Ramification of supercuspidal parameters

work in progress with Gan, Lomelí, and Sawin

Columbia University

September 27, 2020

イロト イポト イヨト

< ∃⇒

Review of V. Lafforgue's global results

Let *p* be a prime number, $k = \mathbb{F}_q$ a finite field of characteristic *p*, *Y* be a smooth projective curve over k, $\ell \neq p$ a prime. Let *G* be a split semisimple group over K = k(Y), $\mathcal{A}_0(G)$ the set of cuspidal automorphic representations of $G(\mathbf{A}_K)$, $\mathcal{G}^{ss}(G)$ the set of semisimple homomorphisms

$$\rho_{\ell}: Gal(K^{sep}/K) \to \hat{G}(\overline{\mathbb{Q}}_{\ell}).$$

Theorem (VL)

There is a map

$$\mathcal{L}:\mathcal{A}_0(G)\to\mathcal{G}^{ss}(G)$$

with the following property: if v is a place of K and $\Pi \in \mathcal{A}_0(G)$ is a cuspidal automorphic representation such that Π_v is unramified, then $\mathcal{L}(\Pi)$ is unramified at v, and the semisimplification $\mathcal{L}^{ss}(\Pi)|_{W_{K_v}}$ is the Satake parameter of Π_v .

Theorem (Genestier-Lafforgue)

With the above hypotheses, let w be any place of K. Then

 $\mathcal{L}_{w}(\Pi_{w}) := [\mathcal{L}(\Pi) \mid_{W_{K_{w}}}]^{ss}$

depends only on K_w and Π_w (not on the globalizations K and Π). Moreover, \mathcal{L}_w is compatible with parabolic induction in the obvious sense.

In particular, if F = k((t)) is an equal characteristic local field and π is an irreducible representation of G(F), we can define the semisimple homomorphism

$$\mathcal{L}(\pi): W_F \to \hat{G}(\overline{\mathbb{Q}}_\ell).$$

Let $\sigma: \hat{G} \to GL(N)$ be any representation, *S* the set of primes where Π is ramified. Then

$$\mathcal{L}(\Pi)_{\sigma} := \sigma \circ \mathcal{L}(\Pi) : Gal(K^{sep}/K) \to GL(N, \overline{\mathbb{Q}}_{\ell})$$

corresponds to a semi-simple ℓ -adic local system $L(\Pi)_{\sigma}$ on $Y \setminus |S|$.

By Deligne's Weil II, each irreducible summand of $L(\Pi)_{\sigma}$ is punctually pure (up to twist by a character of $Gal(\bar{k}/k)$). It follows that for any *w*, the eigenvalues of $\sigma \circ \mathcal{L}_w(\Pi_w)(Frob_w)$ are Weil *q*-numbers of various weights (up to the twist, which we ignore).

Say a representation π of G(F) is *pure* if for some (equivalently, for any) faithful σ , all the eigenvalues of $\sigma \circ \mathcal{L}(\pi)(Frob_q)$ have the same weight.

イロト 不得 トイヨト イヨト

What about supercuspidals?

If $G \neq GL(n)$, not all supercuspidals are pure. Here is our main theorem. Recall that G is split semisimple.

Theorem (GHLS)

Let π be a pure supercuspidal representation of G(F). Suppose π is compactly induced from a compact open subgroup of G. Suppose moreover that q > 3. Then $\mathcal{L}(\pi)$ is not unramified.

Henceforward we assume p does not divide the order of the Weyl group W(G), so we can apply Fintzen's theorem. Because the local parametrization \mathcal{L} is compatible with parabolic induction, we immediately conclude

Corollary

Let π be a pure representation of G(F). Suppose Suppose $\mathcal{L}(\pi)$ is unramified. Then π is an irreducible constituent of an unramified principal series.

Incorrigible representations

Suppose there is a good notion of local and global *cyclic stable base change* over function fields, as treated in Labesse's book. We define an *incorrigible representation* of G(F) to be a supercuspidal representation π such that, for any sequence $F \subset F_1 \subset \cdots \subset F_r$ of cyclic Galois extensions, the base change of π to F_r (which is an *L*-packet) contains a supercuspidal member.

Corollary

Under the above hypotheses, no pure supercuspidal representation is incorrigible.

For G = GL(n) this was proved by Henniart, using his numerical correspondence, and again by Scholze, using nearby cycles. In retrospect, this, together with the existence of a canonical parametrization, is a key step in any proof of the local Langlands correspondence for GL(n).

Let $Y = \mathbb{P}^1$, K = k(t). Choose a Borel $B \subset G$, B_- an opposite Borel. Let $I_0 \subset G(K_0)$ (resp. $I_{\infty,+} \subset G(K_\infty)$ denote the Iwahori corresponding to *B* (resp. the pro-unipotent radical of the Iwahori corresponding to B_-). We construct a cuspidal automorphic representation Π of $G(\mathbf{A}_K)$ such that

- (a) At every $z \in \mathbb{G}_m(k) \subset \mathbb{P}^1(k) \subset \mathbb{P}^1(\bar{k}), \Pi_z \xrightarrow{\sim} \pi;$
- (b) For $x \notin |\mathbb{P}^1(k)|$, Π_x is unramified
- (c) $\Pi_{\infty}^{I_{\infty,+}} \neq 0.$
- (d) $\Pi_0^{I_{0,+}}$ contains a vector transforming under a certain character χ_k of $I_0/I_{0,+}$.

イロト 不得 とくほ とくほとう

Application of purity

Suppose $\mathcal{L}(\pi)$ is unramified. By the purity hypothesis, for any faithful $\sigma \in Rep(\hat{G}), \mathcal{L}(\Pi)_{\sigma}$, which is a priori an ℓ -adic local system on $\mathbb{P}^1 \setminus |\mathbb{P}^1(k)|$, extends to a punctually pure local system on \mathbb{G}_m . (There is no unipotent monodromy at the points in $\mathbb{G}_m(k)$.) Moreover, our hypotheses imply that the ramification at 0 and ∞ is *tame*. Thus it is a sum of local systems induced from characters of finite order of the tame fundamental group of \mathbb{G}_m . Of course, $\mathcal{L}(\Pi)_z = \mathcal{L}(\pi)$ for every $z \in \mathbb{G}_m(k)$. By varying the character χ_k , we obtain a contradiction.

イロト イポト イヨト イヨト

Suppose for simplicity π is compactly induced from $U = G(\mathcal{O}_F)$. Let φ_{π} be a matrix coefficient of π supported in U, $\varphi_{\pi}(1) = 1$. We construct Poincaré series on $G(\mathbf{A}_K)$ as in the Gan-Lomelí paper

$$P_{arphi}(g) = \sum_{\gamma \in G(K)} arphi(\gamma \cdot g), g \in G(\mathbf{A}_K)$$

where $\varphi = \prod_{x} \varphi_{x}$ with (a) At every $z \in \mathbb{G}_{m}(k) \subset \mathbb{P}^{1}(k), \varphi_{z} = \varphi_{\pi}$; (b) For $x \notin |\mathbb{P}^{1}(k)|, \varphi_{x} = 1_{G(\mathcal{O}_{x})}$; (c) $\varphi_{\infty} = 1_{I_{\infty,+}}$; (d) $\varphi_{0} = \chi_{k} : I_{0}/I_{0}(p) \to \mathbb{C}^{\times}$

The support conditions imply $P_{\varphi}(1) = 1$ and then P_{φ} generates the desired Π .

不得下 イヨト イヨト

The assumption that π is compactly induced from $G(\mathcal{O}_F)$ allows us to choose the local groups at 0 and ∞ very simply. In general one shows they can be chosen to guarantee $P_{\varphi}(1) = \varphi(1) = 1$ by an argument on the Bruhat-Tits building of *G*.

The case of reductive G reduces easily to the semisimple case. We have not looked seriously at non-split G.

・ 得 ト ・ ヨ ト ・ ヨ ト

Theorem

Suppose π is a pure supercuspidal compactly induced from an open compact subgroup that is **small** in an appropriate sense. Then $\mathcal{L}(\pi)$ is wildly ramified.

An example of small open compact subgroup is the principal congruence subgroup $G(\mathcal{O}_F)_+ \subset G(\mathcal{O}_F)$. Arguing as before, one gets a non-vanishing Poincaré series that is unramified outside ∞ , thus a local system on \mathbb{A}^1 . By the previous theorem, $\mathcal{L}(\pi)$ is ramified, and since there are no tamely ramified local systems on \mathbb{A}^1 , the ramification must be wild.

There are more general "small" open compacts – any pro-*p* open compact is "small" – but the general argument is more subtle.