Interpreting the Harish-Chandra—Howe local character expansion via branching rules

Monica Nevins

Department of Mathematics and Statistics University of Ottawa

October 18, 2020 The 2020 Paul J. Sally, Jr. Midwest Representation Theory Conference

k : nonarchimedean local field, $k \supset \mathcal{R} \supset \mathcal{P} = \langle \varpi \rangle$

- k : nonarchimedean local field, $k \supset \mathcal{R} \supset \mathcal{P} = \langle \varpi
 angle$
- G : SL(2, k) with building $\mathcal{B} = \mathcal{B}(G, k)$

k : nonarchimedean local field, $k \supset \mathcal{R} \supset \mathcal{P} = \langle \varpi
angle$

G : SL(2, k) with building $\mathcal{B} = \mathcal{B}(G, k)$

 \mathcal{N} : the set of five nilpotent orbits, parametrized as per DeBacker Orbit representatives: $X_a = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$ with $a \in k^{\times}/(k^{\times})^2 \doteq \{1, \varepsilon, \varpi^{-1}, \varepsilon \varpi^{-1}\}$

- k : nonarchimedean local field, $k \supset \mathcal{R} \supset \mathcal{P} = \langle \varpi
 angle$
- G : SL(2, k) with building $\mathcal{B} = \mathcal{B}(G, k)$

- \mathcal{N} : the set of five nilpotent orbits, parametrized as per DeBacker Orbit representatives: $X_a = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$ with $a \in k^{\times}/(k^{\times})^2 \doteq \{1, \varepsilon, \varpi^{-1}, \varepsilon \varpi^{-1}\}$
 - π : an irreducible admissible representation of G, of depth $r\geq$ 0, with character Θ_{π}

Three perspectives

1. Harish-Chandra–Howe local character expansion:

$$\Theta_{\pi}(arphi(X)) = \sum_{\mathcal{O} \in \mathcal{N}} c_{\mathcal{O}} \widehat{\mu_{\mathcal{O}}}(X)$$

for all $X \in \mathfrak{g}_{r+}^{rss} := \mathfrak{g}^{rss} \cap \bigcup_{x \in \mathcal{B}} \mathfrak{g}_{x,r+}$, and φ an "exponential map"

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 3/10

Three perspectives

1. Harish-Chandra–Howe local character expansion:

$$\Theta_{\pi}(arphi(X)) = \sum_{\mathcal{O} \in \mathcal{N}} c_{\mathcal{O}} \widehat{\mu_{\mathcal{O}}}(X)$$

for all $X \in \mathfrak{g}_{r+}^{rss} := \mathfrak{g}^{rss} \cap \bigcup_{x \in \mathcal{B}} \mathfrak{g}_{x,r+}$, and φ an "exponential map"

2. Branching rules: for $x \in \mathcal{B}$ and G_x the associated parahoric,

$$\operatorname{Res}_{G_x} \pi = \bigoplus_{\lambda \in \widehat{G_x}} \pi_\lambda$$

<□ > < @ > < ≧ > < ≧ > ≧ り < ⊘ 3/10

Three perspectives

1. Harish-Chandra–Howe local character expansion:

$$\Theta_{\pi}(arphi(X)) = \sum_{\mathcal{O} \in \mathcal{N}} c_{\mathcal{O}} \widehat{\mu_{\mathcal{O}}}(X)$$

for all $X \in \mathfrak{g}_{r+}^{rss} := \mathfrak{g}^{rss} \cap \bigcup_{x \in \mathcal{B}} \mathfrak{g}_{x,r+}$, and φ an "exponential map"

2. Branching rules: for $x \in \mathcal{B}$ and G_x the associated parahoric,

$$\operatorname{Res}_{G_x} \pi = \bigoplus_{\lambda \in \widehat{G_x}} \pi_\lambda$$

3. Orbit method philosophy: construct key representations of *G* from its admissible nilpotent coadjoint orbits.

Fix $\psi \colon k \to \mathbb{C}^{\times}$, trivial on \mathcal{P} , nontrivial on \mathcal{R}

<ロ > < 回 > < 臣 > < 臣 > 臣 の Q @ 4/10

▶ Fix ψ : $k \to \mathbb{C}^{\times}$, trivial on \mathcal{P} , nontrivial on \mathcal{R}

d ∈ Z_{>0}, e := d/2, nilpotent X ∈ g_{x,-d} \ g_{x,-d+}
 (two choices up to conjugacy by G_x; really it's coadjoint orbits)

4 ロ ト 4 母 ト 4 ヨ ト 4 ヨ ト ヨ の 9 9 4/10

▶ Fix ψ : $k \to \mathbb{C}^{\times}$, trivial on \mathcal{P} , nontrivial on \mathcal{R}

- d ∈ Z_{>0}, e := d/2, nilpotent X ∈ g_{x,-d} \ g_{x,-d+}
 (two choices up to conjugacy by G_x; really it's coadjoint orbits)
- ψ(X)(Y) := ψ(⟨X, Y⟩) defines a character of g_{x,e+}/g_{x,d+}
 → character of G_{u,e} where u = x if d is odd and u = z if d is even

4 ロ ト 4 母 ト 4 ヨ ト 4 ヨ ト ヨ の 9 9 4/10

▶ Fix ψ : $k \to \mathbb{C}^{\times}$, trivial on \mathcal{P} , nontrivial on \mathcal{R}

- d ∈ Z_{>0}, e := d/2, nilpotent X ∈ g_{x,-d} \ g_{x,-d+}
 (two choices up to conjugacy by G_x; really it's coadjoint orbits)
- ▶ $\psi(X)(Y) := \psi(\langle X, Y \rangle)$ defines a character of $\mathfrak{g}_{x,e+}/\mathfrak{g}_{x,d+}$ \rightsquigarrow character of $\mathcal{G}_{u,e}$ where u = x if d is odd and u = z if d is even

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 4/10

• Centralizer of X is ZN, where $Z = \pm I$, N unipotent

▶ Fix ψ : $k \to \mathbb{C}^{\times}$, trivial on \mathcal{P} , nontrivial on \mathcal{R}

- d ∈ Z_{>0}, e := d/2, nilpotent X ∈ g_{x,-d} \ g_{x,-d+}
 (two choices up to conjugacy by G_x; really it's coadjoint orbits)
- ψ(X)(Y) := ψ(⟨X, Y⟩) defines a character of g_{x,e+}/g_{x,d+}
 → character of G_{u,e} where u = x if d is odd and u = z if d is even

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 4/10

- Centralizer of X is ZN, where $Z = \pm I$, N unipotent
- $\theta \in \widehat{Z}$, extended to a character of ZN

▶ Fix ψ : $k \to \mathbb{C}^{\times}$, trivial on \mathcal{P} , nontrivial on \mathcal{R}

d ∈ Z_{>0}, e := d/2, nilpotent X ∈ g_{x,-d} \ g_{x,-d+}
 (two choices up to conjugacy by G_x; really it's coadjoint orbits)

ψ(X)(Y) := ψ(⟨X, Y⟩) defines a character of g_{x,e+}/g_{x,d+}
→ character of G_{u,e} where u = x if d is odd and u = z if d is even

• Centralizer of X is ZN, where $Z = \pm I$, N unipotent

•
$$\theta \in \widehat{Z}$$
, extended to a character of *ZN*

Definition

We call Shalika's representation

$$\mathcal{S}_d(heta, X) := \mathrm{Ind}_{ZNG_{u,e}}^{G_x} heta \otimes \psi(X)$$

a basic irreducible representation of G_x , of depth d and central character θ . It depends only on the G_x -orbit of X.

Representations of G_x attached to nilpotent G-orbits

Each nilpotent *G*-orbit \mathcal{O} decomposes as G_x -orbits:

$$\mathcal{O} = \mathcal{G} \cdot X_{a} = \bigsqcup_{t \in \mathbb{Z}} \mathcal{G}_{x} \cdot X_{\varpi^{2t}a}$$

Definition Let $\tau(0) = 1$. For $\mathcal{O} \in \mathcal{N} \setminus \{0\}$ set $\tau_x(\mathcal{O})_{\theta} = \bigoplus_{X_d} S_d(\theta, X_d)$ (a representation of G_x)

where X_d runs over a set of representatives of

 G_x -orbits in $\mathcal{O} \setminus \mathfrak{g}_{x,0}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 5/10

Back to branching rules for SL(2, k)

For any π of depth $r \ge 0$, we have a complete description of $\operatorname{Res}_{G_x} \pi$ [N05, N13]. In particular:

<ロ > < 回 > < 臣 > < 臣 > 臣 の Q @ 6/10

• "heads" $(\pi^{G_{x,r+}})$: types or typical representations

Back to branching rules for SL(2, k)

For any π of depth $r \ge 0$, we have a complete description of $\operatorname{Res}_{G_x} \pi$ [N05, N13].

- In particular:
 - ▶ "heads" $(\pi^{G_{x,r+}})$: types or typical representations
 - "tail ends" $(\pi_{>2r} := \text{all subrepresentations of depth} > 2r)$: sum of *basic* Shalika representations

Back to branching rules for SL(2, k)

For any π of depth $r \ge 0$, we have a complete description of $\operatorname{Res}_{G_x} \pi$ [NO5, N13].

In particular:

• "heads" $(\pi^{G_{x,r+}})$: types or typical representations

▶ "tail ends" (π_{>2r} := all subrepresentations of depth > 2r) : sum of *basic* Shalika representations

In between

$$\operatorname{Res}_{G_x} \pi = \pi^{G_{x,r+}} \oplus \pi_{r < d \le 2r} \oplus \pi_{>2r}$$

are many (non-basic) irreducible representations of intermediate depth that are types for increasingly large families of representations (bigger than one Bernstein block).

Branching to $G_{x,r+}$

Proposition

If π has depth r, with branching rules

$$\operatorname{Res}_{G_{x}}\pi=\pi^{G_{x,r+}}\oplus\pi_{>r},$$

then there is a subset \mathcal{N}_{π} of \mathcal{N} such that

$$\operatorname{Res}_{\mathcal{G}_{x,r+}}(\pi_{>r}) = \bigoplus_{\mathcal{O} \in \mathcal{N}_{\pi}} \tau_{x}(\mathcal{O})_{>r}.$$

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の へ ?/10

Branching to $G_{x,r+}$

Proposition

If π has depth r, with branching rules

$$\operatorname{Res}_{G_{x}}\pi=\pi^{G_{x,r+}}\oplus\pi_{>r},$$

then there is a subset \mathcal{N}_{π} of \mathcal{N} such that

$$\operatorname{Res}_{G_{x,r+}}(\pi_{>r}) = \bigoplus_{\mathcal{O}\in\mathcal{N}_{\pi}} \tau_{x}(\mathcal{O})_{>r}.$$

Corollary

For each π of depth r, there is an integer c and a subset $\mathcal{N}_{\pi} \subset \mathcal{N}$ such that on $G_{x,r+}$ we have

$$\pi = c1 \oplus \bigoplus_{\mathcal{O} \in \mathcal{N}_{\pi}} au_{\mathsf{X}}(\mathcal{O}).$$

Getting back to the local character expansion

```
For x, u vertices of \mathcal{B}:
\chi_x(\mathcal{O}_{u,a}) : character of \tau_x(\mathcal{O}_{u,a})
```

Getting back to the local character expansion

For x, u vertices of \mathcal{B} : $\chi_{x}(\mathcal{O}_{u,a})$: character of $\tau_{x}(\mathcal{O}_{u,a})$

For each $\mathcal{O} \in \mathcal{N}$ define a class function on $G_{0+}^{rss} = \bigcup_{x \in \mathcal{B}} G_{x,0+}^{rss}$ by {0} : $\Theta_0 = 1$;

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < · 8/10

Getting back to the local character expansion

For x, u vertices of \mathcal{B} : $\chi_{x}(\mathcal{O}_{u,a})$: character of $\tau_{x}(\mathcal{O}_{u,a})$

For each $\mathcal{O} \in \mathcal{N}$ define a class function on $G_{0+}^{rss} = \bigcup_{x \in \mathcal{B}} G_{x,0+}^{rss}$ by

 $\{0\}$: $\Theta_0 = 1;$

 $\mathcal{O}_{u,a}$: for each vertex $x \in \mathcal{B}$ set

$$\Theta_{u,a}|_{G_{x,0+}^{rss}} = \begin{cases} \frac{q}{2} + \chi_x(\mathcal{O}_{u,a}) & \text{if } u \sim x; \\ \frac{1}{2} + \chi_x(\mathcal{O}_{u,a}) & \text{if } u \not\sim x \end{cases}$$

 $\Theta_{u,a}$ is well-defined (as a consequence of branching rules).

Branching rules and the LCE

Theorem

Let π be an irreducible admissible representation of SL(2, k) of depth r. Then there exist $t_0 \in \mathbb{Q}$ and $t_{u,a} \in \{0, 1\}$ such that on $G_{x,r+}^{rss}$

$$\Theta_{\pi} = t_0 \Theta_0 + \sum_{\mathcal{O}_{u,a} \in \mathcal{N}} t_{u,a} \; \Theta_{u,a}.$$

Moreover, these coefficients agree with the local character expansion, in the sense that

$$\Theta_{\pi}\circ arphi=t_{0}\widehat{\mu_{0}}+\sum_{\mathcal{O}_{u,s}\in\mathcal{N}}t_{u,s}\ \widehat{\mu_{\mathcal{O}_{u,s}}}.$$

The coefficients (and much more) have been calculated for SL(2, k) in an abundance of ways: Sally–Shalika 1968, Assem 1994, Barbasch–Moy 1997, Cunningham–Gordon 2000, DeBacker–Sally 2000, Spice 2005, ···.

We have

- ► for each $\mathcal{O} \in \mathcal{N}$, $\widehat{\mu_{\mathcal{O}}} \circ \varphi = \Theta_{\mathcal{O}}$
- an explicit description of Θ_O on each G_{x,0+} as a sum of representations attached to O.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We have

- ► for each $\mathcal{O} \in \mathcal{N}$, $\widehat{\mu_{\mathcal{O}}} \circ \varphi = \Theta_{\mathcal{O}}$
- In explicit description of Θ_O on each G_{x,0+} as a sum of representations attached to O.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We'd like to have

- We have
 - for each $\mathcal{O} \in \mathcal{N}$, $\widehat{\mu_{\mathcal{O}}} \circ \varphi = \Theta_{\mathcal{O}}$ (*)
 - an explicit description of Θ_O on each G_{x,0+} as a sum of representations attached to O.
- We'd like to have
 - a more direct relationship from O to a representation of G, in this case, the special supercuspidal representations, supported on single orbits

< □ ▶ < @ ▶ < \ > ↓ < \ > ↓ \ = り < \ > 10/10

a more direct proof of the equality (*)

- We have
 - for each $\mathcal{O} \in \mathcal{N}$, $\widehat{\mu_{\mathcal{O}}} \circ \varphi = \Theta_{\mathcal{O}}$ (*)
 - an explicit description of Θ_O on each G_{x,0+} as a sum of representations attached to O.
- We'd like to have
 - a more direct relationship from O to a representation of G, in this case, the special supercuspidal representations, supported on single orbits

a more direct proof of the equality (*)

- More test cases?
 - Campbell-N (2010) + Onn-Singla (2014) give the complete explicit branching rules for unramified principal series of GL(3, k)