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Harish-Chandra’s local character expansion

• G – connected reductive group,
• g – its Lie algebra,
• F – non-Archimedean local field (could be char. 0 or char. p),
• ⇡ – irreducible admissible representation of G(F ),
• ✓⇡ – the character of ⇡ (thought of as a function on G(F )reg; will define).

Theorem
For Y close to 0 in g, (in finite characteristic, assume p large enough),

✓⇡(exp(Y )) =
X

O

cOµ̂O(Y )

– an equality of functions defined on the set of regular semisimple elements. The sum

is over nilpotent orbits.

Broad questions:
• What can be said about cO?
• To what extent are the both sides ‘independent of F ’?
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Observation (M. Assem, Waldspurger) :

With the right choice of measures, the coefficients cO are rational numbers, in many
cases, e.g.:

• c{0}(⇡) =
(�1)`
d(St) d(⇡), where d(⇡) is the formal degree (H-C, Rogawski);

• Can normalize measures so that cO(⇡) is a natural number (if non-zero) for every
O of maximal dimension, for every smooth irrep ⇡. (Moeglin-Waldspurger)

Conjecture: The coefficients cO are rational for any admissible representation of a
connected reductive p-adic group. (Note: sufficient to prove for supercuspidal

representations).

Two main goals:
• Prove this conjecture (using new information about a different local character

expansion)
• Do it ‘uniformly in p’, namely, prove that cO are ‘motivic’.

Plan for the talk:
• Define ‘motivic’
• Define characters and orbital integrals.
• Construct a lot of the data in the ‘motivic’ framework.
• Outline the proof.
• (if there’s time) discuss general results about motivic functions.
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Denef-Pas Language

Formulas are allowed to have variables of three sorts:
• F : valued field sort, (+, ⇥, ’0’,’1’, ac(·), ord(·) );
• Z: value sort, (+, ’0’, ’1’, ⌘n, n � 1) (Presburger language);
• k : residue field sort, (language of rings: +, ⇥, ’0’, ’1’)

Formulas are built from arithmetic operations, quantifiers, and symbols ord(·) and
ac(·).

Example
�(y) = ’9x , y = x2’, (here y is a free and x is a bound variable) or, equivalently,

�(y) = ’ord(y)⌘ 0 mod 2 ^ 9⇠ : ac(y) = ⇠2’.

A subset of F m
⇥ kn

⇥ Zr is called definable if it can be defined by
’�(x1, . . . , xm, ⇠1, . . . , ⇠n, z1, . . . , zr ) is true’, where � is a formula in the language.
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Definable sets and functions
Main point: ‘stratify’ definable subsets of F n into disjoint unions of families of (p-adic)
balls whose centres are parametrized by a constructible subset of kr , and whose radii
are indexed by a definable subset of Zm.

Then integration over such sets would reduce to counting points on varieties over the
finite residue field, and summation of geometric series.

Example

Definable subsets of Zn in Presburger language:
• For n = 1: finite unions of points and

(one-sided) arithmetic progressions
• generally: finite unions of periodic subsets cut

off by hyperplanes, and singletons

1
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Specialization
A definable function is a function f : F a

⇥ kb
⇥ Zc

! F n
⇥ km

⇥ Zr whose graph is a
definable set.

Example
Definable functions:

• Polynomials with Z-coefficients on F n;
• piecewise-linear functions from Zn to Z;
• ord(f (x1, .., xn)), f - such a polynomial, is a definable function from F n to Z;
• Characteristic function of a definable set.

For a given field:
(F ,$) ($ - a uniformizer) gives a structure for Denef-Pas language: we allow the
variables of the corresponding sorts to range over F and k , the residue field of F ,
respectively.

• The function ord(·) specializes to the usual valuation;
• the function ac(·) specializes to the first nonzero coefficient of the $-adic

expansion.
• Any formula in the language of rings with n free variables ranging over the residue

field specializes to the number of the points in kn that satisfy it.
• We introduce a special symbol L that specializes to q = #k .

Because of specialization our results are only valid for large p!
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Motivic functions

Definable functions are still far from what we need to have a chance of describing
representation theory.
A motivic function on a definable subset X of F n has the form:

f (x) =
NX

i=1

L↵i (x)[p�1
i

(x)]
� N

0Y

j=1

�ij (x)
�� N

00Y

`=1

1
1 � Lai`

�
,

where:
• ai` are negative integers;
• ↵i : X ! Z with i = 1, . . .N, and �ij : X ! Z with i = 1 . . . ,N, j = 1, . . . ,N0 are

Z-valued definable functions;
• Yi are definable sets such that Yi ⇢ kri ⇥ X for some ri 2 Z, and pi : Yi ! X is

the coordinate projection.
Motivic functions take values in Z

⇥
L,L�1, (1 � L�i )�1, i � 1

⇤
.

Example
Motivic constant: a motivic function on a single point; has the form
�L↵ Q

N

i=1(1 � qai )�1[Y ], where ai ,�,↵ 2 Z; Y - a constructible set over the residue
field. Given F , specializes to �q↵ Q

N

i=1(1 � qai )�1#Y (k).
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Integration

The point: we want a class of functions on F n that contains characteristic functions of
definable sets, and functions of the form |f (x1, ..xn)|, where f is a polynomial. The
other terms come from the need to make this class of functions stable under
integration.

Theorem
(R. Cluckers and F. Loeser + I. Halupczok + J.G.)

The class of motivic functions is closed under integration:

Z

Fm

f (x1, . . . , xm, y , z) dx1 . . . dxk = h(xk+1, . . . , xm, y , z)

whenever f (x , y , z) 2 L1(dx1 . . . dxk ), where h is again a motivic function.
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Motivic exponential functions

There is a way to define “motivic exponential functions” that specialize to functions of
the form

F (x) =
X

i

ai (x) (hi (x)),

where ai are motivic functions and hi are definable (with values in the valued field).

To get a specialization of a motivic exponential function, we need to specify F , $, and
a level zero additive character  of F . (hence, the name “exponential”).

The class of motivic exponential functions is preserved under (motivic) integration, and
Fourier transform, as well as under taking pointwise limits, and Lp-limits.



The
question

Motivic
functions

Characters
and orbital
integrals
The goal,
revisited.

Outline of
the answer
Constructing
the
parameter
space

Outline of
Assem’s
proof

Possible
conse-
quences

Characters and orbital integrals

• ⇡ : G(F ) ! End(V ) – an irreducible admissible representation; V is a C-vector
space (usually, infinite-dimensional).

• The distribution character is represented on Grss by a locally constant, locally
integrable function; that is, for f 2 C1

c (G):

⇥⇡(f ) := Tr
Z

G

f (g)⇡(g) dg =

Z

G

✓⇡(g)f (g) dg.

where ✓⇡ is locally constant on Grss (and can be extended by zero outside).
• Orbital integral:

µX (f ) =

Z

G/CG(X)
f (gXg

�1)d⇤
g,

where CG(X) = {g 2 G | gXg�1 = X}.
If F has positive characteristic, we have to assume it is sufficiently large so that the orbital
integral is a distribution on C

1
c

(g).
Normalization of d

⇤
g: for every reductive group M that arises as a centralizer (i.e.

CG(X) = M(F ) for some X 2 g(F )), fix the canonical measure dm on M (B. Gross). Then
we get the G-invariant measure d

⇤
g := dg/dm on the adjoint orbit of X . This gives a way to

normalize the measures on the orbits uniformly, and these measures are ‘rational-valued’.
(There are finitely may possibilities for the root datum of M

0).
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Fourier transform; exponential map

• For f 2 C1
c (g),

f̂ (X) :=

Z

g(F )
f (Y ) (hX ,Y i)dY ,

where h, i is a G-invariant non-degenerate bilinear form on g.

• for µ – a distribution on C1
c (g), µ̂(f ) := µ(f̂ ).

• µ̂X is represented by a locally constant, locally integrable function µ̂X .
• “exp : g(F ) ! G(F )”, a G(F )-equivariant map; will need it to preserve

Moy-Prasad filtrations and be definable. Its existence is a mild extra hypothesis.
• There is a finite list of nilpotent orbits N (if finite characteristic p, assume p is

large).
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H.-C. local character expansion

Theorem
For every admissible representation ⇡ there exist constants cO , O 2 N , such that

near the origin in g(F ),

✓⇡(expY ) =
X

O2N

cObµO(Y ).

(Harish-Chandra and Howe in characteristic zero; Waldspurger; DeBacker in large

positive characteristic, with explicit neighbourhood of the identity gr+ , depending on

the depth r of ⇡).

We only consider supercuspidal representations, and put two depth r representations
in the same equivalence class if their characters coincide on gr+ .
Intermediate goal: Prove that this is an equality of motivic exponential functions.
However, just that would not be enough for rationality of cO , because of the character
 . We will use a similar equality of distributions with some carefully chosen test
functions to prove that cO are motivic constants.
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The parametrizing data

First, we need to define what we mean by ✓⇡ in a field-independent way.

Fix r . First, (G, g, gr+ ,N ) are constructed as fibres in a definable family:
• fixed choices: Root system, Galois group of an extension that splits G, alcove, . . . .
• A definable set Z of cocycles defining G, g;
• N , gr+ can be constructed as fibres in a definable family over Z . (T. Hales, JG).

Every group appears infinitely many times (do not identify isomorphic fibres), and
there are some “garbage fibres”. The orbital integrals and their Fourier transforms are
motivic (exponential) functions on this definable set.

Next, need the data to parametrize our ‘equivalence classes’ of depth-r
representations (i.e. restrictions of their characters to gr+ ).
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J.-K. Yu’s construction

We assume that p is large.

Supercuspidal representations ⇡ of Gz are parametrized by J.-K. Yu’s data
(~G, ~�,⇡0, x), where ~G = (G0, . . .Gd ) is a sequence of twisted Levi subgroups with
Gd = G, �i is a character of Gi , ⇡0 is a depth-zero supercuspidal representation of
G0, and x is a point in the reduced building of G.

The point x can be treated as a fixed choice.

The groups Gi are encoded by appropriate cocycle spaces Z i .

The representation ⇡0 is a depth-zero representation of G0; it is obtained from a
representation ⇢0 of a group G0 over the residue field (next slide).

The things in red are not part of motivic framework; but we (intend to) prove that they
do not contribute anything non-motivic near the identity.



The
question

Motivic
functions

Characters
and orbital
integrals
The goal,
revisited.

Outline of
the answer
Constructing
the
parameter
space

Outline of
Assem’s
proof

Possible
conse-
quences

Depth-zero representations:

G0 ⇡0

6induction

?

K 0 ⇢̃0

6mod $ inflation

G0(k) ⇢0

Only need the character or ⇢0 restricted to unipotent elements, and that is ‘motivic’
(comes from Lusztig).
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Assem’s proof of rationality

Recall the equality of distributions:

⇥⇡(f ) =
X

O

cOµO(f̂ ).

1 Assem proves that orbital integrals are rational for rational-valued test functions,
using Igusa theory.

2 finds a collection of test functions such that with the ordering of nilpotent orbits by
dimension, the matrix of cO ’s is upper-triangular, and

3 It is somehow also known that ⇥⇡(f ) is rational for these test functions.
(3) works for depth-zero ⇡ (the test functions are Gelfand-Graev characters:
Barbasch-Moy), and for the ⇡ where Murnaghan-Kirillov theory gives ✓⇡ = d⇡µ̂X .
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Kim-Murnaghan character expansion

J.-L. Kim and F. Murnaghan associate to the G-datum (~G, x0, ~�) an element � in g and
prove that, if OG(�) is the set of adjoint orbits of G on g whose closures contain � then
there is an indexed family (cO(⇡))

O2OG(�) of complex numbers such that

✓⇡(exp(Y )) =
X

O2OG(�)

cO(⇡)µ̂G

O
(Y )

for Y 2 g(r/2)+, where r is the depth of ⇡.

Theorem (L. Spice, in progress)

✓⇡0 (exp(Y )) =
X

O02OG0 (0)

c
Ad(G)(�+O0)(⇡)µ̂

G
0

O0 (Y )

for Y 2 g0
0+.

That is, the coefficients in the local character expansion of ⇡0 are the same as the
corresponding coefficients in the asymptotic character expansion of ⇡. Since
CG(�) = G0 the ‘fattening map’ OG

0
(0) ! O

G(�) that sends O
0 to Ad(G)(�+O

0) is
surjective, so that the asymptotic character expansion of ⇡ contains precisely the
same information as the local character expansion of ⇡0.
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Putting it together

To prove that cO are motivic constants (in particular, rational):
• Prove that the Fourier transforms of Gelfand-Graev characters are ‘motivic’.
• Conclude that in the depth-zero case, cO ’s are a collection of ratios of motivic

functions of all the parameters, as in Assem’s proof.
• Use L. Spice’s theorem to reduce the general case to depth zero.

Remark. We never construct representations in the ‘motivic’ world (this cannot be
done without multiplicative characters of the field, as a minimum); but from the fixed
choices and the parameter spaces attached to the fixed choices, we construct both the
(Fourier transforms of) nilpotent orbital integrals, and the orbital integrals that appear
on the left-hand-side via Murnaghan-Kirillov theory. Then we just use the fact that
orbital integrals are ‘motivic distributions’.
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Some more model theory

Lemma (Cluckers-Halupczok)
Consider f (x) : R�0 ! R an ‘exponential polynomial’ – a function of the form

f (x) =
rX

i=1

ci x
ai b

x

i
,

where bi > 0 are distinct, ai , ci 2 R (for simplicity we take ai 2 Z). Then the number of

zeroes of f is bounded by a constant that depends only on r .

This Lemma follows from a deep theorem due to Alex Wilkie.

Now, a motivic function on Z has the form:

f (x) =
NX

i=1

ci

0

@
NjY

j=1

↵ij (x)

1

A p
�i (x),

where, as before,
• ↵ij : Z ! Z, �i : Z ! Z are definable functions;
• ci 2 R are constants.

(The domain could be Zn but we do not need it now).
Key point: By the Lemma the number of zeroes of such a function (if it is not
identically zero) is bounded independently of everything, including p.
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Properties of motivic functions: uniformity in p

Theorem (Cluckers-Halupczok)
Let F (x , y) be a motivic function on X ⇥ Y. Then {x : F (x , y)is as a function of y}

is the zero locus of some motivic function on X.

Here can be: ‘integrable’, ‘bounded’, ‘in L2’, approaching 0, etc.

In particular, as we apply it to a family {fn} (n 2 Z) of motivic functions (say, on
G(Qp)), we get a motivic function on Z, and the "key point" applies. It follows that, for
example:

• suppose we know that fn(x) ! 0 as x ! 0 in all Qp . Then given ✏, the N you
need does not depend on p.

• (Uniformity of asymptotic expansions) Suppose H1, H2 are motivic (exponential)
functions, say, on an affine space, and for every p-adic field F , (H1)F = (H2)F on
a neighbourhood of 0. Then this neighbourhood is of the same radius for all F of
sufficiently large residue characteristic, and this statement can be transferred to F

of positive characteristic. In particular, this applies to Shalika germ expansions.
(Not new for the local character expansion, of course).
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Further Properties: uniformity of bounds

Some examples:
• If a motivic (exponential) function H is bounded for every value of a parameter
� 2 Zn, then it is bounded by the expression of the form qa+bk�k.

• In particular, one gets uniform bounds for orbital integrals on the spherical Hecke
algebra (and now we could get them for characters, as well).

• (Harish-Chandra, Herb). Let ! be a compact subset of g(F ). Then

sup
!

|D(X)|1/2
|D(Y )|1/2

|µ̂X (Y )| < 1.

• It follows from (1): If !m is a family of definable compact sets, then

sup
!m

|D(X)|1/2
|D(Y )|1/2

|µ̂X (Y )|  q
a+bkmk

F
.

Stronger bounds for characters are known by other methods for large p (J.-L. Kim, E.
Lapid, ...), but maybe not for completely general families of test functions.


