Singular modular forms on quaternionic E_{8}

Aaron Pollack

October 2020

Contents

(1) Introduction
(2) The exceptional group $E_{7,3}$
(3) Modular forms on exceptional groups
(4) Singular modular forms on $E_{8,4}$
(5) Proof of Theorem

Goal

This talk is about: The construction of two very nice automorphic forms on quaternionic E_{8}

- $E_{8,4}$: real reductive group of type E_{8} with split rank four; this is quaternionic E_{8}
- The symmetric space $E_{8,4} / K$ does not have Hermitian structure, but still possesses automorphic forms that behave similarly to classical holomorphic modular forms
- Similarly: They have a 'robust' Fourier expansion; called 'modular' forms
- There are two modular forms on $E_{8,4}$ that can write down explicitly
- Theorem: These modular forms have all Fourier coefficients in \mathbf{Q}

Contents

(1) Introduction

(2) The exceptional group $E_{7,3}$
(3) Modular forms on exceptional groups
(4) Singular modular forms on $E_{8,4}$
(5) Proof of Theorem

A very nice exceptional group

$E_{7,3}$: has a symmetric space with Hermitian tube structure

- Θ : octonions with positive-definite norm form. This is an 8-dimensional, non-associative \mathbf{R}-algebra that comes equipped with a quadratic form $\Theta \rightarrow \mathbf{R}$ and an \mathbf{R}-linear conjugation $*: \Theta \rightarrow \Theta$.
- $J=H_{3}(\Theta)$: Hermitian 3×3 matrices with elements in Θ.

$$
J=\left\{\left(\begin{array}{ccc}
c_{1} & x_{3} & x_{2}^{*} \\
x_{3}^{*} & c_{2} & x_{1} \\
x_{2} & x_{1}^{*} & c_{3}
\end{array}\right): c_{i} \in \mathbf{R}, x_{j} \in \Theta\right\} .
$$

$E_{7,3}$ acts on

$$
\mathcal{H}_{J}=\{Z=X+i Y: X, Y \in J, Y>0\}
$$

by "fractional linear" transformations.

Holomorphic modular forms on $E_{7,3}$

For an integer $\ell>0, f: \mathcal{H}_{J} \rightarrow \mathbf{C}$ is a holomorphic modular form of weight ℓ if

- f is holomorphic, moderate growth
- $f(\gamma Z)=j(\gamma, Z)^{\ell} f(Z)$ for all $\gamma \in \Gamma \subseteq E_{7,3}$ a congruence subgroup
These holomorphic modular forms on $E_{7,3}$ have a Fourier expansion:

$$
f(Z)=\sum_{T \in J_{Q}, T \geq 0} a_{f}(T) e^{2 \pi i \operatorname{tr}(T Z)}
$$

with the $a_{f}(T) \in \mathbf{C}$.

Kim's modular forms on $E_{7,3}$

Rank

Note that $J \supseteq S_{3}$ the symmetric 3×3 matrices. There is a function rank: $J \rightarrow\{0,1,2,3\}$ extending the rank of symmetric matrices on S_{3}.

Theorem 1 (H. Kim)

There exists holomorphic modular forms $\Theta_{K i m, 4}$ and $\Theta_{K i m, 8}$ for $E_{7,3}$ with the following properties:
(1) $\Theta_{\text {Kim }, 4}$ is a weight 4 , level 1 modular form with Fourier coefficients in Z. Moreover, the Fourier coefficients $a_{\Theta_{K i m, 4}}(T)$ are 0 unless $\operatorname{rank}(T) \in\{0,1\}$.
(2) $\Theta_{K i m, 8}$ is a weight 8 , level 1 modular form with Fourier coefficients in Z. Moreover, the Fourier coefficients $a_{\Theta_{K i m, 8}}(T)$ are 0 unless $\operatorname{rank}(T) \in\{0,1,2\}$.

The modular forms $\Theta_{K i m, 4}, \Theta_{K i m, 8}$ are said to be singular.

Contents

(1) Introduction

(2) The exceptional group $E_{7,3}$
(3) Modular forms on exceptional groups
(4) Singular modular forms on $E_{8,4}$
(5) Proof of Theorem

Exceptional groups have 'modular forms'

The groups

$G: G_{2} \subseteq D_{4} \subseteq F_{4} \subseteq E_{6,4} \subseteq E_{7,4} \subseteq E_{8,4}$

- $K \subseteq G$ the maximal compact. $K \rightarrow \mathrm{SU}(2) / \mu_{2}$.
- G/K: no Hermitian structure

Definition of modular forms on G

Let $\ell \geq 1$ be an integer. A modular form on G of weight ℓ is

- an automorphic form $\varphi: \Gamma \backslash G \rightarrow \operatorname{Sym}^{2 \ell}\left(\mathbf{C}^{2}\right)$
- satisfying $\varphi(g k)=k^{-1} \cdot \varphi(g)$ for all $g \in G, k \in K$
- and $\mathcal{D}_{\ell} \varphi=0$ for a certain special linear differential operator \mathcal{D}_{ℓ}
- Definition due to Gross-Wallach, Gan-Gross-Savin

These modular forms have nice properties

Theorem 2

The modular forms of weight $\ell \geq 1$ on G have a robust Fourier expansion, normalized over the integers, that is compatible with pullbacks between groups G above.

The theorem means:

- Given a modular φ form of weight ℓ, one can ask the question "Are all of φ 's Fourier coefficients in some ring $R \subseteq \mathbf{C}$?"
- If $\iota: G_{1} \subseteq G_{2}$ in the above sequence of groups, and if φ is modular form on G_{2} of weight ℓ, then the pullback $\iota^{*}(\varphi)$ on G_{1} is a modular form of weight ℓ.
- Moreover, the Fourier coefficients of $\iota^{*} \varphi$ are finite sums of the Fourier coefficients of φ

Motivating question

Fix G and $\ell \geq 1$. Does there exist a basis of the modular forms on G of weight ℓ, all of whose Fourier coefficients are in $\overline{\mathbf{Q}}$?

Contents

(1) Introduction

(2) The exceptional group $E_{7,3}$
(3) Modular forms on exceptional groups
(4) Singular modular forms on $E_{8,4}$
(5) Proof of Theorem

Let $P=M N \subseteq E_{8,4}$ be the Heisenberg parabolic subgroup, $M=G E_{7,3}$.

Theorem 3 (Gan,P,Savin)

There exists square integrable automorphic forms $\Theta_{\text {min }}$ and $\Theta_{n t m}$ on $E_{8,4}$ with the following properties.
(1) $\Theta_{\text {min }}$ is a weight 4 modular form with all Fourier coefficients in Z. Its constant term along $N, \Theta_{\text {min }, N}$ is essentially $\Theta_{K i m, 4}$.
(2) $\Theta_{n t m}$ is a weight 8 modular form with all Fourier coefficients in \mathbf{Q}. Its constant term along $N, \Theta_{n t m, N}$ is essentially $\Theta_{K i m, 8}$.
These modular forms are singular in the sense that many of their Fourier coefficients are 0.

The Fourier coefficients are parametrized by elements in a lattice in $W=(N /[N, N])^{\vee}$. There is a function rank: $W \rightarrow\{0,1,2,3,4\}$.

- The Fourier coefficients $a_{\Theta_{\min }}(w)$ of $\Theta_{\min }$ are 0 unless $\operatorname{rank}(w) \in\{0,1\}$
- The Fourier coefficients $a_{\Theta_{n t m}}(w)$ of $\Theta_{n t m}$ are 0 unless $\operatorname{rank}(w) \in\{0,1,2\}$

Remarks

(1) Gross-Wallach constructed unitary representations π_{4} and π_{8} of the real group $E_{8,4}$ that are small in the sense of GK dimension. The automorphic forms $\Theta_{\min }, \Theta_{n t m}$ should be ${ }^{1}$ thought of as globalizations of these representations.
(2) On split E_{8} there are analogues of $\Theta_{\min }$ and $\Theta_{n t m}$. These are completely spherical automorphic forms

- constructed by Ginzburg-Rallis-Soudry, in the case of the minimal;
- constructed by Green-Miller-Vanhove, Ciubotaru-Trapa in the case of next-to-minimal;
- next-to-minimal recently studied by Gourevitch-Gustafsson-Kleinschmidt-Persson-Sahi.
(3) Gan constructed $\Theta_{\text {min }}$ as a special value of an Eisenstein series associated to $\operatorname{Ind} \underbrace{E_{8,4}}\left(\delta_{P}^{S_{\text {min }}}\right)$, proved it's square integrable.

[^0]
Contents

(1) Introduction

(2) The exceptional group $E_{7,3}$
(3) Modular forms on exceptional groups
(4) Singular modular forms on $E_{8,4}$
(5) Proof of Theorem

Heisenberg Eisenstein series

Suppose $G=E_{8,4}, P$ Heisenberg parabolic.

$$
\nu: P \rightarrow \mathrm{GL}_{1}
$$

generating the character group of P. On $G=E_{8,4}$,

$$
|\nu(p)|^{29}=\delta_{P}(p)
$$

for $p \in P$. Suppose

- $\ell \geq 1$ even
- $f(g, \ell ; s) \in \operatorname{Ind} d_{P(\mathbf{A})}^{G(\mathbf{A})}\left(|\nu|^{s}\right)$, certain $\operatorname{Sym}^{2 \ell}\left(\mathbf{C}^{2}\right)$-valued section.
- $E(g, \ell ; s)=\sum_{\gamma \in P(\mathbf{Q}) \backslash G(\mathbf{Q})} f(\gamma g, \ell ; s)$ absolutely convergent for $\operatorname{Re}(s)>29$.
- If $s=\ell+1$ in range of absolute convergence, $E(g, \ell ; s=\ell+1)$ a modular form of weight ℓ for G

Question

Does $E(g, \ell ; s=\ell+1)$ have rational Fourier coefficients?

Next to minimal

Motivated by work of Gross-Wallach on continuation of quaternionic discrete series, take $\ell=8$ and $G=E_{8,4}$.

Proposition

The Eisenstein series $E(g, \ell=8 ; s)$ is regular at $s=9$ (even though outside the range of absolute convergence), and defines square integrable weight 8 modular form at this point.

Set

$$
\theta_{n t m}(g)=E(g, \ell=8 ; s=9)
$$

Theorem 4 (Savin)

The spherical constituent of the degenerate principal series $\operatorname{Ind}{ }_{P\left(\mathbf{Q}_{p}\right)}^{G\left(\mathbf{Q}_{p}\right)}\left(|\nu|^{9}\right)$ is "small", i.e., many twisted Jacquet modules are 0 . Consequently, the rank three and rank four Fourier coefficients of $\theta_{n t m}$ are 0 .

Theorem 5

The weight 8 modular form $\theta_{\text {ntm }}$ has rational Fourier coefficients.

Proof.

(1) Savin's result gives vanishing of rank three and four Fourier coefficients
(2) Explicit computation (outside range of abs. convergence) gives rationality of rank 1 and rank 2 Fourier coefficients
(3) Constant term analyzed using work of H . Kim on weight 8 singular modular form on $G E_{7,3}$
(1) Define special $\operatorname{Sym}^{2 \ell}\left(\mathbf{C}^{2}\right)$-valued Eisenstein series $E_{\ell}(g)$ on $\mathrm{SO}(3,4 k+3)$
(2) Prove that the constant term $\theta_{\text {ntm }}$ from $E_{8,4}$ down to $\mathrm{SO}(3,11)$ is $E_{8}(g)$
(3) Theorem: the $E_{\ell}(g)$ have rational Fourier coefficients (in a precise sense)
(1) The Fourier coefficients of $E_{8}(g)$ can be identified with rank 1 and rank 2 Fourier coefficients of $\theta_{n t m}$.
To prove the $E_{\ell}(g)$ have rational Fourier coefficients:

Jacquet integral

Explicit computation of certain Archimedean Jacquet integral

$$
\int_{V_{2,4 k+2}(\mathbf{R})} e^{2 \pi i(v, x)} f_{\ell}(w n(x)) d x
$$

Thank you for your attention!

[^0]: ${ }^{1}$ Proved by Gan-Savin for $\Theta_{\min }$ and π_{4}. Should be true but not proved for $\Theta_{n t m}$ and π_{8}.

