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ABSTRACT. We show that any lattice in SL3(k), where k is a nonarchimedean
local field, contains an undistorted subgroup isomorphic to the free product
72 % Z.. To our knowledge, the subgroups we construct give the first examples
in the literature of finitely generated Zariski-dense infinite-covolume discrete
subgroups of an almost simple group over a nonarchimedean local field that
are not virtually free. Our result is in contrast to the case of SL3(Z), in which
the existence of a Z? % Z subgroup remains open.

Denote by k a nonarchimedean local field. Let O = {a € k; |a| < 1} and
m:={a € k; |a| <1}, and let 7 € m be a uniformizer of k, i.e., a generator of the
ideal m in O. Let val; : k* — Z be the normalized valuation of k (so val.(w) = 1).
Finally, let p (respectively, ¢) be the characteristic (resp., order) of the residue class
field O/m of k. The purpose of this note is to establish the following.

Theorem 1. Let A be a lattice in SL3(k), and let A’ be a Z* subgroup of A. Then
there is a finite-index subgroup A of A’ and an infinite-order element g € A such

that the subgroup (A, g) < A is undistorted and decomposes as the free product
A x{g).

Remark 2. We remark that any lattice A in SL3(k) contains a Z? subgroup. In-
deed, by Margulis’s arithmeticity theorem [9], any such A is arithmetic, so that the
existence of a Z? subgroup of A follows from [11, Thm. 1(ii)].

The subgroups we construct in the proof of Theorem 1 provide examples of
Zariski-dense infinite-covolume discrete embeddings into almost simple k-groups,
with k a nonarchimedean local field, of a finitely generated group lacking a finite-
index free subgroup (see Remark 4). To our knowledge, these are the first such
examples in the literature. The authors are also not aware of any previously known
example of a discrete finitely generated subgroup of a k-group (where k is again
nonarchimedean) that was not virtually isomorphic to some lattice in a k-group (see
Remark 5). (Throughout this paragraph, whenever we have referred to k-groups,
we have more precisely been referring to their k-points.)

Consider the ring F,[t] of polynomials with indeterminate ¢ over the finite field F
of order ¢, and let Fy((1/t)) denote the completion of the function field Fy(¢) with
respect to the “valuation at infinity.” Since SL3(F,[t]) is a lattice in SL3(F,((1/t))),
one concludes from Theorem 1 (and Remark 2) the following.

Corollary 3. There is a subgroup of SL3(F,[t]) isomorphic to Z* * Z.

This is in contrast to SLz(Z), for which the existence of a Z? x Z subgroup
remains open (see [7, Prob. 3.3]). By recent work of Dey and Hurtado [5, Thm 1.4],
a hypothetical Z? x Z subgroup of SL3(Z) would necessarily act minimally on P(R?)
(in fact, on the Furstenberg boundary of SL3(R)), so that no ping-pong argument
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of the form we use to establish Theorem 1 will apply to SL3(Z). On the other
hand, Soifer [13] demonstrated the existence of discrete copies of Z2 * Z in SL3(R),
and indeed, it follows from Soifer’s argument that many lattices in SL3(R) contain
Z2 % 7 subgroups.

Before proceeding to the proof of Theorem 1, we introduce some more notation
and terminology. We denote by F the Furstenberg boundary of SL3(k), viewed
as the space of projective flags (z, L), where x € P(k®) and L is a projective line
through x. We say an element g € SL3(k) is regular if g is diagonalizable over k
and the absolute values of the eigenvalues of g are all distinct. In this case, there is
a unique flag (z 1, LT) € F (respectively, (x—, L™) € F), called the attracting flag
(resp., repelling flag) of g, such that g™ converges uniformly to the constant function
(x*, L*) on compact subsets of the set of all flags in F transverse to (zF, LF) as
n — Fo00.

Proof of Theorem 1. Since any discrete Z? subgroup of SL3(k) preserves and acts
cellularly on an apartment in the Bruhat—Tits building of SL3(k) (see [3, Exer-
cise I11.6.6(2) and Thm. I1.7.1]), up to conjugating A within SL3(k), we have that a
finite-index subgroup A of A’ is generated by matrices

ai by
a:= as , b= bo )
a3 b3

where |a1| = |b2| < 1 and |ag| = |ag| = |b1] = |bs]. We now identify the affine chart
{Z #0} of P(k®) = {[X : Y : Z]| X,Y, Z € k} with k% in the usual manner. This
affine chart is preserved by A and the matrices a and b act on this affine chart via

(" ) (" )

respectively, where o; = ZT and 3; = é’—;’ for i = 1,2. Up to replacing each of a and b
with its p(qg — 1)5* power, we can assume that each of ay, as, 31, B2 is a multiple of
a (possibly negative) power of 7P by some element in 1 4 7m.

Let U = (1 +mm) x (1 +7m) C k2. For # € U, denote by V, the union of U and
all projective lines through x that, when viewed as affine lines in k2, have slope
belonging to m+mm. We claim that V, NyU = () for each x € U and each nontrivial
v € A.

We first explain in this paragraph how the claim completes the proof. Let VW be
the subset of F consisting of all projective flags of the form (x, L) where z € U
and L is a line through x of slope belonging to m + mm. Since W is a nonempty
open subset of F, there is a regular element i € A whose attracting flag (z, L)
and repelling flag (x~, L™) are both contained in W (this follows again from [11,
Thm. 1(ii)], for instance). Note that V,+ is a neighborhood of L* in P(k®). There
is thus some positive integer Ny such that for all N € Z with |N| > Ny, we have
RN (P(k®) N\ Vy+) CU. Setting g := h™Vo, it now follows from a standard ping-pong
argument that the subgroup (A, g) < A decomposes as the free product Ax(g). Up
to increasing Ny, one can moreover ensure that the subgroup (A, g) is undistorted
in A; see Remark 7.

We now prove the claim. Let v € A be nontrivial. It is clear that U NyU = 0. Tt
thus suffices to show that for each x,y € U, the slope of the line joining yx to y is
not in w+7m. Write z = (14+ X1, 14+ X2) and y = (1+p1, 1+ p2), where A\;, u; € 7m
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for i = 1,2, and let (m,n) € Z2 ~ {(0,0)}. We want to show
o' B3 (1 + A2) — (1 + p2)
o' BT (1+ A1) — (14 pa)

Note that 87", a5’ € 1+ 7m, so that, up to replacing each of the A\; with some other
element of 7mm, it is enough to show

B+ Ae) = (1 + p2)
7= am™(14+ A1) — (1 +p) #om ot mm,

where & = a; and 8 = fs. The latter is true since either o = oo or val; (o) #1. O

¢ ™+ mm.

Remark 4. We argue that the Z2 % Z subgroup of SL3(k) given by (A, g) has infinite
covolume and is Zariski-dense in SLg(k).

Indeed, the covolume must be infinite since Z? * Z lacks Kazhdan’s property (T).
It remains to show that (A, g) is Zariski-dense. Let k be an algebraic closure of k.
It is enough to show that (A, g) is Zariski-dense in the set SL3(k) of k-points of SLs.

Let H = (A,g}zar C SL3(k) be the Zariski-closure (considered as an algebraic k-
group). By passing to a finite-index subgroup of (A, g) we can assume that H is
connected. Observe that V = k® viewed as a representation of (A, g) C SL3(k) is
irreducible; indeed, there are precisely 3 fixed points of A in P(k3) (respectively,
in the dual P((k3)*)), none of which are fixed by g. Moreover, the base change

VE ~ % is also irreducible for the same reason. It follows that H is a (con-

nected) reductive group over k containing A% the latter is a maximal torus T
in SL3(k) (see Corollary 1.2 and Theorem 3.6 in [12]). Denote by h the Lie al-
gebra of H, and by Ay C X*(T) the set of roots of H. We have an embedding
h C slz which is T-equivariant, and which identifies Ay with a subset of the set
Agr, = {+aq,+as, (a1 + az)} of roots of SLs. It will be enough to show that
Ap = Agr,. Note that Ay C Agp, is closed under (partially defined) addition
and multiplication by —1; thus if Ay contains any two non-collinear vectors then
Ap = Agr,. Up to the action of Weyl group S3 this leaves us with two options:
either Ay = {0} or Ay = {£a1}. In the first case, we have H = T, which contra-
dicts irreducibility of V4 as an H-representation. In the second case, the subgroup
H C SLj is generated by T and the subgroups Ui, ~ G, C SL3 corresponding to
the roots +a, and is thus identified with GLy, C SL3, embedded as

A 0
A€ GLy — (0 det(A)l) C SLg,

which again contradicts irreducibility of V7.

Remark 5. We justify that Z2 + Z does not embed as a lattice in the k-points of a
k-group for any local field k. Indeed, suppose for a contradiction that Z2+Z embeds
as a lattice T in G(k) for some k-group G. Up to replacing I with a finite-index
subgroup, we may assume that G is k-connected. It follows from [1, Thm. 5.2]
that R(k) is compact, where R denotes the radical of G; since T is torsion-free, up
to replacing G with G/R, we may thus assume that G is semisimple. There are then
almost k-simple k-subgroups Gy, ..., G, of G and an isogeny G; X --- x G, — G.
Assume the G; are ordered such that G; is k-anisotropic precisely for i > m, let H =
G1 X+ -XGyy,, and let T be the lattice in H(k) obtained by first taking the pre-image
of I'in Gy (k) x- - - x G, (k), passing to a torsion-free finite-index subgroup, and then
projecting to H(k). Since no finite-index subgroup of I splits as a direct product of
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two nontrivial groups, we must have that I'" is an irreducible lattice in H(k). Thus,
by the Margulis normal subgroup theorem [9, Thm. IX.5.6], we must have that H is
almost k-simple and of k-rank 1 (for instance, since I has infinite abelianization).
Since IV is not Gromov-hyperbolic, we have that I cannot be cocompact in H(k),
nor is it possible that k is archimedean and H(k) is locally isomorphic to SLo(R)
as a real Lie group. In all remaining cases where k is archimedean, it follows from
Prasad rigidity [10] that I cannot be a lattice in H(k), since for instance one can
embed I"” as an infinite-covolume discrete subgroup of H(k). We conclude that k&
is nonarchimedean, but then I'V cannot be finitely generated (see [2, Cor. 3.13]), a
contradiction.

1. UNDISTORTED FREE PRODUCTS

Recall that a map f : Y — X between two metric spaces (), dy) and (X, dy) is
a quasi-isometric embedding if there is a constant C' > 1 such that for all ¢,y € Y,

C-dy(yi,y2) + C > dx(f(y1), f(y2)) > ldy(yhyz) -C.

C
Fix an arbitrary local field k, and consider the ¢>-norm || - || on k¢ given
by ||, aies|| = sup, |a;|, where (e1,...,e,) is the canonical basis of k?. For
g € GLg(k), the operator norm is defined as ||g|| = sup, ‘lllg;ﬂl. Denote by

1 SLg(k) — R? the Cartan projection. For more background on the definition of
we refer the reader to [6] in the archimedean case and to [4] in the nonarchimedean
case.

Let ' < SLq4(k) be a finitely generated subgroup. Fix a word metric || : T' — R4
on I" given by a finite generating set of I". Let X be the symmetric space or Bruhat—
Tits building associated to SLg(k). The subgroup I' < SL4(k) is said to be quasi-
isometrically embedded if, for some (equivalently, any) x € Xy, the map I' — X,
given by 7 + vz is a quasi-isometric embedding.! This condition is equivalent to
the existence of constants C,a > 0 such that for all v € T,

(V)| > aly| = C,

where ||1(7)|] denotes the Euclidean norm of u(vy). The latter condition is in turn
equivalent to the existence of constants «, c > 0 such that for all v € T',

[l - [y~ = e=e,

If T is a quasi-isometrically embedded subgroup of SL4(k) and A is some finitely
generated subgroup of SLy(k) containing T', one has that I is undistorted in A, that
is, that the inclusion of I' in A is a quasi-isometric embedding. Though we will
not be needing this, we remark that it follows from a result of Lubotzky—Mozes—
Raghunathan [8] that if A is a lattice in SLg(k) and d > 3 then a finitely generated
subgroup I' < A is undistorted in A if and only if I" is quasi-isometrically embedded
in SLg(k). Recall also that if A is a lattice in SLg(k) for d > 3, then A possesses
Kazhdan’s property (T) and is thus finitely generated.

The following proposition is folklore.

Proposition 6. Let Cy,Cy C P(k?) be nonempty disjoint subsets, and I'1,Ty be
finitely generated infinite subgroups of SL4(k) satisfying:
(1) vCj C C; fori#j and v; € Ty ~ {1}, and

IThis condition does not depend on the choice of word metric [ -]
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(i1) there exists € > 0 such that ||v;v|| > €||v|| - ||v]| for every [v] € C;, j # 1,
and v; € T';.

Suppose further that I'1,T'y < SL4(k) are quasi-isometrically embedded. Then there
is a finite-index subgroup Ty < Ty such that (I'1,T%) < SLg(k) is quasi-isometrically
embedded and decomposes as T'y x T'%.
Proof. We fix a word metric |- | on T'; induced by some finite generating subset. By
assumption, there are c¢,a; > 0 such that for all v € 'y,
(1) - Iy H| > eahi=e
Given the constants ¢,e > 0, we may choose as > 0 and a finite-index subgroup
I, < T’y with the property that, for all § € I', ~ {1},
(2) [16]] - |67 > e *ece=l?l.

Now let n > 2 and suppose we have elements 71, ...,7, belonging alternatingly
to 1~ {1} and T, " {1}, and set g := 1 - - - y,. Let j € {1,2} be such that v, € T';,
let j =3 — 4, and choose [v] € C;. By conditions (i) and (ii), we have that

gvll = e™[[mll- - [lmll - lol],
hence
llgll = ™[l [lmll-

=, 97t we have that
Hl.

By arguing similarly for g—!

Hg=H = €™ - M,
‘We thus obtain

(3) gl - Mlg™ = " (vl Ty 1) = (vl [ 1)

Since we assumed 71, . ..,7, belong alternatingly to I'; \ {1} and IT', ~ {1}, by
using the estimates (1), (2), and (3) and setting « := min{ay,as} > 0, we obtain
the bound

lgll - llg™| > e2eme5+) (=ey 3 1o i b
> 646725604 S ‘“/1|

This shows that the natural map I'y « T, — (I'1,T'S) < SLg(k) is a quasi-isometric
embedding, and is in particular injective (since I'y * I, has no nontrivial finite
normal subgroups). [

Remark 7. We explain how Proposition 6 implies that, in the proof of Theorem 1,
we may choose R > 0 such that (A, g®) is undistorted and decomposes as A * (g'?).
Indeed, it is enough to show that for some R’ > 0, the subgroups I'y := A, I's :=
(g®') of SLs(k), and the subsets Cy := P(k®) < Vyx, Cy := U of P(k3) satisfy the
conditions of Proposition 6. To that end, note first that, since U is a compact
subset of P(k3) contained in the complement of the hyperplanes {X = 0}, {Y = 0},
and {Z = 0}, there is some § > 0 such that for any unit vector v = (v1, v2,v3) € k*
satisfying [v] € U, we have |v;| > 0 for i = 1,2,3. We then have for any v =
diag(ay, as2,a3) € A that

[[yvll = [[(a1v1, agve, azvs)|| > gf%ﬂad = 0|7l

Since P(k3) \ V,+ is a compact subset of the complement of L™ U L™ in P(k?),
one can check (by diagonalizing g, for instance) that there exist ¢’ > 0 and an
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integer R’ > 0 such that ||g"v|| > 0'||g"]| - ||v|| for all [v] € P(k?) \ V,+ and r € Z
with |r| > R’. One may now take € := min{#, 6’} in the statement of Proposition 6.
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