Exercises for Algebraic Topology I – Sheet 5

Uni Bonn, WS 2018/19

Aufgabe 17. Let M be a covariant RC-module. Let \underline{R} be the constant contravariant RC-module with value R. Show that $\operatorname{Tor}_{0}^{RC}(\underline{R}; M)$ is R-isomorphic to the colimit colim $_{\mathcal{C}} M$.

Aufgabe 18. Let $F, G: \mathcal{C} \to \mathcal{D}$ be functors. Suppose that $T: F \xrightarrow{\cong} G$ is a natural equivalence. Show that it induces natural equivalences $T_*: F_* \xrightarrow{\cong} G_*$ and $T_1: F_! \xrightarrow{\cong} G_!$ of functors $R\mathcal{C} - \text{MOD} \to R\mathcal{D} - \text{MOD}$ and a natural equivalence $T^*: F^* \xrightarrow{\cong} G^*$ of functors $R\mathcal{D} - \text{MOD} \to R\mathcal{C} - \text{MOD}$

Aufgabe 19. Let M and N be two closed manifolds of dimension ≤ 2 . Prove or disprove that M and N are homeomorphic if and only if their fundamental groupoids $\Pi(M)$ and $\Pi(N)$ are equivalent.

Aufgabe 20. Which of the following statements are true for all functors $F: \mathcal{C} \to \mathcal{D}$? (Give a reason for your answers.)

- (a) F_* is exact;
- (b) We obtain a homomorphism $F_* \colon K_0(R\mathcal{C}) \to K_0(R\mathcal{D})$ by $[P] \mapsto [F_*P]$;
- (c) Suppose that F is surjective on objects and on morphisms. Then we obtain a well-defined homomorphism $F^*: G_0(R\mathcal{D}) \to G_0(R\mathcal{C})$ by $[M] \mapsto [F^*M]$;
- (d) $F_!$ is right exact.

handover on Wednesday, 13.11 in the lecture