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Outline

Let G be a split semisimple algebraic group over Qp, e.g.,

G = SLn, Sp2n, SOn,Aut(octonions), . . .

G := G (Qp) is a locally compact group.

1. Formal degree

2. Yu’s supercuspidals

3. Connection to Langlands correspondence
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Part 1. Formal degree

The unitary dual of G is

Specu G :=
{irreducible unitary representations of G}

iso.

It carries natural structures of

I a topological space (Fell topology) and

I a Borel measure space (Plancherel measure).

Natural questions:

1. What is Specu G as a set?

2. What is the topology and measure on Specu G ?
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Example: SL2(R)

Specu SL2(R) has both
discrete parts and
continuous parts.

I discrete series

I principal series

I complementary series

I (three more reps)

The nth discrete series has
Plancherel measure n.

. . . . . .

··
·

··
·
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Formal degree

Definition

1. A unirrep π of G is discrete series if it is isolated in Specu G .

2. The formal degree of π is its Plancherel measure.

Like the Plancherel measure, the formal degree depends (inversely)
on a choice of Haar measure on G .

If dimπ <∞, the formal degree of an irrep “equals” its dimension.

If dimπ =∞, the formal degree can still be finite, and is thus a
good replacement for dimension.
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Part 2. Yu’s supercuspidal representations

Parabolic induction reduces the study of Specu G to the study of
the supercuspidal representations of G .

(supercuspidal ( discrete series)

In 2001, Yu constructed many supercuspidal representations.

In 2007, Kim proved that for a given G and for p large enough,
Yu’s construction yields all supercuspidals.

In 2018, Fintzen extended Kim’s exhaustion theorem to an
expected optimal bound on p (e.g., need p > n if G = SLn).
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Input data for the construction

Yu’s construction takes as input a 5-tuple Ψ = (~G , x , ρ,~r , ~φ) and
outputs a supercuspidal πΨ.

I ~G = (G 0 ( G 1 ( · · · ( Gd = G ), twisted Levi subgroups.

I x ∈ B(G ), the Bruhat-Tits building of G .

I ρ is a finite-dimensional irrep of G 0
x (stabilizer).

I ~r = (0 ≤ r0 < r1 < · · · < rd).

I ~φ = (φ0, φ1, . . . φd) with φi : G i → C× a character.

There are various additional requirements, e.g.:

I c-IndG0

G0
x
ρ is supercuspidal;

I ri = depthφi .

Yu’s construction mixes earlier constructions in depth zero
(Moy-Prasad) and in positive depth (Adler).
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Formal degree of a Yu supercuspidal: formula

Theorem (S)

The formal degree of πΨ is

dim ρ

[G 0
x : G 0

x ,0+]
expp

(
1
2 dim G + 1

2 dim G 0
x ,0:0++ 1

2

d−1∑
i=0

ri (|Ri+1|−|Ri |)
)
.

I Ri = R(Gi , S).

I expp t := pt .

I Gx is the stabilizer of x in G .

I G 0
x ,0 is a Zp-group, its special fiber is an Fp-group, and

G 0
x ,0:0+ is the maximal reductive quotient of the special fiber.
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Formal degree of a Yu supercuspidal: proof sketch

Yu’s representations are of the form c-IndG
K κ.

If H is a finite group then

dim IndHK κ = [H : K ] dimκ.

Similarly, if K is a compact-open subgroup of G then

deg c-IndGK κ =
dimκ

vol K
.

I Computing dimκ is “simple”.

I Computing vol K is complicated and uses Moy-Prasad Theory.
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Computation of volK : proof sketch

1. Reduce to computing the index of K in a subgroup of known
volume:

vol K =
vol Gx ,0

[Gx ,0 : K ]
.

2. K ≈ Gx ,r . Use the Moy-Prasad isomorphism to reduce the
index to the length of a finite Lie algebra:

[Gx ,0 : Gx ,r ] = len(gx ,0/gx ,r ).

3. Decompose g into root lines and compute the length by
studying the breaks in the Moy-Prasad filtration.
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Part 3. Langlands correspondence

Conjecture (Langlands)

1. There is a surjective map

{Smooth irreps of G}
iso.

→ {L-parameters W ′ → LG}
equiv.

satisfying many nice properties.

2. The fibers of this map, called L-packets, are finite.

3. For each L-parameter ϕ : W ′ → LG , there is a bijection

L-packet of ϕ←→ Specu Sϕ

where Sϕ is a certain finite group canonically constructed
from ϕ.

(LG = Ĝ o W , the Weil form of the Langlands dual Ĝ/C.)
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Formal degree conjecture: statement

Conjecture (Hiraga-Ichino-Ikeda)

Let π be a discrete series representation of G with extended
parameter (ϕ : W ′ → LG , ρ ∈ Specu Sϕ). Then

deg π =
dim ρ

|Sϕ|
· |γ(Ad ◦ ϕ)|.

I Ad : LG → GL(g) is the adjoint representation.

I γ is the γ-factor, a product of an ε-factor and two L-factors.

I |Sϕ| is the cardinality of Sϕ.

I (This ρ is unrelated to the one from Yu’s construction.)

The formal degree conjecture is a “2-conjecture”: it depends on
the conjectural LLC.
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Formal degree conjecture: known cases

The conjecture is known for the following G , where the LLC has
been constructed in entirety.

I real Lie groups [Harish-Chandra]

I (inner forms of) GLn [Silberger-Zink]

I (inner forms of) SLn [Harris-Taylor, Henniart]

Even if the full LLC is unavailable, we can still test the conjecture
as long as we have some L-packets.

The conjecture is known for the following L-packets.

I unipotent discrete series [Lusztig, Reeder]

I depth-zero supercuspidals [DeBacker-Reeder]
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Kaletha’s L-packets

Kaletha has organized most of Yu’s representations, the “regular
representations”, into L-packets.

The construction of each L-packet is organized around a pair (S , θ)
consisting of a maximal torus S ⊆ G and a character θ : S → C×.

On the automorphic side, one
can unspool (S , θ) into an input
for Yu’s construction.

(S , θ) 7→ (~G , x , ρ,~r , ~φ)

On the Galois side, one “uses”
functoriality with the help of
χ-data [Langlands-Shelstad].

W LS LG

Ŝ Ĝ

Lθ

θ̂

Ljχ

̂
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Formal degree conjecture for regular supercuspidals

Theorem (S)

Kaletha’s L-packets satisfy the formal degree conjecture:

deg π =
dim ρ

|Sϕ|
· |γ(Ad ◦ ϕ)|.

Proof sketch:

I On the automorphic side, we use our formula for deg π.

I On the Galois side, for regular representations, Sϕ is abelian
and |Sϕ| is known. So we need only compute |γ(Ad ◦ ϕ)|.
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Proof sketch: Galois side

We start by computing the adjoint representation of ϕ. It
decomposes as

Ad ◦ ϕ = Vtoral ⊕ Vroot,

where Vtoral comes from S and Vroot comes from R(G ,S). Since γ
is additive, we can handle each factor separately.

Vtoral ' X ∗(S)⊗ C, so we can compute γ(Vtoral) by understanding
the Galois action on X ∗(S).

Vroot is a sum of monomial representations, so we can compute
γ(Vroot) by understanding how γ behaves under (tame) induction.

I Key technical result: base change for χ-data.
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