The Formal Degree of a Regular Supercuspidal

David Schwein

2020 Midwest Representation Theory Conference

Outline

Let \underline{G} be a split semisimple algebraic group over \mathbb{Q}_p , e.g.,

$$\underline{G} = SL_n, Sp_{2n}, SO_n, Aut(octonions), \ldots$$

 $G := \underline{G}(\mathbb{Q}_p)$ is a locally compact group.

- 1. Formal degree
- 2. Yu's supercuspidals
- 3. Connection to Langlands correspondence

Part 1. Formal degree

 $Spec_u G := \frac{\{irreducible unitary representations of G\}}{iso.}$

- It carries natural structures of
 - a topological space (Fell topology) and
 - ▶ a Borel measure space (Plancherel measure).

Natural questions:

- 1. What is $\operatorname{Spec}_{u} G$ as a set?
- 2. What is the topology and measure on $\text{Spec}_u G$?

Example: $SL_2(\mathbb{R})$

 $Spec_u SL_2(\mathbb{R})$ has both discrete parts and continuous parts.

- discrete series
- principal series
- complementary series
- ▶ (three more reps)

The *n*th discrete series has Plancherel measure n.

Formal degree

Definition

- 1. A unirrep π of G is discrete series if it is isolated in Spec_u G.
- 2. The formal degree of π is its Plancherel measure.

Like the Plancherel measure, the formal degree depends (inversely) on a choice of Haar measure on G.

If dim $\pi < \infty$, the formal degree of an irrep "equals" its dimension.

If dim $\pi = \infty$, the formal degree can still be finite, and is thus a good replacement for dimension.

Part 2. Yu's supercuspidal representations

Parabolic induction reduces the study of $\text{Spec}_u G$ to the study of the supercuspidal representations of G.

(supercuspidal \subsetneq discrete series)

In 2001, Yu constructed many supercuspidal representations.

In 2007, Kim proved that for a given G and for p large enough, Yu's construction yields all supercuspidals.

In 2018, Fintzen extended Kim's exhaustion theorem to an expected optimal bound on p (e.g., need p > n if $G = SL_n$).

Input data for the construction

Yu's construction takes as input a 5-tuple $\Psi = (\vec{\underline{G}}, x, \rho, \vec{r}, \vec{\phi})$ and outputs a supercuspidal π_{Ψ} .

• $\underline{\vec{G}} = (\underline{G}^0 \subsetneq \underline{G}^1 \subsetneq \cdots \subsetneq \underline{G}^d = \underline{G})$, twisted Levi subgroups.

•
$$x \in \mathcal{B}(\underline{G})$$
, the Bruhat-Tits building of G .

•
$$\rho$$
 is a finite-dimensional irrep of G_x^0 (stabilizer).

▶
$$\vec{r} = (0 \le r_0 < r_1 < \cdots < r_d).$$

▶ $\vec{\phi} = (\phi_0, \phi_1, \dots \phi_d)$ with $\phi_i : G^i \to \mathbb{C}^{\times}$ a character.

There are various additional requirements, e.g.:

• c-Ind
$$_{G_x^0}^{G^0} \rho$$
 is supercuspidal;

$$r_i = \operatorname{depth} \phi_i.$$

Yu's construction mixes earlier constructions in depth zero (Moy-Prasad) and in positive depth (Adler).

Formal degree of a Yu supercuspidal: formula

Theorem (S) The formal degree of π_{Ψ} is

$$\frac{\dim\rho}{[G_x^0:G_{x,0+}^0]}\exp_p\left(\frac{1}{2}\dim\underline{G}+\frac{1}{2}\dim\underline{G}_{x,0:0+}^0+\frac{1}{2}\sum_{i=0}^{d-1}r_i(|R_{i+1}|-|R_i|)\right).$$

$$\triangleright R_i = R(G_i, S).$$

$$\blacktriangleright \exp_p t := p^t.$$

- G_x is the stabilizer of x in G.
- $\underline{G}^0_{x,0}$ is a \mathbb{Z}_p -group, its special fiber is an \mathbb{F}_p -group, and $\underline{G}^0_{x,0:0+}$ is the maximal reductive quotient of the special fiber.

Formal degree of a Yu supercuspidal: proof sketch

Yu's representations are of the form c-Ind^G_K κ .

If H is a finite group then

$$\dim \operatorname{Ind}_{K}^{H} \kappa = [H : K] \dim \kappa.$$

Similarly, if K is a compact-open subgroup of G then

$$\deg \operatorname{c-Ind}_{K}^{G} \kappa = \frac{\dim \kappa}{\operatorname{vol} K}.$$

- Computing dim κ is "simple".
- Computing vol K is complicated and uses Moy-Prasad Theory.

Computation of vol K: proof sketch

1. Reduce to computing the index of *K* in a subgroup of known volume:

$$\operatorname{vol} K = \frac{\operatorname{vol} G_{x,0}}{[G_{x,0}:K]}.$$

2. $K \approx G_{x,r}$. Use the Moy-Prasad isomorphism to reduce the index to the length of a finite Lie algebra:

$$[G_{x,0}:G_{x,r}] = \operatorname{len}(\mathfrak{g}_{x,0}/\mathfrak{g}_{x,r}).$$

3. Decompose g into root lines and compute the length by studying the breaks in the Moy-Prasad filtration.

Part 3. Langlands correspondence

Conjecture (Langlands)

1. There is a surjective map

 $\frac{\{\text{Smooth irreps of } G\}}{\text{iso.}} \rightarrow \frac{\{L\text{-parameters } W' \rightarrow {}^LG\}}{\text{equiv.}}$

satisfying many nice properties.

- 2. The fibers of this map, called L-packets, are finite.
- 3. For each L-parameter $\varphi: W' \to {}^LG$, there is a bijection

L-packet of $\varphi \longleftrightarrow \operatorname{Spec}_{\mathsf{u}} S_{\varphi}$

where S_{φ} is a certain finite group canonically constructed from φ .

 $({}^LG=\widehat{G}
times {\cal W},$ the Weil form of the Langlands dual $\widehat{G}/\mathbb{C}.)$

Formal degree conjecture: statement

Conjecture (Hiraga-Ichino-Ikeda)

Let π be a discrete series representation of G with extended parameter ($\varphi : W' \rightarrow {}^{L}G, \rho \in \operatorname{Spec}_{u} S_{\varphi}$). Then

$$\deg \pi = rac{\dim
ho}{|\mathcal{S}_arphi|} \cdot |\gamma(\mathsf{Ad} \circ arphi)|.$$

- Ad : ${}^{L}G \rightarrow GL(\mathfrak{g})$ is the adjoint representation.
- > γ is the γ -factor, a product of an ε -factor and two *L*-factors.
- $|S_{\varphi}|$ is the cardinality of S_{φ} .
- (This ρ is unrelated to the one from Yu's construction.)

The formal degree conjecture is a "2-conjecture": it depends on the conjectural LLC.

Formal degree conjecture: known cases

The conjecture is known for the following G, where the LLC has been constructed in entirety.

real Lie groups	[Harish-Chandra]
 (inner forms of) GL_n 	[Silberger-Zink]
 (inner forms of) SL_n 	[Harris-Taylor, Henniart]

Even if the full LLC is unavailable, we can still test the conjecture as long as we have some L-packets.

The conjecture is known for the following *L*-packets.

- unipotent discrete series
 [Lusztig, Reeder]
- depth-zero supercuspidals

[DeBacker-Reeder]

Kaletha's L-packets

Kaletha has organized most of Yu's representations, the "regular representations", into L-packets.

The construction of each *L*-packet is organized around a pair (\underline{S}, θ) consisting of a maximal torus $\underline{S} \subseteq \underline{G}$ and a character $\theta : S \to \mathbb{C}^{\times}$.

On the automorphic side, one can unspool (\underline{S}, θ) into an input for Yu's construction.

$$(\underline{S}, \theta) \mapsto (\underline{\vec{G}}, x, \rho, \vec{r}, \vec{\phi})$$

On the Galois side, one "uses" functoriality with the help of χ -data [Langlands-Shelstad].

Formal degree conjecture for regular supercuspidals

Theorem (S) Kaletha's L-packets satisfy the formal degree conjecture:

$$\deg \pi = rac{\dim
ho}{|\mathcal{S}_arphi|} \cdot |\gamma(\mathsf{Ad} \circ arphi)|.$$

Proof sketch:

- On the automorphic side, we use our formula for deg π .
- On the Galois side, for regular representations, S_φ is abelian and |S_φ| is known. So we need only compute |γ(Ad ∘ φ)|.

Proof sketch: Galois side

We start by computing the adjoint representation of $\varphi.$ It decomposes as

$$\mathsf{Ad} \circ \varphi = V_{\mathsf{toral}} \oplus V_{\mathsf{root}},$$

where V_{toral} comes from <u>S</u> and V_{root} comes from R(G, S). Since γ is additive, we can handle each factor separately.

 $V_{\text{toral}} \simeq X^*(S) \otimes \mathbb{C}$, so we can compute $\gamma(V_{\text{toral}})$ by understanding the Galois action on $X^*(S)$.

 $V_{\rm root}$ is a sum of monomial representations, so we can compute $\gamma(V_{\rm root})$ by understanding how γ behaves under (tame) induction.

• Key technical result: base change for χ -data.

Key references

- Kaoru Hiraga, Atsushi Ichino, and Tamotsu Ikeda, Formal degrees and adjoint γ-factors, Journal of the American Mathematical Society 21 (2008), no. 1, 283–304. MR 2350057
- Tasho Kaletha, *Regular supercuspidal representations*, Journal of the American Mathematical Society **32** (2019), no. 4, 1071–1170. MR 4013740
- Jiu-Kang Yu, Construction of tame supercuspidal representations, Journal of the American Mathematical Society 14 (2001), no. 3, 579–622. MR 1824988