boxtimes \eta_{\dim 1}$$

- In Size 2 case, we have $\Pi_{\varphi} = \{\rho_1, \rho_2\}.$
- LLC associates these to characters of

$$S_{\varphi} = \langle \begin{pmatrix} -1 \\ & \\ & -1 \end{pmatrix} \times \mathbb{C}^{\times} \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}.$$

WLOG we assume
$$\iota : \rho_1 \mapsto \chi_{triv}, \rho_2 \mapsto \chi_{sgn}$$

• $S_{\varphi} \times W_E$ acts on V via $r_{\mu}, r_{\mu} \circ \varphi$ and get
 $V \cong \chi_{triv} \boxtimes \eta_{\dim 1} \oplus \chi_{sgn} \boxtimes \eta_{\dim 2}$

• We get

$$\operatorname{Mant}_{\mu}(\rho_{1}) = \rho_{1} \boxtimes \eta_{\dim 1} + \rho_{2} \boxtimes \eta_{\dim 2}$$
$$\operatorname{Mant}_{\mu}(\rho_{2}) = \rho_{1} \boxtimes \eta_{\dim 2} + \rho_{2} \boxtimes \eta_{\dim 1}$$

• In other words, the Galois rep attached to ρ_j in $\operatorname{Mant}_{\mu}(\rho_i)$ is the $\iota(\rho_i) \otimes \iota(\rho_j)$ -isotypic part of V.

メロト メポト メヨト メヨト 二日

• There are supercuspidal reps of GU_3 that don't appear in a supercuspidal packet. They correspond to certain $\varphi: W_F \times SL_2 \rightarrow {}^LGU_3$ where the SL_2 action on V has reducible factors of dimension 1 and 2. We have S_{φ} is the same as Case 2.

< 回 > < 三 > < 三 >

- There are supercuspidal reps of GU₃ that don't appear in a supercuspidal packet. They correspond to certain
 φ : W_F × SL₂ → ^LGU₃ where the SL₂ action on V has reducible factors of dimension 1 and 2. We have S_φ is the same as Case 2.
- Packets look like $\{\pi^s, \pi^2\}$ where π^2 appears in a reducible $\operatorname{Ind}_{\mathcal{T}}(\sigma)$ with π^n . There is an A-packet $\{\pi^s, \pi^n\}$.

くほと くほと くほと

- There are supercuspidal reps of GU₃ that don't appear in a supercuspidal packet. They correspond to certain φ : W_F × SL₂ → ^LGU₃ where the SL₂ action on V has reducible factors of dimension 1 and 2. We have S_φ is the same as Case 2.
- Packets look like $\{\pi^s, \pi^2\}$ where π^2 appears in a reducible $\operatorname{Ind}_{\mathcal{T}}(\sigma)$ with π^n . There is an A-packet $\{\pi^s, \pi^n\}$.
- We have $V \cong \chi_{\mathrm{sgn}} \boxtimes (\eta \oplus \eta) \oplus \chi_{\mathrm{triv}} \boxtimes \eta_{\mathrm{dim 1}}$

くほと くほと くほと

- There are supercuspidal reps of GU₃ that don't appear in a supercuspidal packet. They correspond to certain
 φ : W_F × SL₂ → ^LGU₃ where the SL₂ action on V has reducible factors of dimension 1 and 2. We have S_φ is the same as Case 2.
- Packets look like $\{\pi^s, \pi^2\}$ where π^2 appears in a reducible $\operatorname{Ind}_{\mathcal{T}}(\sigma)$ with π^n . There is an A-packet $\{\pi^s, \pi^n\}$.
- We have $V \cong \chi_{\mathrm{sgn}} \boxtimes (\eta \oplus \eta) \oplus \chi_{\mathrm{triv}} \boxtimes \eta_{\mathrm{dim 1}}$

Get

$$\operatorname{Mant}_{\mu}(\pi^{s}) = \pi^{s} \boxtimes \eta_{\dim 1} + \pi^{2} \boxtimes \eta - \pi^{n} \boxtimes \eta$$
$$\operatorname{Mant}_{\mu}(\pi^{2}) = \pi^{s} \boxtimes (\eta + \eta) + \pi^{2} \boxtimes \eta_{\dim 1}.$$

くほと くほと くほと

- There are supercuspidal reps of GU₃ that don't appear in a supercuspidal packet. They correspond to certain
 φ: W_F × SL₂ → ^LGU₃ where the SL₂ action on V has reducible factors of dimension 1 and 2. We have S_φ is the same as Case 2.
- Packets look like $\{\pi^s, \pi^2\}$ where π^2 appears in a reducible $\operatorname{Ind}_{\mathcal{T}}(\sigma)$ with π^n . There is an A-packet $\{\pi^s, \pi^n\}$.
- We have $V \cong \chi_{\mathrm{sgn}} \boxtimes (\eta \oplus \eta) \oplus \chi_{\mathrm{triv}} \boxtimes \eta_{\mathrm{dim 1}}$

Get

$$\operatorname{Mant}_{\mu}(\pi^{s}) = \pi^{s} \boxtimes \eta_{\dim 1} + \pi^{2} \boxtimes \eta - \pi^{n} \boxtimes \eta$$
$$\operatorname{Mant}_{\mu}(\pi^{2}) = \pi^{s} \boxtimes (\eta + \eta) + \pi^{2} \boxtimes \eta_{\dim 1}.$$

• In other words, $Mant_{\mu}$ knows about *A*-packets!