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This talk is about: The construction of two very nice
automorphic forms on quaternionic Eg

@ Egy: real reductive group of type Eg with split rank four; this
is quaternionic Eg

@ The symmetric space Eg /K does not have Hermitian
structure, but still possesses automorphic forms that behave
similarly to classical holomorphic modular forms

e Similarly: They have a ‘robust’ Fourier expansion; called
'modular’ forms

@ There are two modular forms on Eg 4 that can write down
explicitly
@ Theorem: These modular forms have all Fourier coefficients

in Q
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© The exceptional group E73
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A very nice exceptional group

E7 3: has a symmetric space with Hermitian tube structure

@ O: octonions with positive-definite norm form. This is an
8-dimensional, non-associative R-algebra that comes equipped
with a quadratic form © — R and an R-linear conjugation
x:0 — 0.

e J = H3(©): Hermitian 3 x 3 matrices with elements in ©.

*

1 X3 X
J= X3 C© X1 :cieR,x €0
X2 Xf C3

E7 3 acts on
Hy={Z=X+iY: X, Yel Y >0}

by “fractional linear” transformations.
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Holomorphic modular forms on E7 3

For an integer £ > 0, f : H; — C is a holomorphic modular form
of weight 7 if
@ f is holomorphic, moderate growth
o f(vZ) =j(v,2)*f(Z) for all y € T C E7 3 a congruence
subgroup

These holomorphic modular forms on E7 3 have a Fourier
expansion:

f(Z) _ Z af(T)eZm'tr(TZ)
TelJq, T>0

with the af(T) € C.
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Kim's modular forms on E; 3

Note that J O S3 the symmetric 3 x 3 matrices. There is a
function rank : J — {0,1,2, 3} extending the rank of symmetric
matrices on Ss.

Theorem 1 (H. Kim)

There exists holomorphic modular forms © kjm 4 and ©kim g for
E7 3 with the following properties:
Q Okima is a weight 4, level 1 modular form with Fourier
coefficients in Z. Moreover, the Fourier coefficients ag,, T)
are 0 unless rank(T) € {0,1}.
@ Ockimg is a weight 8, level 1 modular form with Fourier
coefficients in Z. Moreover, the Fourier coefficients ag,, ;(T)
are 0 unless rank(T) € {0,1,2}.

The modular forms ©kjm 4, Okimg are said to be singular.
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© Modular forms on exceptional groups
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Exceptional groups have ‘modular forms'’

The groups

G:GC Dy CFyCEsaC ErgC Ega

@ K C G the maximal compact. K — SU(2)/pu2.
e G/K: no Hermitian structure

Definition of modular forms on G

Let £ > 1 be an integer. A modular form on G of weight ¢ is
@ an automorphic form ¢ : T\G — Sym?*(C?)
o satisfying ¢(gk) = k™1 - p(g) forallg € G, k€ K
@ and Dyp = 0 for a certain special linear differential operator
D,

@ Definition due to Gross-Wallach, Gan-Gross-Savin
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These modular forms have nice properties

The modular forms of weight £ > 1 on G have a robust Fourier
expansion, normalized over the integers, that is compatible with
pullbacks between groups G above.

The theorem means:

@ Given a modular ¢ form of weight ¢, one can ask the question
“Are all of ¢'s Fourier coefficients in some ring R C C?”

e If 1 : G C Gy in the above sequence of groups, and if ¢ is
modular form on G; of weight ¢, then the pullback ¢*(¢) on
Gi is a modular form of weight 2.

@ Moreover, the Fourier coefficients of ¢*¢ are finite sums of
the Fourier coefficients of ¢

Motivating question

Fix G and ¢ > 1. Does there exist a basis of the modular forms on
G of weight £, all of whose Fourier coefficients are in Q7
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@ Singular modular forms on Eg 4
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Let P = MN C Eg 4 be the Heisenberg parabolic subgroup,
M = GE7 3.

Theorem 3 (Gan,P,Savin)

There exists square integrable automorphic forms © i, and © pim
on Eg 4 with the following properties.
Q Oin is a weight 4 modular form with all Fourier coefficients
in Z. Its constant term along N, © ;s v is essentially © kijm 4.
Q O.im is a weight 8 modular form with all Fourier coefficients
in Q. Its constant term along N, © yim n is essentially © kim g.
These modular forms are singular in the sense that many of their
Fourier coefficients are 0.

v

The Fourier coefficients are parametrized by elements in a lattice in
W = (N/[N,N])". There is a function rank : W — {0,1,2,3,4}.
e The Fourier coefficients ag, . (w) of ©pj, are 0 unless
rank(w) € {0,1}
@ The Fourier coefficients ag,,, (w) of ©ptm are 0 unless
rank(w) € {0,1,2}



© Gross-Wallach constructed unitary representations w4 and 7g
of the real group Eg4 that are small in the sense of GK
dimension. The automorphic forms © pin, © pem should bel
thought of as globalizations of these representations.
@ On split Eg there are analogues of ©,;, and © . These are
completely spherical automorphic forms
e constructed by Ginzburg-Rallis-Soudry, in the case of the
minimal;
e constructed by Green-Miller-Vanhove, Ciubotaru-Trapa in the
case of next-to-minimal;
e next-to-minimal recently studied by
Gourevitch-Gustafsson-Kleinschmidt-Persson-Sahi.

© Gan constructed ©,,;, as a special value of an Eisenstein series

. E : - .
associated to Indp™*(67"™), proved it's square integrable.

'Proved by Gan-Savin for © i, and 7. Should be true but not proved for
Ontm and Tg.
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© Proof of Theorem
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Heisenberg Eisenstein series

Suppose G = Eg4, P Heisenberg parabolic.
v:P— Gl

generating the character group of P. On G = Egyg,

(p)P° = 6p(p)

for p € P. Suppose
@ />1 even

o f(g,ls) € /ndg((:))(|u|5), certain Sym?‘(C?)-valued section.

o E(g.lis) =2 cpq)c(a) (78 s) absolutely convergent
for Re(s) > 29.

o If s=/{¢+1 in range of absolute convergence,
E(g,?;s = {+ 1) a modular form of weight ¢ for G

Does E(g,¥; s = ¢+ 1) have rational Fourier coefficients?
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Next to minimal

Motivated by work of Gross-Wallach on continuation of
quaternionic discrete series, take £ = 8 and G = Eg 4.

Proposition

The Eisenstein series E(g, ¢ = 8;s) is regular at s =9 (even
though outside the range of absolute convergence), and defines
square integrable weight 8 modular form at this point.

Set
entm(g) = E(g,£ =8;s= 9)

Theorem 4 (Savin)

The spherical constituent of the degenerate principal series
Indg((g:))(|1/|9) is “small”, i.e., many twisted Jacquet modules are
0. Consequently, the rank three and rank four Fourier coefficients
of Optm are 0.
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More on next-to-minimal modular form

The weight 8 modular form 6,y has rational Fourier coefficients.

@ Savin's result gives vanishing of rank three and four Fourier
coefficients

@ Explicit computation (outside range of abs. convergence)
gives rationality of rank 1 and rank 2 Fourier coefficients

© Constant term analyzed using work of H. Kim on weight 8
singular modular form on GE7 3
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Explicit computation of 6,:,

© Define special Sym?*(C?)-valued Eisenstein series E/(g) on
SO(3, 4k + 3)

@ Prove that the constant term 0,y from Eg 4 down to
SO(3,11) is Es(g)

© Theorem: the Ey(g) have rational Fourier coefficients (in a
precise sense)

© The Fourier coefficients of Eg(g) can be identified with rank 1
and rank 2 Fourier coefficients of 6.

To prove the Ey(g) have rational Fourier coefficients:

Jacquet integral

Explicit computation of certain Archimedean Jacquet integral

/ ™ (VX) £, (wn(x)) dx.
V5 ak42(R)
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Thank you

Thank you for your attention!
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