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Local Langlands correspondence for GL,(F)

Let F be a finite extension of Qp, and let WDfg denote the Weil-Deligne group
of F. The local Langlands correspondence for GL,(F) is a bijection

¢ +— m(9)

between the equivalence classes of n-dimensional complex representations of
the Weil-Deligne group WDF on which Frobenius acts semisimply, and the
equivalence classes of irreducible admissible smooth complex representations of
GL,(F).

> Proved by Kutzko for GLa>(F).
> Proved by Harris-Taylor and Henniart for GL,(F) [H-T], [Hen].

The idea of p-adic Langlands correspondence for GL>(Q,) was first formulated
and investigated by Breuil. It was established by the work of many people, and
proved by Colmez [Col2010].



p-adic Langlands correspondence for GL2(Qp)
Let E be a finite extension of Q,. Let

¥+ Gal(Q@,/Qp) — GLa(E)

be an absolutely irreducible Galois representation. Attached to 1 by the p-adic
Langlands correspondence is the representation

Mm=n()

such that
» [1is a continuous E-Banach space representation of G = GL»(Q));
» M is unitary, that is, ||g.v|| =||v||, forall g€ G, v e,

> I is admissible in the sense of [SchT] (this means that the continuous
dual I is finitely generated as a module over the Iwasawa algebra E[[K]]

for some (hence any) compact open subgroup K of G); and

» [1is non-ordinary, that is, I is not a subquotient of a unitary parabolic

induction from a unitary character.



The structure of MN(v))

n M = M(%)) the irreducible admissible Banach

space representation attached to v

M°" = locally analytic vectors in

I—lan

M™% = locally algebraic vectors in I

I—Ilalg — 7T(1/1) ® I—lalg
nele (1)) smooth

M algebraic

M™% = 0 if and only if ¢ is de Rham with
distinct Hodge-Tate weights

Suppose that v is de Rham with distinct Hodge-Tate weights. Then
» If ¢ is trianguline, then (1)) is a principal series or the Steinberg
representation.

» If ¢ is not trianguline, then (1)) is supercuspidal.



Filtered modules

We work with M = M(%) such that M + 0 because

» we know smooth representations of G, and

> 1) corresponds to a 2-dimensional filtered module D which can be
described explicitly [Fon1994a,b].

For example, if 1 : Gg, — GL2(E) is an absolutely irreducible crystabelline
representation (i.e., becomes crystalline over an abelian extension of Qp), we
associate to it an admissible filtered (¢, Gg,)-module Deis(10). We will describe
it explicitly later.

The jumps in the filtration on D are the negatives of the Hodge-Tate weights
of 3. That is, if h is a Hodge-Tate weight, one has Fil"(D) # Fil"*'(D).



The smooth part of M(v))
From now on, we assume that v is de Rham with distinct H-T weights a < b.
Then
n'e — m(¥) ® e
= 7(1)) ® det® ® Sym® " "}(E?).
Let
¢ = WD(¢)
be the Weil-Deligne representation associated to 1. Let 7;,(¢) be the
irreducible smooth representation of G over @p attached to ¢ by the classical
local Langlands correspondence. A twist of m..(¢) has a canonical model over
E [BrSch]. We denote this smooth E-representation of G by

m(¢).
If w(¢)) is irreducible, then
m(¥) = 7(9).
If w(¢) is reducible, then we have the following exact sequence

0= m(¥)" = m(¢) = m(¢) = O,

where 7()™ is the unique irreducible subrepresentation of w(%). (7(v) is a
standard module, and 7(¢) is the corresponding Langlands quotient).



The classical local Langlands correspondence for H = SL>(Q))
Let pr: GLo(E) — PGL>(E) be the canonical projection. Given a Weil-Deligne

representation ¢, we set

¢ = pro é.
We denote by S the centralizer of the image of ¢ in PGLy(E) (considered as
an algebraic group) and S% its identity component, and we define

Sg = 53/5%
Denote by
{m()}

the L-packet associated to ¢ by the classical Langlands corrspondence. It
consists of irreducible components of m(¢)|4 and it has size 1, 2, or 4. The
elements of the packet {m(¢)} are parameterized by the characters of Sg-
We would like to understand the corresponding picture for p-adic Langlands
correspondence. More specifically, for 1 : Go, — GL2(E), we study the
restriction of M(%) to H and

Y =proy.



The parameterization of trianguline representations

We denote by T(E) the set of continuous characters § : Qy — E™.
For 6 € T(E), let w(6) be its weight (w(8) = €24 \where u € Zy is not a

logu '

root of unity).
Set ' = Gal(Qp(up>=)/Qp), and let 8 be the set of triples

s = (617527’6)’

where 61,8, € F(E) and £ € P°(E) = {oo} if 6165 is not of the form x~ with
i >0, nor of the form x|x'| with i > 1, and £ € P'(E) otherwise. We denote
by A(s) the (o, )-module associated to s, and by

¥(s)

the corresponding Galois representation. See [Col2014, Introduction] for details.



Set u(s) = vp(d1(p)) and w(s) = w(d1) — w(d2), and define

8 = {s€8 | v(di(p))+ vp(d2(p)) =0 and u(s) >0},
8% = {se8 | w(s)¢Zx},

8 = {se€8 | w(s) €Lz, u(s) <w(s), L= o0},

S = fseS. | w(s)€Zor, u(s) < w(s), £ £ oo},
8 = {se8. | w(s)€Zs1, u(s)=w(s)}.

If ¥ (s) is an irreducible Hodge-Tate representation, we have the following:

> 1(s) is de Rham if and only if s € 8<% 1 8%,

> (s) is crystabelline (i.e., becomes crystalline over an abelian extension of
Qp,) if and only if s € 85,

> )(s) is the twist of a semistable non-crystalline representation by a

character of finite order if and only if s € 85'.

Every 2-dimensional absolutely irreducible trianguline representation of Gy, is
of the form 1)(s) for some s € 88 LI 8% 1 8%,



The structure of 19"

Suppose
s = (01,0, 00) € 8.

Set
51 — XW(S)(52, 5£ = X—w(s)(sl’ and 5, - (6136£7OO)

Assume s # s’ (s is not exceptional).
We denote by x € &(E) the character x — x induced by the inclusion Q, C E.
Set Xcye = x|x|. For 61,62 € T(E) define
B™(81,82) = IndB (82 ® d1Xeye)™
the locally analytic principal series representation. Then

e o Blalg(él,(sz) I~ Blalg((%’ 6;)



The structure of 2" (continued)

By [Col2014, Proposition 8.97], we have the following exact sequences

0 — N¥8 — B™(6;,6,) @ B™(07,05) — N™ — 0,

0 — M — ™ — B*™(6,,61) & B™(83,687) — 0.
Since B*(81,d2) and B*(81,83) both embed into M*", it follows

I-lan = Ban(51, 52) @nlalg Ban((siv (%)



The structure of 2" (continued)

By [Col2014, Proposition 8.97], we have the following exact sequences

0 — N¥8 — B™(6;,6,) @ B™(07,05) — N™ — 0,

0 — M — ™ — B*™(6,,61) & B™(83,687) — 0.
Since B*(81,d2) and B*(81,83) both embed into M*", it follows

I—Ian = Ban(dl, 62) @nlalg Ban((siv 65)



The structure of %" in pictures

I—Ilalg Ban(él, 52) @ Ban((s{’ 65) n

B™(d2,61) ® B* (03, 01)



The structure of M2/

Set ¢ = v(s) and M = MN(1). Let d; = xqed1d, . The space M€ is described
in [Col2014]:

1. if s € 85§, #* XW(S)fl, |x|72x""(s)71, then
M8 — B85, 6,) = ind(|x|6:x* "9 @ |x| 1) ® Sym" D71 @ (6, o det);
if s €8 5 = |><|_2 W)=l then M8 = B85, 6,);
3. if s € 85, 5, = x"()=1 then
e — B8(57. 65) = ind(|x| ® |x| ™) @ Sym" 71 @ (8, o det);
4. if s € 8, then M8 = St @ Sym™ )~ ® (&, o det).

Cases (2) and (3) correspond to each other by the involution s — s, so it is
enough to consider one of them, because for s € 8™ we have A(s') = A(s)
[Proposition 8.3 (ii) Col2014].



Restriction of representations of p-adic Lie groups

Proposition 1

Let G be a p-adic Lie group and H an open normal subgroup of G of finite
index. Let 1 be an irreducible admissible E-Banach space representation of G.
Then

Np=M&- - (1)

where I; are irreducible E-Banach space representations of H.

For the proof, we have to show that |y contains an irreducible (closed)
subrepresentation ;. For this, we use the admissibility of 1. The rest of the

proof is standard; in particular
Np=M@g.MNi- - ®g.My, (2)

where {1, g>,...,8/} is a subset of the set of representatives of G/H.



Locally algebraic vectors in |y

Proposition 2

Let G be a p-adic Lie group and H an open normal subgroup of G of finite
index. Let I be an irreducible admissible E-Banach space representation of G.
Suppose that the subspace of locally algebraic vectors M¥8 js dense in . Write
N=T0&...8MN, asin (1). Then for each i, the set (IN;)'¢ is dense in T1;,

hence non-zero, and

(M)l = (M) @ ... & (1)

My &My gr.M



The structure of M|y for v trianguline

From now on, G = GL>(Q,) and H = SL>(Q,).

Theorem 3
Let 1 : Go, — GL2(E) be an absolutely irreducible trianguline representation
which is de Rham with distinct Hodge-Tate weights. Denote by N = (1) the
corresponding absolutely irreducible unitary admissible Banach space
representation of G = GL,(Q,), and let ™8 be the subspace of locally
algebraic vectors of 1. Then the following assertions are equivalent:

1. M|y is reducible.

2. M|y is decomposable.

3. (N'@8)|, is decomposable.

If one (equivalently all) of the above cases occurs, then both M|y and (N™¥8)|,
have two absolutely irreducible inequivalent constituents.



The proof in pictures

If (M'418)|, is indecomposable, then Theorem 3 follows from Proposition 2.
Also, the results for the smooth principal series representations of G imply

M8 reducible and indecomposable = (I1™#)|}, indecomposable.

It remains to consider the case when M2 is irreducible, but (I'Ilalg)|H is
reducible. Assume for simplicity that the Hodge-Tate weights are 0 and 1. It
turns out that I decomposes as follows:

n My My

JEN [
m ™1 T2

|y = m1 @ w2 and {m1, m} form an L-packet of smooth representations of H.
It seems natural to consider {1, M2} as an L-packet of admissible p-adic

Banach space representations of H.



Centralizers

Proposition 4

Let 1) : Gg, — GL2(E) be an absolutely irreducible trianguline de Rham
representation with distinct Hodge-Tate weights.

(i) The centralizer S in PGL>(E) of the image of 1 has one or two elements.
The latter case occurs if and only if 1 is equivalent to 91 for some
quadratic character ¥ # 1.

(i) Denote by ¢ the Weil group representation on WD(v)) associated to 1),
and set ¢ = pro ¢. Then

1%

S5 = 55/

h

)

where Sg denotes the centralizer of the image of ¢ in PGL»(E)
(considered as an algebraic group) and Sg its identity component.

The strategy is to determine the centralizer using the filtered modules attached
to ¥. Note that we can twist @ by a power of the cyclotomic character so that
its Hodge-Tate weights are 0 and k — 1, where k > 2.



Filtered modules in the crystabelline case.

Here we assume that 1) is crystabelline, and we consider the filtered
(¢, Go,)-module Deis(v) as defined in [BeBr]. Let o, 8 : QF — E* be locally
constant characters such that

—~(k—1) < val(a(p)) < val(8(p)) <0 and val(a(p))+val(5(p)) = —(k—1)

and which are trivial on 1 + p"Z, for some n > 1. We define on
D(a,B) = E - ea @ E - eg the structure of a filtered (¢, Gg,)-module:

If « # f3, then:
¢(€a) = ap)ea and if g € T, then: g(ea) = a(e(g))ea
ples) = B(p)es ’ g(es) = Ale(g))es
and
E, ®e D(a, B) if i <—(k—1)
Fil'(E» ®e D(e, B)) = { En- (ea + G(Ba™Y) - e5) if —(k—2)<i<0
0 ifi>1.

Here, E, = E ®q, Qp(pp), € : Gg, — Z; is the cyclotomic character, and
G(Ba™!) is the Gauss sum.



Filtered modules in the crystabelline case, continued

If a = 3, then:
v(ea) = a(p)ea andif g €T, then: g(ea) = ale(g))ea
w(es) = a(p)(es — ea) g(es) = ale(g))es
and
Fil'(E, ®e D(o, B)) = { E, - es if —(k—2)<i<o0
0 ifi>1
Then:

> If 9 : Gg, — GL2(E) is an absolutely irreducible crystabelline
representation with Hodge-Tate weights 0 and k — 1, where k > 2, then
there exist characters o and § as above such that Deris(¢0) = D(«, B).

» Conversely, if  and § are such characters, then there exists an absolutely
irreducible crystabelline representation v : G, — GL2(E) such that

Deis(¢) = D(a, B).



Some linear algebra

Lemma 5

Suppose D(«, 8) is equivalent to ¥ ® D(«, 8), for some character ¥ of Q.
Then B8 = Yo and 9? = 1. Conversely, if f = 9« with a non-trivial quadratic
character 9, then D(«, 8) is equivalent to ¥ ® D(«, ).

Proof. Suppose D(a, 8) = ¥ ® D(a, 8), and the equivalence is given with
respect to the basis (e, €3) by y € GL2(E). First, we consider the case o # 3.
Then, for all t € Q;,

af(t) O -1 [9(t)a(t) 0
y<0 ﬁ(t)>y < 0 ﬁ(f)ﬂ(l?)) ®

and, since y respects filtration,

1 . 1 @
"\eBa)) ™~ N6

for some ¢ € E*. Because a # 3, (3) implies that y must be either a diagonal
matrix or an anti-diagonal matrix (i.e., the entries on the diagonal vanish). If y
is a diagonal matrix, then equation (3) gives ¥ = 1 and equation (4) implies

that y is a scalar matrix.



More linear algebra

Now suppose that y is an anti-diagonal matrix. Equation (3) becomes

a(t) 0 1 [ B() 0 _[O(t)a(t) 0
Lo sw)” “lo aw) \ o wmse

It follows 8 = ¥, o = 943, and hence 9> = 1. Finally, equation (4) implies

0 G(Ba™H)™?
G(Ba™) 0
Conversely, if 8 = Ja with a non-trivial quadratic character ¥, then the matrix
Yo defines an equivalence D(a, 8) = 9 ® D(a, B).
If « = 3, then

o Pl V) e ()=C)

imply that y is a scalar matrix, and hence ¥ = 1. O

that y is a scalar multiple of the matrix yp = (



Perfect matching

Theorem 6

Let ¢ : Gal(Q,/Qp) — GL2(E) be an absolutely irreducible crystabelline or
semi-stable representation with distinct Hodge-Tate weights. Let 1N = (1))

and let m = w(1))"™ be the unique irreducible subrepresentation of ().
(i) Both M|y and 7|y decompose as direct sums of inequivalent irreducible
components.

(i) There is a canonical bijection between the set of components of M|y and
the set of components of 7w|y. The number of components is equal to
either 1 or 2.

(iii) Denote by ¢ the Weil-Deligne representation associated to 1), and set
¢ =pro¢. Then
Sz = S,
and this group is isomorphic to either 1 or 7./27.
(iv) M|y is reducible if and only if S = 7./27.



Trianguline case is too good

The matching from Theorem 6 between I|y and 7|y does not hold for
non-trianguline case. We have the following situations




More cases




At most two irreducible constituents
Proposition 7

Let I be an absolutely irreducible admissible unitary p-adic Banach space
representation of G. Then I| sL,(Q,) decomposes into at most two irreducible

components.

Proof. Put T = N<1 ®o0, ke, where M<; = {v € M| |v|]| < 1} and kg is the
residue field of E. This is a smooth G-representation. By [ColDoPa], after
possibly replacing E by an unramified quadratic extension, there are two
possibilities for T1, namely

(i) M is an absolutely irreducible supersingular representation.

(ii) The semisimplification T of TT embeds into
G 1 SsSs G 1 Ss
m{x1, X2} = (lndp(X1 ® Xow )) ® (lndp(Xz ® xaw )) )
where x1 and x2 are smooth characters Q,* — k2, and w: Q,* — k2 is

the reduction of the cyclotomic character.

It is a result of Ramla Abdellatif that in case (i) M|y decomposes into two
irreducible representations [Abd]. In particular, M|y cannot have more than two

irreducible components.



Now suppose we are in case (ii). We consider the list given in [ColDoPa] which
provides an explicit description of the decomposition of w{x1, x2} into
irreducible constituents. w{x1, x2} is isomorphic to one (and only one) of the

following:
1. indS(a @ xaw™ ) @ indS (2 @ xaw™?), if xaxs * # 1, wtt
2. indS(x®@xw )P if x1=x2=xand p>3;
3. (1 @® St ind§(w ®w71)) ® x odet, if x1x;' = w! and p > 5;
4. (1@Steewodet@5t®wodet) ® x o det, if x1x;* = w*! and p = 3;

@2
5. (1@8’[) ® x odet, if x1 = x2 and p=2.

Write M|y =My @ ... ® N,, with irreducible H-representations ;. By Prop. 1,
the irreducible representations I1; are permuted by the action of G, and they
must hence be all infinite-dimensional. Therefore, the representation (I)*|x
must have at least r infinite-dimensional irreducible constituents. Then we
analyze reducibility cases, and conclude that r < 2.



Theorem 8
Let E/Qp be a finite extension, and let i : Go, — GL>(E) be an absolutely

irreducible de Rham representation with distinct Hodge-Tate weights, which we
assume to be 0 and 1 if ¢ is not trianguline. Let N = T(v) be the absolutely
irreducible p-adic Banach representation of G associated to 1) by the p-adic
Langlands correspondence, and let M|sy,q,) =M @ ... S M, be the
decomposition into (topologically) irreducible representations of H. Denote by
Sy the centralizer in PGL>(E) of the image of the associated projective Galois
P.

(i) r<2and|Sz| <2

(ii) If 4 is trianguline, then r = |Sg|.
(iii) If+) is not trianguline, then r > |S;|.
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