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Abstract. For each integer n ≥ 3, we exhibit a nonuniform arithmetic lattice

in SO(n, 1) containing Zariski-dense surface subgroups.

It follows from a straightforward ping pong argument that any lattice in SO(n, 1),
n ≥ 2, contains a Zariski-dense copy of a noncocompact discrete subgroup of
SO(2, 1), namely, a Zariski-dense free subgroup (this may also be seen as a conse-
quence of the Borel density theorem [Bor60, Corollary 4.3] and [Tit72, Theorem 3]).
It is thus natural to look for Zariski-dense subgroups of lattices in SO(n, 1) that
are isomorphic to cocompact discrete subgroups of, that is, uniform lattices in,
SO(2, 1); the latter are virtually fundamental groups of closed hyperbolic surfaces.
We refer to fundamental groups of such surfaces as surface groups.

While nonuniform lattices in SO(2, 1) are virtually free and hence do not possess
surface subgroups, it is expected that any lattice in SO(n, 1) for n ≥ 3 contains sur-
face subgroups, and even Zariski-dense such subgroups. This has been established
for n = 3 by Cooper, Long, and Reid [CLR97] in the nonuniform case (see also
[CF19, KW21]) and by Kahn and Markovic [KM12] in the uniform case; and for
odd n ≥ 3 by Hamenstädt [Ham15] (see also [KLM18]) in the uniform case. How-
ever, while some standard constructions of closed arithmetic hyperbolic manifolds
of arbitrary dimension contain immersed totally geodesic surfaces (see, for instance,
[Ben04, Example 8]), the author was not aware of an example in the literature of a
lattice in SO(n, 1) for each n ≥ 3 containing Zariski-dense surface subgroups. The
purpose of this note is to present such an example in each dimension.

Theorem 1. For each n ≥ 3, there is a nonuniform arithmetic lattice in SO(n, 1)
containing Zariski-dense surface subgroups.

Before we proceed, we fix some notation. Given an integer n ≥ 1, a subdo-
main D ⊂ R, and a symmetric matrix Q ∈ Mn+1(D) of signature (n, 1), we de-
note by O(Q;D) (resp., SO(Q;D)) the set of all matrices g ∈ GLn+1(D) (resp.,
g ∈ SLn+1(D)) satisfying gTQg = Q. The hypersurface of Rn+1 consisting of
all x ∈ Rn+1 satisfying xTQx = −1 is a two-sheeted hyperboloid; we denote by
O′(Q;D) the subgroup of O(Q;D) preserving each sheet. When Q is the standard
form diag(1, . . . , 1,−1), we write O(n, 1) (resp., SO(n, 1), O′(n, 1)) in the place
of O(Q;R) (resp., SO(Q;R), O′(Q;R)). We view O′(n, 1) as the isometry group
of n-dimensional real hyperbolic space Hn via the hyperboloid model of the latter.

We now proceed to the examples. For m ≥ 3, let Km ∈ Mm(Z) be the matrix
all of whose entries are equal to 1; let Bm ∈ Mm(Z) be the matrix with 2’s on the
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diagonal, 1’s on the superdiagonal and subdiagonal, and 0’s everywhere else; and
let Qm = Bm −Km. What follows is the key observation of this note.

Lemma 2. The symmetric matrix Qn+1 has signature (n, 1) for n ≥ 3.

Proof. The author is grateful to Yves Benoist for the following efficient argument.
For m > 0, let vm := (1, . . . , 1)T ∈ Rm and let Hm−1 be the orthogonal complement
of 〈vm〉 in Rm with respect to the standard inner product on Rm. Now let n ≥ 3.
Then vTn+1Qn+1vn+1 = −n2 + 2n+ 1 < 0, so it suffices to show that the restriction
of Qn+1 to Hn is positive-definite. Indeed, since the restriction of the form Kn+1

to Hn is trivial, we have that the forms Qn+1 and Bn+1 have the same restriction
to Hn, so that it is enough to show that Bn+1 is positive-definite. This is true
since we may view Bn+1 as the matrix representation of the standard inner prod-
uct on Rn+2 restricted to Hn+1 with respect to the basis ((−1)i+1(ei − ei+1))n+1

i=1

of Hn+1, where (e1, . . . , en+2) is the standard basis for Rn+2. �

Proof of Theorem 1. Let n ≥ 3. By the Borel–Harish-Chandra theorem [BHC62]
(and by Lemma 2), we have that Λn := O′(Qn+1;Z) is a lattice in O(Qn+1;R).
As will become clear in the course of the proof, the lattice Λn is nonuniform. We
show that Λn contains a Zariski-dense subgroup isomorphic to a cocompact lattice
in O′(2, 1) generated by the reflections in the sides of a hyperbolic right-angled 2n-
gon. This will complete the proof since Qn+1 has signature (n, 1) by Lemma 2.

To that end, let (Wn, (s1, . . . , sn+1)) be the right-angled Coxeter system associ-
ated to the matrix Qn+1; that is, let Wn be the right-angled Coxeter group given
by the presentation with generators s1, . . . , sn+1 subject to the relations s2

i = 1
for i = 1, . . . , n+ 1 and [si, sj ] = 1 whenever the (i, j)th entry of Qn+1 is 0 (in our
case, the latter happens exactly when |i−j| = 1). The image Γn of the Tits represen-
tation ρn : Wn → SL±n+1(R) associated to the Coxeter system (Wn, (s1, . . . , sn+1))
lies in Λn and is Zariski-dense in O(Qn+1;R) [BdlH04]. Interpreting O′(Qn+1;R) as
the group of conformal diffeomorphisms of Sn−1 = ∂Hn by conjugating O(Qn+1;R)
to O(n, 1) within GLn+1(R), we have that γi := ρn(si) is an inversion in a (round)
hypersphere Si of Sn−1 for i = 1, . . . , n+1. Moreover, we have that Si is orthogonal
to Si+1 for i = 1, . . . , n, and that Si and Sj are tangent for 1 ≤ i < j − 1 ≤ n. The
latter follows from the fact that γiγj is nontrivial and unipotent, hence parabolic,
for such i and j.

We now visualize Sn−1 via stereographic projection onto Rn−1 from the tangency
point ∞ of S1 and Sn+1. Under this projection, the hyperspheres S1 and Sn+1 are
parallel hyperplanes of Rn−1, while the remaining hyperspheres are contained in
some ball B ⊂ Rn−1. Since the stabilizer StabΛn(∞) of∞ in Λn contains the reflec-
tions γ1 and γn+1 in the parallel Euclidean hyperplanes S1 and Sn+1, respectively,
and since Λn is a lattice in O′(Qn+1;R), we must have that StabΛn

(∞) is a lattice
in Isom(Rn−1) by the Margulis lemma (see, for instance, [BP92, Prop. D.2.6]). In
particular, there is some translation σ ∈ StabΛn

(∞) with nontrivial S1-component,
and so τ := (γ1σγ1)σ is a nontrivial translation parallel to S1 (and Sn+1). We
now replace τ with a sufficiently high power so that B ∩ τ(B) = ∅. Appropriately
defined, the common exterior of the hyperspheres S1, . . . , Sn+1 and their images
under τ produce a Coxeter polytope in Hn with the correct dihedral angles so
that 〈Γn, τΓnτ

−1〉 < Λn is isomorphic to the right-angled 2n-gon group (see, for
example, the introduction of [Vin85]). �



HYPERBOLIC LATTICES WITH ZARISKI-DENSE SURFACE SUBGROUPS 3

S1

S4

S2

S3

τS2

τS3

Figure 1. Visualizing the case n = 3. The sphere S2 is stereo-
graphically projected onto the plane from the tangency point of the
circles S1 and S4, so that S1 and S4 project to parallel lines. Up to
a Euclidean similarity, the circles Si are as in the figure. Zariski-
density in O(Q4;R) of the subgroup Γ3 can be deduced from the
fact that no vertical line is orthogonal to both S2 and S3. Any
lattice in O′(3, 1) containing the inversions in the Si also contains
inversions in two circles resembling the dashed circles above; the
latter represent the images of S2 and S3 under a horizontal trans-
lation τ of large magnitude. The subgroup of O′(3, 1) generated by
the inversions in the above six circles is (abstractly) a right-angled
hexagon group. Extending each circle Si to a sphere S′i in S3

orthogonal to the page, and denoting by S′5 the Euclidean plane
parallel to the page and resting on top of S′2 and S′3, we have that
the subgroup of O′(4, 1) generated by the inversions in S′1, . . . , S

′
5

is (conjugate to) the right-angled pentagon group Γ′4 in Remark 7.

Remark 3. A ping pong argument following [Mas88, Section VII.E] demonstrates
that in fact 〈Γn, τ〉 < Λn decomposes as the HNN extension Γn∗〈γ1,γn+1〉 given by
the identity map on 〈γ1, γn+1〉.

Remark 4. The surface subgroups produced above are geometrically finite but are
not convex cocompact since they contain parabolics. They are also automatically
thin in the sense of Sarnak [Sar14] since a surface group cannot be realized as a
lattice in O′(n, 1) for n ≥ 3 (for instance, because the outer automorphism group
of such a lattice is finite by Mostow–Prasad rigidity [Mos68, Pra73]).

Remark 5. In this remark, we use the language of Coxeter schemes following
[Vin85, Section II.5]. To justify Zariski-density of Γn, and hence 〈Γn, τΓnτ

−1〉,
in O(Qn+1;R), we appealed to the general result of Benoist and de la Harpe
[BdlH04], which asserts in particular that if the Gram matrix Q of a finite connected
Coxeter scheme Σ with no dotted edges is nondegenerate, then the Tits represen-
tation of the associated Coxeter group is Zariski-dense in O(Q;R). When Q has a
single negative eigenvalue (as is the case for Q = Qn+1, n ≥ 3, by Lemma 2), so
that Q is the Gram matrix of a hyperbolic Coxeter polytope [Vin85, Theorem 2.1],
this also follows from the fact that, for n ≥ 2, if P ⊂ Hn is an irreducible Coxeter
polytope with finitely many bounding hyperplanes Πi, then the subgroup of O′(n, 1)
generated by the reflections in the Πi is Zariski-dense in O(n, 1) if and only if the Πi

do not all share a point in Hn ∪ ∂Hn or a common orthogonal hyperplane in Hn
(see, for instance, [DSO01, Theorem 1.3]), which holds if and only if the Gram
matrix of P has rank n+ 1 [Vin85, Section I.1].
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We remark that if all the edges of the Coxeter scheme Σ are bold (in other words,
if the entries of Q are contained in {−1, 0, 1}, as is true for Q = Qn+1), then the
argument of Benoist and de la Harpe simplifies. For an outline of their argument
in this case, see the proof of Lemma 2 in [Dou22].

Remark 6. Let n ≥ 4. We have demonstrated that Λn contains a Zariski-dense
copy of the right-angled 2n-gon group, but it is even true that Λn contains a
Zariski-dense copy of the right-angled 2(n−1)-gon group. Indeed, by Lemma 2 and
Remark 5, there is a unique hypersphere S ⊂ Sn−1 that is simultaneously orthog-
onal to S1, . . . , Sn. We visualize Sn−1 via stereographic projection onto Rn−1 from
the tangency point of S1 and Sn. Under this projection, the hyperspheres S, S1,
and Sn are hyperplanes of Rn−1, while S2, . . . , Sn−1 are Euclidean (n− 2)-spheres.
As in the proof of Theorem 1, there is some Euclidean translation in Λn that
is not parallel to S, and hence some Euclidean translation in Λn that is parallel
to S1 but not parallel to S. For a sufficiently high power τ ′ of the latter transla-
tion, we have that 〈γ1, γ2, . . . , γn, τ

′γn−1τ
′−1, τ ′γn−2τ

′−1, . . . , τ ′γ2τ
′−1〉 < Λn is a

right-angled 2(n − 1)-gon group. Moreover, by Remark 5, this subgroup of Λn is
Zariski-dense in O(n, 1) since there is no hypersphere in Sn−1 that is simultaneously
orthogonal to S1, S2, . . . , Sn, τ

′Sn−1, τ
′Sn−2, . . . , τ

′S2.

Remark 7. There are more efficient examples in even dimensions. Indeed, let n ≥ 4,
and Q′n+1 ∈ Mn+1(Z) be the matrix obtained from Qn+1 by replacing the top-right

and bottom-left entries with 0’s. Let (W ′n, (t
(n)
1 , . . . , t

(n)
n+1)) be the right-angled Cox-

eter system associated to Q′n+1, so that W ′n is a right-angled (n+1)-gon group. The

associated Tits representation ρ′n : W ′n → SL±n+1(R) realizes W ′n as a subgroup Γ′n
of O(Q′n+1;Z) in O(Q′n+1;R). If n is even, then Q′n+1 has signature (n, 1) [Dou22,
Example 4], and so again by [BdlH04] (or Remark 5), we have that Γ′n is Zariski-
dense in O(Q′n+1;R). In this manner (alternatively, via Remark 6), one for instance
obtains a nonuniform arithmetic lattice in SO(4, 1) containing a Zariski-dense copy
of the fundamental group of a closed orientable genus-2 surface.

Now suppose instead that n is odd. Then Q′n+1 has signature (n− 1, 1, 1), with

kernel spanned by the vector un+1 := ((−1)i)ni=0 ∈ Rn+1. Note that Γ′n is contained
in the stabilizer Gn of un+1 in O(Q′n+1;R). Denoting by Vn the quotient of Rn+1 by

the span of un+1, by Q′n+1 the form induced on Vn by Q′n+1, and by O(Q′n+1) the

group of linear automorphisms of Vn preserving the form Q′n+1, we have a natural

map Gn → O(Q′n+1). Since Qn is the matrix representation of the form Q′n+1 with

respect to the basis (e1, . . . , en) for Vn, where ei is the image in Vn of the ith stan-

dard basis vector for Rn+1, we may identify O(Q′n+1) with O(Qn;R) to obtain a
map πn : Gn → O(Qn;R); explicitly, this map sends a matrix A = (ai,j)i,j ∈ Gn
to the matrix obtained from A by first adding an+1,jun+1 to the jth column
for 1 ≤ j ≤ n and then deleting the final row and column. In particular, we have

that πn(Γ′n) ⊂ O(Qn;Z) and that πn(ρ′n(t
(n)
i )) = ρn−1(si) for i = 1, . . . , n. More-

over, the map πn is injective on Γ′n; see [dC12] and the references therein. The
conclusion is that Γm is in fact contained in a right-angled (m + 2)-gon subgroup
of O(Qm+1;Z), namely, πm+1(Γ′m+1), for m ≥ 4 even.
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