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N : the set of five nilpotent orbits, parametrized as per DeBacker
Orbit representatives: X5 = [§ 2] witha e kX /(k*)? = (1,6, e}

7w : an irreducible admissible representation of G, of depth
r > 0, with character ©,
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2. Branching rules: for x € B and G, the associated parahoric,
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3. Orbit method philosophy: construct key representations of G
from its admissible nilpotent coadjoint orbits.
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> Fix 1): k — C*, trivial on P, nontrivial on R

» d € Zsg, e:=d/2, nilpotent X € gy g \ Ox,—d+
(two choices up to conjugacy by G; really it's coadjoint orbits)

> p(X)(Y) :=9((X,Y)) defines a character of gy et /gx,d+

~= character of G, . where u = x if d is odd and u = z if d is even
» Centralizer of X is ZN, where Z = £/, N unipotent
> 0c 2 extended to a character of ZN
Definition

We call Shalika’s representation
Sq(0,X) :=Tndgye 0 ®%(X)

a basic irreducible representation of Gy, of depth d and central
character 0. It depends only on the Gy-orbit of X.



Representations of G, attached to nilpotent G-orbits

Each nilpotent G-orbit O decomposes as Gy-orbits:

0=G6-Xa=| |G Xouu,
teZ

Definition
Let 7(0) = 1. For O € N'\ {0} set

T%(0)g = @Sd(G,Xd) (a representation of Gy)
Xd

where Xy runs over a set of representatives of

Gx-orbits in O\ gx.o-



Back to branching rules for SL(2, k)

For any 7 of depth r > 0, we have a complete description of
Resg, 7 [nos, n13].
In particular:

» ‘“heads’ (7w®+) : types or typical representations



Back to branching rules for SL(2, k)

For any 7 of depth r > 0, we have a complete description of
Resg, 7 [nos, n13].
In particular:

» ‘“heads’ (7w®+) : types or typical representations

» “tail ends” (w2, := all subrepresentations of depth > 2r) :
sum of basic Shalika representations



Back to branching rules for SL(2, k)

For any 7 of depth r > 0, we have a complete description of
Resg, 7 [nos, n13].
In particular:

» ‘“heads’ (7w®+) : types or typical representations

» “tail ends” (w2, := all subrepresentations of depth > 2r) :
sum of basic Shalika representations

» In between
J— Gx r+
Resg, m = 77" @ Treg<or © T>or

are many (non-basic) irreducible representations of
intermediate depth that are types for increasingly large
families of representations (bigger than one Bernstein block).
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Branching to Gy,
Proposition

If m has depth r, with branching rules
Resg,m = ot @ Tsr,
then there is a subset N; of N such that

Resg, . (m5r) = D 7(O)>r.
OeNz

Corollary

For each m of depth r, there is an integer ¢ and a subset Ny C N
such that on G, . we have

T=cl® @ Tx(O).

OeN-
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Getting back to the local character expansion

For x, u vertices of B:
Xx(Ou.2) : character of 7(O,.5)

For each O € N define a class function on Gg%° = U o+ DY
xeB

{0} : © =1,

O,,, : for each vertex x € B set

q . e
eu a‘Grss = % + XX(OLI,a) |f u X;
| " 2 + XX(Ou,a) if u f/z X

©,,5 is well-defined (as a consequence of branching rules).



Branching rules and the LCE

Theorem

Let w be an irreducible admissible representation of SL(2, k) of
depth r. Then there exist ty € Q and t, , € {0,1} such that on

rss
X, r+

@7r = toeo + Z tu,a @u,a-
Ou,aeN
Moreover, these coefficients agree with the local character
expansion, in the sense that

Or 0 p = toig + Z tu,a 'LL/O:
Ou,aeN

The coefficients (and much more) have been calculated for SL(2, k) in an
abundance of ways: Sally—Shalika 1968, Assem 1994, Barbasch—Moy
1997, Cunningham—Gordon 2000, DeBacker—Sally 2000, Spice 2005, - - -.
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> We have
» foreach O € N, fip o o = Op (¥)
» an explicit description of ©¢ on each Gy o4 as a sum of
representations attached to O.
> We'd like to have
» a more direct relationship from O to a representation of G, in
this case, the special supercuspidal representations, supported
on single orbits
» a more direct proof of the equality (*)
> More test cases?
> Campbell-N (2010) + Onn-Singla (2014) give the complete
explicit branching rules for unramified principal series of

GL(3, k)
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