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1. INTRODUCTION

The following is drawn from The generic dual of p-adic groups and local
Langlands parameters', joint with Baiying Liu.

Let F' be a p-adic field of characteristic 0.

We focus on classical and similitude groups whose standard Levi factors
have the form

M =GL,, x---xGL,, x Gy,

where G,,, is a lower rank group of the same type, and whose Weyl group
acts as permutations and sign changes.

1Legal disclaimer: paper in preparation; corrections possible.
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1.1. Groups considered. For quasi-split groups, fix a quadratic extension
E = F(y/¢). We let G, be one of the following groups:
e classical groups: G, is SO2,41, SPon, SO, Usps1, Uay, or SO3,
e similitude groups: G,, is GSpay,, GSOs,, GSpino, 1, GSpine,, GUsy, 1,
GUsy,, GSO3,, 5, or GSpins,, -

Parabolic subgroups and basic structure of these groups may be found in
[Tadl], [Gol], [Asg], [H-S], [Xu] among other places.
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1.2. Goals.
e Classify generic representations (with an eye toward applications as in

[J_S]7 [LIU‘]? [J_LD
e Fill in the gaps in the tools needed.
e Uniformize arguments across the different groups considered (as in

[Tad3], [M-T], [ACS])
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2. GENERIC REPRESENTATIONS

2.1. Generic essentially discrete series. Generic discrete series were clas-
sified for G, = SOs;,41 and Spy, in [Mui] and for SOy, in [J-L].

NOTATION.
o v =|-| composed with determinant or similitude character
e X, X denote (normalized) parabolic induction

T essentially tempered if 3 e(m) € R such that v==") () is tempered
%8 if G, = GSpinopi1, GSping, with n =0,

B =1 e if G, =GSpins, ., or Gy, = GSping,41, GSping, with n > 0,
0 if G, is not a general spin group.

c=usual outer automorphism—for SOs,, GSOs,, GSping, acts nontriv-
ially on the simple roots; for SO5, o, GSO3, o, GSping, o, acts triv-
wally on the F'-data but nontrivially on the maximal quasi-split torus
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We recall the following combination of results from [Zel] and [Jac]:

THEOREM (general linear groups). Let 7 be an irreducible unitary supercus-
pidal representation of a general linear group. Let

[V v = W v )
(with m —n € Z). We define 6([v™T,v"7]) to be the (unique) irreducible
quotient of V™1 X V"L x .. x v, Then §([v™1,v"7]) is essentially square-
integrable, and every irreducible essentially square-integrable representation

of a general linear groups has this form. Further, every such representation
1S generic.
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THEOREM (generic essentially discrete series). Let A; = [v %7, vbir], 1 <
1 < k, where 1; is an irreducible unitary supercuspidal representation of a
general linear group. Assume that if i < j has 7; = 7, then a; < b; < a; < b;.
Let 09 be an irreducible supercuspidal generic representation of G (F) and
assume that for each i, one of the following holds (necessarily exclusive):

(1) P74 0\ s reducible, in which case a; € f+ (Z\ {0}) and a; >

(
(
(

5_1;'

2) v2 7 % o s reducible, in which case a; € B — 2+ Zso;
3) Vi xo
4) v 3 ol

(€0) s reducible, in which case a; € B + L=

0) is irreducible for all v € R

(a) 7 2 7 but 7). (0 £ 5(0) for SO,,, SO3,.»,

( ) Tz = 7'Z but Wr 0' eO % O’ (c0) fO?” GSpgn,GUgn+1,GU2n,

(c) 7 & 7 but w (¢4 - g0 2 5l0) for GSOy,, GSOS, ,,

(d) v=2Pw, 0T = 7; but cd(T) o0 2 5 (€0) for GSping,, G Spins,, .o,

in which case a; € B+ Z>q. (This case does not occur for SOg,.1,
Span, Usni1, Usp, GSpingy+1.)
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Then, if © is the generic subquotient of §(Ay) X -+ x §(A) x o, 7 is
essentially square-integrable. Conversely, any generic irreducible essentially
square-integrable m of a group G, (F) is of this form (with Ay, ..., Ay unique
up to permutation), and further

T 8(A]) X -+ X 8(A) x o'V,
Note that the cusidal reducibility values in (1)-(3) follow from [Sha].
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2.2. Generic essentially tempered representations.

PROPOSITION. Let 1,...,T. generic irreducible unitary supercuspidal repre-
sentations of general linear groups and c(°® o generic irreducible essentially
square-integrable representation of G, (F'). Let Wy, ..., V. be segments of the

—k;+1 k;—1

form U; = [v—=2 7,,v 2 7;]. Then the generic component
o) VP5(Wy) x - x VP5(0,) X o)
1S a generic essentially tempered representation, where 5 = (8 (0(62)). Further,

any generic essentially tempered representation may be realized this way (with
inducing representation unique up to Weyl conjugation).

This follows directly from a result of Harish-Chandra (cf. Proposition 111.4.1
[Wal).
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2.3. Generic admissible representations.

NOTATION.
o For ¥ = [, 00, set X = [ b, v7%] (so §(8)Y = §(%)), where
© =contragredient composed with Galois conjugation for unitary and
general unitary groups and contragredient otherwise.

o wol ( ce@tml character) for general spin groups,
o(<t) 1 otherwise.

Note that by the standard module conjecture ([H-O]), the Langlands quo-
tient of a generic standard module is generic if and only if the standard
module induces irreducibly.
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THEOREM (the Langlands classification). 2 Let 41, . .., 6 be essentially square
integrable representations of general linear groups and and T an essentially
tempered representation of G, (F) satisfying

e(61) > --->¢(br) > B(T).
Then
0] X +++ X0 xT
contains a unique irreducible quotient L(01 ®--- @0, @ T). Further, any irre-
ducible admissible representation may be written in this form, with the data

unique up to permutations among representations of general linear groups
having the same central exponents.

See [B-W], [Sil], [Kon], etc., for the general result; [Tad1l] (Spa, and GSps,),
[Janl] (SOg,41 and SOs,), [KimW]| (GSping,+1, GSping,, GSpin}, ).

2Note that this formulation requires an artifice for SOa,,, GSping,, GSOa, (also used later).
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THEOREM. Suppose §(%;) = v*6;, 1 =1,2,--- , f withxy > 29 > -+ > x5 >
B. Then, the representation

§(51) X -+ X 8(%;) % o'
15 1rreductble if and only if {Ej}le and o' satisfy the following properties:

(1) 6() x 0(%;) and 6(%;) X W’ ., 6(;) are irreducible for all 1 < i +# j <
f; and

(2) 6(;) x oD s dirreducible for all 1 < i < f.

The reducibility for (1) is known from [Zel]; for (2) we write o't as in the

proposition above. Then §(X) x o) is irreducible if and only if the following
hold:

(1) 6(Z)xv?0(¥;) and o' .., 6(2) xv?5(W;) are irreducible for all1 < j < ¢;
and
(2) 0(2) x o) is irreducible.
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To understand when the second condition above holds, write c'¢? as in the
theorem above. Then, 6(%) X o2 s qrreducible if and only if the following
hold:
(1) 6(Z)x0(A;) and W’ ., 8(X)x(A;) are irreducible for alli = 1,2, | K;
and
(2) either (a) §(X) x o0 is drreducible, or (b) §(X) = 6([v' 7€, VP8¢,
with V'PEx0 ) reducible and there is some i having 6(A;) = 6([v' 8¢, v *P¢])
and b; > b.

Finally, for the second condition above, we have 6(X) x 0\ is irreducible
if and only if one of the following hold: for ¥ = [V, V€], we have
(1) £ & or
(2) € = & and the following: (i) if v"¢ x oY) is reducible for some (nec-
essarily unique) r = « > 0, then +a & {—a,—a + 1,--- ,b}; (ii) if
V€ x ol s drreducible for all x > 0, then a & Z>y.
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3. TooLs

The main results needed:

e results on general linear groups

e cuspidal reducibility conditions

e standard module conjecture

e the Langlands classification and Casselman criterion

e formula for twisting an induced representation by characters
e 1" structure formula for calculating Jacquet modules
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3.1. Twisting by characters. The formulas below are analogues of that
for GSpa, in [S-T].

LEMMA. Let x be a character of F* and identify x with a character of Gy, (F)
via composition with the similitude character.
_ . ~ ] xmxx0ifn>0
) For G, = GSping,.1, x(m % 0) = { v 20 if = 0.
For Gn = GS}?Qn, GSO;TH_Q, GU2n+1, GUQn, X(?T X @) =71 X X@.
For G,, = GSOqy,, x(m x0) =71 xx0 (n#1).

1
2)
3)
B _ ~ ) xmxx0ifn>1,
)

(
(
(
(
(5) For G, = GSpins,, .o, x(m x 0) = xm x x6.
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3.2. p* structure formula. This has been done in [Tad2| (SOs,11, Spon,
and GSan)7 [M_T] (U2n+1 and U2n>> [‘]_L] (SOQTL)v [Klel] (Gspin2n+1)a
[KimY2] (GSping,), [K-M] (GUs,). The corresponding result for general lin-
ear groups is in [Zel]. Note that this also uses the artifice for SOy, GSpinsg,,
GSOy,.

DEFINITION. For general linear groups,

n

%
m = E er,Ga

k=0
where M, = GL; x GL,_;. For G, we set

n
n = TMk,G7
k=0

where My, = GL X G, —p..
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Let
N*=(®m")posom’,
where s : 11 ® 9 — T ® 71 and

71 @ m* (1) ® e if 71 a representation of G Leyen,

(@m")p(n®mn) = { 71 ®@ m*(1y) ® c if 7 a representation of G Lygg.

17
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THEOREM. °
(T ) = N*(7) %" (1),

where

(p1 ® p2 @ p3 @ d)x

(

)% (p® o)
(p1 X p2a X p) @ (p3 ¥ 0) for G, = SO211, Span; Uani1, Uan,
(Wep1 X p2 X p) @ (p3 x o) for Gy, = GSping,1,
_ ) (p1 X p2 x p) @ (p3s X wp0) for Gy = GSpay, GUspy1, GUay,
(pl X p2 X :0) ® d(p3 X U) Jor G, = 503, 502n+27
(/01 X p2 X P) ® d(p3 X Wp, O ) for Gn, = GSOsy, GSO;n—&-%
(wep1 X p2 X p) @ d(ps x o) for G, = GSping,, GSpins, .

\

3Thanks to [Arc] for helping us realize the role of ¢ in the quasi-split case.
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