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Exercise 13. Let X be a topological space. Construct an explicite R-isomorphism

RS HY™(X;R)
Cemy(X)

by inspecting the first differential of the singular R-chain complex of X.

Exercise 14. Let f: X — X be a self-map of a topological space. Define the mapping
torus Ty by the pushout
xux =4 x
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where jp: X — X x [0,1] sends z to (z,k) for £ = 0,1. Let H. be a homology theory
with values in R-modules. Denote by k: X — T the obvious inclusion.
Construct a long exact sequence of R-modules, the so called Wang sequence,
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Exercise 15. Let H, be a homology theory with values in Z-modules satisfying the
dimension axiom. Compute H,,(RP?) for n € Z.

Exercise 16. Let n be a natural number. Let C, be a projective R-chain complex such
that C; = 0 holds for ¢ < —1 and @ > n+ 1 and H;(C,) is projective for 0 < i < n — 1.
Prove or disprove that H,,(C\) is projective.
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