Exercises for Algebraic Topology I – Sheet 9

Uni Bonn, WS 2018/19

Aufgabe 33. Decide which of the following spaces are Eilenberg-Mac-Lane spaces. If the answer is yes, determine for which G and n they are of the type K(G, n).

- (a) A connected orientable closed surface of genus ≥ 1 ;
- (b) \mathbb{CP}^{∞} ;
- (c) The total space E of a fibration $p: E \to S^1$ with fiber \mathbb{RP}^{∞} ;
- (d) $S^3 \times S^2$;
- (e) A 4-dimensional connected closed manifold with infinite cyclic fundamental group.

Aufgabe 34. Let $p: S^{2n+1} \to \mathbb{CP}^n$ be the map sending $z \in S^{2n+1} \subseteq \mathbb{C}^{n+1}$ to the 1dimensional complex vector space of \mathbb{C}^{n+1} generated by z. Prove or disprove:

- (a) p is a principal S^1 -bundle;
- (b) p admits a section, i.e., a map $s: \mathbb{CP}^n \to S^{2n+1}$ with $p \circ s = \mathrm{id}_{\mathbb{CP}^n}$.

Aufgabe 35. Let M be a connected closed oriented 3-manifold. Which of the following assertions are equivalent?

- (a) M is homotopy equivalent to S^3 ;
- (b) M is simply connected;
- (c) There is a map $S^3 \to M$ of degree one.

Aufgabe 36. Let M be a closed connected oriented *n*-manifold. Let G be a non-trivial finite group which acts freely and orientation preserving on M. Equip S^n with the trivial G-action.

Prove or disprove that the forgetful map

$$[M, S^n]^G \to [M, S^n]$$

is never surjective, where $[M, S^n]^G$ denotes the G-homotopy classes of G-equivariant maps from M to S^n .

handover on Wednesday, 11.12 in the lecture