From $GL_2(\mathbb{Q}_p)$ to $SL_2(\mathbb{Q}_p)$

Dubravka Ban

Joint work with Matthias Strauch

The 2020 Paul J. Sally, Jr. Midwest Representation Theory Conference

Local Langlands correspondence for $GL_n(F)$

Let *F* be a finite extension of \mathbb{Q}_p , and let WD_F denote the Weil-Deligne group of *F*. The local Langlands correspondence for $GL_n(F)$ is a bijection

 $\phi \longleftrightarrow \pi(\phi)$

between the equivalence classes of *n*-dimensional complex representations of the Weil-Deligne group WD_F on which Frobenius acts semisimply, and the equivalence classes of irreducible admissible smooth complex representations of $GL_n(F)$.

- Proved by Kutzko for GL₂(F).
- ▶ Proved by Harris-Taylor and Henniart for GL_n(F) [H-T], [Hen].

The idea of *p*-adic Langlands correspondence for $GL_2(\mathbb{Q}_p)$ was first formulated and investigated by Breuil. It was established by the work of many people, and proved by Colmez [Col2010].

p-adic Langlands correspondence for $GL_2(\mathbb{Q}_p)$

Let *E* be a finite extension of \mathbb{Q}_p . Let

$$\psi: \mathsf{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)
ightarrow \mathsf{GL}_2(E)$$

be an absolutely irreducible Galois representation. Attached to ψ by the p-adic Langlands correspondence is the representation

$$\Pi = \Pi(\psi)$$

such that

- Π is a continuous *E*-Banach space representation of $G = GL_2(\mathbb{Q}_p)$;
- Π is unitary, that is, ||g.v|| = ||v||, for all $g \in G$, $v \in \Pi$;
- Π is admissible in the sense of [SchT] (this means that the continuous dual Π' is finitely generated as a module over the Iwasawa algebra E[[K]] for some (hence any) compact open subgroup K of G); and
- Π is non-ordinary, that is, Π is not a subquotient of a unitary parabolic induction from a unitary character.

The structure of $\Pi(\psi)$

 $\Pi = \Pi(\psi) \text{ the irreducible admissible Banach}$ space representation attached to ψ $\Pi^{an} = \text{locally analytic vectors in } \Pi$ $\Pi^{lalg} = \text{locally algebraic vectors in } \Pi$ $\Pi^{lalg} = \pi(\psi) \otimes \Pi^{alg}$ $\pi(\psi) \text{ smooth}$

 Π^{alg} algebraic

 $\Pi^{\textit{lalg}} \neq \textbf{0} \text{ if and only if } \psi \text{ is de Rham with} \\ \text{distinct Hodge-Tate weights}$

Suppose that ψ is de Rham with distinct Hodge-Tate weights. Then

- If ψ is trianguline, then $\pi(\psi)$ is a principal series or the Steinberg representation.
- If ψ is not trianguline, then $\pi(\psi)$ is supercuspidal.

Filtered modules

We work with $\Pi = \Pi(\psi)$ such that $\Pi^{lalg} \neq 0$ because

- we know smooth representations of G, and
- ψ corresponds to a 2-dimensional filtered module D which can be described explicitly [Fon1994a,b].

For example, if $\psi : \mathcal{G}_{\mathbb{Q}_p} \to GL_2(E)$ is an absolutely irreducible crystabelline representation (i.e., becomes crystalline over an abelian extension of \mathbb{Q}_p), we associate to it an admissible filtered $(\varphi, \mathcal{G}_{\mathbb{Q}_p})$ -module $D_{cris}(\psi)$. We will describe it explicitly later.

The jumps in the filtration on D are the negatives of the Hodge-Tate weights of ψ . That is, if h is a Hodge-Tate weight, one has $Fil^h(D) \neq Fil^{h+1}(D)$.

The smooth part of $\Pi(\psi)$

From now on, we assume that ψ is de Rham with distinct H-T weights a < b. Then

$$\begin{split} \Pi^{\textit{lalg}} &= \pi(\psi) \otimes \Pi^{\textit{alg}} \\ &= \pi(\psi) \otimes \det^{\textit{a}} \otimes \operatorname{Sym}^{\textit{b-a-1}}(\textit{E}^2). \end{split}$$

Let

 $\phi = WD(\psi)$

be the Weil-Deligne representation associated to ψ . Let $\pi_{LL}(\phi)$ be the irreducible smooth representation of G over $\overline{\mathbb{Q}}_{\rho}$ attached to ϕ by the classical local Langlands correspondence. A twist of $\pi_{LL}(\phi)$ has a canonical model over E [BrSch]. We denote this smooth E-representation of G by

 $\pi(\phi).$

If $\pi(\psi)$ is irreducible, then

$$\pi(\psi) = \pi(\phi).$$

If $\pi(\psi)$ is reducible, then we have the following exact sequence

$$0 o \pi(\psi)^{\operatorname{irr}} o \pi(\psi) o \pi(\phi) o 0,$$

where $\pi(\psi)^{\text{irr}}$ is the unique irreducible subrepresentation of $\pi(\psi)$. $(\pi(\psi)$ is a standard module, and $\pi(\phi)$ is the corresponding Langlands quotient).

The classical local Langlands correspondence for $H = SL_2(\mathbb{Q}_p)$

Let $pr: GL_2(E) \rightarrow PGL_2(E)$ be the canonical projection. Given a Weil-Deligne representation ϕ , we set

$$\overline{\phi} = \operatorname{pr} \circ \phi.$$

We denote by $S_{\overline{\phi}}$ the centralizer of the image of $\overline{\phi}$ in $PGL_2(\overline{E})$ (considered as an algebraic group) and $S_{\overline{\phi}}^{\circ}$ its identity component, and we define

$$\mathcal{S}_{\overline{\phi}} \cong S_{\overline{\phi}}/S_{\overline{\phi}}^{\circ}.$$

Denote by

 $\{\pi(\overline{\phi})\}$

the *L*-packet associated to $\overline{\phi}$ by the classical Langlands correspondence. It consists of irreducible components of $\pi(\phi)|_H$ and it has size 1, 2, or 4. The elements of the packet $\{\pi(\overline{\phi})\}$ are parameterized by the characters of $S_{\overline{\phi}}$. We would like to understand the corresponding picture for *p*-adic Langlands correspondence. More specifically, for $\psi : \mathcal{G}_{\mathbb{Q}_p} \to GL_2(E)$, we study the restriction of $\Pi(\psi)$ to *H* and

$$\overline{\psi} = \operatorname{pr} \circ \psi.$$

The parameterization of trianguline representations

We denote by $\widehat{\mathbb{T}}(E)$ the set of continuous characters $\delta : \mathbb{Q}_{p}^{\times} \to E^{\times}$. For $\delta \in \widehat{\mathbb{T}}(E)$, let $w(\delta)$ be its weight $(w(\delta) = \frac{\log \delta(u)}{\log u}$, where $u \in \mathbb{Z}_{p}^{\times}$ is not a root of unity).

Set $\Gamma = Gal(\mathbb{Q}_p(\mu_{p^{\infty}})/\mathbb{Q}_p)$, and let S be the set of triples

 $s = (\delta_1, \delta_2, \mathcal{L}),$

where $\delta_1, \delta_2 \in \widehat{\mathcal{F}}(E)$ and $\mathcal{L} \in \mathbb{P}^0(E) = \{\infty\}$ if $\delta_1 \delta_2^{-1}$ is not of the form x^{-i} with $i \ge 0$, nor of the form $x|x^i|$ with $i \ge 1$, and $\mathcal{L} \in \mathbb{P}^1(E)$ otherwise. We denote by $\Delta(s)$ the (φ, Γ) -module associated to s, and by

 $\psi(s)$

the corresponding Galois representation. See [Col2014, Introduction] for details.

Set $u(s) = v_{\rho}(\delta_1(\rho))$ and $w(s) = w(\delta_1) - w(\delta_2)$, and define

$$\begin{array}{lll} \mathbb{S}_{*} & = & \{s \in \mathbb{S} & \mid & v_{\rho}(\delta_{1}(p)) + v_{\rho}(\delta_{2}(p)) = 0 \text{ and } u(s) > 0\} \ , \\ \mathbb{S}_{*}^{ng} & = & \{s \in \mathbb{S}_{*} & \mid & w(s) \notin \mathbb{Z}_{\geq 1}\} \ , \\ \mathbb{S}_{*}^{cris} & = & \{s \in \mathbb{S}_{*} & \mid & w(s) \in \mathbb{Z}_{\geq 1} \ , \ u(s) < w(s) \ , \ \mathcal{L} = \infty\} \ , \\ \mathbb{S}_{*}^{srt} & = & \{s \in \mathbb{S}_{*} & \mid & w(s) \in \mathbb{Z}_{\geq 1} \ , \ u(s) < w(s) \ , \ \mathcal{L} \neq \infty\} \ , \\ \mathbb{S}_{*}^{ord} & = & \{s \in \mathbb{S}_{*} & \mid & w(s) \in \mathbb{Z}_{\geq 1} \ , \ u(s) = w(s)\} \ . \end{array}$$

If $\psi(s)$ is an irreducible Hodge-Tate representation, we have the following:

- $\psi(s)$ is de Rham if and only if $s \in S^{cris}_* \sqcup S^{st}_*$,
- ψ(s) is the twist of a semistable non-crystalline representation by a character of finite order if and only if s ∈ Sst_{*}.

Every 2-dimensional absolutely irreducible trianguline representation of $\mathcal{G}_{\mathbb{Q}_p}$ is of the form $\psi(s)$ for some $s \in S^{ng}_* \sqcup S^{cris}_* \sqcup S^{st}_*$.

The structure of Π^{an}

Suppose

$$s = (\delta_1, \delta_2, \infty) \in S^{\operatorname{cris}}_*.$$

Set

$$\delta_1'=x^{w(s)}\delta_2,\quad \delta_2'=x^{-w(s)}\delta_1,\quad \text{and}\quad s'=(\delta_1',\delta_2',\infty).$$

Assume $s \neq s'$ (s is not exceptional).

We denote by $x \in \widehat{\mathbb{T}}(E)$ the character $x \mapsto x$ induced by the inclusion $\mathbb{Q}_p \subseteq E$. Set $\chi_{cyc} = x|x|$. For $\delta_1, \delta_2 \in \widehat{\mathbb{T}}(E)$ define

$$B^{\mathrm{an}}(\delta_1,\delta_2) = \mathrm{Ind}_P^G(\delta_2 \otimes \delta_1 \chi_{\mathrm{cyc}}^{-1})^{\mathrm{an}},$$

the locally analytic principal series representation. Then

$$\Pi^{\text{lalg}} \cong B^{\text{lalg}}(\delta_1, \delta_2) \cong B^{\text{lalg}}(\delta'_1, \delta'_2).$$

The structure of Π^{an} (continued)

By [Col2014, Proposition 8.97], we have the following exact sequences

$$\begin{array}{l} 0 \longrightarrow \Pi^{\mathrm{lalg}} \longrightarrow B^{\mathrm{an}}(\delta_1, \delta_2) \oplus B^{\mathrm{an}}(\delta_1', \delta_2') \longrightarrow \Pi^{\mathrm{an}} \longrightarrow 0, \\ 0 \longrightarrow \Pi^{\mathrm{lalg}} \longrightarrow \Pi^{\mathrm{an}} \longrightarrow B^{\mathrm{an}}(\delta_2, \delta_1) \oplus B^{\mathrm{an}}(\delta_2', \delta_1') \longrightarrow 0. \end{array}$$

Since $B^{an}(\delta_1, \delta_2)$ and $B^{an}(\delta'_1, \delta'_2)$ both embed into Π^{an} , it follows

 $\Pi^{\mathrm{an}} = B^{\mathrm{an}}(\delta_1, \delta_2) \oplus_{\Pi^{\mathrm{lalg}}} B^{\mathrm{an}}(\delta_1', \delta_2').$

The structure of Π^{an} (continued)

By [Col2014, Proposition 8.97], we have the following exact sequences

$$\begin{split} 0 &\longrightarrow \Pi^{\text{lalg}} \longrightarrow B^{\text{an}}(\delta_1, \delta_2) \oplus B^{\text{an}}(\delta'_1, \delta'_2) \longrightarrow \Pi^{\text{an}} \longrightarrow 0, \\ 0 &\longrightarrow \Pi^{\text{lalg}} \longrightarrow \Pi^{\text{an}} \longrightarrow B^{\text{an}}(\delta_2, \delta_1) \oplus B^{\text{an}}(\delta'_2, \delta'_1) \longrightarrow 0. \end{split}$$

Since $B^{an}(\delta_1, \delta_2)$ and $B^{an}(\delta'_1, \delta'_2)$ both embed into Π^{an} , it follows

 $\Pi^{\mathrm{an}} = B^{\mathrm{an}}(\delta_1, \delta_2) \oplus_{\Pi^{\mathrm{lalg}}} B^{\mathrm{an}}(\delta_1', \delta_2').$

The structure of Π^{an} in pictures

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)

The structure of Π^{lalg}

Set $\psi = \psi(s)$ and $\Pi = \Pi(\psi)$. Let $\delta_s = \chi_{cyc}^{-1} \delta_1 \delta_2^{-1}$. The space Π^{alg} is described in [Col2014]:

1. if
$$s \in S_*^{cris}$$
, $\delta_s \neq x^{w(s)-1}$, $|x|^{-2}x^{w(s)-1}$, then

$$\Pi^{\text{lalg}} = B^{\text{lalg}}(\delta_1, \delta_2) = \text{ind}(|x|\delta_s x^{1-w(s)} \otimes |x|^{-1}) \otimes \text{Sym}^{w(s)-1} \otimes (\delta_2 \circ \text{det});$$
2. if $s \in S_*^{cris}$, $\delta_s = |x|^{-2}x^{w(s)-1}$, then $\Pi^{\text{lalg}} = B^{\text{lalg}}(\delta_1, \delta_2);$
3. if $s \in S_*^{cris}$, $\delta_s = x^{w(s)-1}$, then

$$\Pi^{\text{lalg}} = B^{\text{lalg}}(\delta'_1, \delta'_2) = \text{ind}(|x| \otimes |x|^{-1}) \otimes \text{Sym}^{w(s)-1} \otimes (\delta_2 \circ \text{det});$$
4. if $s \in S_*^{sr}$, then $\Pi^{\text{lalg}} = \text{St} \otimes \text{Sym}^{w(s)-1} \otimes (\delta_2 \circ \text{det}).$

Cases (2) and (3) correspond to each other by the involution $s \mapsto s'$, so it is enough to consider one of them, because for $s \in S_*^{cris}$ we have $\Delta(s') \cong \Delta(s)$ [Proposition 8.3 (ii) Col2014].

Restriction of representations of *p*-adic Lie groups

Proposition 1

Let G be a p-adic Lie group and H an open normal subgroup of G of finite index. Let Π be an irreducible admissible E-Banach space representation of G. Then

$$\Pi|_{H} = \Pi_{1} \oplus \dots \oplus \Pi_{r} \tag{1}$$

where Π_i are irreducible E-Banach space representations of H.

For the proof, we have to show that $\Pi|_{H}$ contains an irreducible (closed) subrepresentation Π_{1} . For this, we use the admissibility of Π . The rest of the proof is standard; in particular

$$\Pi|_{H} = \Pi_{1} \oplus g_{2}.\Pi_{1} \cdots \oplus g_{r}.\Pi_{1}, \qquad (2)$$

where $\{1, g_2, \ldots, g_r\}$ is a subset of the set of representatives of G/H.

Locally algebraic vectors in $\Pi|_H$

Proposition 2

Let G be a p-adic Lie group and H an open normal subgroup of G of finite index. Let Π be an irreducible admissible E-Banach space representation of G. Suppose that the subspace of locally algebraic vectors Π^{lalg} is dense in Π . Write $\Pi = \Pi_1 \oplus \ldots \oplus \Pi_r$ as in (1). Then for each i, the set $(\Pi_i)^{\text{lalg}}$ is dense in Π_i , hence non-zero, and

 $(\Pi^{\text{lalg}})|_{H} = (\Pi_1)^{\text{lalg}} \oplus \ldots \oplus (\Pi_r)^{\text{lalg}}$.

The structure of $\Pi|_H$ for ψ trianguline

From now on, $G = GL_2(\mathbb{Q}_p)$ and $H = SL_2(\mathbb{Q}_p)$.

Theorem 3

Let $\psi : \mathcal{G}_{\mathbb{Q}_p} \to GL_2(E)$ be an absolutely irreducible trianguline representation which is de Rham with distinct Hodge-Tate weights. Denote by $\Pi = \Pi(\psi)$ the corresponding absolutely irreducible unitary admissible Banach space representation of $G = GL_2(\mathbb{Q}_p)$, and let Π^{lalg} be the subspace of locally algebraic vectors of Π . Then the following assertions are equivalent:

- 1. $\Pi|_H$ is reducible.
- 2. $\Pi|_H$ is decomposable.
- 3. $(\Pi^{\text{lalg}})|_{H}$ is decomposable.

If one (equivalently all) of the above cases occurs, then both $\Pi|_H$ and $(\Pi^{\text{lalg}})|_H$ have two absolutely irreducible inequivalent constituents.

The proof in pictures

If $(\Pi^{\text{lalg}})|_{H}$ is indecomposable, then Theorem 3 follows from Proposition 2. Also, the results for the smooth principal series representations of *G* imply

 Π^{lalg} reducible and indecomposable $\implies (\Pi^{\text{lalg}})|_{H}$ indecomposable.

It remains to consider the case when Π^{lalg} is irreducible, but $(\Pi^{\text{lalg}})|_H$ is reducible. Assume for simplicity that the Hodge-Tate weights are 0 and 1. It turns out that Π decomposes as follows:

 $\pi|_{H} = \pi_1 \oplus \pi_2$ and $\{\pi_1, \pi_2\}$ form an *L*-packet of smooth representations of *H*. It seems natural to consider $\{\Pi_1, \Pi_2\}$ as an *L*-packet of admissible *p*-adic Banach space representations of *H*.

Centralizers

Proposition 4

Let $\psi : G_{\mathbb{Q}_p} \to GL_2(E)$ be an absolutely irreducible trianguline de Rham representation with distinct Hodge-Tate weights.

- (i) The centralizer S_ψ in PGL₂(E) of the image of ψ has one or two elements. The latter case occurs if and only if ψ is equivalent to θψ for some quadratic character θ ≠ 1.
- (ii) Denote by ϕ the Weil group representation on WD(ψ) associated to ψ , and set $\overline{\phi} = pr \circ \phi$. Then

$$S_{\overline{\psi}} \cong S_{\overline{\phi}} / S_{\overline{\phi}}^{\circ}$$
,

where $S_{\overline{\phi}}$ denotes the centralizer of the image of $\overline{\phi}$ in $PGL_2(\overline{E})$ (considered as an algebraic group) and $S_{\overline{\phi}}^{\circ}$ its identity component.

The strategy is to determine the centralizer using the filtered modules attached to ψ . Note that we can twist ψ by a power of the cyclotomic character so that its Hodge-Tate weights are 0 and k - 1, where $k \ge 2$.

Filtered modules in the crystabelline case.

Here we assume that ψ is crystabelline, and we consider the filtered $(\varphi, \mathcal{G}_{\mathbb{Q}_p})$ -module $D_{\text{cris}}(\psi)$ as defined in [BeBr]. Let $\alpha, \beta : \mathbb{Q}_p^{\times} \to E^{\times}$ be locally constant characters such that

$$-(k-1) < \mathsf{val}(\alpha(p)) \le \mathsf{val}(\beta(p)) < 0$$
 and $\mathsf{val}(\alpha(p)) + \mathsf{val}(\beta(p)) = -(k-1)$

and which are trivial on $1 + p^n \mathbb{Z}_p$ for some $n \ge 1$. We define on $D(\alpha, \beta) = E \cdot e_{\alpha} \oplus E \cdot e_{\beta}$ the structure of a filtered $(\varphi, \mathcal{G}_{\mathbb{Q}_p})$ -module: If $\alpha \neq \beta$, then:

$$\begin{cases} \varphi(e_{\alpha}) = \alpha(p)e_{\alpha} \\ \varphi(e_{\beta}) = \beta(p)e_{\beta} \end{cases} \quad \text{and if } g \in \Gamma, \text{ then:} \quad \begin{cases} g(e_{\alpha}) = \alpha(\varepsilon(g))e_{\alpha} \\ g(e_{\beta}) = \beta(\varepsilon(g))e_{\beta} \end{cases}$$

and

$$\mathsf{Fil}^{i}(E_{n}\otimes_{E} D(\alpha,\beta)) = \begin{cases} E_{n}\otimes_{E} D(\alpha,\beta) & \text{if } i \leq -(k-1) \\ E_{n}\cdot(e_{\alpha}+G(\beta\alpha^{-1})\cdot e_{\beta}) & \text{if } -(k-2) \leq i \leq 0 \\ 0 & \text{if } i \geq 1. \end{cases}$$

Here, $E_n = E \otimes_{\mathbb{Q}_p} \mathbb{Q}_p(\mu_{p^n})$, $\varepsilon : \mathcal{G}_{\mathbb{Q}_p} \to \mathbb{Z}_p^{\times}$ is the cyclotomic character, and $G(\beta \alpha^{-1})$ is the Gauss sum.

Filtered modules in the crystabelline case, continued

If
$$\alpha = \beta$$
, then:

$$\begin{cases} \varphi(e_{\alpha}) = \alpha(p)e_{\alpha} \\ \varphi(e_{\beta}) = \alpha(p)(e_{\beta} - e_{\alpha}) \end{cases} \quad \text{and if } g \in \Gamma, \text{ then:} \quad \begin{cases} g(e_{\alpha}) = \alpha(\varepsilon(g))e_{\alpha} \\ g(e_{\beta}) = \alpha(\varepsilon(g))e_{\beta} \end{cases}$$

and

$$\operatorname{Fil}^{i}(E_{n}\otimes_{E}D(\alpha,\beta)) = \begin{cases} E_{n}\otimes_{E}D(\alpha,\beta) & \text{if } i \leq -(k-1)\\ E_{n}\cdot e_{\beta} & \text{if } -(k-2) \leq i \leq 0\\ 0 & \text{if } i \geq 1 \end{cases}$$

Then:

- If ψ : G_{Q_p} → GL₂(E) is an absolutely irreducible crystabelline representation with Hodge-Tate weights 0 and k − 1, where k ≥ 2, then there exist characters α and β as above such that D_{cris}(ψ) = D(α, β).
- Conversely, if α and β are such characters, then there exists an absolutely irreducible crystabelline representation $\psi : \mathcal{G}_{\mathbb{Q}_p} \to GL_2(E)$ such that $D_{\text{cris}}(\psi) = D(\alpha, \beta)$.

Some linear algebra

Lemma 5

Suppose $D(\alpha, \beta)$ is equivalent to $\vartheta \otimes D(\alpha, \beta)$, for some character ϑ of \mathbb{Q}_p^{\times} . Then $\beta = \vartheta \alpha$ and $\vartheta^2 = 1$. Conversely, if $\beta = \vartheta \alpha$ with a non-trivial quadratic character ϑ , then $D(\alpha, \beta)$ is equivalent to $\vartheta \otimes D(\alpha, \beta)$.

Proof. Suppose $D(\alpha, \beta) \cong \vartheta \otimes D(\alpha, \beta)$, and the equivalence is given with respect to the basis (e_{α}, e_{β}) by $y \in GL_2(E)$. First, we consider the case $\alpha \neq \beta$. Then, for all $t \in \mathbb{Q}_p^{\times}$,

$$y\begin{pmatrix} \alpha(t) & 0\\ 0 & \beta(t) \end{pmatrix} y^{-1} = \begin{pmatrix} \vartheta(t)\alpha(t) & 0\\ 0 & \vartheta(t)\beta(t) \end{pmatrix}$$
(3)

and, since y respects filtration,

$$y\begin{pmatrix}1\\G(\beta\alpha^{-1})\end{pmatrix} = c\begin{pmatrix}1\\G(\beta\alpha^{-1})\end{pmatrix}$$
(4)

for some $c \in E^{\times}$. Because $\alpha \neq \beta$, (3) implies that y must be either a diagonal matrix or an anti-diagonal matrix (i.e., the entries on the diagonal vanish). If y is a diagonal matrix, then equation (3) gives $\vartheta = 1$ and equation (4) implies that y is a scalar matrix.

More linear algebra

Now suppose that y is an anti-diagonal matrix. Equation (3) becomes

$$y\begin{pmatrix}\alpha(t) & 0\\ 0 & \beta(t)\end{pmatrix}y^{-1} = \begin{pmatrix}\beta(t) & 0\\ 0 & \alpha(t)\end{pmatrix} = \begin{pmatrix}\vartheta(t)\alpha(t) & 0\\ 0 & \vartheta(t)\beta(t)\end{pmatrix}$$

It follows $\beta = \vartheta \alpha$, $\alpha = \vartheta \beta$, and hence $\vartheta^2 = 1$. Finally, equation (4) implies that y is a scalar multiple of the matrix $y_0 = \begin{pmatrix} 0 & G(\beta \alpha^{-1})^{-1} \\ G(\beta \alpha^{-1}) & 0 \end{pmatrix}$. Conversely, if $\beta = \vartheta \alpha$ with a non-trivial quadratic character ϑ , then the matrix y_0 defines an equivalence $D(\alpha, \beta) \cong \vartheta \otimes D(\alpha, \beta)$. If $\alpha = \beta$, then

$$y \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} y^{-1} = \vartheta(p) \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
 and $y \begin{pmatrix} 0 \\ 1 \end{pmatrix} = c \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

imply that y is a scalar matrix, and hence $\vartheta = 1$.

Perfect matching

Theorem 6

Let ψ : Gal $(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to GL_2(E)$ be an absolutely irreducible crystabelline or semi-stable representation with distinct Hodge-Tate weights. Let $\Pi = \Pi(\psi)$ and let $\pi = \pi(\psi)^{\text{irr}}$ be the unique irreducible subrepresentation of $\pi(\psi)$.

- Both Π|_H and π|_H decompose as direct sums of inequivalent irreducible components.
- (ii) There is a canonical bijection between the set of components of Π|_H and the set of components of π|_H. The number of components is equal to either 1 or 2.
- (iii) Denote by ϕ the Weil-Deligne representation associated to ψ , and set $\overline{\phi} = \operatorname{pr} \circ \phi$. Then

$$S_{\overline{\psi}} \cong S_{\overline{\phi}}$$

and this group is isomorphic to either 1 or $\mathbb{Z}/2\mathbb{Z}$. (iv) $\Pi|_{H}$ is reducible if and only if $S_{\overline{u}\overline{\nu}} \cong \mathbb{Z}/2\mathbb{Z}$.

Trianguline case is too good

The matching from Theorem 6 between $\Pi|_H$ and $\pi|_H$ does not hold for non-trianguline case. We have the following situations

More cases

At most two irreducible constituents

Proposition 7

Let Π be an absolutely irreducible admissible unitary p-adic Banach space representation of G. Then $\Pi|_{SL_2(\mathbb{Q}_p)}$ decomposes into at most two irreducible components.

Proof. Put $\overline{\Pi} = \Pi_{\leq 1} \otimes_{\mathcal{O}_E} k_E$, where $\Pi_{\leq 1} = \{v \in \Pi \mid ||v|| \leq 1\}$ and k_E is the residue field of *E*. This is a smooth *G*-representation. By [ColDoPa], after possibly replacing *E* by an unramified quadratic extension, there are two possibilities for $\overline{\Pi}$, namely

(i) $\overline{\Pi}$ is an absolutely irreducible supersingular representation.

(ii) The semisimplification $\overline{\Pi}^{ss}$ of $\overline{\Pi}$ embeds into

$$\pi\{\chi_1,\chi_2\}:=\Big(\operatorname{\mathsf{Ind}}\nolimits_P^G(\chi_1\otimes\chi_2\omega^{-1})\Big)^{\operatorname{ss}}\oplus\Big(\operatorname{\mathsf{Ind}}\nolimits_P^G(\chi_2\otimes\chi_1\omega^{-1})\Big)^{\operatorname{ss}},$$

where χ_1 and χ_2 are smooth characters $\mathbb{Q}_p^{\times} \to k_E^{\times}$, and $\omega : \mathbb{Q}_p^{\times} \to k_E^{\times}$ is the reduction of the cyclotomic character.

It is a result of Ramla Abdellatif that in case (i) $\overline{\Pi}|_H$ decomposes into two irreducible representations [Abd]. In particular, $\Pi|_H$ cannot have more than two irreducible components.

Now suppose we are in case (ii). We consider the list given in [CoIDoPa] which provides an explicit description of the decomposition of $\pi{\chi_1, \chi_2}$ into irreducible constituents. $\pi{\chi_1, \chi_2}$ is isomorphic to one (and only one) of the following:

1.
$$\operatorname{ind}_{P}^{G}(\chi_{1} \otimes \chi_{2}\omega^{-1}) \oplus \operatorname{ind}_{P}^{G}(\chi_{2} \otimes \chi_{1}\omega^{-1}), \text{ if } \chi_{1}\chi_{2}^{-1} \neq 1, \ \omega^{\pm 1} ;$$

2. $\operatorname{ind}_{P}^{G}(\chi \otimes \chi\omega^{-1})^{\oplus 2}, \text{ if } \chi_{1} = \chi_{2} = \chi \text{ and } p \geq 3;$
3. $(1 \oplus \operatorname{St} \oplus \operatorname{ind}_{P}^{G}(\omega \otimes \omega^{-1})) \otimes \chi \circ \operatorname{det}, \text{ if } \chi_{1}\chi_{2}^{-1} = \omega^{\pm 1} \text{ and } p \geq 5;$
4. $(1 \oplus \operatorname{St} \oplus \omega \circ \operatorname{det} \oplus \operatorname{St} \otimes \omega \circ \operatorname{det}) \otimes \chi \circ \operatorname{det}, \text{ if } \chi_{1}\chi_{2}^{-1} = \omega^{\pm 1} \text{ and } p = 3;$
5. $(1 \oplus \operatorname{St})^{\oplus 2} \otimes \chi \circ \operatorname{det}, \text{ if } \chi_{1} = \chi_{2} \text{ and } p = 2.$

Write $\Pi|_{H} = \Pi_{1} \oplus \ldots \oplus \Pi_{r}$, with irreducible *H*-representations Π_{i} . By Prop. 1, the irreducible representations Π_{i} are permuted by the action of *G*, and they must hence be all infinite-dimensional. Therefore, the representation $(\overline{\Pi})^{ss}|_{H}$ must have at least *r* infinite-dimensional irreducible constituents. Then we analyze reducibility cases, and conclude that $r \leq 2$.

Theorem 8

Let E/\mathbb{Q}_p be a finite extension, and let $\psi : \mathcal{G}_{\mathbb{Q}_p} \to GL_2(E)$ be an absolutely irreducible de Rham representation with distinct Hodge-Tate weights, which we assume to be 0 and 1 if ψ is not trianguline. Let $\Pi = \Pi(\psi)$ be the absolutely irreducible p-adic Banach representation of G associated to ψ by the p-adic Langlands correspondence, and let $\Pi|_{SL_2(\mathbb{Q}_p)} = \Pi_1 \oplus \ldots \oplus \Pi_r$ be the decomposition into (topologically) irreducible representations of H. Denote by $S_{\overline{\psi}}$ the centralizer in $PGL_2(\overline{E})$ of the image of the associated projective Galois $\overline{\psi}$.

- (i) $r \leq 2$ and $|S_{\overline{\psi}}| \leq 2$.
- (ii) If ψ is trianguline, then $r = |S_{\overline{\psi}}|$.
- (iii) If ψ is not trianguline, then $r \geq |S_{\overline{\psi}}|$.

References

- [Abd] R. Abdellatif, Classification des représentations modulo p de SL(2, F), Bull. Soc. Math. France, 142 (2014), 537-589.
- [BeBr] L. Berger and C. Breuil, Sur quelques représentations potentiellement cristallines de GL₂(Q_p). Astérisque No. 330 (2010), 155-211.
- [BrSch] C. Breuil and P. Schneider, First steps towards p-adic Langlands functoriality, J. Reine Angew. Math., 610:149-180, 2007.
- [Col2010] P. Colmez, Représentations de GL₂(Q_p) et (φ, Γ)-modules. Astérisque No. 330 (2010), 281-509.
- [Col2014] P. Colmez, La série principale unitaire de GL₂(Q_p): vecteurs localement analytiques, In Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser., Vol. 414, 286–358, Cambridge Univ. Press, Cambridge, 2014.
- [ColDoNi] Colmez, Pierre and Dospinescu, Gabriel and Nizioł, Wiesława, Cohomologie p-adique de la tour de Drinfeld: le cas de la dimension 1, J. Amer. Math. Soc., 33, (2020), 311–362.

More References

- [ColDoPa] Colmez, Pierre and Dospinescu, Gabriel and Paškūnas, Vytautas, The p-adic local Langlands correspondence for GL₂(Q_p), Camb. J. Math., 2(1) (2014)1–47.
- [Fon1994a] J.-M. Fontaine, "Le corps des périodes p-adiques", in Périodes p- adiques, Astérisque, 223 (1994), avec un appendice par Pierre Colmez, 59-111.
- [Fon1994b] J.-M. Fontaine, "Représentations p-adiques semi-stables", in Périodes padiques, Astérisque, 223 (1994), 113-184.
 - [H-T] M.Harris and R.Taylor, On the geometry and cohomology of some simple Shimura varieties, Ann. of Math. Studies, 151, Princeton University Press, 2001.
 - [Hen] G.Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Inv. Math., 139 (2000) no.2, 439-455.
 - [SchT] P.Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Isr. J. Math. 127, (2002) 359–380.