Übungen zur Einführung in die Geometrie und Topologie - Blatt 8

Uni Bonn, SS 2017

Aufgabe 1. (5pt) Bestimmen Sie die Menge der Zusammenhangskomponenten von 1) der n-Sphäre S^n , 2) des projektive Raum kP^n , jeweils für $n \in \mathbb{N}$ und $k \in \{\mathbb{R}, \mathbb{C}\}$.

Aufgabe 2. (5pt) Sei $n \in \mathbb{N}$, $k \in \{\mathbb{R}, \mathbb{C}\}$. 1) Betrachten Sie $A, B, E \in \operatorname{Mat}_{n \times n}(k)$, wobei E eine elementare Matrix sei und $B = E \cdot A$. Zeigen Sie, dass ein Pfad in $\operatorname{Mat}_{n \times n}(k) \simeq k^{n^2}$ existiert, der A mit B verbindet. 2) Bestimmen Sie die Menge der Zusammenhangskomponenten von $\operatorname{GL}(n, k)$.

Aufgabe 3. (5pt) Sei X ein topologischer Raum und seien $A, B \subset X$ zwei Untermengen, die beide offen oder beide abgeschlossen sind und die X überdecken: $A \cup B = X$.

Ausgestattet mit der Unterraum-Topologie ergeben diese Untermengen ein Diagramm von topologischen Räumen der Form:

$$\begin{array}{ccc}
A \cap B & \longrightarrow A \\
\downarrow & & \downarrow \\
B & \longrightarrow X
\end{array}$$

Zeigen Sie: Dies ist ein pushout-Diagramm. Folgern Sie, dass eine Funktion $f: X \to Y$ in einen topologischen Raum Y genau dann stetig ist, wenn die beiden Einschränkungen $f|_A: A \to Y$ und $f|_B: B \to Y$ stetig sind. Verallgemeinern Sie diese Aussagen zu Überdeckungen durch beliebige Mengen von offenen Untermengen und durch endliche Mengen von abgeschlossenen Untermengen.

Aufgabe 4. (5pt) Sei X ein topologischer Raum, $n \in \mathbb{N}$ und schreibe P^nX für die Menge der stetigen Abbildungen der Form $[0,1]^n \to X$. Für $1 \le k \le n$ seien $i_0^k, i_1^k : [0,1]^{n-1} \to [0,1]^n$ die Inklusionen wobei die k-te Komponente konstant 0 bzw. 1 ist.

Diese induzieren Abbildungen $(i_0^k)^*, (i_1^k)^* : P^n X \to P^{n-1} X.$

Betrachten Sie das pullback-Diagramm:

$$P \longrightarrow P^{n}X$$

$$\downarrow \qquad \qquad \downarrow (i_{0}^{k})^{*}$$

$$P^{n}X \xrightarrow{(i_{1}^{k})^{*}} P^{n-1}X$$

Zeigen Sie, dass P bijektiv zu P^nX ist. Durch variieren von k liefert dies n nichtassoziative, partiell definierte binäre Verknüpfungen. Zeigen Sie, dass für n=1 die so definierte Verknüpfung die Konkatenation von Pfaden ist.