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Background

Graded Lie algebra

Let G be a connected, reductive, algebraic group over C and g be the
Lie algebra of G .

We fix a cocharacter map, χ : C× → G and define,

G0 = {g ∈ G |gχ(t) = χ(t)g , ∀t ∈ C×},

the centralizer of χ(C×).

For n ∈ Z, define,

gn = {x ∈ g|Ad(χ(t))x = tnx , ∀t ∈ C×}.

This defines a grading on g,

g =
!

n∈Z
gn.

Clearly, g0 = Lie(G0) and G0 acts on gn.
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Background

Intersection cohomology complexes(IC ′s).

In this talk we want to study Db
G0
(gn, k), where k has positive

characteristic.

We can think of Local systems(locally constant sheaves) on a space
X as the representations of the fundamental group, π1(X ).

Intersection cohomology complexes are some important objects in
Db
H(X ), the equivariant derived category on X .

For example, intersection cohomology complexes in Db
G (NG )(NG is

the nilpotent cone) are in bijection with the pairs (C ,F), where C is
a G -orbit and F , a local system on C .
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Background

Example of IC’s on Sp4

Table: Orbits in sp4

orbits: O[4] O[22] O[2, 12] O[14]

π1 : Z/2 Z/2 Z/2 0

This means we have 7 simple IC’s in Db
Sp4

(NSp4).

Intersection cohomology complexes on Db
G0
(gn) are IC(O,L), where

O ⊂ gn is G0-orbit and L is a local system on O. Denote the set of
all collection of these pairs by I (gn).
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Background

IC’s in Db
G0
(gn) for G = GL4.

Let G = GL4 and χ : C× → G be defined as t → (t, 1, 1, t−1).

Then

g−1 =

"

##$
∗
∗

∗ ∗

%

&&'.

Table: Table for representatives of non-zero G0-orbits and their π1

"
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&&'

1 1 1 1

Including the zero orbit and what we have in the table, we have 5 simple
IC’s in Db

G0
(g−1).
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Background

Parabolic induction and restriction on nilpotent cone

We consider a diagram for a Levi subgroup L contained in a parabolic
P with UP , the unipotent radical of P .

NL
πP←− NL + uP

eP−→ G ×P (NL + uP)
µP−→ NG

iP = µP ◦ eP : NL + uP → NG .

ResGP : Db
G (NG , k) → Db

L (NL, k) is defined by
ResGP (F) = πP !e

∗
Pµ

∗
P ForGL (F).

IndGP : Db
L (NL, k) → Db

G (NG , k) is defined by,
IndGP (F) := µP !(e

∗
P ForGP )

−1π∗
P(F).

ResGP is left adjoint to IndGP .
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Background

Cuspidal pairs

Let I (G ) denote the collection of all pairs (C , E), where C is a
G -orbit and E is a G -equivariant local system on C .

Definition

A pair (C , E) ∈ I (G ), is called cuspidal if ResGP IC(C , E) = 0 for any
proper parabolic P and a Levi factor L ⊂ P .

For nilpotent cones, how to get a IC(C ,F) from the induction of
some cuspidal pair have been studied in “Springer theory”.
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Motivation

Induction and restriction in the graded setting.

The diagram below defines induction and restriction.

ln
π←− pn

e−→ G0 ×P0 pn
µ−→ gn

Indgp : D
b
L0(ln) → Db

G0
(gn),

Resgp : D
b
G0
(gn) → Db

L0(ln).

Here we need L to contain χ(C×).

Resgp is left adjoint to Indgp.
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Motivation

Lusztig’s work in characteristic 0.

Definition (Cuspidal on gn)

(O,L) ∈ I (gn) will be called cuspidal if there exists a cuspidal pair
(C , E) ∈ I (G ), such that C ∩ gn = O and L = E|O.

Theorem (Lusztig)

In characteristic 0, for any (O,L) ∈ I (gn), there exists a Levi subgroup L
contained in a parabolic subgroup P with a cuspidal pair (OL,L′) ∈ I (ln)
so that, IC(O,L) appears as direct summand of Indgp IC(OL,L′).

This theorem is not true when the characteristic of the field of sheaf
coefficients is positive.

Following the pattern from other works in modular representation
theory, often the appropriate replacement for “semisimple complex”
or IC’s is “parity complex”.
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Parity complex

Parity sheaves

Parity complexes are first introduced by Juteau, Mautner and
Williamson in their paper “Parity sheaves”.

Parity sheaves are classified as the class of constructible complexes on
some stratified varieties, where the strata satisfy some cohomology
vanishing properties.

We denote the parity sheaf associated to the pair (O,L) by E(O,L),
where E(O,L)|O = L[dimO].

Unlike for IC’s, E(O,L) does not exist automatically.
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Parity complex

Cohomology vanishing

Assumption

The field k is algebraically closed and characteristic l of k is a “pretty
good” prime for G.

Proposition (Juteau-Mautner-Williamson)

Let C be a nilpotent orbit in NG and L ∈ Locf ,G (C , k), then H∗
G (L)

vanishes in odd degrees.

Proposition (C)

Let O be a G0-orbit in gn and L ∈ Locf ,G0
(O, k), then H∗

G0
(L) vanishes in

odd degrees.

Cohomology vanishing needed for parity sheaves to make sense.
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Conjectures

Mautner’s cleanness conjecture.

Definition (Clean)

A pair (C , E) ∈ I (G , k) is called l-clean if the corresponding IC(C , E)
has vanishing stalks on C̄ −C . Similarly, a pair (O,L) ∈ I (gn, k) is called
l-clean if the corresponding IC(O,L) has vanishing stalks on Ō −O.

Conjecture (1)

If the characteristic l of k is a “pretty good” prime for G, then every
0-cuspidal pair (C , E) ∈ I (G ) is l -clean.

This already holds when the characteristic does not divide the order
of the Weyl group of the group G .

If every irreducible factor of the root system of G is either of type
A,B4,C3,D5 or of exceptional types then also the conjecture holds.
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Conjectures

Existence of parity for cuspidal pairs

Assuming the conjecture is true.

Theorem (C)

Under the assumption on the characteristic of k, any cuspidal pair
(O,L) ∈ I (gn, k) is clean.

Corollary

For any cuspidal pair (O,L) ∈ I (gn, k), IC(O,L) = E(O,L). Therefore
parity sheaf exists for cuspidal pairs.
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Conjectures

Conjecture 2

Conjecture (2)

Let P be a parabolic subgroup of G and L be its Levi subgroup. For a pair
(C , E) ∈ I (L)cusp, IndGP IC(C , E) is a parity complex.

In characteristic 0, the proof follows from the decomposition theorem.

In positive characteristic, the result is still unknown.

In the last section of our paper we have calculated IndGP IC(C , E) for
SL4 and Sp4, where the conjecture is true.

In our next paper we are trying to prove this conjecture for classical
groups.



Conjectures

Conjecture 2

Conjecture (2)

Let P be a parabolic subgroup of G and L be its Levi subgroup. For a pair
(C , E) ∈ I (L)cusp, IndGP IC(C , E) is a parity complex.

In characteristic 0, the proof follows from the decomposition theorem.

In positive characteristic, the result is still unknown.

In the last section of our paper we have calculated IndGP IC(C , E) for
SL4 and Sp4, where the conjecture is true.

In our next paper we are trying to prove this conjecture for classical
groups.



Conjectures

Conjecture 2

Conjecture (2)

Let P be a parabolic subgroup of G and L be its Levi subgroup. For a pair
(C , E) ∈ I (L)cusp, IndGP IC(C , E) is a parity complex.

In characteristic 0, the proof follows from the decomposition theorem.

In positive characteristic, the result is still unknown.

In the last section of our paper we have calculated IndGP IC(C , E) for
SL4 and Sp4, where the conjecture is true.

In our next paper we are trying to prove this conjecture for classical
groups.



Conjectures

Conjecture 2

Conjecture (2)

Let P be a parabolic subgroup of G and L be its Levi subgroup. For a pair
(C , E) ∈ I (L)cusp, IndGP IC(C , E) is a parity complex.

In characteristic 0, the proof follows from the decomposition theorem.

In positive characteristic, the result is still unknown.

In the last section of our paper we have calculated IndGP IC(C , E) for
SL4 and Sp4, where the conjecture is true.

In our next paper we are trying to prove this conjecture for classical
groups.



Conjectures

Conjecture 2

Conjecture (2)

Let P be a parabolic subgroup of G and L be its Levi subgroup. For a pair
(C , E) ∈ I (L)cusp, IndGP IC(C , E) is a parity complex.

In characteristic 0, the proof follows from the decomposition theorem.

In positive characteristic, the result is still unknown.

In the last section of our paper we have calculated IndGP IC(C , E) for
SL4 and Sp4, where the conjecture is true.

In our next paper we are trying to prove this conjecture for classical
groups.



Main results

Main results

Assuming both the conjectures are true.

Theorem (C)

For any pair (O,L) ∈ I (gn) , there exists a parabolic subgroup P with L,
its Levi subgroup L and (OL,L′) ∈ I (ln)

cusp such that E(O,L) occurs as
direct summand of Indgp(E(OL,L′)).

Theorem (C)

For any pair (O,L) ∈ I (gn), E(O,L) exists.

Theorem (C)

Let P be a parabolic subgroup of G with a Levi factor L, the induction
functor sends parity complexes to parity complexes.



Main results

Main results

Assuming both the conjectures are true.

Theorem (C)

For any pair (O,L) ∈ I (gn) , there exists a parabolic subgroup P with L,
its Levi subgroup L and (OL,L′) ∈ I (ln)

cusp such that E(O,L) occurs as
direct summand of Indgp(E(OL,L′)).

Theorem (C)

For any pair (O,L) ∈ I (gn), E(O,L) exists.

Theorem (C)

Let P be a parabolic subgroup of G with a Levi factor L, the induction
functor sends parity complexes to parity complexes.



Main results

Main results

Assuming both the conjectures are true.

Theorem (C)

For any pair (O,L) ∈ I (gn) , there exists a parabolic subgroup P with L,
its Levi subgroup L and (OL,L′) ∈ I (ln)

cusp such that E(O,L) occurs as
direct summand of Indgp(E(OL,L′)).

Theorem (C)

For any pair (O,L) ∈ I (gn), E(O,L) exists.

Theorem (C)

Let P be a parabolic subgroup of G with a Levi factor L, the induction
functor sends parity complexes to parity complexes.



Example of conjecture 2

Calculation of IndGP for G = Sp4.
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Table: Stalks of IndGP IC(Oprin,L)

dim O[4] O[22] O[2, 12] O[14]
−2 rank 1
−3
−4 rank 1
−5
−6
−7
−8
−9
−10 rank 1

Hence the parity condition is satisfied.



Example of conjecture 2

Calculation of IndGP for G = Sp4.

L = GL1 × Sp2 is a Levi subgroup. (Oprin,L) ∈ I (L)cusp.

Table: Stalks of IndGP IC(Oprin,L)

dim O[4] O[22] O[2, 12] O[14]
−2 rank 1
−3
−4 rank 1
−5
−6
−7
−8
−9
−10 rank 1

Hence the parity condition is satisfied.



Example of conjecture 2

Calculation of IndGP for G = Sp4.

L = GL1 × Sp2 is a Levi subgroup. (Oprin,L) ∈ I (L)cusp.

Table: Stalks of IndGP IC(Oprin,L)

dim O[4] O[22] O[2, 12] O[14]
−2 rank 1
−3
−4 rank 1
−5
−6
−7
−8
−9
−10 rank 1

Hence the parity condition is satisfied.



Example of conjecture 2

Thank you for your attention!


