From $G L_{2}\left(\mathbb{Q}_{p}\right)$ to $S L_{2}\left(\mathbb{Q}_{p}\right)$

Dubravka Ban

Joint work with Matthias Strauch

The 2020 Paul J. Sally, Jr. Midwest Representation Theory Conference

Local Langlands correspondence for $G L_{n}(F)$

Let F be a finite extension of \mathbb{Q}_{p}, and let $W D_{F}$ denote the Weil-Deligne group of F. The local Langlands correspondence for $G L_{n}(F)$ is a bijection

$$
\phi \longleftrightarrow \pi(\phi)
$$

between the equivalence classes of n-dimensional complex representations of the Weil-Deligne group $W D_{F}$ on which Frobenius acts semisimply, and the equivalence classes of irreducible admissible smooth complex representations of $G L_{n}(F)$.

- Proved by Kutzko for $G L_{2}(F)$.
- Proved by Harris-Taylor and Henniart for $G L_{n}(F)$ [H-T], [Hen].

The idea of p-adic Langlands correspondence for $G L_{2}\left(\mathbb{Q}_{p}\right)$ was first formulated and investigated by Breuil. It was established by the work of many people, and proved by Colmez [Col2010].

p-adic Langlands correspondence for $G L_{2}\left(\mathbb{Q}_{p}\right)$

Let E be a finite extension of \mathbb{Q}_{p}. Let

$$
\psi: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow G L_{2}(E)
$$

be an absolutely irreducible Galois representation. Attached to ψ by the p-adic Langlands correspondence is the representation

$$
\Pi=\Pi(\psi)
$$

such that

- Π is a continuous E-Banach space representation of $G=G L_{2}\left(\mathbb{Q}_{p}\right)$;
- Π is unitary, that is, $\|g \cdot v\|=\|v\|$, for all $g \in G, v \in \Pi$;
- Π is admissible in the sense of [SchT] (this means that the continuous dual Π^{\prime} is finitely generated as a module over the Iwasawa algebra $E[[K]]$ for some (hence any) compact open subgroup K of G); and
- Π is non-ordinary, that is, Π is not a subquotient of a unitary parabolic induction from a unitary character.

The structure of $\Pi(\psi)$

$$
\begin{gathered}
\Pi=\Pi(\psi) \text { the irreducible admissible Banach } \\
\text { space representation attached to } \psi \\
\Pi^{\text {an }}=\text { locally analytic vectors in } \Pi \\
\Pi^{\text {lalg }}=\text { locally algebraic vectors in } \Pi \\
\Pi^{\text {lalg }}=\pi(\psi) \otimes \Pi^{\text {alg }} \\
\pi(\psi) \text { smooth } \\
\Pi^{\text {alg }} \text { algebraic } \\
\Pi^{\text {lalg }} \neq 0 \text { if and only if } \psi \text { is de Rham with } \\
\text { distinct Hodge- Tate weights }
\end{gathered}
$$

Suppose that ψ is de Rham with distinct Hodge-Tate weights. Then

- If ψ is trianguline, then $\pi(\psi)$ is a principal series or the Steinberg representation.
- If ψ is not trianguline, then $\pi(\psi)$ is supercuspidal.

Filtered modules

We work with $\Pi=\Pi(\psi)$ such that $\Pi^{\text {lalg }} \neq 0$ because

- we know smooth representations of G, and
- ψ corresponds to a 2-dimensional filtered module D which can be described explicitly [Fon1994a,b].

For example, if $\psi: \mathcal{G}_{\mathbb{Q}_{p}} \rightarrow G L_{2}(E)$ is an absolutely irreducible crystabelline representation (i.e., becomes crystalline over an abelian extension of \mathbb{Q}_{p}), we associate to it an admissible filtered $\left(\varphi, \mathcal{G}_{\mathbb{Q}_{p}}\right)$-module $D_{\text {cris }}(\psi)$. We will describe it explicitly later.

The jumps in the filtration on D are the negatives of the Hodge-Tate weights of ψ. That is, if h is a Hodge-Tate weight, one has $\mathrm{Fil}^{h}(D) \neq \operatorname{Fil}^{h+1}(D)$.

The smooth part of $\Pi(\psi)$

From now on, we assume that ψ is de Rham with distinct $\mathrm{H}-\mathrm{T}$ weights $a<b$. Then

$$
\begin{aligned}
\Pi^{\operatorname{lalg}} & =\pi(\psi) \otimes \Pi^{a l g} \\
& =\pi(\psi) \otimes \operatorname{det}^{a} \otimes \operatorname{Sym}^{b-a-1}\left(E^{2}\right)
\end{aligned}
$$

Let

$$
\phi=W D(\psi)
$$

be the Weil-Deligne representation associated to ψ. Let $\pi_{L L}(\phi)$ be the irreducible smooth representation of G over $\overline{\mathbb{Q}}_{p}$ attached to ϕ by the classical local Langlands correspondence. A twist of $\pi_{L L}(\phi)$ has a canonical model over $E[\mathrm{BrSch}]$. We denote this smooth E-representation of G by

$$
\pi(\phi)
$$

If $\pi(\psi)$ is irreducible, then

$$
\pi(\psi)=\pi(\phi)
$$

If $\pi(\psi)$ is reducible, then we have the following exact sequence

$$
0 \rightarrow \pi(\psi)^{\mathrm{irr}} \rightarrow \pi(\psi) \rightarrow \pi(\phi) \rightarrow 0
$$

where $\pi(\psi)^{\text {irr }}$ is the unique irreducible subrepresentation of $\pi(\psi) .(\pi(\psi)$ is a standard module, and $\pi(\phi)$ is the corresponding Langlands quotient).

The classical local Langlands correspondence for $H=S L_{2}\left(\mathbb{Q}_{p}\right)$

Let pr: $G L_{2}(E) \rightarrow P G L_{2}(E)$ be the canonical projection. Given a Weil-Deligne representation ϕ, we set

$$
\bar{\phi}=\operatorname{pr} \circ \phi
$$

We denote by $S_{\bar{\phi}}$ the centralizer of the image of $\bar{\phi}$ in $P G L_{2}(\bar{E})$ (considered as an algebraic group) and $S_{\bar{\phi}}^{\circ}$ its identity component, and we define

$$
\mathcal{S}_{\bar{\phi}} \cong S_{\bar{\phi}} / S_{\bar{\phi}}^{\circ}
$$

Denote by

$$
\{\pi(\bar{\phi})\}
$$

the L-packet associated to $\bar{\phi}$ by the classical Langlands corrspondence. It consists of irreducible components of $\left.\pi(\phi)\right|_{H}$ and it has size 1,2 , or 4. The elements of the packet $\{\pi(\bar{\phi})\}$ are parameterized by the characters of $\mathcal{S}_{\bar{\phi}}$. We would like to understand the corresponding picture for p-adic Langlands correspondence. More specifically, for $\psi: \mathcal{G}_{\mathbb{Q}_{p}} \rightarrow G L_{2}(E)$, we study the restriction of $\Pi(\psi)$ to H and

$$
\bar{\psi}=\operatorname{pr} \circ \psi
$$

The parameterization of trianguline representations

We denote by $\widehat{\mathcal{T}}(E)$ the set of continuous characters $\delta: \mathbb{Q}_{p}^{\times} \rightarrow E^{\times}$. For $\delta \in \widehat{\mathcal{T}}(E)$, let $w(\delta)$ be its weight $\left(w(\delta)=\frac{\log \delta(u)}{\log u}\right.$, where $u \in \mathbb{Z}_{\rho}^{\times}$is not a root of unity).
Set $\Gamma=\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\mu_{p} \infty\right) / \mathbb{Q}_{p}\right)$, and let \mathcal{S} be the set of triples

$$
s=\left(\delta_{1}, \delta_{2}, \mathcal{L}\right),
$$

where $\delta_{1}, \delta_{2} \in \widehat{\mathcal{F}}(E)$ and $\mathcal{L} \in \mathbb{P}^{0}(E)=\{\infty\}$ if $\delta_{1} \delta_{2}^{-1}$ is not of the form x^{-i} with $i \geq 0$, nor of the form $x\left|x^{i}\right|$ with $i \geq 1$, and $\mathcal{L} \in \mathbb{P}^{1}(E)$ otherwise. We denote by $\Delta(s)$ the (φ, Γ)-module associated to s, and by

$$
\psi(s)
$$

the corresponding Galois representation. See [Col2014, Introduction] for details.

Set $u(s)=v_{p}\left(\delta_{1}(p)\right)$ and $w(s)=w\left(\delta_{1}\right)-w\left(\delta_{2}\right)$, and define

$$
\begin{array}{ll:l}
\mathcal{S}_{*} & =\{s \in \mathcal{S} & \left.v_{p}\left(\delta_{1}(p)\right)+v_{p}\left(\delta_{2}(p)\right)=0 \text { and } u(s)>0\right\}, \\
\mathcal{S}_{*}^{\text {ng }} & =\left\{s \in \mathcal{S}_{*}\right. & \left.w(s) \notin \mathbb{Z}_{\geq 1}\right\}, \\
\mathcal{S}_{*}^{\text {cris }} & =\left\{s \in \mathcal{S}_{*}\right. & \left.w(s) \in \mathbb{Z}_{\geq 1}, u(s)<w(s), \mathcal{L}=\infty\right\} \\
\mathcal{S}_{*}^{\text {st }} & =\left\{s \in \mathcal{S}_{*}\right. & \left.w(s) \in \mathbb{Z}_{\geq 1}, u(s)<w(s), \mathcal{L} \neq \infty\right\} \\
\mathcal{S}_{*}^{\text {ord }} & =\left\{s \in \mathcal{S}_{*}\right. & \left.w(s) \in \mathbb{Z}_{\geq 1}, u(s)=w(s)\right\} .
\end{array}
$$

If $\psi(s)$ is an irreducible Hodge-Tate representation, we have the following:

- $\psi(s)$ is de Rham if and only if $s \in \mathcal{S}_{*}^{\text {cris }} \sqcup \mathcal{S}_{*}^{\text {st }}$,
- $\psi(s)$ is crystabelline (i.e., becomes crystalline over an abelian extension of \mathbb{Q}_{p}) if and only if $s \in \mathcal{S}_{*}^{\text {cris }}$,
- $\psi(s)$ is the twist of a semistable non-crystalline representation by a character of finite order if and only if $s \in \mathcal{S}_{*}^{s t}$.

Every 2-dimensional absolutely irreducible trianguline representation of $\mathcal{G}_{\mathbb{Q}_{p}}$ is of the form $\psi(s)$ for some $s \in \mathcal{S}_{*}^{\text {ng }} \sqcup \mathcal{S}_{*}^{\text {cris }} \sqcup \mathcal{S}_{*}^{\text {st }}$.

The structure of $\Pi^{a n}$

Suppose

$$
s=\left(\delta_{1}, \delta_{2}, \infty\right) \in \mathcal{S}_{*}^{\text {cris }}
$$

Set

$$
\delta_{1}^{\prime}=x^{w(s)} \delta_{2}, \quad \delta_{2}^{\prime}=x^{-w(s)} \delta_{1}, \quad \text { and } \quad s^{\prime}=\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}, \infty\right)
$$

Assume $s \neq s^{\prime}$ (s is not exceptional).

We denote by $x \in \widehat{\mathscr{T}}(E)$ the character $x \mapsto x$ induced by the inclusion $\mathbb{Q}_{p} \subseteq E$. Set $\chi_{\mathrm{cyc}}=x|x|$. For $\delta_{1}, \delta_{2} \in \widehat{\mathcal{T}}(E)$ define

$$
B^{\mathrm{an}}\left(\delta_{1}, \delta_{2}\right)=\operatorname{Ind}_{P}^{G}\left(\delta_{2} \otimes \delta_{1} \chi_{\mathrm{cyc}}^{-1}\right)^{\mathrm{an}}
$$

the locally analytic principal series representation. Then

$$
\Pi^{\mathrm{lalg}} \cong B^{\mathrm{lalg}}\left(\delta_{1}, \delta_{2}\right) \cong B^{\mathrm{lalg}}\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right)
$$

The structure of $\Pi^{a n}$ (continued)

By [Col2014, Proposition 8.97], we have the following exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \Pi^{\text {lalg }} \longrightarrow B^{\text {an }}\left(\delta_{1}, \delta_{2}\right) \oplus B^{\text {an }}\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right) \longrightarrow \Pi^{\mathrm{an}} \longrightarrow 0, \\
& 0 \longrightarrow \Pi^{\text {alg }} \longrightarrow \Pi^{\mathrm{an}} \longrightarrow B^{\mathrm{an}}\left(\delta_{2}, \delta_{1}\right) \oplus B^{\mathrm{an}}\left(\delta_{2}^{\prime}, \delta_{1}^{\prime}\right) \longrightarrow 0 .
\end{aligned}
$$

Since $B^{\text {an }}\left(\delta_{1}, \delta_{2}\right)$ and $B^{\text {an }}\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right)$ both embed into $\Pi^{\text {an }}$, it follows

$$
\Pi^{\mathrm{an}}=B^{\mathrm{an}}\left(\delta_{1}, \delta_{2}\right) \oplus_{\Pi^{\mathrm{lalg}}} B^{\mathrm{an}}\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right)
$$

The structure of $\Pi^{a n}$ (continued)

By [Col2014, Proposition 8.97], we have the following exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \Pi^{\text {lalg }} \longrightarrow B^{\text {an }}\left(\delta_{1}, \delta_{2}\right) \oplus B^{\text {an }}\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right) \longrightarrow \Pi^{\mathrm{an}} \longrightarrow 0, \\
& 0 \longrightarrow \Pi^{\text {alg }} \longrightarrow \Pi^{\mathrm{an}} \longrightarrow B^{\mathrm{an}}\left(\delta_{2}, \delta_{1}\right) \oplus B^{\mathrm{an}}\left(\delta_{2}^{\prime}, \delta_{1}^{\prime}\right) \longrightarrow 0 .
\end{aligned}
$$

Since $B^{\text {an }}\left(\delta_{1}, \delta_{2}\right)$ and $B^{\text {an }}\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right)$ both embed into $\Pi^{\text {an }}$, it follows

$$
\Pi^{\mathrm{an}}=B^{\mathrm{an}}\left(\delta_{1}, \delta_{2}\right) \oplus_{\Pi^{\mathrm{lalg}}} B^{\mathrm{an}}\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right)
$$

The structure of $\Pi^{a n}$ in pictures

The structure of Π^{lalg}

Set $\psi=\psi(s)$ and $\Pi=\Pi(\psi)$. Let $\delta_{s}=\chi_{\text {cyc }}^{-1} \delta_{1} \delta_{2}^{-1}$. The space $\Pi^{\text {alg }}$ is described in [Col2014]:

1. if $s \in \mathcal{S}_{*}^{\text {cris }}, \delta_{s} \neq x^{w(s)-1},|x|^{-2} x^{w(s)-1}$, then

$$
\Pi^{\text {lalg }}=B^{\text {lalg }}\left(\delta_{1}, \delta_{2}\right)=\operatorname{ind}\left(|x| \delta_{s} x^{1-w(s)} \otimes|x|^{-1}\right) \otimes \operatorname{Sym}^{w(s)-1} \otimes\left(\delta_{2} \circ \operatorname{det}\right) ;
$$

2. if $s \in \mathcal{S}_{*}^{\text {cris }}, \delta_{s}=|x|^{-2} x^{w(s)-1}$, then $\Pi^{\text {lalg }}=B^{\text {lalg }}\left(\delta_{1}, \delta_{2}\right)$;
3. if $s \in \mathcal{S}_{*}^{\text {cris }}, \delta_{s}=x^{w(s)-1}$, then

$$
\Pi^{\text {lalg }}=B^{\text {lalg }}\left(\delta_{1}^{\prime}, \delta_{2}^{\prime}\right)=\operatorname{ind}\left(|x| \otimes|x|^{-1}\right) \otimes \operatorname{Sym}^{w(s)-1} \otimes\left(\delta_{2} \circ \mathrm{det}\right) ;
$$

4. if $s \in \mathcal{S}_{*}^{\text {st }}$, then $\Pi^{\text {lalg }}=\operatorname{St} \otimes \operatorname{Sym}^{w(s)-1} \otimes\left(\delta_{2} \circ \mathrm{det}\right)$.

Cases (2) and (3) correspond to each other by the involution $s \mapsto s^{\prime}$, so it is enough to consider one of them, because for $s \in \mathcal{S}_{*}^{\text {cris }}$ we have $\Delta\left(s^{\prime}\right) \cong \Delta(s)$ [Proposition 8.3 (ii) Col2014].

Restriction of representations of p-adic Lie groups

Proposition 1

Let G be a p-adic Lie group and H an open normal subgroup of G of finite index. Let Π be an irreducible admissible E-Banach space representation of G. Then

$$
\begin{equation*}
\left.\Pi\right|_{H}=\Pi_{1} \oplus \cdots \oplus \Pi_{r} \tag{1}
\end{equation*}
$$

where Π_{i} are irreducible E-Banach space representations of H.

For the proof, we have to show that $\left.\Pi\right|_{H}$ contains an irreducible (closed) subrepresentation Π_{1}. For this, we use the admissibility of Π. The rest of the proof is standard; in particular

$$
\begin{equation*}
\left.\Pi\right|_{H}=\Pi_{1} \oplus g_{2} \cdot \Pi_{1} \cdots \oplus g_{r} . \Pi_{1} \tag{2}
\end{equation*}
$$

where $\left\{1, g_{2}, \ldots, g_{r}\right\}$ is a subset of the set of representatives of G / H.

Locally algebraic vectors in $\left.\Pi\right|_{H}$

Proposition 2

Let G be a p-adic Lie group and H an open normal subgroup of G of finite index. Let Π be an irreducible admissible E-Banach space representation of G. Suppose that the subspace of locally algebraic vectors $\Pi^{\text {lalg }}$ is dense in Π. Write $\Pi=\Pi_{1} \oplus \ldots \oplus \Pi_{r}$ as in (1). Then for each i, the set $\left(\Pi_{i}\right)^{\text {lalg }}$ is dense in Π_{i}, hence non-zero, and

$$
\left.\left(\Pi^{\text {lalg }}\right)\right|_{H}=\left(\Pi_{1}\right)^{\text {lalg }} \oplus \ldots \oplus\left(\Pi_{r}\right)^{\text {lalg }}
$$

The structure of $\left.\Pi\right|_{H}$ for ψ trianguline

From now on, $G=G L_{2}\left(\mathbb{Q}_{p}\right)$ and $H=S L_{2}\left(\mathbb{Q}_{p}\right)$.

Theorem 3

Let $\psi: \mathcal{G}_{\mathbb{Q}_{p}} \rightarrow G L_{2}(E)$ be an absolutely irreducible trianguline representation which is de Rham with distinct Hodge-Tate weights. Denote by $\Pi=\Pi(\psi)$ the corresponding absolutely irreducible unitary admissible Banach space representation of $G=G L_{2}\left(\mathbb{Q}_{p}\right)$, and let $\Pi^{\text {lalg }}$ be the subspace of locally algebraic vectors of Π. Then the following assertions are equivalent:

1. $\left.\Pi\right|_{H}$ is reducible.
2. $\left.\Pi\right|_{н}$ is decomposable.
3. $\left.\left(\Pi^{\text {lalg }}\right)\right|_{H}$ is decomposable.

If one (equivalently all) of the above cases occurs, then both $\left.\Pi\right|_{H}$ and $\left.\left(\Pi^{\text {lalg }}\right)\right|_{H}$ have two absolutely irreducible inequivalent constituents.

The proof in pictures

If $\left.\left(\Pi^{\text {lalg }}\right)\right|_{H}$ is indecomposable, then Theorem 3 follows from Proposition 2. Also, the results for the smooth principal series representations of G imply

$$
\Pi^{\text {lalg }} \text { reducible and indecomposable }\left.\Longrightarrow\left(\Pi^{\text {lalg }}\right)\right|_{H} \text { indecomposable. }
$$

It remains to consider the case when $\Pi^{\text {lalg }}$ is irreducible, but $\left.\left(\Pi^{\text {lalg }}\right)\right|_{H}$ is reducible. Assume for simplicity that the Hodge-Tate weights are 0 and 1. It turns out that Π decomposes as follows:

$\left.\pi\right|_{H}=\pi_{1} \oplus \pi_{2}$ and $\left\{\pi_{1}, \pi_{2}\right\}$ form an L-packet of smooth representations of H. It seems natural to consider $\left\{\Pi_{1}, \Pi_{2}\right\}$ as an L-packet of admissible p-adic Banach space representations of H.

Centralizers

Proposition 4

Let $\psi: G_{\mathbb{Q}_{p}} \rightarrow G L_{2}(E)$ be an absolutely irreducible trianguline de Rham representation with distinct Hodge-Tate weights.
(i) The centralizer $S_{\bar{\psi}}$ in $P G L_{2}(\bar{E})$ of the image of $\bar{\psi}$ has one or two elements. The latter case occurs if and only if ψ is equivalent to $\vartheta \psi$ for some quadratic character $\vartheta \neq 1$.
(ii) Denote by ϕ the Weil group representation on $\mathrm{WD}(\psi)$ associated to ψ, and set $\bar{\phi}=\mathrm{pr} \circ \phi$. Then

$$
S_{\bar{\psi}} \cong S_{\bar{\phi}} / S_{\bar{\phi}}^{\circ}
$$

where $S_{\bar{\phi}}$ denotes the centralizer of the image of $\bar{\phi}$ in $P G L_{2}(\bar{E})$ (considered as an algebraic group) and $S_{\bar{\phi}}^{\circ}$ its identity component.

The strategy is to determine the centralizer using the filtered modules attached to ψ. Note that we can twist ψ by a power of the cyclotomic character so that its Hodge-Tate weights are 0 and $k-1$, where $k \geq 2$.

Filtered modules in the crystabelline case.

Here we assume that ψ is crystabelline, and we consider the filtered $\left(\varphi, \mathcal{G}_{\mathbb{Q}_{p}}\right)$-module $D_{\text {cris }}(\psi)$ as defined in $[\mathrm{BeBr}]$. Let $\alpha, \beta: \mathbb{Q}_{p}^{\times} \rightarrow E^{\times}$be locally constant characters such that
$-(k-1)<\operatorname{val}(\alpha(p)) \leq \operatorname{val}(\beta(p))<0 \quad$ and $\quad \operatorname{val}(\alpha(p))+\operatorname{val}(\beta(p))=-(k-1)$
and which are trivial on $1+p^{n} \mathbb{Z}_{p}$ for some $n \geq 1$. We define on $D(\alpha, \beta)=E \cdot e_{\alpha} \oplus E \cdot e_{\beta}$ the structure of a filtered $\left(\varphi, \mathcal{G}_{\mathbb{Q}_{p}}\right)$-module: If $\alpha \neq \beta$, then:

$$
\left\{\begin{array} { l }
{ \varphi (e _ { \alpha }) = \alpha (p) e _ { \alpha } } \\
{ \varphi (e _ { \beta }) = \beta (p) e _ { \beta } }
\end{array} \quad \text { and if } g \in \Gamma , \text { then: } \quad \left\{\begin{array}{l}
g\left(e_{\alpha}\right)=\alpha(\varepsilon(g)) e_{\alpha} \\
g\left(e_{\beta}\right)=\beta(\varepsilon(g)) e_{\beta}
\end{array}\right.\right.
$$

and

$$
\operatorname{Fil}^{i}\left(E_{n} \otimes_{E} D(\alpha, \beta)\right)= \begin{cases}E_{n} \otimes_{E} D(\alpha, \beta) & \text { if } i \leq-(k-1) \\ E_{n} \cdot\left(e_{\alpha}+G\left(\beta \alpha^{-1}\right) \cdot e_{\beta}\right) & \text { if }-(k-2) \leq i \leq 0 \\ 0 & \text { if } i \geq 1\end{cases}
$$

Here, $E_{n}=E \otimes_{\mathbb{Q}_{p}} \mathbb{Q}_{p}\left(\mu_{p^{n}}\right), \varepsilon: \mathcal{G}_{\mathbb{Q}_{p}} \rightarrow \mathbb{Z}_{p}^{\times}$is the cyclotomic character, and $G\left(\beta \alpha^{-1}\right)$ is the Gauss sum.

Filtered modules in the crystabelline case, continued

If $\alpha=\beta$, then:

$$
\left\{\begin{array} { l }
{ \varphi (e _ { \alpha }) = \alpha (p) e _ { \alpha } } \\
{ \varphi (e _ { \beta }) = \alpha (p) (e _ { \beta } - e _ { \alpha }) }
\end{array} \quad \text { and if } g \in \Gamma , \text { then: } \quad \left\{\begin{array}{l}
g\left(e_{\alpha}\right)=\alpha(\varepsilon(g)) e_{\alpha} \\
g\left(e_{\beta}\right)=\alpha(\varepsilon(g)) e_{\beta}
\end{array}\right.\right.
$$

and

$$
\text { Fil }^{i}\left(E_{n} \otimes_{E} D(\alpha, \beta)\right)= \begin{cases}E_{n} \otimes_{E} D(\alpha, \beta) & \text { if } i \leq-(k-1) \\ E_{n} \cdot e_{\beta} & \text { if }-(k-2) \leq i \leq 0 \\ 0 & \text { if } i \geq 1\end{cases}
$$

Then:

- If $\psi: \mathcal{G}_{\mathbb{Q}_{p}} \rightarrow G L_{2}(E)$ is an absolutely irreducible crystabelline representation with Hodge-Tate weights 0 and $k-1$, where $k \geq 2$, then there exist characters α and β as above such that $D_{\text {cris }}(\psi)=D(\alpha, \beta)$.
- Conversely, if α and β are such characters, then there exists an absolutely irreducible crystabelline representation $\psi: \mathcal{G}_{\mathbb{Q}_{p}} \rightarrow G L_{2}(E)$ such that $D_{\text {cris }}(\psi)=D(\alpha, \beta)$.

Some linear algebra

Lemma 5

Suppose $D(\alpha, \beta)$ is equivalent to $\vartheta \otimes D(\alpha, \beta)$, for some character ϑ of \mathbb{Q}_{p}^{\times}. Then $\beta=\vartheta \alpha$ and $\vartheta^{2}=1$. Conversely, if $\beta=\vartheta \alpha$ with a non-trivial quadratic character ϑ, then $D(\alpha, \beta)$ is equivalent to $\vartheta \otimes D(\alpha, \beta)$.

Proof. Suppose $D(\alpha, \beta) \cong \vartheta \otimes D(\alpha, \beta)$, and the equivalence is given with respect to the basis $\left(e_{\alpha}, e_{\beta}\right)$ by $y \in G L_{2}(E)$. First, we consider the case $\alpha \neq \beta$. Then, for all $t \in \mathbb{Q}_{p}^{\times}$,

$$
y\left(\begin{array}{cc}
\alpha(t) & 0 \tag{3}\\
0 & \beta(t)
\end{array}\right) y^{-1}=\left(\begin{array}{cc}
\vartheta(t) \alpha(t) & 0 \\
0 & \vartheta(t) \beta(t)
\end{array}\right)
$$

and, since y respects filtration,

$$
\begin{equation*}
y\binom{1}{G\left(\beta \alpha^{-1}\right)}=c\binom{1}{G\left(\beta \alpha^{-1}\right)} \tag{4}
\end{equation*}
$$

for some $c \in E^{\times}$. Because $\alpha \neq \beta$, (3) implies that y must be either a diagonal matrix or an anti-diagonal matrix (i.e., the entries on the diagonal vanish). If y is a diagonal matrix, then equation (3) gives $\vartheta=1$ and equation (4) implies that y is a scalar matrix.

More linear algebra

Now suppose that y is an anti-diagonal matrix. Equation (3) becomes

$$
y\left(\begin{array}{cc}
\alpha(t) & 0 \\
0 & \beta(t)
\end{array}\right) y^{-1}=\left(\begin{array}{cc}
\beta(t) & 0 \\
0 & \alpha(t)
\end{array}\right)=\left(\begin{array}{cc}
\vartheta(t) \alpha(t) & 0 \\
0 & \vartheta(t) \beta(t)
\end{array}\right)
$$

It follows $\beta=\vartheta \alpha, \alpha=\vartheta \beta$, and hence $\vartheta^{2}=1$. Finally, equation (4) implies
that y is a scalar multiple of the matrix $y_{0}=\left(\begin{array}{cc}0 & G\left(\beta \alpha^{-1}\right)^{-1} \\ G\left(\beta \alpha^{-1}\right) & 0\end{array}\right)$.
Conversely, if $\beta=\vartheta \alpha$ with a non-trivial quadratic character ϑ, then the matrix y_{0} defines an equivalence $D(\alpha, \beta) \cong \vartheta \otimes D(\alpha, \beta)$.
If $\alpha=\beta$, then

$$
y\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) y^{-1}=\vartheta(p)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad y\binom{0}{1}=c\binom{0}{1}
$$

imply that y is a scalar matrix, and hence $\vartheta=1$.

Perfect matching

Theorem 6

Let $\psi: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow G L_{2}(E)$ be an absolutely irreducible crystabelline or semi-stable representation with distinct Hodge-Tate weights. Let $\Pi=\Pi(\psi)$ and let $\pi=\pi(\psi)^{\mathrm{i} r}$ be the unique irreducible subrepresentation of $\pi(\psi)$.
(i) Both $\left.\Pi\right|_{H}$ and $\left.\pi\right|_{H}$ decompose as direct sums of inequivalent irreducible components.
(ii) There is a canonical bijection between the set of components of $\left.\Pi\right|_{H}$ and the set of components of $\left.\pi\right|_{H}$. The number of components is equal to either 1 or 2 .
(iii) Denote by ϕ the Weil-Deligne representation associated to ψ, and set $\bar{\phi}=\mathrm{pr} \circ \phi$. Then

$$
\mathcal{S}_{\bar{\psi}} \cong \mathcal{S}_{\bar{\phi}},
$$

and this group is isomorphic to either 1 or $\mathbb{Z} / 2 \mathbb{Z}$.
(iv) $\left.\Pi\right|_{H}$ is reducible if and only if $\mathcal{S}_{\bar{\psi}} \cong \mathbb{Z} / 2 \mathbb{Z}$.

Trianguline case is too good

The matching from Theorem 6 between $\left.\Pi\right|_{H}$ and $\left.\pi\right|_{H}$ does not hold for non-trianguline case. We have the following situations

More cases

At most two irreducible constituents

Proposition 7

Let Π be an absolutely irreducible admissible unitary p-adic Banach space representation of G. Then $\left.\Pi\right|_{S L_{2}\left(\mathbb{Q}_{p}\right)}$ decomposes into at most two irreducible components.

Proof. Put $\bar{\Pi}=\Pi_{\leq 1} \otimes \mathcal{O}_{E} k_{E}$, where $\Pi_{\leq 1}=\{v \in \Pi \mid\|v\| \leq 1\}$ and k_{E} is the residue field of E. This is a smooth G-representation. By [CoIDoPa], after possibly replacing E by an unramified quadratic extension, there are two possibilities for $\bar{\Pi}$, namely
(i) $\bar{\Pi}$ is an absolutely irreducible supersingular representation.
(ii) The semisimplification $\bar{\Pi}^{\text {ss }}$ of $\bar{\Pi}$ embeds into

$$
\pi\left\{\chi_{1}, \chi_{2}\right\}:=\left(\operatorname{Ind}_{P}^{G}\left(\chi_{1} \otimes \chi_{2} \omega^{-1}\right)\right)^{\mathrm{ss}} \oplus\left(\operatorname{Ind}_{P}^{G}\left(\chi_{2} \otimes \chi_{1} \omega^{-1}\right)\right)^{\mathrm{ss}},
$$

where χ_{1} and χ_{2} are smooth characters $\mathbb{Q}_{P}{ }^{\times} \rightarrow k_{E}^{\times}$, and $\omega: \mathbb{Q}_{P}{ }^{\times} \rightarrow k_{E}^{\times}$is the reduction of the cyclotomic character.
It is a result of Ramla Abdellatif that in case (i) $\left.\bar{\Pi}\right|_{H}$ decomposes into two irreducible representations [Abd]. In particular, $\left.\Pi\right|_{H}$ cannot have more than two irreducible components.

Now suppose we are in case (ii). We consider the list given in [ColDoPa] which provides an explicit description of the decomposition of $\pi\left\{\chi_{1}, \chi_{2}\right\}$ into irreducible constituents. $\pi\left\{\chi_{1}, \chi_{2}\right\}$ is isomorphic to one (and only one) of the following:

$$
\begin{aligned}
& \text { 1. } \operatorname{ind}_{P}^{G}\left(\chi_{1} \otimes \chi_{2} \omega^{-1}\right) \oplus \operatorname{ind}_{P}^{G}\left(\chi_{2} \otimes \chi_{1} \omega^{-1}\right) \text {, if } \chi_{1} \chi_{2}^{-1} \neq 1, \omega^{ \pm 1} ; \\
& \text { 2. } \operatorname{ind}_{P}^{G}\left(\chi \otimes \chi \omega^{-1}\right)^{\oplus 2} \text {, if } \chi_{1}=\chi_{2}=\chi \text { and } p \geq 3 \text {; } \\
& \text { 3. }\left(1 \oplus \operatorname{St} \oplus \operatorname{ind}_{P}^{G}\left(\omega \otimes \omega^{-1}\right)\right) \otimes \chi \circ \text { det, if } \chi_{1} \chi_{2}^{-1}=\omega^{ \pm 1} \text { and } p \geq 5 \text {; } \\
& \text { 4. }(1 \oplus \operatorname{St} \oplus \omega \circ \operatorname{det} \oplus \operatorname{St} \otimes \omega \circ \operatorname{det}) \otimes \chi \circ \text { det, if } \chi_{1} \chi_{2}^{-1}=\omega^{ \pm 1} \text { and } p=3 \text {; } \\
& \text { 5. }(1 \oplus \mathrm{St})^{\oplus 2} \otimes \chi \circ \text { det, if } \chi_{1}=\chi_{2} \text { and } p=2 \text {. }
\end{aligned}
$$

Write $\left.\Pi\right|_{H}=\Pi_{1} \oplus \ldots \oplus \Pi_{r}$, with irreducible H-representations Π_{i}. By Prop. 1, the irreducible representations Π_{i} are permuted by the action of G, and they must hence be all infinite-dimensional. Therefore, the representation $\left.(\bar{\Pi})^{\text {ss }}\right|_{H}$ must have at least r infinite-dimensional irreducible constituents. Then we analyze reducibility cases, and conclude that $r \leq 2$.

Theorem 8

Let E / \mathbb{Q}_{p} be a finite extension, and let $\psi: \mathcal{G}_{\mathbb{Q}_{p}} \rightarrow G L_{2}(E)$ be an absolutely irreducible de Rham representation with distinct Hodge-Tate weights, which we assume to be 0 and 1 if ψ is not trianguline. Let $\Pi=\Pi(\psi)$ be the absolutely irreducible p-adic Banach representation of G associated to ψ by the p-adic Langlands correspondence, and let $\left.\Pi\right|_{S L_{2}\left(\mathbb{Q}_{p}\right)}=\Pi_{1} \oplus \ldots \oplus \Pi_{r}$ be the decomposition into (topologically) irreducible representations of H. Denote by $S_{\bar{\psi}}$ the centralizer in $P G L_{2}(\bar{E})$ of the image of the associated projective Galois $\bar{\psi}$.
(i) $r \leq 2$ and $\left|S_{\bar{\psi}}\right| \leq 2$.
(ii) If ψ is trianguline, then $r=\left|S_{\bar{\psi}}\right|$.
(iii) If ψ is not trianguline, then $r \geq\left|S_{\bar{\psi}}\right|$.

References

[Abd] R. Abdellatif, Classification des représentations modulo p de $\operatorname{SL}(2, F)$, Bull. Soc. Math. France, 142 (2014), 537-589.
[BeBr] L. Berger and C. Breuil, Sur quelques représentations potentiellement cristallines de $G L_{2}\left(\mathbb{Q}_{p}\right)$. Astérisque No. 330 (2010), 155-211.
[BrSch] C. Breuil and P. Schneider, First steps towards p-adic Langlands functoriality, J. Reine Angew. Math., 610:149-180, 2007.
[Col2010] P. Colmez, Représentations de $G L_{2}\left(\mathbb{Q}_{p}\right)$ et (φ, Γ)-modules. Astérisque No. 330 (2010), 281-509.
[Col2014] P. Colmez, La série principale unitaire de $\mathrm{GL}_{2}\left(\mathrm{Q}_{p}\right)$: vecteurs localement analytiques, In Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser., Vol. 414, 286-358, Cambridge Univ. Press, Cambridge, 2014.
[ColDoNi] Colmez, Pierre and Dospinescu, Gabriel and Nizioł, Wiesława, Cohomologie p-adique de la tour de Drinfeld: le cas de la dimension 1, J. Amer. Math. Soc., 33, (2020), 311-362.

More References

[ColDoPa] Colmez, Pierre and Dospinescu, Gabriel and Paškūnas, Vytautas, The p-adic local Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, Camb. J. Math., 2(1) (2014)1-47.
[Fon1994a] J.-M. Fontaine, "Le corps des périodes p-adiques", in Périodes p - adiques, Astérisque, 223 (1994), avec un appendice par Pierre Colmez, 59-111.
[Fon1994b] J.-M. Fontaine, "Représentations p-adiques semi-stables", in Périodes padiques, Astérisque, 223 (1994), 113-184.
[$\mathrm{H}-\mathrm{T}]$ M.Harris and R.Taylor, On the geometry and cohomology of some simple Shimura varieties, Ann. of Math. Studies, 151, Princeton University Press, 2001.
[Hen] G.Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Inv. Math., 139 (2000) no.2, 439-455.
[SchT] P.Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Isr. J. Math. 127, (2002) 359-380.

