Diving into the Shallow End

Stella Sue Gastineau stellasuegastineau@gmail.com

Boston College

Saturday, October 17, 2020

Supercuspidal Representations

Notation. $G = SL_n(\mathbb{Q}_p)$, $SO_n(\mathbb{Q}_p)$, $Sp_n(\mathbb{Q}_p)$, etc. (connected, semisimple, split).

A supercuspidal representation is a smooth homomorphism

 $\pi: G \to \operatorname{GL}_k(\mathbb{C})$

whose matrix coefficients are compactly supported modulo the center $Z(G) \subseteq G$.

Theorem (Yu 2001 and Kim 2007). Suppose that p is large. Given a supercuspidal representation π of G, there exists

- H a compact-open subgroup of G
- V a finite-dimensional complex representation of H

such that π is isomorphic to the compactly-induced representation

$$\operatorname{ind}_{H}^{G}(V) := \left\{ \phi : G \to V \middle| \begin{array}{c} \phi(hx) = h \cdot \phi(x) \\ \phi \text{ compactly supported} \end{array} \right\}$$

Remarks: 1. Yu's construction is dependent on the prime *p*.

Can be a relatively complicated construction

3. $\operatorname{ind}_{H}^{G}(V)$ is irreducible only for very special pairs (H, V).

Supercuspidal Representations

Notation. $G = SL_n(\mathbb{Q}_p)$, $SO_n(\mathbb{Q}_p)$, $Sp_n(\mathbb{Q}_p)$, etc. (connected, semisimple, split).

A supercuspidal representation is a smooth homomorphism

 $\pi: G \to \mathrm{GL}_k(\mathbb{C})$

whose matrix coefficients are compactly supported modulo the center $Z(G) \subseteq G$.

Theorem (Yu 2001 and Kim 2007). Suppose that p is large. Given a supercuspidal representation π of G, there exists

- H a compact-open subgroup of G
- V a finite-dimensional complex representation of H

such that π is isomorphic to the compactly-induced representation

$$\operatorname{ind}_{H}^{G}(V) := \left\{ \phi : G \to V \middle| \begin{array}{c} \phi(hx) = h \cdot \phi(x) \\ \phi \text{ compactly supported} \end{array} \right\}.$$

Remarks: 1. Yu's construction is dependent on the prime p.
2. Can be a relatively complicated construction.
3. ind^G_H(V) is irreducible only for very special pairs (H, V).

Supercuspidal Representations

Notation. $G = SL_n(\mathbb{Q}_p)$, $SO_n(\mathbb{Q}_p)$, $Sp_n(\mathbb{Q}_p)$, etc. (connected, semisimple, split).

A supercuspidal representation is a smooth homomorphism

 $\pi: G \to \mathrm{GL}_k(\mathbb{C})$

whose matrix coefficients are compactly supported modulo the center $Z(G) \subseteq G$.

Theorem (Yu 2001 and Kim 2007). Suppose that p is large. Given a supercuspidal representation π of G, there exists

- H a compact-open subgroup of G
- V a finite-dimensional complex representation of H

such that π is isomorphic to the compactly-induced representation

$$\operatorname{ind}_{H}^{G}(V) := \left\{ \phi : G \to V \middle| \begin{array}{c} \phi(hx) = h \cdot \phi(x) \\ \phi \text{ compactly supported} \end{array} \right\}$$

Remarks: 1. Yu's construction is dependent on the prime *p*.

- 2. Can be a relatively complicated construction.
- **3.** $\operatorname{ind}_{H}^{G}(V)$ is irreducible only for very special pairs (H, V).

Diving into the Shallow End An Example for $Sp_4(\mathbb{Q}_2)$

Let $G = Sp_4(\mathbb{Q}_2)$ with **Iwahori subgroup**

$$I := \begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 \\ (2) & \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 \\ (2) & (2) & \mathbb{Z}_2 & \mathbb{Z}_2 \\ (2) & (2) & (2) & \mathbb{Z}_2 \end{bmatrix} \cap \mathsf{Sp}_4(\mathbb{Z}_2)$$

Then we consider Moy-Prasad filtration by open compact subgroups:

 $I>I_+>I_{++}>\cdots>I_r>I_{r+}>\cdots$

In this talk, we are interested in the following Moy-Prasad subgroups:

$$I_{+} := \begin{pmatrix} 2 & \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 2 & 2 & \mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 2 & 2 & 2 & \mathbb{Z}_{2} \\ 4 & 2 & 2 & 2 \\ 4 & 2 & 2$$

Stella Sue Gastineaustellasuegastineau@gmail

Goal: Classify all complex characters

$$\chi:I_+\longrightarrow \mathbb{C}^\times,$$

and the supercuspidal representations which arise via compact induction.

Problem: The full commutator subgroup $[I_+, I_+]$ is complicated.

Method: Find less complicated, intermediate subgroups

 $[I_+, I_+] \subseteq Q \subseteq I_+$

and classify the complex characters

$$\chi: I_+/Q \to \mathbb{C}^{\times}$$

and the supercuspidal representations which arise via compact induction.

Examples: 1. $Q = l_{++} \rightsquigarrow$ simple supercuspidal repr (Gross-Reeder 2010). 2. $Q = P_{++}$ for general parahoric subgroups $P \rightsquigarrow$ epipelagic repr (Reeder-Yu 2013). 3. $Q = P_1$ for general parahoric subgroups P (SSG current).

Goal: Classify all complex characters

$$\chi: I_+ \longrightarrow \mathbb{C}^{\times},$$

and the supercuspidal representations which arise via compact induction.

Problem: The full commutator subgroup $[I_+, I_+]$ is complicated.

Method: Find less complicated, intermediate subgroups

 $[I_+, I_+] \subseteq Q \subseteq I_+$

and classify the complex characters

$$\chi: I_+/Q \to \mathbb{C}^{\times}$$

and the supercuspidal representations which arise via compact induction.

Examples: 1. $Q = I_{++} \rightsquigarrow$ simple supercuspidal repr (Gross-Reeder 2010). 2. $Q = P_{++}$ for general parahoric subgroups $P \rightsquigarrow$ epipelagic repr (Reeder-Yu 2013). 3. $Q = P_1$ for general parahoric subgroups P (SSG current).

Goal: Classify all complex characters

$$\chi: I_+ \longrightarrow \mathbb{C}^{\times},$$

and the supercuspidal representations which arise via compact induction.

Problem: The full commutator subgroup $[I_+, I_+]$ is complicated.

Method: Find less complicated, intermediate subgroups

$$[\mathit{I}_+,\mathit{I}_+]\subseteq \mathit{Q}\subseteq \mathit{I}_+$$

and classify the complex characters

$$\chi: I_+/Q \to \mathbb{C}^{\times}$$

and the supercuspidal representations which arise via compact induction.

Examples: 1. Q = l₊₊ → simple supercuspidal repr (Gross-Reeder 2010).
2. Q = P₊₊ for general parahoric subgroups P → epipelagic repr (Reeder-Yu 2013).
3. Q = P₁ for general parahoric subgroups P (SSG current).

Goal: Classify all complex characters

$$\chi: I_+ \longrightarrow \mathbb{C}^{\times},$$

and the supercuspidal representations which arise via compact induction.

Problem: The full commutator subgroup $[I_+, I_+]$ is complicated.

Method: Find less complicated, intermediate subgroups

$$[\mathit{I}_+,\mathit{I}_+]\subseteq \mathit{Q}\subseteq \mathit{I}_+$$

and classify the complex characters

$$\chi: I_+/Q \to \mathbb{C}^{\times}$$

and the supercuspidal representations which arise via compact induction.

Examples: 1. $Q = I_{++} \rightsquigarrow$ simple supercuspidal repr (Gross-Reeder 2010). 2. $Q = P_{++}$ for general parahoric subgroups $P \rightsquigarrow$ epipelagic repr (Reeder-Yu 2013). 3. $Q = P_1$ for general parahoric subgroups P (SSG current).

A character $\chi: I_+ \to \mathbb{C}^{\times}$ is called **epipelagic** if it is trivial on $Q = I_{++}$. The quotient

$$I_+/I_{++}\cong \bigoplus_{lpha \text{ simple}} (\mathbb{F}_p)_{lpha}$$

is an elementary abelian *p*-group, and so an epipelagic character is uniquely determined by giving any additive characters

$$\chi_{\alpha}: (\mathbb{F}_p)_{\alpha} \to \mathbb{C}^{\times}$$

and setting $\chi(x_{\alpha}) := \chi_{\alpha}(x_{\alpha}).$

The group I/I_+ acts on characters of I_+ . An epipelagic character is stable if over \mathbb{Q}_p^{un}

- it belongs to a closed orbit.
- it has a finite stabilizer.

Theorem (Gross-Reeder 2013). Let χ be an extension to ZI_+ of a stable epipelagic character with trivial stabilizer in I/I_+ . Then the compactly-induced representation $\operatorname{ind}_{ZI_+}^G(\chi)$ is an irreducible supercuspidal representation of G.

- 2. Can make predictions about the Langlands parameter.
- **3.** Connects LLC with geometric invariant theory (GIT).
- 4. Relatively few supercuspidal representations come in this form.

A character $\chi: I_+ \to \mathbb{C}^{\times}$ is called **epipelagic** if it is trivial on $Q = I_{++}$. The quotient

$$I_+/I_{++}\cong \bigoplus_{lpha \text{ simple}} (\mathbb{F}_p)_{lpha}$$

is an elementary abelian *p*-group, and so an epipelagic character is uniquely determined by giving any additive characters

$$\chi_{\alpha}: (\mathbb{F}_p)_{\alpha} \to \mathbb{C}^{\times}$$

and setting $\chi(x_{\alpha}) := \chi_{\alpha}(x_{\alpha}).$

The group I/I_+ acts on characters of I_+ . An epipelagic character is **stable** if over \mathbb{Q}_p^{un}

- it belongs to a closed orbit.
- it has a finite stabilizer.

Theorem (Gross-Reeder 2013). Let χ be an extension to ZI_+ of a stable epipelagic character with trivial stabilizer in I/I_+ . Then the compactly-induced representation $\operatorname{ind}_{ZI_+}^G(\chi)$ is an irreducible supercuspidal representation of G.

- 2. Can make predictions about the Langlands parameter.
- **3.** Connects LLC with geometric invariant theory (GIT).
- 4. Relatively few supercuspidal representations come in this form.

A character $\chi: I_+ \to \mathbb{C}^{\times}$ is called **epipelagic** if it is trivial on $Q = I_{++}$. The quotient

$$I_+/I_{++}\cong \bigoplus_{lpha \ \mathsf{simple}} (\mathbb{F}_p)_{lpha}$$

is an elementary abelian *p*-group, and so an epipelagic character is uniquely determined by giving any additive characters

$$\chi_{\alpha}: (\mathbb{F}_p)_{\alpha} \to \mathbb{C}^{\times}$$

and setting $\chi(x_{\alpha}) := \chi_{\alpha}(x_{\alpha}).$

The group I/I_+ acts on characters of I_+ . An epipelagic character is **stable** if over \mathbb{Q}_p^{un}

- it belongs to a closed orbit.
- it has a finite stabilizer.

Theorem (Gross-Reeder 2013). Let χ be an extension to ZI_+ of a stable epipelagic character with trivial stabilizer in I/I_+ . Then the compactly-induced representation $\operatorname{ind}_{ZI_+}^G(\chi)$ is an irreducible supercuspidal representation of G.

- Can make predictions about the Langlands parameter.
- Connects LLC with geometric invariant theory (GIT).
- Relatively few supercuspidal representations come in this form.

A character $\chi: I_+ \to \mathbb{C}^{\times}$ is called **epipelagic** if it is trivial on $Q = I_{++}$. The quotient

$$I_+/I_{++}\cong \bigoplus_{lpha \text{ simple}} (\mathbb{F}_p)_{lpha}$$

is an elementary abelian *p*-group, and so an epipelagic character is uniquely determined by giving any additive characters

$$\chi_{\alpha}: (\mathbb{F}_p)_{\alpha} \to \mathbb{C}^{\times}$$

and setting $\chi(x_{\alpha}) := \chi_{\alpha}(x_{\alpha}).$

The group I/I_+ acts on characters of I_+ . An epipelagic character is **stable** if over \mathbb{Q}_p^{un}

- it belongs to a closed orbit.
- it has a finite stabilizer.

Theorem (Gross-Reeder 2013). Let χ be an extension to ZI_+ of a stable epipelagic character with trivial stabilizer in I/I_+ . Then the compactly-induced representation $\operatorname{ind}_{ZI_+}^G(\chi)$ is an irreducible supercuspidal representation of G.

- 2. Can make predictions about the Langlands parameter.
- 3. Connects LLC with geometric invariant theory (GIT).
- 4. Relatively few supercuspidal representations come in this form.

Diving into the Shallow End Shallow Characters

A character $\chi: I_+ \to \mathbb{C}^{\times}$ is called **shallow** if it is trivial on $Q = I_1$. The quotient

$$I_{+}/I_{1} = \langle (\mathbb{F}_{2})_{\alpha} \mid \underbrace{0 < \alpha(\mathsf{alcove}) < 1}_{\mathsf{shallow affine root}} \rangle$$

is a *p*-group, not necessarily abelian. Then shallow characters of I_+ are uniquely determined by giving additive characters

$$\chi_{\alpha}: (\mathbb{F}_2)_{\alpha} \to \mathbb{C}^{\times}$$

for each shallow affine root and setting $\chi(x_{\alpha}) := \chi_{\alpha}(x_{\alpha})$.

Theorem (SSG). Given additive characters $\chi_{\alpha} : \mathbb{F}_2 \to \mathbb{C}^{\times}$ for each shallow affine root α , there exists a shallow character $\chi : I_+/I_1 \to \mathbb{C}^{\times}$ such that

$$\chi(x_\alpha) = \chi_\alpha(x_\alpha)$$

for all $x_{\alpha} \in (\mathbb{F}_p)_{\alpha}$ if and only if for each shallow α, β the following relation holds:

$$1 = \prod \chi_{i\alpha+j\beta} (C_{\alpha\beta ij} x^i y^j)$$

for all $\mathsf{x},\mathsf{y}\in\mathbb{F}_p$. Here the $\mathcal{C}_{lphaeta_{ij}}$ are constants from the Chevalley Commutator Formula.

Shallow Characters

6/8

Diving into the Shallow End Shallow Characters

A character $\chi: I_+ \to \mathbb{C}^{\times}$ is called **shallow** if it is trivial on $Q = I_1$. The quotient

$$I_{+}/I_{1} = \langle (\mathbb{F}_{2})_{\alpha} \mid \underbrace{0 < \alpha (\mathsf{alcove}) < 1}_{\mathsf{shallow affine root}} \rangle$$

is a *p*-group, not necessarily abelian. Then shallow characters of I_+ are uniquely determined by giving additive characters

$$\chi_{\alpha}: (\mathbb{F}_2)_{\alpha} \to \mathbb{C}^{\times}$$

for each shallow affine root and setting $\chi(x_{\alpha}) := \chi_{\alpha}(x_{\alpha})$.

Theorem (SSG). Given additive characters $\chi_{\alpha} : \mathbb{F}_2 \to \mathbb{C}^{\times}$ for each shallow affine root α , there exists a shallow character $\chi : I_+/I_1 \to \mathbb{C}^{\times}$ such that

$$\chi(\mathbf{x}_{\alpha}) = \chi_{\alpha}(\mathbf{x}_{\alpha})$$

for all $x_{\alpha} \in (\mathbb{F}_p)_{\alpha}$ if and only if for each shallow α, β the following relation holds:

$$1 = \prod \chi_{i\alpha+j\beta} (C_{\alpha\beta ij} x^i y^j)$$

for all $x, y \in \mathbb{F}_p$. Here the $C_{\alpha\beta ij}$ are constants from the Chevalley Commutator Formula.

6/8

Diving into the Shallow End

A New Supercuspidal Representation

With respect to the simple affine roots

 $\alpha_0 \Rightarrow \alpha_1 \Leftarrow \alpha_2,$

a shallow character of I_+ is uniquely determined by specifying the additive characters $\epsilon_i : \mathbb{F}_2 \to \mathbb{C}^{\times}$ for $i = 1, \dots, 5$ and setting

shallow affine root α	additive character χ_{lpha}
α ₀	ϵ_1
α_1	ϵ_2
α2	ϵ_3
$\alpha_0 + \alpha_1$	ϵ_4
$\alpha_1 + \alpha_2$	ϵ_5
$\alpha_0 + 2\alpha_1$	€4
$\alpha_0 + \alpha_1 + \alpha_2$	1
$2\alpha_1 + \alpha_2$	ϵ_5

Example: If ϵ_1, ϵ_2 are trivial while $\epsilon_3, \epsilon_4, \epsilon_5$ are non-trivial, then the corresponding shallow character gives rise to a new supercuspidal representation of $\text{Sp}_4(\mathbb{Q}_2)$.

Diving into the Shallow End

A New Supercuspidal Representation

With respect to the simple affine roots

 $\alpha_0 \Rightarrow \alpha_1 \Leftarrow \alpha_2,$

a shallow character of I_+ is uniquely determined by specifying the additive characters $\epsilon_i : \mathbb{F}_2 \to \mathbb{C}^{\times}$ for $i = 1, \dots, 5$ and setting

shallow affine root α	additive character χ_{lpha}
α ₀	ϵ_1
α_1	ϵ_2
α2	ϵ_3
$\alpha_0 + \alpha_1$	ϵ_4
$\alpha_1 + \alpha_2$	ϵ_5
$\alpha_0 + 2\alpha_1$	€4
$\alpha_0 + \alpha_1 + \alpha_2$	1
$2\alpha_1 + \alpha_2$	ϵ_5

Example: If ϵ_1, ϵ_2 are trivial while $\epsilon_3, \epsilon_4, \epsilon_5$ are non-trivial, then the corresponding shallow character gives rise to a new supercuspidal representation of $\text{Sp}_4(\mathbb{Q}_2)$.

Diving into the Shallow End Summary of Results

(1) In order to define a group homomorphism

$$\chi: P_+/P_1 \to \mathbb{C}^\times,$$

for parahoric subgroups P of a split group ${\it G},$ it is necessary and sufficient that χ be trivial on commutators

$$[U_{lpha}, U_{eta}] \subseteq \prod U_{ilpha+jeta}$$

for "shallow" affine roots α, β .

- (2) We can use Mackey theory to determine which shallow characters give rise to supercuspidal representations *G*. Currently, no clear pattern has presented itself, but we have
 - \exists supercupsidals representations coming from characters not defined over \mathbb{Q}_p^{un} .
 - ∃ non-epipelagic supercuspidals coming from shallow characters that are defined over Q^{un}_p.
- (3) Using methods similar to those of Gross-Reeder 2010 and Reeder-Yu 2013 we can make predictions for Langlands Parameters for supercuspidal representations coming from shallow characters defined over Q^{un}_p