GENERIC REPRESENTATIONS FOR QUASI-SPLIT SIMILITUDE GROUPS

THE 2020 PAUL J. SALLY, JR. MIDWEST REPRESENTATION THEORY CONFERENCE

CHRIS JANTZEN, EAST CAROLINA UNIVERSITY

October 17, 2020

1. INTRODUCTION

The following is drawn from *The generic dual of p-adic groups and local* Langlands parameters¹, joint with Baiying Liu.

Let F be a p-adic field of characteristic 0.

We focus on classical and similitude groups whose standard Levi factors have the form

$$M = GL_{n_1} \times \cdots \times GL_{n_k} \times G_{n_0},$$

where G_{n_0} is a lower rank group of the same type, and whose Weyl group acts as permutations and sign changes.

¹Legal disclaimer: paper in preparation; corrections possible.

1.1. Groups considered. For quasi-split groups, fix a quadratic extension $E = F(\sqrt{\varepsilon})$. We let G_n be one of the following groups:

- classical groups: G_n is SO_{2n+1} , Sp_{2n} , SO_{2n} , U_{2n+1} , U_{2n} , or SO_{2n+2}^*
- similitude groups: G_n is GSp_{2n} , GSO_{2n} , GSp_{2n+1} , GSp_{2n+2} , GU_{2n+1} , GU_{2n+1} , GU_{2n+2} , or GSp_{2n+2} , or GSp_{2n+2}

Parabolic subgroups and basic structure of these groups may be found in [Tad1], [Gol], [Asg], [H-S], [Xu] among other places.

1.2. **Goals.**

- Classify generic representations (with an eye toward applications as in [J-S], [Liu], [J-L])
- Fill in the gaps in the tools needed.
- Uniformize arguments across the different groups considered (as in [Tad3], [M-T], [ACS])

2. Generic representations

2.1. Generic essentially discrete series. Generic discrete series were classified for $G_n = SO_{2n+1}$ and Sp_{2n} in [Mui] and for SO_{2n} in [J-L].

NOTATION.

- $\nu = |\cdot|$ composed with determinant or similitude character
- \times, \rtimes denote (normalized) parabolic induction
- π essentially tempered if $\exists \varepsilon(\pi) \in \mathbb{R}$ such that $\nu^{-\varepsilon(\pi)}(\pi)$ is tempered

•
$$\beta = \begin{cases} \frac{1}{2}\varepsilon & \text{if } G_n = GSpin_{2n+1}, GSpin_{2n} \text{ with } n = 0, \\ \varepsilon & \text{if } G_n = GSpin_{2n+2}^* \text{ or } G_n = GSpin_{2n+1}, GSpin_{2n} \text{ with } n > 0, \\ 0 & \text{if } G_n \text{ is not a general spin group.} \end{cases}$$

• $c=usual \text{ outer automorphism-for } SO_{2n}, GSO_{2n}, GSpin_{2n} \text{ acts nontriv-ially on the simple roots; for } SO^*_{2n+2}, GSO^*_{2n+2}, GSpin^*_{2n+2}, \text{ acts triv-ially on the } F$ -data but nontrivially on the maximal quasi-split torus

We recall the following combination of results from [Zel] and [Jac]:

THEOREM (general linear groups). Let τ be an irreducible unitary supercuspidal representation of a general linear group. Let

$$[\nu^m \tau, \nu^n \tau] = \{\nu^m \tau, \nu^{m+1} \tau, \dots, \nu^n \tau\}$$

(with $m - n \in \mathbb{Z}$). We define $\delta([\nu^m \tau, \nu^n \tau])$ to be the (unique) irreducible quotient of $\nu^m \tau \times \nu^{m+1} \tau \times \cdots \times \nu^n \tau$. Then $\delta([\nu^m \tau, \nu^n \tau])$ is essentially squareintegrable, and every irreducible essentially square-integrable representation of a general linear groups has this form. Further, every such representation is generic.

THEOREM (generic essentially discrete series). Let $\Delta_i = [\nu^{-a_i} \tau_i, \nu^{b_i} \tau_i], 1 \leq 1$ $i \leq k$, where τ_i is an irreducible unitary supercuspidal representation of a general linear group. Assume that if i < j has $\tau_i \cong \tau_j$, then $a_i < b_i < a_j < b_j$. Let $\sigma^{(e0)}$ be an irreducible supercuspidal generic representation of $G_{n'}(F)$ and assume that for each i, one of the following holds (necessarily exclusive): (1) $\nu^{1+\beta}\tau_i \rtimes \sigma^{(e0)}$ is reducible, in which case $a_i \in \beta + (\mathbb{Z} \setminus \{0\})$ and $a_i \geq 1$ $\beta - 1$: (2) $\nu^{\frac{1}{2}+\beta}\tau_i \rtimes \sigma^{(e0)}$ is reducible, in which case $a_i \in \beta - \frac{1}{2} + \mathbb{Z}_{\geq 0}$; (3) $\nu^{\beta}\tau_{i} \rtimes \sigma^{(e0)}$ is reducible, in which case $a_{i} \in \beta + \mathbb{Z}_{\geq 0}$; (4) $\nu^{x}\tau_{i} \rtimes \sigma^{(e0)}$ is irreducible for all $x \in \mathbb{R}$ (a) $\check{\tau}_i \cong \tau_i$ but $c^{d(\tau)} \cdot \sigma^{(e0)} \ncong \sigma^{(e0)}$ for SO_{2n}, SO_{2n+2}^* , (b) $\check{\tau}_i \cong \tau_i$ but $\omega_{\tau} \sigma^{(e0)} \ncong \sigma^{(e0)}$ for $GSp_{2n}, GU_{2n+1}, GU_{2n}$. (c) $\check{\tau}_i \cong \tau_i$ but $\omega_\tau(c^{d(\tau)} \cdot \sigma^{(e0)}) \cong \sigma^{(e0)}$ for GSO_{2n}, GSO_{2n+2}^* , (d) $\nu^{-2\beta}\omega_{\sigma^{(e0)}}\check{\tau}_i \cong \tau_i \text{ but } c^{d(\tau)} \cdot \sigma^{(e0)} \ncong \sigma^{(e0)} \text{ for } GSpin_{2n}, GSpin_{2n+2}^*,$ in which case $a_i \in \beta + \mathbb{Z}_{\geq 0}$. (This case does not occur for SO_{2n+1} , $Sp_{2n}, U_{2n+1}, U_{2n}, GSpin_{2n+1}$.)

Then, if π is the generic subquotient of $\delta(\Delta_1) \times \cdots \times \delta(\Delta_k) \rtimes \sigma^{(e0)}$, π is essentially square-integrable. Conversely, any generic irreducible essentially square-integrable π of a group $G_n(F)$ is of this form (with $\Delta_1, \ldots, \Delta_k$ unique up to permutation), and further

$$\pi \hookrightarrow \delta(\Delta_1) \times \cdots \times \delta(\Delta_k) \rtimes \sigma^{(e0)}.$$

Note that the cusidal reducibility values in (1)-(3) follow from [Sha].

2.2. Generic essentially tempered representations.

PROPOSITION. Let τ_1, \ldots, τ_c generic irreducible unitary supercuspidal representations of general linear groups and $\sigma^{(e2)}$ a generic irreducible essentially square-integrable representation of $G_n(F)$. Let Ψ_1, \ldots, Ψ_c be segments of the form $\Psi_i = [\nu^{\frac{-k_i+1}{2}}\tau_i, \nu^{\frac{k_i-1}{2}}\tau_i]$. Then the generic component $\sigma^{(et)} \hookrightarrow \nu^{\beta}\delta(\Psi_1) \times \cdots \times \nu^{\beta}\delta(\Psi_c) \rtimes \sigma^{(e2)}$

is a generic essentially tempered representation, where $\beta = \beta(\sigma^{(e^2)})$. Further, any generic essentially tempered representation may be realized this way (with inducing representation unique up to Weyl conjugation).

This follows directly from a result of Harish-Chandra (cf. Proposition III.4.1 [Wa]).

2.3. Generic admissible representations.

NOTATION.

• For $\Sigma = [\nu^a \xi, \nu^b \xi]$, set $\check{\Sigma} = [\nu^{-b} \check{\xi}, \nu^{-a} \check{\xi}]$ (so $\delta(\Sigma)^{\vee} = \delta(\check{\Sigma})$), where `=contragredient composed with Galois conjugation for unitary and general unitary groups and contragredient otherwise.

•
$$\omega'_{\sigma^{(et)}} = \begin{cases} \omega_{\sigma^{(et)}} \ (central \ character) \ for \ general \ spin \ groups, \\ 1 \ otherwise. \end{cases}$$

Note that by the standard module conjecture ([H-O]), the Langlands quotient of a generic standard module is generic if and only if the standard module induces irreducibly. THEOREM (the Langlands classification). ² Let $\delta_1, \ldots, \delta_k$ be essentially square integrable representations of general linear groups and and T an essentially tempered representation of $G_n(F)$ satisfying

$$\varepsilon(\delta_1) \geq \cdots \geq \varepsilon(\delta_k) > \beta(T).$$

Then

$$\delta_1 \times \cdots \times \delta_k \rtimes T$$

contains a unique irreducible quotient $L(\delta_1 \otimes \cdots \otimes \delta_k \otimes T)$. Further, any irreducible admissible representation may be written in this form, with the data unique up to permutations among representations of general linear groups having the same central exponents.

See [B-W], [Sil], [Kon], etc., for the general result; [Tad1] (Sp_{2n} and GSp_{2n}), [Jan1] (SO_{2n+1} and SO_{2n}), [KimW] ($GSpin_{2n+1}$, $GSpin_{2n}$, $GSpin_{2n}^*$).

²Note that this formulation requires an artifice for SO_{2n} , $GSpin_{2n}$, GSO_{2n} (also used later).

THEOREM. Suppose $\delta(\Sigma_i) = \nu^{x_i} \delta_i$, $i = 1, 2, \cdots, f$ with $x_1 \ge x_2 \ge \cdots \ge x_f > \beta$. Then, the representation

 $\delta(\Sigma_1) \times \cdots \times \delta(\Sigma_j) \rtimes \sigma^{(et)}$

is irreducible if and only if $\{\Sigma_j\}_{j=1}^f$ and $\sigma^{(et)}$ satisfy the following properties:

- (1) $\delta(\Sigma_i) \times \delta(\Sigma_j)$ and $\delta(\Sigma_i) \times \omega'_{\sigma^{(et)}} \delta(\check{\Sigma}_j)$ are irreducible for all $1 \le i \ne j \le f$; and
- (2) $\delta(\Sigma_i) \rtimes \sigma^{(et)}$ is irreducible for all $1 \le i \le f$.

The reducibility for (1) is known from [Zel]; for (2) we write $\sigma^{(et)}$ as in the proposition above. Then $\delta(\Sigma) \rtimes \sigma^{(et)}$ is irreducible if and only if the following hold:

- (1) $\delta(\Sigma) \times \nu^{\beta} \delta(\Psi_{j})$ and $\omega'_{\sigma^{(e_{2})}} \delta(\check{\Sigma}) \times \nu^{\beta} \delta(\Psi_{j})$ are irreducible for all $1 \leq j \leq c$; and
- (2) $\delta(\Sigma) \rtimes \sigma^{(e2)}$ is irreducible.

To understand when the second condition above holds, write $\sigma^{(e^2)}$ as in the theorem above. Then, $\delta(\Sigma) \rtimes \sigma^{(e^2)}$ is irreducible if and only if the following hold:

- (1) $\delta(\Sigma) \times \delta(\Delta_i)$ and $\omega'_{\sigma^{(e0)}} \delta(\check{\Sigma}) \times \delta(\Delta_i)$ are irreducible for all $i = 1, 2, \cdots, k'$; and
- (2) either (a) $\delta(\Sigma) \rtimes \sigma^{(e0)}$ is irreducible, or (b) $\delta(\Sigma) = \delta([\nu^{1+\beta}\xi, \nu^{b+\beta}\xi]),$ with $\nu^{1+\beta}\xi \rtimes \sigma^{(e0)}$ reducible and there is some *i* having $\delta(\Delta_i) = \delta([\nu^{1+\beta}\xi, \nu^{b_i+\beta}\xi])$ and $b_i \ge b$.

Finally, for the second condition above, we have $\delta(\Sigma) \rtimes \sigma^{(e0)}$ is irreducible if and only if one of the following hold: for $\Sigma = [\nu^{-a}\xi, \nu^{b}\xi]$, we have

- (1) $\xi \not\cong \check{\xi}$; or
- (2) $\xi \cong \check{\xi}$ and the following: (i) if $\nu^x \xi \rtimes \sigma^{(e0)}$ is reducible for some (necessarily unique) $x = \alpha \ge 0$, then $\pm \alpha \notin \{-a, -a + 1, \cdots, b\}$; (ii) if $\nu^x \xi \rtimes \sigma^{(e0)}$ is irreducible for all $x \ge 0$, then $a \notin \mathbb{Z}_{\ge 0}$.

3. Tools

The main results needed:

- results on general linear groups
- cuspidal reducibility conditions
- standard module conjecture
- the Langlands classification and Casselman criterion
- formula for twisting an induced representation by characters
- μ^* structure formula for calculating Jacquet modules

3.1. Twisting by characters. The formulas below are analogues of that for GSp_{2n} in [S-T].

LEMMA. Let χ be a character of F^{\times} and identify χ with a character of $G_n(F)$ via composition with the similitude character.

(1) For
$$G_n = GSpin_{2n+1}$$
, $\chi(\pi \rtimes \theta) \cong \begin{cases} \chi \pi \rtimes \chi \theta \text{ if } n > 0\\ \chi \pi \rtimes \chi^2 \theta \text{ if } n = 0. \end{cases}$
(2) For $G_n = GSp_{2n}$, GSO_{2n+2}^* , GU_{2n+1} , GU_{2n} , $\chi(\pi \rtimes \theta) \cong \pi \rtimes \chi \theta$
(3) For $G_n = GSO_{2n}$, $\chi(\pi \rtimes \theta) \cong \pi \rtimes \chi \theta$ $(n \neq 1)$.
(4) For $G_n = GSpin_{2n}$, $\chi(\pi \rtimes \theta) \cong \begin{cases} \chi \pi \rtimes \chi \theta \text{ if } n > 1,\\ \chi \pi \rtimes \chi^2 \theta \text{ if } n = 0. \end{cases}$
(5) For $G_n = GSpin_{2n+2}^*$, $\chi(\pi \rtimes \theta) \cong \chi \pi \rtimes \chi \theta$.

3.2. μ^* structure formula. This has been done in [Tad2] (SO_{2n+1} , Sp_{2n} , and GSp_{2n}), [M-T] (U_{2n+1} and U_{2n}), [J-L] (SO_{2n}), [KimY1] ($GSpin_{2n+1}$), [KimY2] ($GSpin_{2n}$), [K-M] (GU_{2n}). The corresponding result for general linear groups is in [Zel]. Note that this also uses the artifice for SO_{2n} , $GSpin_{2n}$, GSO_{2n} .

DEFINITION. For general linear groups,

$$m^* = \sum_{k=0}^n r_{M_k,G}$$

where $M_k = GL_k \times GL_{n-k}$. For G_n , we set

$$\mu^* = \sum_{k=0}^n r_{M_k,G},$$

where $M_k = GL_k \times G_{n-k}$.

Let

$$N^* = (\check{} \otimes m^*)_D \circ s \circ m^*,$$

where $s: \tau_1 \otimes \tau_2 \mapsto \tau_2 \otimes \tau_1$ and

$$(\check{} \otimes m^*)_D(\tau_1 \otimes \tau_2) = \begin{cases} \check{\tau}_1 \otimes m^*(\tau_2) \otimes e \text{ if } \tau_1 \text{ a representation of } GL_{even}, \\ \check{\tau}_1 \otimes m^*(\tau_2) \otimes c \text{ if } \tau_1 \text{ a representation of } GL_{odd}. \end{cases}$$

Theorem. 3

$$\mu^*(\tau \rtimes \pi) = N^*(\tau) \tilde{\rtimes} \mu^*(\pi),$$

where

$$\begin{aligned} (\rho_1 \otimes \rho_2 \otimes \rho_3 \otimes d) \tilde{\rtimes}(\rho \otimes \sigma) \\ &= \begin{cases} (\rho_1 \times \rho_2 \times \rho) \otimes (\rho_3 \rtimes \sigma) \text{ for } G_n = SO_{2n+1}, Sp_{2n}, U_{2n+1}, U_{2n}, \\ (\omega_{\sigma}\rho_1 \times \rho_2 \times \rho) \otimes (\rho_3 \rtimes \sigma) \text{ for } G_n = GSpin_{2n+1}, \\ (\rho_1 \times \rho_2 \times \rho) \otimes (\rho_3 \rtimes \omega_{\check{\rho}_1}\sigma) \text{ for } G_n = GSp_{2n}, GU_{2n+1}, GU_{2n}, \\ (\rho_1 \times \rho_2 \times \rho) \otimes d(\rho_3 \rtimes \sigma) \text{ for } G_n = SO_{2n}, SO_{2n+2}^*, \\ (\rho_1 \times \rho_2 \times \rho) \otimes d(\rho_3 \rtimes \omega_{\check{\rho}_1}\sigma) \text{ for } G_n = GSO_{2n}, GSO_{2n+2}^*, \\ (\omega_{\sigma}\rho_1 \times \rho_2 \times \rho) \otimes d(\rho_3 \rtimes \sigma) \text{ for } G_n = GSpin_{2n}, GSpin_{2n+2}^*. \end{aligned}$$

³Thanks to [Arc] for helping us realize the role of c in the quasi-split case.

References

- [Arc] S. Archava, personal communication.
- [Asg] M. Asgari, Local L-functions for split spinor groups, Canad. J. Math., 54(2002), no. 4, 673-693.
- [ACS] M. Asgari, J. Cogdell, and F. Shahidi, Local transfer and reducibility of induced representations of p-adic groups of classical type, in Advances in the Theory of Automorphic Forms and Their L-functions, 1-22, Contemp. Math., 664(2016), American Mathematical Society, Providence, RI.
- [B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton University Press, Princeton, 1980.
- [Cas] W. Casselman, The structure of reductive groups, preprint.
- [Gol] D. Goldberg, R-groups and elliptic representations for similitude groups, Math. Ann., 307(1997), no. 4, 569-588.
- [H-O] V. Heiermann and E. Opdam, On the tempered *l*-functions conjecture, Amer. J. Math., 135(2013), no. 3, 777-799.
- [H-S] J. Hundley and E. Sayag, Descent construction for GSpin groups, Mem. Amer. Math. Soc., 1148(2016), 1-125.
- [Jac] H. Jacquet, Generic representations. Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), pp. 91–101. Lecture Notes in Math., Vol. 587, Springer, Berlin, 1977.
- [Jan1] C. Jantzen, Degenerate principal series for orthogonal groups, J. reine angew. Math., 441(1993), 61-98.
- [Jan2] C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math., 119(1997), no. 6, 1213–1262.
- [J-L] C. Jantzen and B. Liu, The generic dual of *p*-adic split SO_{2n} and local Langlands parameters, *Israel J. Math.*, **204**(2014), 199-260.

- [J-S] D. Jiang and D. Soudry, Generic representations and local Langlands reciprocity law for p-adic SO_{2n+1} , in Contributions to Automorphic Forms, Geometry, and Number Theory, 457–519, Johns Hopkins University Press, Baltimore, MD, 2004.
- [KimW] W. Kim, Square integrable representations and the standard module conjecture for general spin groups, Canad. J. Math., 61(2009), no. 3, 617-640.
- [KimY1] Y. Kim, Strongly positive representations of $GSpin_{2n+1}$ and the Jacquet module method, *Math. Z.*, **279**(2015), no. 1-2, 271-296.
- [KimY2] Y. Kim, Strongly positive representations of even spin groups, Pacific J. Math., 280(2016), no. 1, 69-88.
- [K-M] Y. Kim and I. Matić, Classification of strongly positive representations of even general unitary groups, preprint.
- [Kon] T. Konno, A note on the Langlands classification and irreducibility of induced representations of p-adic groups. Kyushu J. Math., 57(2003), 383-409
- [Liu] B. Liu, Genericity of representations of p-adic Sp_{2n} and local Langlands parameters, *Canad. J. Math.*, **63**(2011), no. 5, 1107–1136.
- [M-T] C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups, J. Amer. Math. Soc. 15(2002), no. 3, 715-786.
- [Mui] G. Muić, On generic irreducible representations of Sp(n,F) and SO(2n+1,F), *Glas. Mat. Ser. III*, **33(53)** (1998), no. 1, 19–31.
- [S-T] P. Sally and M. Tadić, Induced representations and classification for GSp(2, F) and Sp(2, F), Mém. Soc. Math. France, **52**(1993), 75-133.
- [Sha] F. Shahidi, A proof of Langlands conjecture on Plancherel measure; complementary series for p-adic groups Ann. of Math., 132(1990), no. 2, 273-330.
- [Sil] A. Silberger, The Langlands quotient theorem for *p*-adic groups., Math. Ann., **236**(1978), 95-104.
- [Tad1] M. Tadić, Representations of *p*-adic symplectic groups, *Compositio Math.*, **90**(1994), no. 2, 123-181.

- [Tad2] M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra, 177(1995), no. 1, 1-33.
- [Tad3] M. Tadić, On reducibility of parabolic induction, Israel J. Math., 107(1998), 29–91.
- [Wa] J.-L. Waldspurger, La formule de Plancherel pour les groupes *p*-adiques d'après Harish-Chandra, J. Inst. Math. Jussieu, **2**(2003), no. 2, 235-333.
- [Xu] B. Xu, L-packets of quasisplit GSp(2n) and GO(2n), preprint.
- [Zel] A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. (4)13 (1980), no. 2, 165–210.