Exercises for Algebraic Topology I – Sheet 4 Uni Bonn, WS 2018/19

Aufgabe 13. Let N be a covariant RC-module. Show that the functors

form an adjoint pair.

Aufgabe 14. Let C be a finite category, i.e., it has only finitely many objects and morphisms. Let R be a Noetherian ring.

Prove or disprove that the category RC is Noetherian, i.e., any RC-submodule of a finitely generated RC-module is finitely generated again.

Here, an $R\mathcal{C}$ -module M is called finitely generated if there is a finite set $S \subseteq \bigcup_{c \in \mathcal{C}} M(c)$ such that the smallest $\mathbb{R}\mathcal{C}$ -submodule of M containing S is M itself.

Aufgabe 15. Let *I* be the category having two objects 0 and 1 and three morphisms id: $0 \rightarrow 0$, id: $1 \rightarrow 1$ and $u: 0 \rightarrow 1$. Consider the statements:

- (a) M is a projective RI-module;
- (b) $M(u): M(0) \to M(1)$ is injective, and both M(0) and the cokernel of M(u) are projective *R*-modules.

Show (a) \implies (b). Prove or disprove the implication (b) \implies (a).

Aufgabe 16. Show that a 1-dimensional vector bundle ξ is trivial if and only if its first Stiefel-Whitney class $w_1(\xi)$ is trivial.

handover on Wednesday, 06.11 in the lecture