Exercises for Topology I – Sheet 12

University of Bonn, WS 2018/19

Exercise 45. Let G be a group and let X be a contractible CW-complex with a cellular G-action. Assume that for every $g \in G$ and every open cell e the implication $ge \cap e \neq \emptyset \implies g = 1$ holds, where $1 \in G$ is the neutral element. Let $\mathbb{Z}G$ be the group ring of G, i.e., the free abelian group $\mathbb{Z}G$ with G as basis and the multiplication coming from the group structure of G.

Show that the cellular \mathbb{Z} -chain complex $C^c_*(X)$ inherits from the *G*-action the structure of a free $\mathbb{Z}G$ -chain complex which is a $\mathbb{Z}G$ -resolution of the trivial $\mathbb{Z}G$ -module \mathbb{Z} .

Exercise 46. Let \mathbb{Z} be the trivial $\mathbb{Z}[\mathbb{Z}/2]$ -module, i.e., its underlying abelian group is \mathbb{Z} and $\mathbb{Z}/2$ acts trivially. Let t be a generator of $\mathbb{Z}/2$.

(a) Show that we obtain a projective $\mathbb{Z}[\mathbb{Z}/2]$ -resolution of \mathbb{Z} by the $\mathbb{Z}[\mathbb{Z}/2]$ -chain complex

 $\cdots \xrightarrow{t+1} \mathbb{Z}[\mathbb{Z}/2] \xrightarrow{t-1} \mathbb{Z}[\mathbb{Z}/2] \xrightarrow{t+1} \mathbb{Z}[\mathbb{Z}/2] \xrightarrow{t-1} \mathbb{Z}[\mathbb{Z}/2] \xrightarrow{t+1} \mathbb{Z}[\mathbb{Z}/2] \xrightarrow{t-1} \mathbb{Z}[\mathbb{Z}/2];$

where $t \pm 1$ means multiplication with the element $t \pm 1 \in \mathbb{Z}G$;

- (b) Show that $\operatorname{Tor}_{n}^{\mathbb{Z}[\mathbb{Z}/2]}(\mathbb{Z},\mathbb{Z})$ is isomorphic to $H_{n}(\mathbb{RP}^{\infty},\mathbb{Z})$ for $n \geq 0$;
- (c) Compute $\operatorname{Tor}_{n}^{\mathbb{Z}[\mathbb{Z}/2]}(\mathbb{Z},\mathbb{Z})$ for $n \geq 0$.

Exercise 47. Let F a field and let F[x] be the ring of polynomials in one variable x with coefficients in F. Consider F as a F[x]-module by letting x act trivially on F. Compute $\operatorname{Ext}_{F[x]}^{n}(F,F)$ for $n \geq 0$.

Exercise 48. Let G be a finite group. Let M be any finitely generated $\mathbb{Z}G$ -module. Show that there exists a projective $\mathbb{Z}[G]$ -resolution P_* of M such each P_n is a finitely generated free $\mathbb{Z}[G]$ -module.

to be handed in on 21.01. during the lecture This is the last sheet of this course