Interpreting the Harish-Chandra-Howe local character expansion via branching rules

Monica Nevins
Department of Mathematics and Statistics
University of Ottawa
October 18, 2020
The 2020 Paul J. Sally, Jr. Midwest Representation Theory Conference

The setting

k : nonarchimedean local field, $k \supset \mathcal{R} \supset \mathcal{P}=\langle\varpi\rangle$

The setting

k : nonarchimedean local field, $k \supset \mathcal{R} \supset \mathcal{P}=\langle\varpi\rangle$
$G: S L(2, k)$ with building $\mathcal{B}=\mathcal{B}(G, k)$

The setting

k : nonarchimedean local field, $k \supset \mathcal{R} \supset \mathcal{P}=\langle\varpi\rangle$
$G: S L(2, k)$ with building $\mathcal{B}=\mathcal{B}(G, k)$

\mathcal{N} : the set of five nilpotent orbits, parametrized as per DeBacker Orbit representatives: $X_{a}=\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]$ with $a \in k^{\times} /\left(k^{\times}\right)^{2} \doteq\left\{1, \varepsilon, \omega^{-1}, \varepsilon \omega^{-1}\right\}$

The setting

k : nonarchimedean local field, $k \supset \mathcal{R} \supset \mathcal{P}=\langle\varpi\rangle$
$G: S L(2, k)$ with building $\mathcal{B}=\mathcal{B}(G, k)$

\mathcal{N} : the set of five nilpotent orbits, parametrized as per DeBacker Orbit representatives: $X_{a}=\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]$ with $a \in k^{\times} /\left(k^{\times}\right)^{2} \doteq\left\{1, \varepsilon, \omega^{-1}, \varepsilon \omega^{-1}\right\}$
π : an irreducible admissible representation of G, of depth $r \geq 0$, with character Θ_{π}

Three perspectives

1. Harish-Chandra-Howe local character expansion:

$$
\Theta_{\pi}(\varphi(X))=\sum_{\mathcal{O} \in \mathcal{N}} c_{\mathcal{O}} \widehat{\mu_{\mathcal{O}}}(X)
$$

for all $X \in \mathfrak{g}_{r+}^{r s s}:=\mathfrak{g}^{r s s} \cap \bigcup_{x \in \mathcal{B}} \mathfrak{g}_{x, r+}$, and φ an "exponential map"

Three perspectives

1. Harish-Chandra-Howe local character expansion:

$$
\Theta_{\pi}(\varphi(X))=\sum_{\mathcal{O} \in \mathcal{N}} c_{\mathcal{O}} \widehat{\mu_{\mathcal{O}}}(X)
$$

for all $X \in \mathfrak{g}_{r+}^{r s s}:=\mathfrak{g}^{r s s} \cap \bigcup_{x \in \mathcal{B}} \mathfrak{g}_{x, r+}$, and φ an "exponential map"
2. Branching rules: for $x \in \mathcal{B}$ and G_{x} the associated parahoric,

$$
\operatorname{Res}_{G_{x}} \pi=\bigoplus_{\lambda \in \widehat{G_{x}}} \pi_{\lambda}
$$

Three perspectives

1. Harish-Chandra-Howe local character expansion:

$$
\Theta_{\pi}(\varphi(X))=\sum_{\mathcal{O} \in \mathcal{N}} c_{\mathcal{O}} \widehat{\mu_{\mathcal{O}}}(X)
$$

for all $X \in \mathfrak{g}_{r+}^{r s s}:=\mathfrak{g}^{r s s} \cap \bigcup_{x \in \mathcal{B}} \mathfrak{g}_{x, r+}$, and φ an "exponential map"
2. Branching rules: for $x \in \mathcal{B}$ and G_{x} the associated parahoric,

$$
\operatorname{Res}_{G_{x}} \pi=\bigoplus_{\lambda \in \widehat{G_{x}}} \pi_{\lambda}
$$

3. Orbit method philosophy: construct key representations of G from its admissible nilpotent coadjoint orbits.

Some representations of $G_{x} \cong S L(2, \mathcal{R})$ (Shalika, 1967)

- Fix $\psi: k \rightarrow \mathbb{C}^{\times}$, trivial on \mathcal{P}, nontrivial on \mathcal{R}

Some representations of $G_{x} \cong S L(2, \mathcal{R})$ (Shalika, 1967)

- Fix $\psi: k \rightarrow \mathbb{C}^{\times}$, trivial on \mathcal{P}, nontrivial on \mathcal{R}
- $d \in \mathbb{Z}_{>0}, e:=d / 2$, nilpotent $X \in \mathfrak{g}_{x,-d} \backslash \mathfrak{g}_{x,-d+}$ (two choices up to conjugacy by G_{x}; really it's coadjoint orbits)

Some representations of $G_{x} \cong S L(2, \mathcal{R})$ (Shalika, 1967)

- Fix $\psi: k \rightarrow \mathbb{C}^{\times}$, trivial on \mathcal{P}, nontrivial on \mathcal{R}
- $d \in \mathbb{Z}_{>0}, e:=d / 2$, nilpotent $X \in \mathfrak{g}_{x,-d} \backslash \mathfrak{g}_{x,-d+}$ (two choices up to conjugacy by G_{x}; really it's coadjoint orbits)
- $\psi(X)(Y):=\psi(\langle X, Y\rangle)$ defines a character of $\mathfrak{g}_{x, e+} / \mathfrak{g}_{x, d+}$ \rightsquigarrow character of $G_{u, e}$ where $u=x$ if d is odd and $u=z$ if d is even

Some representations of $G_{x} \cong S L(2, \mathcal{R})$ (Shalika, 1967)

- Fix $\psi: k \rightarrow \mathbb{C}^{\times}$, trivial on \mathcal{P}, nontrivial on \mathcal{R}
- $d \in \mathbb{Z}_{>0}, e:=d / 2$, nilpotent $X \in \mathfrak{g}_{x,-d} \backslash \mathfrak{g}_{x,-d+}$ (two choices up to conjugacy by G_{x}; really it's coadjoint orbits)
- $\psi(X)(Y):=\psi(\langle X, Y\rangle)$ defines a character of $\mathfrak{g}_{x, e+} / \mathfrak{g}_{x, d+}$ \rightsquigarrow character of $G_{u, e}$ where $u=x$ if d is odd and $u=z$ if d is even
- Centralizer of X is $Z N$, where $Z= \pm I, N$ unipotent

Some representations of $G_{x} \cong S L(2, \mathcal{R})$ (Shalika, 1967)

- Fix $\psi: k \rightarrow \mathbb{C}^{\times}$, trivial on \mathcal{P}, nontrivial on \mathcal{R}
- $d \in \mathbb{Z}_{>0}, e:=d / 2$, nilpotent $X \in \mathfrak{g}_{x,-d} \backslash \mathfrak{g}_{x,-d+}$ (two choices up to conjugacy by G_{x}; really it's coadjoint orbits)
- $\psi(X)(Y):=\psi(\langle X, Y\rangle)$ defines a character of $\mathfrak{g}_{x, e+} / \mathfrak{g}_{x, d+}$ \rightsquigarrow character of $G_{u, e}$ where $u=x$ if d is odd and $u=z$ if d is even
- Centralizer of X is $Z N$, where $Z= \pm I, N$ unipotent
- $\theta \in \widehat{Z}$, extended to a character of $Z N$

Some representations of $G_{x} \cong S L(2, \mathcal{R})$ (Shalika, 1967)

- Fix $\psi: k \rightarrow \mathbb{C}^{\times}$, trivial on \mathcal{P}, nontrivial on \mathcal{R}
- $d \in \mathbb{Z}_{>0}, e:=d / 2$, nilpotent $X \in \mathfrak{g}_{x,-d} \backslash \mathfrak{g}_{x,-d+}$ (two choices up to conjugacy by G_{x}; really it's coadjoint orbits)
- $\psi(X)(Y):=\psi(\langle X, Y\rangle)$ defines a character of $\mathfrak{g}_{x, e+} / \mathfrak{g}_{x, d+}$ \rightsquigarrow character of $G_{u, e}$ where $u=x$ if d is odd and $u=z$ if d is even
- Centralizer of X is $Z N$, where $Z= \pm I, N$ unipotent
- $\theta \in \widehat{Z}$, extended to a character of $Z N$

Definition

We call Shalika's representation

$$
\mathcal{S}_{d}(\theta, X):=\operatorname{Ind}_{Z N G_{u, e}}^{G_{X}} \theta \otimes \psi(X)
$$

a basic irreducible representation of G_{x}, of depth d and central character θ. It depends only on the G_{x}-orbit of X.

Representations of G_{x} attached to nilpotent G-orbits

Each nilpotent G-orbit \mathcal{O} decomposes as G_{X}-orbits:

$$
\mathcal{O}=G \cdot X_{a}=\bigsqcup_{t \in \mathbb{Z}} G_{X} \cdot X_{\varpi^{2 t} a}
$$

Definition
Let $\tau(0)=1$. For $\mathcal{O} \in \mathcal{N} \backslash\{0\}$ set

$$
\tau_{x}(\mathcal{O})_{\theta}=\bigoplus_{X_{d}} \mathcal{S}_{d}\left(\theta, X_{d}\right) \quad\left(\text { a representation of } G_{x}\right)
$$

where X_{d} runs over a set of representatives of

$$
G_{x} \text {-orbits in } \mathcal{O} \backslash \mathfrak{g}_{x, 0}
$$

Back to branching rules for $S L(2, k)$

For any π of depth $r \geq 0$, we have a complete description of $\operatorname{Res}_{G_{x}} \pi$ [N05, N13].
In particular:

- "heads" $\left(\pi^{G_{x, r+}}\right)$: types or typical representations

Back to branching rules for $S L(2, k)$

For any π of depth $r \geq 0$, we have a complete description of $\operatorname{Res}_{G_{x}} \pi$ [N05, N13].
In particular:

- "heads" $\left(\pi^{G_{x, r+}}\right)$: types or typical representations
- "tail ends" ($\pi_{>2 r}:=$ all subrepresentations of depth $>2 r$) : sum of basic Shalika representations

Back to branching rules for $S L(2, k)$

For any π of depth $r \geq 0$, we have a complete description of $\operatorname{Res}_{G_{x}} \pi$ [n05, N13].
In particular:

- "heads" $\left(\pi^{G_{x, r+}}\right)$: types or typical representations
- "tail ends" ($\pi_{>2 r}:=$ all subrepresentations of depth $>2 r$) : sum of basic Shalika representations
- In between

$$
\operatorname{Res}_{G_{x}} \pi=\pi^{G_{x, r+}} \oplus \pi_{r<d \leq 2 r} \oplus \pi_{>2 r}
$$

are many (non-basic) irreducible representations of intermediate depth that are types for increasingly large families of representations (bigger than one Bernstein block).

Branching to $G_{x, r+}$

Proposition

If π has depth r, with branching rules

$$
\operatorname{Res}_{G_{x}} \pi=\pi^{G_{x, r+}} \oplus \pi_{>r}
$$

then there is a subset \mathcal{N}_{π} of \mathcal{N} such that

$$
\operatorname{Res}_{G_{x, r+}}\left(\pi_{>r}\right)=\bigoplus_{\mathcal{O} \in \mathcal{N}_{\pi}} \tau_{x}(\mathcal{O})_{>r}
$$

Branching to $G_{x, r+}$

Proposition

If π has depth r, with branching rules

$$
\operatorname{Res}_{G_{x}} \pi=\pi^{G_{x, r+}} \oplus \pi_{>r}
$$

then there is a subset \mathcal{N}_{π} of \mathcal{N} such that

$$
\operatorname{Res}_{G_{x, r+}}\left(\pi_{>r}\right)=\bigoplus_{\mathcal{O} \in \mathcal{N}_{\pi}} \tau_{x}(\mathcal{O})_{>r}
$$

Corollary

For each π of depth r, there is an integer c and a subset $\mathcal{N}_{\pi} \subset \mathcal{N}$ such that on $G_{x, r+}$ we have

$$
\pi=c 1 \oplus \bigoplus_{\mathcal{O} \in \mathcal{N}_{\pi}} \tau_{\chi}(\mathcal{O})
$$

Getting back to the local character expansion

For x, u vertices of \mathcal{B} :

$$
\chi_{x}\left(\mathcal{O}_{u, a}\right): \text { character of } \tau_{x}\left(\mathcal{O}_{u, a}\right)
$$

Getting back to the local character expansion

For x, u vertices of \mathcal{B} :

$$
\chi_{x}\left(\mathcal{O}_{u, a}\right): \text { character of } \tau_{x}\left(\mathcal{O}_{u, a}\right)
$$

For each $\mathcal{O} \in \mathcal{N}$ define a class function on $G_{0+}^{\text {rss }}=\bigcup_{x \in \mathcal{B}} G_{x, 0+}^{\text {rss }}$ by
$\{0\}: \Theta_{0}=1 ;$

Getting back to the local character expansion

For x, u vertices of \mathcal{B} :

$$
\chi_{x}\left(\mathcal{O}_{u, a}\right): \text { character of } \tau_{x}\left(\mathcal{O}_{u, a}\right)
$$

For each $\mathcal{O} \in \mathcal{N}$ define a class function on $G_{0+}^{r s s}=\bigcup_{x \in \mathcal{B}} G_{x, 0+}^{r s s}$ by $\{0\}: \Theta_{0}=1 ;$
$\mathcal{O}_{u, a}$: for each vertex $x \in \mathcal{B}$ set

$$
\left.\Theta_{u, a}\right|_{G_{x, 0+}^{\text {rss }}}= \begin{cases}\frac{q}{2}+\chi_{x}\left(\mathcal{O}_{u, a}\right) & \text { if } u \sim x ; \\ \frac{1}{2}+\chi_{x}\left(\mathcal{O}_{u, a}\right) & \text { if } u \nsim x\end{cases}
$$

$\Theta_{u, a}$ is well-defined (as a consequence of branching rules).

Branching rules and the LCE

Theorem

Let π be an irreducible admissible representation of $\operatorname{SL}(2, k)$ of depth r. Then there exist $t_{0} \in \mathbb{Q}$ and $t_{u, a} \in\{0,1\}$ such that on $G_{x, r+}^{r s s}$

$$
\Theta_{\pi}=t_{0} \Theta_{0}+\sum_{\mathcal{O}_{u, a} \in \mathcal{N}} t_{u, a} \Theta_{u, a}
$$

Moreover, these coefficients agree with the local character expansion, in the sense that

$$
\Theta_{\pi} \circ \varphi=t_{0} \widehat{\mu_{0}}+\sum_{\mathcal{O}_{u, a} \in \mathcal{N}} t_{u, a} \widehat{\mu_{\mathcal{O}_{u, a}}} .
$$

The coefficients (and much more) have been calculated for $S L(2, k)$ in an abundance of ways: Sally-Shalika 1968, Assem 1994, Barbasch-Moy 1997, Cunningham-Gordon 2000, DeBacker-Sally 2000, Spice 2005, \cdots.

Conclusions and where to next?

- We have

Conclusions and where to next?

- We have
- for each $\mathcal{O} \in \mathcal{N}, \widehat{\mu_{\mathcal{O}}} \circ \varphi=\Theta_{\mathcal{O}}$
- an explicit description of $\Theta_{\mathcal{O}}$ on each $G_{x, 0+}$ as a sum of representations attached to \mathcal{O}.

Conclusions and where to next?

- We have
- for each $\mathcal{O} \in \mathcal{N}, \widehat{\mu_{\mathcal{O}}} \circ \varphi=\Theta_{\mathcal{O}}$
- an explicit description of $\Theta_{\mathcal{O}}$ on each $G_{x, 0+}$ as a sum of representations attached to \mathcal{O}.
- We'd like to have

Conclusions and where to next?

- We have
- for each $\mathcal{O} \in \mathcal{N}, \widehat{\mu_{\mathcal{O}}} \circ \varphi=\Theta_{\mathcal{O}}\left({ }^{*}\right)$
- an explicit description of $\Theta_{\mathcal{O}}$ on each $G_{x, 0+}$ as a sum of representations attached to \mathcal{O}.
- We'd like to have
- a more direct relationship from \mathcal{O} to a representation of G, in this case, the special supercuspidal representations, supported on single orbits
- a more direct proof of the equality $\left({ }^{*}\right)$

Conclusions and where to next?

- We have
- for each $\mathcal{O} \in \mathcal{N}, \widehat{\mu_{\mathcal{O}}} \circ \varphi=\Theta_{\mathcal{O}}\left({ }^{*}\right)$
- an explicit description of $\Theta_{\mathcal{O}}$ on each $G_{x, 0+}$ as a sum of representations attached to \mathcal{O}.
- We'd like to have
- a more direct relationship from \mathcal{O} to a representation of G, in this case, the special supercuspidal representations, supported on single orbits
- a more direct proof of the equality $\left(^{*}\right)$
- More test cases?
- Campbell-N (2010) + Onn-Singla (2014) give the complete explicit branching rules for unramified principal series of $G L(3, k)$

