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Abstract. We consider Lyapunov exponents for flat bundles over hyperbolic

curves defined via parallel transport over the geodesic flow. We refine a lower
bound obtained by Eskin, Kontsevich, Möller and Zorich showing that the

sum of the first k exponents is greater or equal than the sum of the degree

of any rank k holomorphic subbundle of the flat bundle and the asymptotic
degree of its equivariant developing map. We also show that this inequality is

an equality if the base curve is compact. We moreover relate the asymptotic

degree to the dynamical degree defined by Daniel and Deroin.
We then use the previous results to study properties of Lyapunov exponents

on variations of Hodge structures and on Shatz strata of the de Rham moduli

space. In particular we show that the top Lyapunov exponent function is
unbounded on the maximal Shatz stratum, the oper locus. In the final part of

the work we specialize to the rank two case, generalizing a result of Deroin and
Dujardin about Lyapunov exponents of holonomies of projective structures.

1. Introduction

Lyapunov exponents are characteristic numbers describing the behaviour of a
cocycle over a dynamical system. If the cocycle satisfies an integrability property,
Oseledets theorem states that there is a decomposition of the underlying vector
bundle such that the norm of vectors in each component grows with different speed
along the flow. The different possible growth rates are called Lyapunov exponents.

An interesting instance of a dynamical system is given by playing billiard on
tables of polygonal shape with angles that are rational multiples of π. Lyapunov
exponents describe the diffusion rate of the trajectories of the ball. Even in this
special case, Lyapunov exponents are very hard to compute using standard ergodic
theoretic tools. There are two remarkable facts that allowed to get a hold onto
these invariants. The first is that the Lyapunov exponents given as diffusion rates
of trajectories on a billiard given by a flat surface (X,ω) are the same as the ones
of a completely different dynamical system, where the Lyapunov exponents are de-
fined as the asymptotic growth rate of the Hodge norm of vectors in the variation of
Hodge structures over the flow in the affine invariant manifold SL2(R)(X,ω). The
second key tool used for computing Lyapunov exponents makes use of algebraic ge-
ometry. It is in [EKZ14] where Eskin, Kontsevich and Zorich proved that the sum of
positive Lyapunov exponents of the Kontsevich–Zorich cocycle over an affine invari-
ant manifold can be computed by computing the normalized degree of the Hodge
bundle restricted to the affine invariant manifold. Starting from billiards, algebraic
geometry was used to investigate Lyapunov exponents in more general settings. For
example, Kappes and Möller in [KM16] proved that a result analogous to the one of
[EKZ14] was true for weight one variations of Hodge structures over ball quotients.
This result allowed them to prove some results about commensurability questions
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for lattices. Later, Filip [Fil14] proved a similar result in the case of variations of
Hodge structures given by one dimensional families of K3 surfaces. Variations of
Hodge structures are a special case of flat vector bundles that are characterized
by the existence of a special filtration and a compatible Hodge norm. However,
Lyapunov exponents can be defined for a general flat vector bundle. Indeed, a flat
vector bundle defines a cocycle given by parallel transport over the geodesic flow.
In [EKMZ18] Eskin, Kontsevich, Möller and Zorich proved that for a general flat
vector bundle with non-expanding monodromy at the cusps, the sum of the first k
Lyapunov exponents is bounded from below by the normalized degree of any rank
k holomorphic subbundle of the flat bundle. An analogous result was obtained
by Daniel and Deroin in [DD17a] in which they considered Lyapunov exponents
obtained from Brownian motion over Kähler manifolds.

In this paper, we firstly refine the main inequality of [EKMZ18] by relating the
sum of the first k exponents to the sum of the normalized degree of a holomorphic
subbundle and the asymptotic degree of its developing map. This is the first main
Theorem 3.4.

Theorem A. Let V be a holomorphic flat bundle over a finite area hyperbolic
Riemann surface C with non-expanding cusp monodromy. Let C be the completion
of C and ∆ = C \ C be the set of cusps. For any holomorphic subbundle E ⊂ V of
rank k, it holds

k∑

i=1

λi ≥
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ ErrE(u)

for almost all x ∈ C and Lebesgue almost all u ∈ ∧k V∨x . The error term is defined
as

ErrE(u) = π lim
T→∞

1

T

∫ T

0

]{s−1
E (keru) ∩Dt}

vol(Dt)
dt.

Here we denoted by degpar(Ξh(E)) the parabolic degree of the metric extension of

E by some admissible metric h, by sE : H → P(
∧k Vx) the holomorphic classifying

map defining E and by Dt the hyperbolic ball of radius t in the hyperbolic plane
whose center is a lift of x.

The proof of the above theorem generalizes to variations of Hodge structures of
weight one over ball quotients or to the canonical variation of Hodge structures of
weight one over affine invariant submanifolds of the Hodge bundle.

We say that the holomorphic flat bundle V is k-irreducible if the holomorphic flat

bundle
∧k V is irreducible. If the base curve is compact and if V is k-irreducible,

we show in the other main Theorem 4.1 that the sum of the first k exponents is
actually equal to the right hand side of the above inequality.

Theorem B. If the Riemann surface C is compact and the holomorphic flat bundle
V is k-irreducible, the above inequality is an equality.

The above results can be compared to the main result of [DD17a], in which Daniel
and Deroin get a similar equality in the context of the Brownian motion flow over
a Kähler manifold. They prove that the sum of the first Lyapunov exponents is the
same as the sum of a normalized degree and a dynamical degree. As a corollary we
get that in the case of compact base curves the error term ErrE(u) defined above,
which has the same shape as the covering degree defined in [DD15] in the context
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of Lyapunov exponents for holonomies of projective structures, is the same as the
dynamical degree defined in [DD17a].

In the second part of the paper we consider Lyapunov exponents as invariants
on the de Rham moduli space of flat vector bundles over a compact hyperbolic
Riemann surface C. We first concentrate on the special subset of this moduli space
given by variations of Hodge structures. We show a simplicity result for positive
weight variations of Hodge structures and prove slightly generalized versions of
the result of [EKZ14] and [Fil14] about weight one and weight two variations of
Hodge structures. We then concentrate on other loci given by Shatz strata, defined
by Harder–Narasimhan type. In particular, via the identification of the maximal
stratum with the set of opers, in Proposition 6.12 and Theorem 6.13 we show the
following.

Theorem C. If V is in the maximal Shatz stratum of the space of rank n flat vector
bundles, the oper locus, then

k∑

i=1

λi(V) ≥ k(n− k), k = 1, . . . , n.

The above inequalities are sharp, since they are achieved in the special point corre-
sponding to the only flat vector bundle of the maximal Shatz stratum underlying a
variation of Hodge structures, which also corresponds to the (n − 1)-th symmetric
power of the uniformizing representation of C.

Moreover, the top Lyapunov exponent function is unbounded on this stratum and
the function has logarithmic growth near its boundary.

We finally focus on the study of the Lyapunov exponent functions in rank two.
We describe special loci and some properties of the Lyapunov exponent func-
tions. Moreover we show that the oper locus in rank two is the same as the set
of holonomies of projective structures with the same underlying Riemann surface
structures. With this point of view we retrieve the main results of [DD17b] from a
different point of view.

Finally with the support of computer experiments we state a conjecture which is
a statement analogous to the last theorem for Hitchin components. In this setting
would be interesting to relate Lyapunov exponents to other invariants like the
critical exponent or the minimal area function.

1.1. Structure of the paper. In Section 2 we state Oseledets multiplicative er-
godic theorem and define Lyapunov exponents for flat vector bundles. We set the
notation for parabolic vector bundles and parabolic degree and state the main result
of [EKMZ18].

In Section 3 we prove a refinement of the previous result of [EKMZ18] showing
in Theorem 3.4 that the sum of the first k exponents is greater or equal than the
sum of the degree of any rank k holomorphic subbundle of the flat bundle and the
asymptotic degree of its equivariant developing map. We also state an analogous
version of the theorem in the more general context where the base space is a ball
quotient or an affine invariant manifold of abelian differentials. We finally give
necessary conditions to ensure rationality of the sum of Lyapunov exponents.

In Section 4 we present Theorem 4.1, which states that if the base curve is compact
the main inequality is actually an equality. This allows us to relate the asymptotic
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degree of our formula in the compact case to the dynamical degree defined in
[DD17a].

In Section 5 we then focus on other special flat bundles, namely the ones defining
a variation of Hodge structures. Using the above cited general criterion for ensuring
the rationality of the sum of exponents, we reprove slightly more general versions
of the original results of [EKZ14] and [Fil14] about weight one and real weight two
variations of Hodge structures. For a general variation of Hodge structures V, we
prove that the Lyapunov spectrum is trivial if and only if V is unitary and we show
that if the weight is positive we get a non-trivial bound on the sum of the first
rk(Vn,0)-exponents.

In Section 6 we consider Lyapunov exponents as functions on the De Rham moduli
space and investigate the Shatz stratification of this moduli space. We then focus
on the maximal stratum, which we identify with the oper locus, providing lower
bounds for the Lyapunov exponent functions and showing the unboundedness of
these functions.

In Section 7 we focus on the moduli space of rank two flat bundles, giving a
summarizing picture of important subsets of this moduli space. In particular we
show that the oper locus is the same as the set of holonomies of projective structures
underlying the same Riemann surface structure.

In Section 8 we describe how the Lyapunov exponent function behaves on these
loci, proving the main results of [DD17b] from our point of view. We also give
alternative proofs of the known continuity of the Lyapunov exponent function and
of the locus where this function is zero.

Finally, in Section 9 we conjecture, with the support of computer experiments,
that the top Lyapunov exponent function on the Hitchin components is unbouded
from above and bounded from below by the value of the top Lyapunov exponent
of the appropriate symmetric power of the uniformizing representation of C. The
lower bound would be a result analogous to the one of [PS17] about the critical
exponent.

Acknowledgements. We thank Martin Möller for suggesting this project to us
and for many fruitful and valuable discussions. We thank Simion Filip and Jeremy
Daniels for important remarks about weight two variations of Hodge structures and
Bertrand Deroin for the insights about branching projective structures.

2. Lyapunov exponents for parabolic flat bundles

In this section we set the notation and recall the definition of Lyapunov exponents,
focusing on the setting of parallel transport for parabolic flat vector bundles over
the geodesic flow of a hyperbolic Riemann surface. We finally recall the main result
of [EKMZ18] that will be refined in the next section.

2.1. Oseledets theorem. We want to define the Lyapunov exponents associated
to a flat vector bundle over a complete hyperbolic Riemann surface C of finite area.

We first of all recall Oseledets multiplicative ergodic theorem and the definition
of Lyapunov exponents for a cocycle over an ergodic flow.

Theorem/Definition 2.1. Let gt : (M,µ)→ (M,µ) be an ergodic flow on a space M
with finite measure µ. Suppose that the action lifts equivariantly to a linear flow Gt
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on some measurable real bundle V on M . Suppose there exists a (not equivariant)
norm ‖ · ‖ on V such that the functions

(2.1) x 7→ sup
t∈[0,1]

log+ ‖Gt‖x, x 7→ sup
t∈[0,1]

log+ ‖G1−t‖gt(x)

are in L1(M,µ) (we call such a norm integrable). Then there exist real constants
λ1 ≥ · · · ≥ λn and a decomposition

V =

n⊕

i=1

Vλi

by measurable real vector bundles such that for a.a. x ∈M and all v ∈ (Vλi)x−{0},
it holds

λi = lim
t→±∞

1

t
log ‖Gt(v)‖.

The set of values λi, repeated with multiplicity dimVλi , is called the set of Lyapunov
exponents or Lyapunov spectrum of (M,µ, gt,V).

The case we are interested in is when the space M is the unit tangent bundle
T 1(C) of a hyperbolic curve C ∼= H /Γ equipped with the measure induced by the
hyperbolic metric with constant negative curvature −4 (we keep the same conven-
tion as in [EKMZ18]). We denote by ∆ := C \C the boundary points with respect
to the smooth compactification of C. Let ρ : Γ → GLn(C) be a representation
of the fundamental group. We denote by Vρ the local system on C induced by ρ
and by VC := Vρ ⊗C OC the associated holomorphic bundle equipped with the flat
Gauss-Manin connection ∇. The geodesic flow gt : T 1(C)→ T 1(C) is ergodic and
we can lift it to the flat vector bundle (VC ,∇) using parallel transport. We will
consider Lyapunov exponents with respect to this situation.

Remark 2.2. The Lyapunov spectrum is symmetric in this case. This follows since
the reverse time geodesic flow, which reverses the signs of the Lyapunov exponents,
is conjugate to the positive time flow (because of the SL2(R)-action on H). More-
over, if the vector bundle V is complex, it is possible to show that the Oseledets
subvector bundles are complex subbundles of V. In this case we then consider only
half of the real Lyapunov spectrum, forgetting about the duplication phenomen
given by the complex structure.

We still need to define an integrable norm on the flat bundle (VC ,∇). We can
consider the constant norm given as the pullback to T 1(C) of the parallel transport
of any norm over the fiber of some base point c ∈ C to a Dirichlet fundamental
domain for Γ on H. In particular this norm is not continuous across the boundary
of the fundamental domain. We say that (VC ,∇) has non-expanding cusp mon-
odromies if the eigenvalues of the holonomy matrices hol∇(γ) have absolute value
one, for every simple loop γ around a cusp. We recall a result which ensures us
that the constant norm is integrable.

Theorem 2.3 ([EKMZ18, Lem. 2.6, Sec. 2.7]). The constant norm over (V,∇) is
integrable if and only if the associated local system has non-expanding cusp mon-
odromies.

Note that for any two integrable norms on (VC ,∇), the Lyapunov filtrations and
the Lyapunov spectra coincide (see [KM16, Lemma 2.6]).
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Remark 2.4. The constant norm can be used to numerically compute Lyapunov
exponents associated to (V,∇) when a coding for the geodesic flow on H /Γ is
available. If we denote by γn ∈ Γ the sequence of elements corresponding to the
sequence of sides of the fundamental domain crossed by a generic geodesic, then by
definition of constant norm the Lyapunov exponents are given as

λi = lim
n→∞

1

n
log(µi(n)),

where µi(n) are the eigenvalues of the matrix

hol∇(γn) · · · · · hol∇(γ1).

2.2. Parabolic flat bundles. We now summarize results and notions of [Sim88],
[Sim90] and [EKMZ18]. We will introduce parabolic bundles and metric extensions,
which are needed in order to state the main result of [EKMZ18] in the case of non
compact base curves.

Definition 2.5. A parabolic bundle V over C is a holomorphic vector bundle to-
gether with a [0, 1)-filtration F ·Vc on the fiber Vc

Vc = V≥α1
c ) V≥α2

c ) · · · ) V≥αn+1
c = V≥1

c = 0

for every c ∈ ∆.

A morphism between parabolic bundles V and E is a morphism of holomorphic
vector bundles such that for each c ∈ ∆ and each weight α of Vc the image of
V≥α lies in E≥β whenever β ≤ α. A parabolic subbundle i : E ↪→ V is an injective
morphism of parabolic bundle with the additional requirements that for each c ∈ ∆
the weights of E are a subset of the weights of V and if β is maximal such that
i(E≥α) ⊆ V≥β then α = β.

If we denote by 0 ≤ α1 < α2 < · · · < αn < αn+1 = 1 the weights of the filtration
of a fiber Vc, the filtered dimension of (Vc, F ·) is defined as

dimF ·(Vc) =

n∑

i=1

αi dim grαi(Vc)

where grαi(Vc) is the graded piece at weight αi.

Definition 2.6. The parabolic degree of a parabolic bundle (V, F ·) is defined to be

degpar(V, F ·) = deg(V) +
∑

c∈∆

dimF · Vc.

Following [EKMZ18], we define acceptable metrics. This notion is useful in order
to compute parabolic degrees of parabolic bundles.

Definition 2.7. A smooth metric h on a holomorphic vector bundle VC over C is
called acceptable if the curvature Rh of the metric admits locally near every cusp
c ∈ ∆, a bound

|Rh| ≤ f +
M

|q|2| log(q)|2
with f ∈ Lp(C) for some p > 1 and some constant M .

When we consider a holomorphic vector bundle VC over C equipped with a
smooth metric h, we can talk about a canonical metric extension of VC on C,
which in general is just a coherent sheaf.

Let j : C ↪→ C be the inclusion.
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Definition 2.8. The metric extension Ξh(VC) of VC to C with respect to the
metric h is given by the subsheaf of j∗(VC) defined by following growth condition.
If s(q) is a local section of j∗(VC) over U ⊂ C around a cusp c ∈ U ∩ ∆, we
set s(q) ∈ Ξh(VC)(U) if for all ε > 0 there exists a constant M(ε) such that
|s(q)|h ≤M(ε)|q|−ε.

The parabolic structure of Ξh(VC) over the cusps is given by the following filtra-
tion. If s(q) is a local section of Ξh(VC) around a cusp c ∈ ∆, we set s ∈ (Ξh(VC))≥αc
if for all ε > 0 there exists a constant M(ε) such that

|s(q)|h ≤M(ε)|q|α−ε.
We want now to generalize the definition of acceptable metric to parabolic bundles

over C.

Definition 2.9. A smooth metric h on a parabolic vector bundle (V, F ·) over C is
called acceptable if h is an acceptable metric for the holomorphic bundle V|C and
(V, F ·) = Ξh(V).

We recall now a result which allows us to compute the parabolic degree of a
parabolic vector bundle using any acceptable metric.

Proposition 2.10 ([EKMZ18, Prop. 2.5]). If (V, F ·) is a parabolic vector bundle
over C of rank k, then

degpar(V) = degpar(∧kV).

Moreover if h is an acceptable metric, then

degpar(V, F ·) =
1

2πi

∫

C

∂∂ log(det(hij))

where hij = h(ei, ej) is the Gram matrix of the metric.

Finally we can define the notion of admissible metric on a holomorphic flat bundle
over C. Admissible metrics are the ones that can be used to compute Lyapunov
exponents.

For any flat holomorphic vector bundle over C there is a canonical extension,
which is called the Deligne extension. It is a holomorphic vector bundle V on C
with a logarithmic connection ∇ : V → Vρ⊗Ω1

C
(log(∆)). Note that for holomorphic

flat bundles (VC ,∇) over C with non-expanding cusp monodromies the Deligne
extension has a canonical parabolic structure (see [EKMZ18]).

Definition 2.11. A smooth metric h on the holomorphic flat bundle VC over C is
called admissible if the following conditions hold:

(1) The metric h is acceptable for the Deligne extension V of VC with respect
to its canonical parabolic structure.

(2) For every cusp c ∈ ∆ with coordinate q, there is some n ∈ N such that for

any e ∈ V≥αc and e′ ∈ V≥α′c it holds

h(e(q), e′(q)) ≤M1|q|α+α′(log |q|)2n, for some M1 > 0.

(3) For every cusp c ∈ ∆ with coordinate q, there is some n ∈ N such that a
local generating section e of det(V) has the lower bound

|e(q)|h ≥M2|q|2 dimF · (Vc)(log |q|)−2n, for some M2 > 0.
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We want to highlight that the first condition of the above definitions simply
says that for an admissible metric the Deligne extension is the same as the metric
extension and that the curvature does not grow too fast around the cusps.

We recall the existence lemma for such metrics based on the result by Simspon
[Sim90, Theorem 4].

Lemma 2.12 ([EKMZ18, Lem. 2.4]). If a holomorphic flat bundle (VC ,∇) has
non-expanding cusp monodromies, then it admits an admissible metric.

We say that a norm on VC is admissible if it is induced by an admissible metric.
Recall that if VC has non-expanding cusp monodromies, by Theorem 2.3 the con-
stant norm is integrable in the sense of Oseledets theorem. In this case the same
property holds for admissible norms.

Lemma 2.13 ([EKMZ18, Lem. 2.7]). If a holomorphic flat bundle (VC ,∇) has
non-expanding cusp monodromies, then any admissible norm is integrable in the
sense of Oseledets theorem.

Admissible norms can then be used to compute Lyapunov exponents.

2.3. Relation of Lyapunov exponents and parabolic degrees of subbun-
dles. We recall the main result of the paper by Eskin, Konstevich,Möller and
Zorich. It relates the sum of the first k-Lyapunov exponents to the degree of a rank
k holomorphic subbundle.

Theorem 2.14 ([EKMZ18]). Let (VC ,∇) be a holomorphic flat bundle with non-
expanding cusp monodromies. If E ⊂ V is a holomorphic parabolic subbundle of
rank k of the Deligne extension V of VC , then

(2.2)

k∑

i=1

λi(VC) ≥ 2 degpar(E)

deg(Ω1
C

(log(∆))
.

3. Refinement of [EKMZ18]-inequality and higher dimensional
analogues

In this section we prove one of the main results, namely a refinement of the main
theorem of [EKMZ18]. In order to state the refinement of inequality (2.2), we need

to recall the definition of a seminorm on
∧k V∨C introduced in [EKMZ18] in the

proof of Theorem 2.14.
Let h be an admissible metric for VC . By abuse of notation, we will denote also

by h the induced admissible metric on dual exterior powers of VC . We denote by

| · |h the induced norm. Following [EKMZ18], we define a seminorm on
∧k V∨C .

For every point c ∈ C, consider a small open set c ∈ Uc ⊂ C and fix a local basis

ω1, . . . , ωk of H0(Uc, E). We define locally the seminorm on
∧k V∨C as

(3.1) ‖u‖E =
|u(ω1(c) ∧ · · · ∧ ωk(c))|
‖ω1(c) ∧ · · · ∧ ωk(c)‖h

, u ∈
k∧
V∨c ∼=

(
k∧
Vc
)∨

.

The seminorm does not depend on the choice of the local frame (ωi) of E since
numerator and denominator are homogenous of the same degree in ωi’s.

The subvector bundle defined by the zero locus of the seminorm will appear in
the refined inequality that we want to prove. In this regard, let us pull-back the
vector bundles to the universal covering π : H → C of C. Since any local system
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on a simply connected space is trivial, the pull-back of the flat bundle VC is trivial.
Let us fix c ∈ C and a lift c̃ ∈ H. Via the canonical isomorphism Vc ∼= π∗(VC)c̃ we
fix the trivialization

π∗(VC) ∼= H×Vc.
The pull-back π∗(E|C) ⊂ π∗(VC) defines a ρVC -equivariant subbundle, where ρVC
is the representation associated to the flat bundle VC . This means that

(3.2) π∗(E|C)γ(c̃) = {γ(c̃)} × ρVC (γ)(Ec) ⊂ H×Vc
for every γ ∈ π1(C, c).

Definition 3.1. We define the ’trouble making set’, or bad locus,

TEbad := ker

(
k∧
V∨C →

k∧
E∨|C

)
⊆

k∧
V∨C

as the kernel of the map induced by the inclusion E ⊆ V.

Moreover, for any u ∈ ∧k V∨c = H0(H, π∗(
∧k V∨C)), the ’trouble making set’ asso-

ciated to u, or bad locus of u, is defined as

TEbad(u) := {z ∈ H : ‖uz‖π∗(E) = 0} ⊆ H .

Notice that TEbad ⊆
∧k V∨C is a holomorphic subbundle of corank 1 and TEbad(u)

can be identified with the intersection of the pull-back π∗(TEbad) to H with the

horizontal foliation induced by the flat bundle
∧k V∨C .

Remark 3.2. To give an inclusion of a rank k holomorphic sub-vector bundle E|C ⊂
VC over C is equivalent to give a section

sE : C → Gk(VC)

of the Grassmanian bundle Gk(VC) of k-planes of VC . Via the above choice of triv-
ialization π∗(VC) ∼= H×Vc, the pull-back section π∗(sE) defines a ρVC -equivariant
holomorphic map

sE : H→ Grass(k,Vc) ↪→ P(

k∧
Vc), sE(z) = (π∗(E)z ⊂ Vc).

The equivariance property is defined by the equality

sE(γ · z) = ρVC (γ) · sE(z), ∀γ ∈ π1(C, c).

For any u ∈ ∧k V∨c ∼=
(∧k Vc

)∨
, we can now rewrite its bad locus as

(3.3) TEbad(u) = {z ∈ H : sE(z) ∈ ker(u) ⊂ P(

k∧
Vc)}.

From this description it is clear that either Tbad(u) = H if ker(u) ⊇ Im (sE) or it
is a discrete subset given as the zero set of an holomorphic (non ρVC -equivariant)
function on H.

We observe that if the representation ρVC satisfies an irreducibility property, then

we can ensure that Tbad(u) 6= H for every u ∈ ∧k V∨c . We will need to use that

Tbad(u) is discrete in H for every u ∈ ∧k V∨c for the proof of Theorem 4.1.

Lemma 3.3. If ρVC is k-irreducible, meaning that
∧k

ρVC is irreducible, then

Tbad(u) 6= H for every u ∈ ∧k V∨c .
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Proof. Using the point of view of Remark 3.2, we have that Tbad(u) = H if and
only if Im (sE) ⊂ ker(u). This implies that the linear span of Im (sE) is contained in

the hyperplane ker(u). Since sE is
∧k

ρVC -equivariant, its linear span is a
∧k

ρVC -

invariant subspace of
∧k Vc. This gives a contradiction, since by assumption

∧k
ρVC

is irreducible. �

Notice that parallel transport on the trivial bundle given by the pull-back of V∨ to
T 1 H is simply given, after the choice of a trivialization, by the constant transport

Gt : T 1 H×V∨c → T 1 H×V∨c , Gt(x, u) = (gt(x), u).

From now on we fix a choice of a trivialization and we denote a point in the pull-back
bundle by uz := (z, u) ∈ T 1 H×V∨c and a lift of c ∈ C by c̃ ∈ H .

We will state now a refinement of the main Theorem of [EKMZ18]. Let the
notation be as above. In particular VC is a holomorphic flat bundle over C defined
by a representation ρVC .

Theorem 3.4. For any holomorphic subbundle E ⊂ VC of rank k over C, then

(3.4)

k∑

i=1

λi(VC) ≥ 2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ π lim

T→∞

1

T

∫ T

0

]{Tbad(u) ∩Dt(c̃)}
vol(Dt(c̃))

dt

for almost any c ∈ C and Lebesgue almost any u ∈ ∧k V∨c . Here Dt(c̃) denotes the
hyperbolic ball of radius t in H with center c̃.

Proof. First of all note that it suffices to prove the theorem in the case where E is a

line bundle. Indeed if it is not the case, consider the line bundle L :=
∧k E ⊂ ∧k VC .

Then degpar(L) = degpar(E) by Lemma 2.10 and the top Lyapunov exponent of L
is just the sum

∑k
i=1 λi(VC) of the first k exponents. Hence from now on E = L

is a sub-line bundle of VC . Moreover, since the Lyapunov spectrum is symmetric
(see Remark 2.2), the Lyapunov spectrum of the dual local system V∨ is the same
as the one of V. We will then focus on computing the top Lyapunov exponent
λ1(V∨C) = λ1(VC).

Note that the Cauchy-Schwartz inequality implies that the admissible norm || · ||h
induced by h is greater or equal than the L-seminorm ||·||L defined in (3.1). Indeed,
for any c ∈ C and any u ∈ V∨c it holds

(3.5) ‖u‖L =
|u(ωc)|
‖ωc‖h

≤ ||u||h‖|ωc||h‖ωc‖h
= ||u||h

where ω is a local non-zero section of L near c ∈ C.
By Lemma 2.13, the norm induced by the admissible metric h is integrable, meaning
that it computes the Lyapunov exponents. We can then write the top Lyapunov
exponent as

λ1(VC) = lim
t→∞

1

t
(log ||Gt(u)||h)

for almost any (c, v) ∈ T 1(C) and Lebesgue almost any u ∈ T 1V∨(c,v). Here we

denoted by T 1V∨ the pull-back of V∨ to T 1(C).
We apply the usual chain of equalities as in [EKZ14] or [EKMZ18] to rewrite
the expression above. We first average over the circle and then use the above
Cauchy–Schwarz inequality (3.5). After that we take the integral of the deriva-
tive and then we apply a version of Green’s formula ([EKZ14, Lemma 3.6]) for the
hyperbolic disc Dt(c̃) centered in c̃ ∈ H with hyperbolic radius t (here the term
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log ‖Gtrθu‖L is considered in the distributional sense). Finally we split the integral
using the definition of the || · ||L-seminorm and rewrite directly the second term of
the expression in terms of the degree of L as in [EKMZ18], where the main ingredi-
ent is given by equidistribution of discs of large radius which allows to replace the
limit of integrals over balls with an integral over C.

λ1(VC) = lim
T→∞

1

T

1

2π

∫ 2π

0

log ‖GT rθu‖hdθ ≥ lim
T→∞

1

T

1

2π

∫ 2π

0

log ‖GT rθu‖Ldθ

= lim
T→∞

1

T

1

2π

∫ T

0

d

dt

∫ 2π

0

log ‖GT rθu‖Ldθ

= lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log ‖uz‖Ldghyp(z) dt

= lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log |uz(ωz)|dghyp(z) dt +

− lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log ‖ωz‖hdghyp(z) dt

= lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log |uz(ωz)|dghyp(z) dt +

+
2 degpar(Ξh(L))

deg(Ω1
C

(log(∆))

Note that we could split the log only in the fourth line, since the Laplacian makes
the numerator and the denominator of the L-norm become well-defined functions.
We need to treat the first summand. We write explicitly the hyperbolic Laplacian
and the hyperbolic area form and simplify. We then use that the integral over the
ball of the distribution ∂∂ log(|uz(ωz)|) gives the number of zeros of the holomorphic
function uz(ωz) inside the ball times π/i (cf. [GH94, Poincaré-Lelong Equation]).
The last equality follows since tanh(t) is bounded and asymptotic to 1 for large t.

lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log |uz(ωz)|dghyp(z) dt

= lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

(∫

Dt(c̃)

4
∂2

∂z∂z
log |uz(ωz)|

i

2
|dz|2

)
dt

= i lim
T→∞

1

T

∫ T

0

tanh(t)

vol(Dt(c̃))

(∫

Dt(c̃)

∂∂ log |uz(ωz)|
)

dt

= π lim
T→∞

1

T

∫ T

0

tanh(t)

vol(Dt(c̃))
]{z ∈ Dt(c̃) : uz(ωz) = 0}dt

= π lim
T→∞

1

T

∫ T

0

]{z ∈ Dt(c̃) : uz(ωz) = 0}
vol(Dt(c̃))

dt

�

Definition 3.5. We define the second term in formula 3.4 as the error term

ErrE(u) := π lim
T→∞

1

T

∫ T

0

]{TEbad(u) ∩Dt(c̃)}
vol(Dt(c̃))

dt
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for u ∈ ∧k V∨c .

Remark 3.6. The error term ErrE(u) is defined as the limit of the mean of a nor-
malized counting function. This limit exists since we showed it is the difference
between the Lyapunov exponents and the parabolic degree. Notice that if not only
the limit of the mean of the counting function, but also the limit of the counting

function itself lim
t→∞

]{TEbad(u) ∩Dt(c̃)}
vol(Dt(c̃))

exists, then the error term is equal to this

limit. We conjecture that this is the case. Note moreover that ErrE(u) = ErrE(λu),
for any λ ∈ C∗. Hence the error term defines a function

ErrE : P(

k∧
V∨C))→ R+ .

3.1. Higher dimensional analogues. Using the same argument as in the proof
of Theorem 3.4, one can prove analogous statements in the case where the base
manifold is a ball quotient or an affine invariant manifold of a stratum of abelian
differentials. In the first case, since ball quotients are locally symmetric spaces
of rank 1, the geodesic flow is ergodic and so the Oseledets multiplicative ergodic
theorem can be applied. In the second case there is a natural SL2(R) ergodic
action on affine invariant manifolds. We omit the details of the proofs since the
computations are analogous to the the ones of the last theorem.

The next Proposition is a generalization of the main result of [KM16].

Proposition 3.7. Let V be a weight one variation of Hodge structures over a ball
quotient B = Bn/Γ of constant curvature −4, where Γ is a torsionfree lattice in
PU(1, n). Let B be a smooth compactification of B with normal crossing boundary
divisor ∆. Let E ⊂ V be a holomorphic sub-vector bundle of rank k. Then

k∑

i=1

λi ≥
(n+ 1)c1(Ξh(E)) · c1(ωB)n−1

c1(ωB)n
+

+
2i

2n(n− 1)!
lim
T→∞

1

T

∫ T

0

1

vol(Bnt )

∫

Bnt (c̃)

∂∂(log |u(sz)|) ∧ ωn−1
hyp dghyp(z)dt

for almost any c ∈ B and Lebesgue almost any vector u ∈ ∧k V∨c . Here s is a local

generator of
∧k E and Bnt (c̃) is the hyperbolic ball of radius t around the lift c̃ ∈ Bn

of c ∈ B. Finally ωB =
∧n

Ω1
B

(log(∆)) is the log-canonical bundle and Ξh(E) is
the metric extension of E with respect to the Hodge metric h.

In the last proposition we only considered weight one variation of Hodge struc-
tures instead of general flat bundles since the integrability of the Hodge norm was
proven in this case in [KM16] using the geometry of the period domain and Roy-
den’s theorem. The statements of Lemma 2.12 and Lemma 2.13 should extend to
the case of ball quotients, and in this case the above result can be generalized to
any flat vector bundle.

The next proposition is about the case of affine invariant manifolds. It is a
generalization of [EKZ14].

Proposition 3.8. Let M1 be an affine invariant manifold in some stratum of
abelian differentials. Let H be the Hodge bundle and E ⊂ H be a holomorphic sub-
vector bundle of rank k. Then the sum of the top k Lyapunov exponents associated
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to the ergodic probability measure ν1 corresponding to M1 satisfy the bound:

k∑

i=1

λi ≥
∫

M1

∆(log ||ω||h)dν1 + ErrE(u)

where the Laplacian is the leafwise Laplacian along Teichmueller disks and ||ω||h is

the Hodge norm of a local section ω of
∧k E. Finally the error term is considered

along any Teichmueller disk passing through the base point of u, for almost any

c ∈M1 and Lebesgue almost any u ∈ ∧kH∨c .

Notice that the error term is considered along any Teichmueller disk, since the
Oseledets theorem holds for every Teichmueller disk by [CE15]. Notice moreover
that the error term in the last proposition depends only on the Teichmueller disk
passing through the base point of u and the restriction of E to this Teichmueller
disk.

3.2. Condition for rationality of Lyapunov exponents. We want now to state
a sufficient condition for the sum of the top Lyapunov exponents being equal to the
first term of inequality (3.4). This gives in particular a sufficient condition for the
sum of the top Lyapunov exponents to be rational.

Proposition 3.9. Let S ⊂ P(
∧k V∨) be a Gt-invariant closed subset such that

there is a vector u ∈ S computing the top Lyapunov exponents, namely such that∑k
i=1 λi = limt→∞

1
t (log ||Gt(u)||h). If there is a rank k holomorphic subbundle

E ⊂ V such that
TEbad(u) = ∅, for all u ∈ S

then
k∑

i=0

λi =
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
.

Remark 3.10. This last proposition is the analogous of [DD17a, Prop. 3.15] in
which they require a strong irreducility property of the flat bundle in order to
have the right harmonic measure. We do not need any irreducibility property, but
the drawback is that we need the existence of a vector computing the sum of the
top exponents. In [DD17a] they do not need this assumption since for any closed
Gt-invariant S there is always a harmonic measure with support in S.

Note that if the main inequality (3.4) of Theorem 3.4 were an equality, we would
not need the existence of the additional subbundle S but only the existence of

a vector u ∈ ∧k V∨ computing the top Lyapunov exponents with TEbad(u) = ∅.
Indeed in this case the error term ErrE(u) would be zero and this would suffice.
Since we will prove that over compact base curve (3.4) is an equality (Theorem
4.1), we can apply the previous argument to this situation (Corollary 4.2).

Remark 3.11. Consider the Grassmanian bundle Gr(n−k,V) of (n−k)-planes in V
as a subset of P(

∧k V∨) via the Plucker embedding Gr(n− k,V) ⊂ P(
∧n−k V) and

the isomorphism P(
∧k V∨) ∼= P(

∧n−k V). Then the condition that a (n− k)-plane
u ∈ Gr(n−k,V) has emty bad locus, i.e. TEbad(u) = ∅, is equivalent to the condition
that the (n− k)-plane in V represented by u intersects trivially the k-plane defined
by the subbundle E . We will indeed use this criterion to reprove rationality of
Lyapunov exponents for weight 1 and K3 variation of Hodge structures in Section
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5. The (n − k)-plane computing the top Lyapunov exponents will be constructed
from the Oseledets subspaces Vλi .
Proof of Proposition 3.9. We want to prove that if the bad locus is empty for all
u ∈ S, then we can use the E-norm to compute Lyapunov exponents.
The argument is the standard one relying on the equivalence of any two norms
on a finite dimensional vector space. If the bad locus TEbad(u) = ∅ is empty for
all u ∈ S, it means that the E-norm || · ||E is a norm on the Gt-invariant closed

subset S ⊂ P(
∧k V∨). Let K ⊂ T 1C be a compact positive measure set. Then

S|K ⊂ P(
∧k V∨) is a compact subset and the quotient of the norms || · ||E and || · ||h

defines a bounded function on S|K with minimum greater than zero. This means
that there exist two positive constants C1 and C2 such that

C1||u||h ≤ ||u||E ≤ C2||u||h, ∀u ∈ SK .
Now by Poincaré recurrence Theorem, the geodesic flow on T 1C comes back infin-
itely many times to K since it has positive measure. Moreover S is Gt-invariant by
assumption. Let tj be a sequence of times tending to infinity for which gtj (c) ∈ K.
Now let u ∈ S be the vector computing the top Lyapunov exponents, which exists
by assumption. We get then

k∑

i=1

λi = lim
t→∞

1

t
(log ||Gt(u)||h) = lim

tj→∞

1

tj
(C1 log ||Gtj (u)||h) ≤

≤ lim
tj→∞

1

tj
(log ||Gtj (u)||E) ≤ lim

tj→∞

1

tj
(C2 log ||Gtj (u)||h) =

= lim
t→∞

1

t
(log ||Gt(u)||h) =

k∑

i=1

λi.

By following the proof of Theorem 3.4, we see that if the error term is computed
with respect to the vector u used above the inequality (3.4) becomes an equality.
The claim then follows directly from it. �

The condition to have empty bad locus TEbad(u) for u ∈ ∧k V∨ can be rephrased
using the equivalent definition of TEbad(u) given by expression (3.3) via the equi-

variant map sE : H→ P(
∧k Vc) defining E :

(3.6) TEbad(u) = ∅ if and only if Im (sE) ∩ ker(u) = ∅ ⊂ P(

k∧
Vc).

Remark 3.12. If the vector bundle V is of rank 2, then an element u ∈ ∧1 V∨c defines
a point in P(Vc). If E ⊂ V is a sub-line bundle, the developing map defining E

sE : H→ P1
C

is simply a meromorphic function on H equivariant with respect to the action of
the representation ρV defined by V. Then

TEbad(u) = {z ∈ H : sE(z) = u ∈ P1
C}.

Moreover in this case there is only one line u ∈ P(Vc) not computing the top
Lyapunov exponent, namely the line corresponding to the second Oseledets space
Vλ2

.
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The previous remark together with Proposition 3.9 imply the following condition
for equality in the rank 2 situation .

Corollary 3.13. Let V be a rank 2 flat bundle over a hyperbolic Riemann surface
C and E ⊂ V a sub-line bundle. If there is a ρV -invariant subset S ⊂ P1

C containing
more than one point and such that sE(H) ∩ S = ∅, then

λ1 =
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
.

Proof. The pull-back of the restriction of the tautological bundle OP1
C
(−1)|S defines

a Gt-invariant closed subset S ⊂ P(V). Since S contains more than two points, by
the previous remark there is at least one line u ∈ S computing the top Lyapunov
exponent. By Proposition 3.9 we then have equality. �

An important example of an invariant closed subset S ⊂ P1
C containing more

than one point is the limit set of a discrete faithful representation. We can then
specialize the last corollary in this setting.

Corollary 3.14. Let V be a rank 2 flat bundle over a hyperbolic Riemann surface
C corresponding to a faithful discrete representation ρV . If there is a ρV -equivariant
holomorphic map dev : H→ P1

C whose image is disjoint to the limit set of ρV , then

λ1 =
2 degpar(Ξh(dev∗(OP1

C
(−1))))

deg(Ω1
C

(log(∆))
.

Here dev∗(OP1
C
(−1)) is an abuse of notation for the line bundle on C defined by the

map dev.

We will see in Section 7.1.2 that the data of a representation ρV together with
an equivariant immersion dev : H→ P1

C is equivalent to the datum of a projective
structure on a surface, so the previous corollary can be applied to the setting of
projective structures.

4. Main equality in the compact case

In this section we show that inequality (3.4) is an equality if the base curve is
compact and V is k-irreducible. Recall that a flat bundle is called k-irreducible if
its k-exterior power is irreducible.

Theorem 4.1. Let V be a k-irreducible flat bundle over a compact hyperbolic Rie-
mann surface C. For every holomorphic subbundle E ⊂ V, it holds

k∑

i=0

λi(VC) =
2 deg(E)

deg(KC)
+ ErrE(u)

for almost any c ∈ C and Lebesgue almost any u ∈
k∧
V∨c .

We will first state some applications of the previous result and then go on with its
proof. The proof of Theorem 4.1 is quite technical and is based on finer estimates
on the bad locus. We finally recall the main result of [DD17a] and get as a corollary
that the dynamical degree defined in [DD17a] is the same as our error term if the
base curve is compact.
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4.1. Applications. Thanks to the equality proven in Theorem 4.1 we get a better
condition in the case of compact base curves for checking rationality of Lyapunov
exponents than the one given by Proposition 3.9.

Corollary 4.2. Let V be a k-irreducible flat bundle over a compact hyperbolic
Riemann surface C. If there is a rank k holomorphic subbundle E ⊂ V such that

TEbad(u) = ∅
for a vector u ∈ ∧k V∨ that computes the sum of the top Lyapunov exponents, then

k∑

i=0

λi =
2 deg(E)

deg(KC)
.

Note that the previous corollary can be used for example if one considers the

vector u =
∑n
i=k Vλi ∈

∧k V∨ given by the sum of the last Oseledets spaces. Then
only the emptiness condition TEbad(u) = ∅ has to be checked.

In the rank 2 situation we get a better version of Corollary 3.13 in the case of
compact base curve. In this case we know indeed that there is only one line Vλ2

not computing the top Lyapunov exponent.

Corollary 4.3. Let V be an irreducible rank 2 flat bundle over a compact hyperbolic
Riemann surface C and E ⊂ V a sub-line bundle. If the complement P1

C \sE(H) of
the image of the corresponding equivariant map sE : H → P1

C contains more than
one point, then

λ1 =
2 deg(E)

deg(KC)
.

Since a rank k holomorphic subbundle of the flat bundle corresponding to a rep-

resentation ρ is the same as a ∧kρ-equivariant holomorphic map f : H→ P(
∧k Cn),

we get also the following corollary.

Corollary 4.4. Let C be a compact Riemann surface. For any k-irreducible repre-
sentation of the fundamental group ρ : π1(C) → GLn(C) and any ∧kρ-equivariant

holomorphic map f : H→ P(
∧k Cn) the error term function

P(
k∧
Cn)∨ → R+, u 7→ Errf (u) = lim

T→∞

1

T

∫ T

0

]{f−1(ker(u)) ∩Dt(z)}
vol(Dt(z))

dt

is Lebesgue almost everywhere constant, for almost all z ∈ H.

4.2. Proof of Theorem 4.1. We will prove Theorem 4.1 by proving that in the k-
irreducible and compact base curve case, the E-seminorm can be used to compute
Lyapunov exponents as any other integrable norm. We want to remark that in
order to prove that the E-seminorm is as good as any other integrable norm, one
could try the naive approach via Poincaré recurrence theorem used for proving
that any norm computes the same Lyapunov exponents (see for example [KM16,
Lemma 2.6]). The key idea of that approach is that any two norms are uniformly
bounded with respect to each other on a projective bundle over a compact subset.
In this case the bad locus breaks the compactness of the projective bundle since the
E-seminorm is a norm on the complement of the bad locus, which is not compact.

In order to prove that the E-seminorm can be used to compute Lyapunov expo-
nents, it suffices as before to only consider the case where E = L is a line bundle.



LYAPUNOV EXPONENTS AND DE RHAM MODULI SPACE 17

Theorem 4.1 is a direct consequence of the following proposition, whose proof will
take up the rest of this section.

Proposition 4.5. Let C be compact. Let L ⊂ V be a holomorphic subline bundle
of an irreducible flat vector bundle V over C. We denote by the same letters the
pullbacks to the unit tangent bundle T 1C. For almost any x ∈ T 1C and any vector
u ∈ V∨x −⊕ni=2V∨λi,x it holds

λ1(V) = lim
t→∞

1

t

1

2π

∫ 2π

0

log ‖Gtrθu‖Ldθ

From now on we will denote the trouble making sets introduced in Definition 3.1
as

T := TLbad ⊂ P(V∨), T (u) := TLbad(u) ⊂ H for any u ∈ P(V∨).

Let π : H → C be the universal covering map and π∗(P(V)∨) be the pullback of
the projective bundle associated to V∨. Since V∨ is a flat bundle, the pull-back
π∗(P(V∨)) is isomorphic to the trivial projective bundle. Let us fix an isomorphism

ψ : H×P(V∨c )
∼−→ π∗(P(V∨)), (z, u) 7→ uz := ψ(z, u)

for some c ∈ C.
Consider the function

φ : H×P(V∨c ) −→ R≥0 ∪{∞}

(z, u) 7−→ log ||uz||h − log ||uz||L = log

( ||uz||h
||uz||L

)
= log

( ||uz||h||ωz||h
|uz(ωz)|

)

where ω is a local frame of π∗(L). Notice that this function is positive by Cauchy-
Schwartz (see inequality (3.5)).

We denote by φu : H→ R∪{∞} the map φ(−, u), for u ∈ P(V∨c ).

Remark 4.6. Recall that the function appearing in the denominator of φ comes
from the norm of the holomorphic function

H×V∨c −→ C, (z, u) 7→ uz(ωz).

The bad locus ψ−1(T ) ⊂ H×P∨(Vc) is its zero locus and the bad locus for the
vector u ∈ P(Vc) is given by the slice T (u) = ψ−1(T ) ∩ (H×{u}). Notice that by
Lemma 3.3 and by the irreducibility hypothesis, the set T (u) is discrete in H for
every u ∈ P(V∨).

Let ε > 0 be a positive constant. We define a tubular neighborhood of the bad
locus ψ−1(T ) ⊂ H×P(V∨c ) to be

B(T, ε) := {(z, u) ∈ H×P(V∨c ) : dhyp(z, T (u)) < ε} ⊂ H×P(V∨c )

and the slice

B(T (u), ε) := B(T, ε) ∩ (H×{u}) .
Let B(T, ε){ ⊂ H×P∨(Vc) be the complement of the tubular neighborhood B(T, ε).
In the next lemma we obtain a bound on the behavior of the function φ on B(T, ε)

and on B(T, ε){. The main ingredients used in the proof of the next lemma are the
compactness of the curve and the equivariance property of φ.
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Lemma 4.7. There exist constants M,N > 0 such that the function φ outside the
tubular neighborhood B(T, ε) satisfies the following bound

||φ|B(T,ε){ ||∞ ≤M +N | log(ε)|.
Moreover there is a constant M ′ > 0 such that for every u ∈ P(V∨c ) and any
w ∈ T (u) the function φu restricted to the ball Bhyp(w, ε) around w satifies the
following bound:

φu(z)|Bhyp(w,ε) ≤M ′ +N
∑

z′∈T (u)∩Bhyp(w,ε)

| log (dhyp(z, z′)) |.

Proof. Let us choose a compact fundamental domain F ⊂ H for C and consider
the restrictions

T|F := ψ−1(T ) ∩ (F × P(V∨c )) ⊂ H×P(V∨c )

and
B(T, ε)|F := B(T, ε) ∩ (F × P(V∨c )) .

Note that if we prove the two claims of the proposition restricting ourselves to
the subset F × P(V∨c ), then we can use the equivariance property

φ(γz, u) = φ(z, ρ(γ−1)u), γ ∈ π1(C, c)

to extend the results to all of the upper half plane since the constants involved in
the expressions are independent of u ∈ P(V∨c ) and since π1(C, c) acts via isometries
on H.

The main idea now is considering the holomorphic function of expression (4.6)
locally as a power series. Then by a compactness argument we can control the
coefficients of this power series. The main technical problem is that two zeros of
this function, which are the bad points, can collide for some values of u ∈ P(V∨).
This has to be taken into account in order to correctly prove the second statement
of the lemma.

Since F × P(V∨c ) is compact, we can choose finitely many points (zj , uj) ∈ T|F
and compact neighborhoods of the points (zj , uj) ∈ Uj ⊂ F × P(V∨c ) such that
T|F ⊆

⋃m
j=1 Uj . We can now apply the Weierstrass preparation theorem (see for

example [GH94, Ch.0.1]) to the holomorphic function uz(ωz) near the points (zj , uj)
and obtain

φ(z, u)|Uj = log

( ||uz||h||ωz||h
|hj(z, u)Pj(z, u)|

)

where the holomorphic functions hj are never zero and the polynomials Pj are given
as

Pj(z, u) =

nj−1∑

i=0

ai,j(u)(z − zj)i + (z − zj)nj .

The coefficients ai,j(u) are holomorphic functions with ai,j(uj) = 0 for all i and j.
Notice that T|F ∩ Uj is the zero locus of Pj .

On each Uj we get then the following bound:

φ(z, u)|Uj = log

( ||uz||h||ωz||h
|hj(z, u)|

)
− log |Pj(z, u)| ≤M ′′ − log |Pj(z, u)|

where the constant

M ′′ := max
j=1,...,m

(
max

(z,u)∈Uj
log

( ||uz||h||ωz||h
|hj(z, u)|

))
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is well defined since the functions hj are never zero on the compact subsets Uj .
We then rewrite for every (z, u) ∈ Uj the roots decomposition of the polynomial

Pj(z, u) with respect to the variable z to get

φ(z, u)|Uj ≤M ′′ − log |Pj(z, u)| = M ′′ −
nj∑

i=1

log |z − zi,j(u)|

where zi,j(u) ∈ C are possibly equal to each other. Since F ⊂ H is compact, the
euclidean and the hyperbolic distances are comparable to each other. In particular
there is a constant L > 0 such that |x− y| ≥ L · dhyp(x, y) for all x, y ∈ F . Hence
we can rewrite the last inequality as

φ(z, u)|Uj ≤M ′′ −
nj∑

i=1

log |z − zi,j(u)| ≤M ′′ −
nj∑

i=1

log |L · dhyp(z, zi,j(u))|.(4.1)

If ε is chosen small enough, we can assume that B(T, ε)|F is contained in the

union U :=
⋃m
j=1 Uj . Since (z, u) ∈ B(T, ε){ implies that dhyp(z, zi,j(u)) > ε, we

find the bound

||φ|B(T,ε){ ||∞ ≤M −N log(ε) = M +N | log(ε)|
where

N :=
∑

j=1,...,m

nj , M := max{ max
(z,u)∈Ů{

φ(z, u),M ′′} −N log(L).

Hence the first statement of the proposition is proven.
In order to prove the second statement of the lemma we consider a bad point

(w, u) ∈ T|F . Since ε is small, we can assume that the tubular neighborhood

B(T, ε)|F of T|F is contained in U =
⋃m
j=1 Uj . Moreover, if ε is small enough we

can also assume that Uj is a product Uj = Kj × Vj for Kj ⊂ F and Vj ⊂ P(V∨c )
compact subsets. From now on, for the sake of a simpler notation we set K := Kj

and V := Vj . Moreover we set P := Pj , so that the bad locus T|F ∩ Uj = Z(P ) is
the zero set of P . We will prove the second statement of the lemma restricting to
Uj = K × V . This is sufficient since there are only finitely many Uj .

We need to prove that for any (w, u) ∈ Z(P ) ⊂ K×V the following bound holds:

φu(z)|Bhyp(w,ε) ≤M ′ +N
∑

z′∈Z(Pu)∩Bhyp(w,ε)

| log (dhyp(z, z′)) |

for some constant M ′. For any (z, u) ∈ K×V we decompose the polynomial P (z, u)
into roots

P (z, u) =

n∏

i=1

(z − zi(u)).

Without loss of generality we can assume that the roots zi : V → C are well-
defined holomorphic functions. Indeed, even if in general they are only multi-
valued functions, there is a finite covering π : V ′ → V such that the pullbacks
π∗(zi) : V ′ → C are single valued functions. If we then can prove the desired bound
for these pull-back roots, namely if for any root (w, v) ∈ Z(π∗(P )) ⊂ K × V ′ it
holds

π∗(φ)(z, v)|Bhyp(w,ε) ≤M ′ +N
∑

z′∈Z(π∗(P )v)∩Bhyp(w,ε)

| log (dhyp(z, z′)) |
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then it is clear that we get the same bound for the original function. Indeed it is
enough to choose v ∈ π−1(u) for any (w, u) ∈ Z(P ) ⊂ K×V and use the definition
of pull-back π∗(φ)(z, v) = φ(z, π(v)) and π∗(P )v = Pπ(v) to get the original bound.

Since we reduced to the case where P (z, u) =
∏n
i=1(z − zi(u)) and zi : V → C

are holomorphic functions, we can consider the irreducible components of the zero
locus Z(P ) which are now given as graphs

Γi := {(zi(u), u) ∈ K × V : u ∈ V }.
Let us define the tubular neighborhood around Γi as

B(Γi) := {(z, u) ∈ K × V : dhyp(z, zi(u)) ≤ ε}.
Notice that by inequality (4.1) we have

φ(z, u)|K×V ≤M ′′ −
n∑

i=1

log |L · dhyp(z, zi(u))|.

In order to define a global constant M ′ independent of u ∈ V in the bound that
we are trying to prove, we need to define the maximal compact subset of B(Γi)
where the function log |L · dhyp(z, zk(u))||Bhyp(zi(u),ε) is well define and then take
the maximum over this set for all k 6= i. This set can be defined as the k-th
complement

B(Γi)(k) : = {(z, u) ∈ B(Γi) : dhyp(zi(u), zk(u)) ≥ ε}
= {(z, u) ∈ B(Γi) : (zk(u), u) 6∈ B(Γi)}.

The number

M ′i := max
k 6=i

(
max

(z,u)∈B(Γi)(k)
− log (L · dhyp(z, zk(u)))

)

is well-defined since the sets we are taking the maximum on are compact and the
functions log (L · dhyp(z, zk(u))) are well-defined in these sets. We finally define

M ′ := N ·max
i
M ′i +M ′′ −N log(L).

Then by rewriting once again inequality (4.1) and using the definition of M ′ we
find that for every i ∈ {1, . . . , n} it holds

φ(z, u)|B(γi) ≤M ′ −
∑

zk(u)∈Bhyp(zi(u),ε)

log (dhyp(z, zk(u)))

≤M ′ +N
∑

zk(u)∈Bhyp(zi(u),ε)

|log (dhyp(z, zk(u)))|

where we added the constant N > 0 in the second inequality because in the second
claim of the proposition we are summing over the bad points not taking multiplic-
ities into account. The second claim of the proposition is then proven.

�

Remark 4.8. The positive constant N > 0 of the previous lemma gives a uniform
bound of the number of bad points in any compact fundamental domain for a
compact curve C. In the case of a non compact curve, it is unclear if such a uniform
bound exists. Notice that there is an an alternative way of proving that the number
of bad points is uniformly bounded, without using the Weierstrass preparation
theorem. Let χF (z) be the characteristic function of a compact fundamental domain
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F ⊂ H. Using a partition of unity argument we can create a continuous function
χ̃F (z) that agrees with χF (z) on F . Consider then the continuous map

P(V∨)→ R, u 7→
∫

H
χ̃F (z)χT (u)(z)

where χT (u)(z) is the characteristic function of the set T (u). Since this map is
continuous, it is bounded. The bound is independent of the choice of fundamental
domain by the equivariance property

χT (u)(γ(z)) = χT (ρ(γ−1)u)(z), for any γ ∈ π1(C, c).

Using the bounds of the last lemma, we now prove Proposition 4.5 which, as we
already noticed, implies Theorem 4.1. The main strategy is to separate the study
of the integral of the seminorm near and far from the bad points.

Proof of Proposition 4.5. Let us choose u ∈ V∨ that computes the Lyapunov expo-
nent, meaning that

λ1(V) = lim
t→∞

1

t

1

2π

∫ 2π

0

log ||ugtrθ(x0)||hdθ

where x0 ∈ T 1 H is the base point of u. We used and will use from now on a slight
abuse of notation by identifying gtrθ(x0) ∈ T 1 H with its base point in H. This is
not a problem since the norms involved are pullbaks of norms for the bundle over
H.

Let us fix ε′ > 0 and t >> 0 and set

ε = ε(t) := e−tε
′
.

We define now

S(t)near := {θ ∈ [0, 2π] : gtrθ(x0) ∈ B(T (u), ε)}
and S(t)far := [0, 2π]− S(t)near.

We want to prove that the difference between the norm and the seminorm

1

t

∫ 2π

0

log

( ||ugtrθ(x0)||h
||ugtrθ(x0)||L

)
dθ =

1

t

∫ 2π

0

φ(gtrθ(x0), u)dθ

=
1

t

(∫

S(t)near

φ(gtrθ(x0), u)dθ +

∫

S(t)far

φ(gtrθ(x0), u)dθ

)

tends to zero.
We treat first the integral near the bad locus. Let z0 ∈ H be the base point of x0

and define the hyperbolic annulus

A(t, ε) := {z ∈ H : t− ε ≤ dhyp(z, z0) ≤ t+ ε}
and for any w ∈ H define the arc portion

Ct(w, ε) := {θ ∈ [0, 2π] : gtrθ(x0) ∈ Bhyp(w, ε)}.
It follows from the above definitions and from the second statement of Lemma

4.7 that ∫

S(t)near

φ(gtrθ(x0), u)dθ ≤
∑

w∈T (u)∩A(t,ε)

∫

Ct(w,ε)

φ(gtrθ(x0), u)dθ
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≤
∑

w∈T (u)∩A(t,ε)

M ′
∫

Ct(w,ε)

dθ+

∑

w∈T (u)∩A(t,ε)

N
∑

z′∈T (u)∩Bhyp(w,ε)

∫

Ct(w,ε)

|log (dhyp(gtrθ(x0), z′))|dθ

≤
∑

w∈T (u)∩A(t,ε)

M ′
∫

Ct(w,ε)

dθ+

∑

w∈T (u)∩A(t,ε)

N2 max
z′∈Bhyp(w,ε)

(∫

Ct(w,ε)

|log(dhyp(gtrθ(x0), z′))|dθ
)
.

where the last inequality follows since we can assume that Bhyp(w, ε) is small enough
to be contained in a fundamental domain and N is the the uniform bound for
number of bad points in a fundamental domain.

z0

t

A(t, ε)

w
Ct(w, ε)

z′

Define

θ(ε, t) :=
sinh(ε)

sinh(t)

and notice that ∫

Ct(w,ε)

dθ ≤ θ(ε, t)

since the measure of the angle Ct(w, ε) is the same as the quotient of the hyperbolic
length of the arc that the angle defines and the hyperbolic length of the circumfer-
ence St(z0). It is moreover clear that the hyperbolic length of the arc defined by
Ct(w, ε) is less than the length of the circumference ∂Bhyp(w, ε).

We hence get the following bound:∫

S(t)near

φ(gtrθ(x0), u)dθ ≤M ′ · ]{T (u) ∩A(t, ε)} · θ(ε, t)+

+N2 · ]{T (u) ∩A(t, ε)} · max
w∈A(t,ε)

(
max

z′∈Bhyp(w,ε)

∫

Ct(w,ε)

|log(dhyp(gtrθ(x0), z′))|dθ
)
.

In order to bound the second summand, we notice that this term is invariant
under isometries. Hence we are free to choose a convenient coordinate system and
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work for example in the Poincaré disk D with starting point x0 = (0, (1, 0)) ∈ T 1D,
namely the center together with the horizontal direction. Moreover, since the term

max
z′∈Bhyp(w,ε)

(∫

Ct(w,ε)

|log(dhyp(gtrθ(x0), z′))|dθ
)

is invariant under rotation, we can assume that w is on the horizontal ray

w ∈ R := A(t, ε) ∩ [0, 1] = [tanh(t− ε), tanh(t+ ε)].

We define the tubular neighborhood of the ray as

U :=
⋃

r∈[t−ε,t+ε]

Bhyp(tanh(r/2), ε).

We then get the following bound:

max
w∈R

(
max

z′∈Bhyp(w,ε)

(∫

Ct(w,ε)

|log(dhyp(gtrθ(x0), z′))|dθ
))

≤ max
z′∈U

(∫ θ(ε,t)
2

− θ(ε,t)2

∣∣log dhyp(tanh(t/2)eiθ, z′)
∣∣dθ
)

≤ max
z′∈R

(∫ θ(ε,t)

−θ(ε,t)

∣∣log dhyp(tanh(t/2)eiθ, z′)
∣∣ dθ
)

where the last inequality follows again by rotational invariance (up to enlarging the
angle of integration we can assume that z′ is on the ray that cuts the angle in two
equal parts and then we can rotate to have z′ ∈ R). Notice now that

max
z′∈R

(∫ θ(ε,t)

−θ(ε,t)

∣∣log dhyp(tanh(t/2)eiθ, z′)
∣∣dθ
)

≤
∫ θ(ε,t)

−θ(ε,t)

∣∣log dhyp(tanh(t/2)eiθ, R)
∣∣dθ

where by definition

dhyp(tanh(t/2)eiθ, R) := inf
z′∈R

dhyp(tanh(t/2)eiθ, z′).

Using the hyperbolic sine rule we get

dhyp(tanh(t/2)eiθ, R) = sinh−1(sinh(tanh(t/2)) · sin(θ)) = θ + o(θ)

where the little-o notation is with respect to t going to infinity (hence θ = θ(t)
going to zero). We finally can then rewrite

∫ θ(ε,t)

−θ(ε,t)

∣∣log dhyp(tanh(t/2)eiθ, R)
∣∣dθ = 2

∫ θ(ε,t)

0

|log θ|dθ + o(θ(ε, t))

= |2θ(ε, t) log (θ(ε, t))− 2θ(ε, t)|+ o(θ(ε, t)) ∼ log(θ(ε, t))θ(ε, t) ∼ ε(t) log(ε(t)/et)

et
.

The last asymptotic follows from the original definition of ε = ε(t) = e−tε
′
, for a

fixed small ε′ > 0, and the definition of θ(ε, t), which together with the fact that for
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large t the function sinh(t) is asymptotic to et and for ε small sinh(ε) is asymptotic
ε, gives

θ(ε, t) =
sinh(ε)

sinh(t)
∼ ε(t)

et
.

Putting together all the inequalities we showed that

lim
t→∞

1

t

∫

S(t)near

φ(gtrθ(x0), u)dθ ≤ lim inf
t→∞

1

t
]{T (u) ∩A(t, ε)} · ε(t) log(ε(t)/et)

et

≤ lim inf
t→∞

]{T (u) ∩Dt+ε(z0)} · ε(t) log(ε(t)/et)

tet
.

By Theorem 3.4, we know that the limit defining the error term converge:

lim
T→∞

1

T

∫ T

0

]{T (u) ∩Dt+ε(z0)}
vol(Dt+ε(z0))

dt = lim
T→∞

1

T

∫ T

0

]{T (u) ∩Dt+ε(z0)}
4π sinh2((t+ ε)/2)

dt <∞.

This implies that

lim inf
t→∞

]{T (u) ∩Dt+ε(z0)} · ε(t) log(ε(t)/et)

tet
= 0.

Indeed if this is not the case then there is a constant c > 0 and t′ such that for all
t > t′ it holds ]{T (u) ∩Dt+ε(z0)} > c · (tet/(ε(t) log(ε(t)/et)) which implies that

lim
T→∞

1

T

∫ T

t′

]{T (u) ∩Dt+ε(z0)}
4π sinh2((t+ ε)/2)

dt > lim
T→∞

1

T

∫ T

t′

c · (tet/(ε(t) log(ε(t)/et))

4π sinh2((t+ ε)/2)
dt.

This yields to a contradiction, since the right-hand side of the previous inequality
is not finite. Indeed the integrand is asymptotic to

tet

ε(t) log(ε(t)/et)et+ε(t)
∼ tetε

′

log(e−t(1+ε′))

t→∞−→ ∞.

Using the first statement of Lemma 4.7 we can compute a bound of the integral
over the points which are not near T (u):

lim
t→∞

1

t

∫

S(t)far

φ(gtrθ(x0), u)dθ ≤ lim
t→∞

2π

t
(M −N(log(ε)) = 2πNε′.

By letting ε′ tend to zero, we finally get

λ1(V) = lim
T→∞

1

T

1

2π

∫ 2π

0

log ‖GT rθu‖Ldθ

and Proposition 4.5 is proven.
�

4.3. Harmonic measures and Brownian motion. In this section we compare
Theorem 4.1 to the main results of [DD17b] and [DD17a]. We will describe how in
the case of compact base curve Theorem 4.1 can be used to identify the dynamical
degree defined in [DD17a] with our error term, which in turn can be viewed as
a generalization of the asymptotic covering degree of developing maps defined in
[DD17b].

In [DD15] and [DD17b], Deroin and Dujardin defined the Lyapunov exponents
associated to holonomies of parabolic projective structure on hyperbolic surfaces
in the context of Brownian motion. The definition of Lyapunov exponents in this
context is essentially the same as our definition provided by Oseledets multiplica-
tive ergodic theorem, but the cocycle is defined over the Brownian motion on the
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Riemann surface instead of on the geodesic flow. The two definitions of Lyapunov
exponents provide the same numbers since the Brownian motion tracks the geodesic
flow sublinearly on hyperbolic Riemann surfaces (see [Anc90]). In [DD15] it was
proven the main equality of Theorem 4.1 in the specific case of rank 2 representa-
tions given as holonomies of projective structures inducing the same holomorphic
structure of the base curve. In Proposition 7.6 we identified the locus of such rep-
resentations with the oper locus if the base curve is compact. The error term was
identified with the asymptotic covering degree of the developing map of the projec-
tive structure (the different constants appearing are due to a different normalization
of the hyperbolic metric). Our error term is a generalization of this asymptotic de-
gree (see Proposition 8.4 for a specific comparison in rank two). Notice however
that the equality proven in [DD15] is more general than ours since it works for
parabolic representations over non compact curves and since in the error term they
do not need the integral defining the mean of the counting function since they can
prove that the counting function converges.

In [DD17a], Daniel and Deroin generalized the definition of Lyapunov exponents
in the context of Brownian motion on Kähler manifolds. The result they provide
is analogous to the main equality of Theorem 4.1, where the error term is called
dynamical degree. Recall that a measure ν on the projective bundle associated to a
flat bundle V is called harmonic if it is invariant under the heat semigroup action.
The dynamical degree associated to a sub-vector bundle E ⊂ V is defined as the
intersection number

δE := Tν ∩ [P(E)]

where Tν is the harmonic current associated to ν.

Corollary 4.9. Over a compact Riemann surface, the error term and the dynamical
degree coincide

δE = ErrE(u)

for Lebesgue almost all u ∈ ∧k V∨.

Proof. As recalled above, the Lyapunov exponents defined in the context of Brown-
ian motion and the one defined for the geodesic flow coincide on a hyperbolic curve.
The result then follows by comparing the equality of Theorem 4.1 and the formula
in [DD17a, Theorem 5]. �

Notice that the error term, contrary to the dynamical degree, can in principle be
approximated with computer experiments.

Recall that Gt : V → V is the lift via parallel transport of the geodesic flow
over T 1C. The main theorem of [BEW17] in our setting implies that if the flat
bundle VC over T 1C is irreducible, then there exists a measure ν on the projective
bundle P(VC) that is Gt-invariant, projects to the hyperbolic measure on the base
and it is fiberwise supported on the projectivization P(Vλ1

) of the first Oseledets
subspace. Using an abuse of notation we call ν the corresponding measure on the

wedge products P
(∧k VC

)
if they are irreducible.

The property of our error term to be Lebesgue almost everywhere constant differ-
entiate our result to the one in [DD17a]. If we allow ourselves to consider an error
term which is almost everywhere constant with respect to a Gt-invariant measure
ν, we are able to more easily show a weaker version of Theorem 4.1 equivalent to
the result of [DD17a].
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Proposition 4.10. Let VC be a k-irreducible flat bundle. For any holomorphic
subbundle E ⊂ VC of rank k, if

∫

P(V∨)

log

( ||u||L
||u||h

)
dν(u) <∞

then
k∑

i=0

λi =
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ ErrE(u)

for ν-almost any u ∈ P
(∧k V∨

)
.

If the base curve is compact, the integrability assumption holds.

Proof of Proposition 4.10. As in the proof of Theorem 3.4, it is enough to prove
the result for the top Lyapunov exponent and consider the case where E = L is a
line bundle. Since the measure ν is fiberwise supported on the first Oseledets space,
the top Lyapunov exponent of V is given ny

λ1 = lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||h
||u||h

)
dν(u)

where h is an integrable norm. Integrating inequality (3.4) over P(V∨) with respect
to the measure ν and rewriting backwards the equalities of the proof of Theorem
3.4, we find

λ1 ≥
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+

∫

P(V∨)

ErrE(u)dν(u) = lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||L
||u||L

)
dν(u)

where || · ||L is the L-seminorm defined in (3.1). We finally compute

λ1 −
(

2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+

∫

P(V∨)

ErrE(u)dν(u)

)

= lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||h
||u||h

)
dν(u)− lim

t→∞

1

t

∫

P(V∨)

log

( ||Gtu||L
||u||L

)
dν(u)

= lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||h · ||u||L
||Gtu||L · ||u||h

)
dν(u).

Since by assumption
∫
P(V∨)

log
(
||u||L
||u||h

)
dν(u) <∞, we can split the integral

∫

P(V∨)

log

( ||Gtu||h · ||u||L
||Gtu||L · ||u||h

)
dν(u) =

=

∫

P(V∨)

log

( ||Gtu||h
||Gtu||L

)
dν(u)−

∫

P(V∨)

log

( ||u||h
||u||L

)
dν(u) = 0

where the last equality follows from the Gt-invariance of the measure ν. We have
then proved that

λ1 =

(
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+

∫

P(V∨)

ErrE(u)dν(u)

)
=

= lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||L
||u||L

)
dν(u).
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In order to prove that the function ErrE(u) is ν-almost everywhere constant notice
that the function

P(V∨) −→ R, u 7→ log

( ||G1u||L
||u||L

)

is ν-integrable since

λ1 = lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||L
||u||L

)
dν(u) =

∫

P(V∨)

log

( ||G1u||L
||u||L

)
dν(u)

where the second equality comes from the Gt-invariance of ν. Then applying the
Birkhoff ergodic theorem to this function and the measure ν, it follows that for
ν-almost any u ∈ P(V∨):

lim
t→∞

1

t
log

( ||Gtu||L
||u||L

)
=

∫

P(V∨)

log

( ||G1u||L
||u||L

)
dν(u) = λ1.

Hence we finally get for ν-almost any u ∈ P(V∨):

λ1 = lim
t→∞

1

t
log

( ||Gtu||L
||u||L

)
=

2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ ErrE(u).

The second claim of the proposition about the integrability condition in the com-
pact case can be showed using Lemma 4.7 and arguing in an analogous way as in
the proof of Proposition 4.5. �

5. Lyapunov exponents for variations of Hodge structures

In this section we use the previous results in order to describe the properties of
Lyapunov exponents for special flat bundles, namely variations of Hodge structures.

First of all we we use the geometric version of Oseledets theorem described in
[Fil17] to give a bound on the number of zero exponents of a general variation of
Hodge structures. We then use Simpson correspondence to classify unitary repre-
sentations as variations of Hodge structures with trivial Lyapunov spectrum and
deduce from the proof of this last statement a simplicity result for non-unitary
variations of Hodge structures.

We finally use the condition given by Proposition 3.9 to prove results about
rationality of Lyapunov exponents for variations of Hodge structures in low weight
and describe what is known in these situations. More specifically, we will prove
a slightly generalized version of the results of [EKZ14] and [Fil14] about equality
of Lyapunov exponents and degrees of Hodge bundles in the weight 1 and in the
real weight 2 variation of Hodge structures case. The core of the arguments of the
proofs that we present are similar as the one in the original proofs of the papers
cited above or the ones of the most recent paper [DD17a]. The main idea is to
relate the Lyapunov exponents to properties of the period maps. In particular, we
will use that the image of the period map cannot contain the point corresponding
to some Oseledets spaces in the two cases of weight one and real K3 type variation
of Hodge structures.

We recall the definition of variation of Hodge structures. They are special holo-
morphic flat bundles arising for example from the variation of the cohomology of
families of algebraic varieties.
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Definition 5.1. A complex variation of Hodge structures of weight k over C is a
holomorphic flat vector bundle (V,∇) over C together with a holomorphic filtration

F k+1 = 0 ⊂ · · · ⊂ F 0 = V
which satisfies the Griffiths transversality condition

∇ : F p → F p−1 ⊗ Ω1
C

and such that furthermore there exists a ∇-flat hermitian complex form H on V,
which is positive definite on F i/F i+1 for i even and negative definite for i odd.

Via Simpson correspondence, variations of Hodge structures correspond to stable
systems of Hodge bundles ([Sim88]).

Definition 5.2. A system of Hodge bundles is a Higgs bundle (V,Φ) together with
a decomposition V = ⊕Vp,q, such that Φ : Vp,q → Vp−1,q+1 ⊗KC .

Via Simpson correspondence a variation of Hodge structures is associated to the
semistable system of Hodge bundles given by the graded object associated to the
Hodge filtration equipped with the Higgs field defined by the graded pieces of the
flat connection. In this case the harmonic metric is the Hodge metric coming from
the hermitian form H.

Finally we want to remark special properties of weight one and real weight two
variations of Hodge structures what will be interesting to relate to Lyapunov expo-
nents (see Section 5). A real weight two variation of Hodge structures is given by
a real vector bundle VR over C such that its base change to C defines a complex
weight 2 variation of Hodge structures V.

Proposition 5.3. (1) Let V be a weight one variation of Hodge structures.
Then the first piece of the Hodge filtration F 1 = V1,0 is the maximal degree
subbundles among all subbundles of V.

(2) Let V be a real variation of Hodge structures of weight two and let V2,0 be
the first piece of the Hodge filtration. Then for every subbundle E ⊆ V it
holds deg(E) ≤ 2 deg(V2,0).

Proof. First of all we remark that in the proof we will work with subsheaves of
holomorphic vector bundles, and not only with subbundles. All the semistability
arguments still work in this more general context since we can always pass to the
saturation of the subsheaves.

If V is a weight one variation of Hodge structures, the associated semistable
system of Hodge bundles is given by V1,0 ⊕ V0,1, where V0,1 = V/V1,0. First of all
note that if W ⊆ V1,0, then deg(W) ≤ deg(V1,0). Indeed W ⊕ V0,1 is sub-system
of Hodge bundles. Hence by semistability deg(W) + deg(V0,1) ≤ 0. If E ⊂ V is any
subbundle, then consider the short exact sequence

0→ E ∩ V1,0 → E → E
E ∩ V1,0

→ 0.

Since the quotient E
E∩V1,0 is a subsheaf of V0,1, it defines a sub-system of Hodge

bundles and so it has negative degree. By additivity of the degree we finally get

deg(E) = deg(E ∩ V1,0) + deg(
E

E ∩ V1,0
) ≤ deg(V1,0).

If V is a real variation of Hodge structures of weight two, the associated semistable
system of Hodge bundles is given by V2,0 ⊕ V1,1 ⊕ V0,2 where by definition V1,1 =
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F 1/V2,0 and V0,2 = V/F 1. Let now E ⊆ V be a subbundle. First of all consider
the bundle E

E∩F 1 . Since it injects as a subsheaf of V0,2, it defines a sub-Higgs sheaf
of the associated system of Hodge bundles. By semistability it has then to have
negative degree and so we get

deg(E) ≤ deg(E ∩ F 1).

Moreover, since (E ∩ V2,0) ⊕ V1,1 ⊕ V0,2 also defines a sub-Higgs sheaf and since
deg(V0,2) = −deg(V2,0) and deg(V1,1) = 0 (this is because V is a real VHS), again
by semistability we obtain

deg(E ∩ V2,0) ≤ deg(V2,0).

To conclude consider the sub-Higgs sheaf E∩F
1

E∩V0,2 ⊕V0,2, which by semistability has
negative degree. It follows that

deg(E ∩ F 1) ≤ deg(E ∩ V0,2) + deg(V2,0).

Using the three inequalities that we obtained we get

deg(E) ≤ deg(E ∩ F 1) ≤ deg(E ∩ V0,2) + deg(V2,0) ≤ 2 deg(V2,0).

�

The last proposition will be related to the characterization of Lyapunov exponents
from the main equality of Theorem 2.14 and Theorem 5.9.

5.1. Oseledec decomposition for variations of Hodge structures. The mon-
odromy invariance of the indefinite Hermitian form H allows to derive the well-
known orthogonality of Oseledets subspaces for variations of Hodge structures.
This is an important ingredient that distinguishes variations of Hodge structures
to generic flat bundles.

Proposition 5.4. The Oseledets subspace Vλi are totally isotropic with respect
to the ∇-flat indefinite hermitian form H unless λi = 0 and they are pairwise
orthogonal unless λi = −λj.

We recall the proof of this statement, which can be found for example in [KM16].

Proof. Let K be a positive measure compact subset of T 1C, let tk be a sequence
going to infinity such that gtk(c) ∈ K for tk → ±∞ and for almost all c ∈ T 1C. The
existence of the sequence is justified by Poincaré recurrence theorem. Let ui ∈ Vλi .
Then by Gt-invariance of H and by the Cauchy-Schwartz inequality we get

H(ui, uj) = H(gtkui, gtkuj) ≤ c(K)||gtkui||H ||gtkuj ||H ∼ e(λi+λj)·tk

where c(K) > 0 is a positive constant depending only on K. Since e(λi+λj)·tk → 0
for λi 6= λj and for tk →∞ or tk → −∞, we get the result. �

5.2. Zero exponents and simplicity results for variation of Hodge struc-
tures. First of all we use a well-known version of the geometric Oseledets theorem
([Fil17]) to give a bound on the number of zeros of variation of Hodge structures.

Proposition 5.5. Let (V,∇) be a rank n irreducible complex variation of Hodge
structures of weight k with Hodge filtration (F i). Let p =

∑
i≡0(2) rk

(
F i/F i+1

)

be the rank of the even part of V. Then there are at least |n − 2p| zero Lyapunov
exponents.
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Proof. By the geometric Oseledec theorem, any vector bundle coming from a SU(p, q)-
flat bundle has at least |p− q| zero exponents ([Fil17, Ex.4.5]). We can apply this
statement to complex variations of Hodge structures, since by definition the image
of the monodromy representation is in SU(p, q) where p =

∑
i≡0(2) h

i,j is the di-

mension of the even Hodge bundles and q =
∑
i≡0(2) h

i,j is the dimension of the

odd ones. �

We now prove that for a variation of Hodge structure over a compact curve,
triviality of the Lyapunov spectrum is equivalent to having weight zero, which
means corresponding to a unitary representation.

Proposition 5.6. Let (V,∇) be a rank n irreducible varation of Hodge structure.
Then the following are equivalent:

(1) V is a variation of Hodge structures of weight zero.
(2) the corresponding monodromy representation is unitary.
(3) V is stable.

Moreover the conditions of above are equivalent to have trivial Lyapunov spectrum.

Proof. Recall that by the result of Narasimhan-Seshadri (Theorem 6.6), the locus of
unitary representations corresponds to the locus of stable vector bundles V equipped
with the harmonic metric connection or, by Simpson correspondence, to the locus of
Higgs bundles with zero Higgs field. If a variation of Hodge structures is of weight
zero, then the Griffiths filtration is trivial and so the associated system of Hodge
bundles has zero Higgs field. So the associated representation is unitary. Moreover,
again by Narasimhan-Seshadri’s result, if the associated representation is unitary,
then V is stable.
We will prove now that stability implies weight zero. Assume by contradiction that
the weight is bigger than zero, so that we have a non-trivial filtration

F k+1 = 0 ⊂ · · · ⊂ F 0 = V
corresponding to the system of Hodge bundles

(GrF (V) =
⊕

p

Vp,n−p,∇gr), Vp,n−p := F p/F p+1.

By Griffiths transversality condition, (V0,n,∇gr|V0,n = 0) ⊂ (GrF (V),∇gr) is a sub-

Higgs bundle, and so by semistability of Higgs bundles in M(n)
H (C), we have that

µ(V0,n) ≤ µ(GrF (V)) = 0. Since deg(GrF (V)) =
∑
p deg(Vp,n−p), it follows that

deg(V0,n) = −deg(
⊕

p 6=0

Vp,n−p) = −deg(F 1) ≤ 0.

So we have found that deg(F 1) ≥ 0 = µ(V) which is impossible by the stability of
V.
We prove now the last statement of the proposition. We know that a unitary
representation has trivial Lyapunov spectrum since in this case the norm used to
compute the Lyapunov exponent is invariant under parallel transport. Conversely,
if the Lyapunov spectrum is zero then, since F 1 ⊂ V is a holomorphic subbundle,

we have that 0 =
∑rk(F1)
i=1 λi ≥ deg(F 1) by Theorem 2.14. But as we already saw,

if the weight is positive then it holds also 0 ≤ deg(F 1). If F 1 has zero degree then
it defines a flat subbundle, contradicting the hypothesis of irreducibility of V. �
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From the last Theorem we get a direct corollary about the sum of the first rk(F1)
Lyapunov exponents of a positive weight variation of Hodge structures.

Corollary 5.7. Let (V,∇) be a rank n irreducible variation of Hodge structures of
positive weight. Then the the sum of the first rk(F 1) Lyapunov exponents is positive
and the following non-trivial bound holds:

rk(F1)∑

i=1

λi(V) ≥ deg(F 1) = deg(Vn,0) > 0.

Proof. From the proof of the last Theorem we see that if the weight is positive and
the variation of Hodge structures is irreducible then the degree of F 1 is strictly
positive. Hence the bound (2.2) gives the result. �

5.3. Weight 1 variation of Hodge structures. Recall that a weight 1 complex
variation of Hodge structure of rank n over C is given by a flat vector bundle H
of rank n together with a holomorphic subbundle H1,0 ⊂ H of rank k and a ∇-
flat hermitian complex form H on H that is positive definite on H1,0 and negative
definite on H/H1,0.

We can reprove the result of [EKZ14] in the case of complex weight 1 variation
of Hodge structures over hyperbolic curves.

Theorem 5.8. If H is a weight 1 complex variation of Hodge structures of rank n
with rk(H1,0) = k over C, then

k∑

i=1

λi =
2 degpar(Ξh(H1,0))

deg(Ω1
C

(log(∆))

Proof. We want to use Proposition 3.9 and prove that for any vector u of the Gt-

invariant closed subspace S ⊂ P(
∧kH∨) given by totally isotropic (n − k)-planes

the bad locus Tbad
H1,0

(u) is empty. This locus is Gt-invariant because the indefinite
metric H is Gt-invariant. Moreover, we need to prove that there is a totally isotropic
(n− k)-plane computing the top k-Lyapunov exponents.

Assume that k ≥ n− k. In order to prove that the bad locus Tbad
H1,0

(u) is empty,
notice that the image of the period map

sH1,0 : H→ P

(
k∧
Hc
)

is contained in the space of positive definite k-planes since H is positive definite on
H1,0. Hence every k-plane sH1,0(z) has to intersect trivially any totally isotropic
(n− k)-plane, which means by condition (3.6) that the bad locus is empty for any
u ∈ S. We now only need to find a totally isotropic (n − k)-plane computing the
top Lyapunov exponents. Since k ≥ n−k and the Hermitian form H has signature
(k, n − k), using Proposition 5.4 it is easy to see that there is a totally isotropic
(n − k)-plane contained in the positive Oseledets space V≥0. By definition of the
Osedelec space this plane computes the sum of the top k Lyapunov exponents.

If k ≤ n− k we consider the complex conjugate variation of Hodge structure. It
has the same Lyapunov exponent and now the complex conjugate of the bundle
H0,1 := H/H1,0 is a holomorphic subbundle with degree equal to deg(H0,1) =
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− deg(H1,0). Now we can use the first part of the proof

k∑

i=1

λi = −
n−k∑

i=1

λi = −2 degpar(Ξh(H0,1))

deg(Ω1
C

(log(∆))
=

2 degpar(Ξh(H1,0))

deg(Ω1
C

(log(∆))
.

�

Notice that as a corollary of the last theorem we get back the first part of the
statement of Proposition 5.3, namely that H1,0 is the maximal degree subbundle
among all the subbundles of H.

5.4. Real variations of Hodge structures of K3 type. A weight two real
variation of Hodge structures over C is given by a real vector bundle HR over C
such that its base change to C defines a complex variation of Hodge structures H
of weight two. Let F 2 = H2,0 ⊂ F 1 ⊂ H be the Hodge filtration and note that
F 2 = H0,2 := H/F 1. Recall that by definition there is a ∇-flat hermitian complex
form H on H which is positive definite on H2,0 and H0,2, and negative definite on
H1,1 := F 1/H2,0. Let n := rk(H) and k := rk(H2,0).

Recall first of all that in the case of real variations of Hodge structures of weight
2, by the geometric Oseledets theorem, and more specifically by Proposition 5.5,
there are at least n− 4k zero Lyapunov exponents. Hence the Lyapunov spectrum
takes the form

λ1, . . . , λ2k, 0, · · · , 0,−λ2k, . . . ,−λ1.

In [Fil14], it is proven that for a real variation of Hodge structures of weight 2
of K3 type, i.e. for k = 1, the bound of Theorem 2.14 is an equality for the top
Lyapunov exponent when we use the holomorphic sub-line bundle E = H2,0. We
can reprove this result using Proposition 3.9.

Theorem 5.9. Let H be a flat vector bundle of rank n corresponding to a real
variation of Hodge structures of weight two of K3 type, namely rk(H2,0) = 1. Then

λ1 =
2 degpar(Ξh(H2,0))

deg(Ω1
C

(log(∆))
.

Proof. As in the proof of weight one case we want to use Proposition 3.9. Hence
we will prove that for any vector u in the Gt-invariant subset S ⊂ P(H∨) given by
hyperplanes whose orthogonal complement is a totally isotropic real line, the bad

locus Tbad
H2,0

(u) is empty. Moreover we will prove that there is one hyperplane in
S computing the top Lyapunov exponent.
First of all we check that all lines in the image of the period map

sH2,0 : H→ P(Hc)
do not intersect non-trivially any hyperplane in S . The image of the period map
is contained in the period domain defined by positive lines v ∈ P(Hc) for which
H(v, v) = 0. Then if there is a hyperplane u ∈ S intersecting non trivially a
line v ∈ Im (sH2,0), it means that the isotropic real line u⊥ is contained in the
negative definite orthogonal complement < v, v >⊥, which is impossible. Finally,
by Proposition 5.4, the orthogonal complement of the hyperplane u =

∑
i>1 Vλi

is the Oseledets space Vλn which is a totally isotropic real line. By definition u
computes the top Lyapunov exponent. �
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Notice that as a corollary of the last theorem we get a stronger statement than
the one of Proposition 5.3 in the K3 case.

Corollary 5.10. Let H be a flat vector bundle corresponding to a real variation of
Hodge structures of K3 type. Then for any sub-line bundle L ⊂ H it holds

deg(L) ≤ deg(H2,0).

We believe for the general two variation of Hodge structures case the situation
is analogous to the one described in [EKMZ18] for Calabi-Yau threefolds. Namely,
if the monodromy is arithmetic a strict inequality between the sum of the first k
exponents and the normalized degree of H2,0 should always hold.

6. Lyapunov exponents on De Rham moduli spaces and Shatz
stratification

The set of flat vector bundles can be made into an algebraic variety called de
Rham moduli space. We showed in the last section that Lyapunov exponents
satisfy special properties on the subset of this moduli space given by variations
of Hodge structures. In this section we want to investigate Lyapunov exponents
as invariants on the full moduli space and in particular understand the behavior
of these functions on Shatz strata given by Harder-Narasimhan type. Thanks to
inequality (2.2) we can give a bound of the Lyapunov exponents functions on these
strata. This result is a generalization of the main result of [DD17b], since we will
see in the next sections that the maximal stratum in rank two can be identified
with the locus considered in [DD17b] given by projective structures underlying the
same complex structures. We finally use a recent result of [DF18] to prove that
the Lyapunov exponents functions are unbounded on the maximal stratum, which
means in particular that they are unbounded on the moduli space.

More specifically the De Rham moduli space M(n)
DR(C) is the moduli space of

semisimple flat vector bundles (V,∇) of rank n over C with trivial determinant
bundle modulo the action of the complex gauge group. When we speak about
moduli spaces, we are always assuming that the base hyperbolic Riemann surface
C is compact, since we do not want to deal here with representation varieties with
fixed parabolic weights at the cusps. We saw that Lyapunov exponents are defined
for every flat bundle with non-expanding cusp monodromies. Hence if C is compact,

they are defined for every point of M(n)
DR(C). We can then define functions, which

we will call the Lyapunov exponent functions, from the de Rham moduli space

λi :M(n)
DR(C)→ R, (V,∇) 7→ λi(V,∇), i = 1, . . . , n

that send a flat holomorphic bundle over C to its ith Lyapunov exponent. Recall
that we have to take care only of half of the Lyapunov spectrum since it is symmetric
(see Remark 2.2). These are the invariants that we will consider in the rest of the
paper.

Remark 6.1. Recall that the the De Rham moduli space is biholomorphic via
Riemann-Hilbert correspondence to the complex character variety, also known as
Betti moduli space,

M(n)
B := Hom(π1(C),SLn(C))//SLn(C),

which is the moduli space of reductive representations of the fundamental group
of C into SLn(C). The De Rham moduli space and the character variety are also
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homeomorphic via Simpson correspondence to the Hitchin moduli space, which is
the moduli space of rank n polystable Higgs bundle over C with trivial determinat
bundle and with vanishing Chern classes.
The Lyapunov exponents functions can be then also considered on these moduli

spaces, but they are more naturally defined on M(n)
DR(C).

6.1. Shatz stratification. Since Lyapunov exponents are related to degrees of
holomorphic subbundles of flat bundles, we recall here the existence of a stratifica-
tion of the de Rham moduli space given by Harder-Narasimhan type, called Shatz
stratification. We then describe more in detail the minimal stratum containing the
unitary representations and the maximal stratum, which we identify with the oper
locus.

We recall some basic definitions about Harder-Narasimhan filtrations and max-
imal degree subbundles following [HN75]. Let V be a holomorphic vector bundle
over C of rank n. Recall that the degree deg(V) of V is the first Chern class of V,
or equivalently the degree of the determinant bundle det(V). The slope µ(V) of V
is defined as the quotient of the degree and the rank

µ(V) = deg(V)/ rk(V).

Notice that both degree and rank are additive functors, while the slope is not.

Definition 6.2. A vector bundle V is (semi)stable if, for every holomorphic sub-
bundle E ⊂ V, it holds µ(E) < (≤)µ(V), or equivalently µ(V) < (≤)µ(V/E).

We want now to define the Harder-Narasimhan filtration of a vector bundle. If V
is not semistable, we say that E ⊂ V is maximal if E is semistable and for every E ′
such that E ( E ′ ⊂ V, it holds µ(E) > µ(E ′). In other words, E is maximal if it is
the semistable subbundle with maximal slope. One can show that it exists and it
is unique. One can moreover show that E is maximal if and only if E is semistable
and for every Q ⊂ V/E , it holds µ(Q) < µ(E).

Definition 6.3. The Harder-Narashiman filtration of a holomorphic vector bundle
V of rank n is a filtration by holomorphic subbundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V
such that Vi/Vi−1 is semistable and µ(Vi/Vi−1) > µ(Vi+1/Vi). This filtration always
exists and it is unique.

We call the collection

(µ1, . . . , µn), µi = µ(Vi/Vi−1)

of slopes (possibily repeated depending on the rank of Vi/Vi−1) the Harder-Narashiman
type of V.

For example, if V is semistable, the Harder-Narashiman type of V is simply given
by (µ1 = µ(V), . . . , µn = µ(V)).

Remark 6.4. The bundles Vi appearing in the Harder-Narasimhan filtration satisfy
µ(Vi) > µ(Vi+1). Moreover, each one of the following conditions can be substituted
to the second condition in the definition of Harder-Narasimhan filtration:

(1) µ(Vi/Vi−1) > µ(Vi+1/Vi).
(2) Vi/Vi−1 is maximal in V/Vi−1.
(3) µi is the minimal slope among the slopes of quotients of Vi.



LYAPUNOV EXPONENTS AND DE RHAM MODULI SPACE 35

In particular V1 is the sub-line bundle with the maximal slope among all subbundles
of V. For the proof of the previous statements see [HN75].

We want to state a central theorem about the upper-semicontinuity of the Harder-
Narashiman type. There is a partial ordering on vectors given by Harder-Narashiman
types, namely

(µ1, . . . , µn) ≤ (ν1, . . . , νn)⇐⇒
k∑

i=1

µi ≤
k∑

i=1

νi for all k = 1, . . . , n.

One can also visualize this partial ordering by drawing a semi-polygon in the plane
that has vertices with coordinates (rk(Vi),deg(Vi)). The partial ordering is then
given by checking if a semi-poligon is above an other one.

Now we state the main theorem by Atiyah and Bott, which was proven in the
general case of higher dimensional base space by Shatz.

Theorem 6.5 ([AB83],[Sha77]). The Harder-Narasimhan type defines an upper
semicontinuous function, meaning that if C~µ is the space of vector bundles with
Harder-Narasimhan type ~µ, then

C~µ ⊆
⋃

~ν≥~µ

C~ν .

In particular there is a stratification of M(n)
DR given by the Harder-Narashiman type

called Shatz stratification.

We will now discuss more in detail the minimal and the maximal Shatz strata.

6.2. Minimal Shatz stratum. The minimal stratum is easy to describe, since it is
clearly given by the locus of semistable bundles. Note that the degree of every vector

bundle in M(n)
DR(C) is zero, since this is the moduli space of flat vector bundles.

Hence the Harder-Narashiman type of a semistable bundle is (µ1 = 0, . . . , µn = 0).
The minimal stratum is an open dense set. The subset of semistable but not stable
bundles is the closed subset of the minimal stratum corresponding to the subset of

reducible representations in M(n)
B .

Thanks to the theorem by Narasimhan and Seshadri we know what is the closed

subset of the stable locus in M(n)
DR(C) corresponding to the unitary locus of M(n)

B .

Theorem 6.6 ([NS65]). The locus of irreducible unitary representations in M(n)
B

corresponds to the locus of flat vector bundles (V,∇) ∈ M(n)
DR(C) where V is sta-

ble and ∇ is the harmonic metric connection. This subset is a (n2 − 1)(g − 1)-

dimensional closed subvariety of the stable locus of M(n)
DR(C).

In the Hitchin moduli space the unitary locus corresponds to the locus of Higgs
bundles with zero Higgs field.

6.3. Maximal Shatz stratum: oper locus. We want to describe the maximal
locus of the Shatz stratification, namely the locus where the flat vector bundles have
maximal Harder-Narashiman type. In order to do this, we have to introduce the
notion of opers and state their main properties. We will follow the survey [Wen15].
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Definition 6.7. A SLn-oper is a rank n holomorphic vector bundle V with trivial
determinant bundle, equipped with a flat holomorphic connection ∇ and a filtration
by holomorphic subbundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V
such that

(1) ∇(Vi) ⊆ Vi+1 ⊗KC ;
(2) ∇ : Vi/Vi−1 → Vi+1/Vi ⊗KC is an isomorphism.

Let us now define the oper locus Opn(C) ⊂M(n)
DR(C) as the subset of the de Rham

moduli space of flat vector bundles admitting an oper structure. This definition
makes sense since the oper structure, i.e. the oper filtration, is unique for a fixed
oper (V,∇). The uniqueness of the oper structure is a consequence of the following
central proposition.

Proposition 6.8 ([Wen15]). Let (V,∇) be a SLn-oper. The oper structure on V
is uniquely determined by the line bundle

V/Vn−1
∼= V1 ⊗K−(n−1)

C .

Moreover

(V/Vn−1)n ∼= K−n(n−1)/2
C and det(Vj) ∼= V/Vn−1 ⊗Knj−(j(j+1)/2)

C .

In particular the isomorphism class of V is fixed on every connected component
of Opn(C) and each component parametrizes the space of holomorphic connections
on a fixed holomorphic vector bundle. These components are classified by the
choice of the line bundle V/Vn−1 which is defined by the property (V/Vn−1)n ∼=
K
−n(n−1)/2
X . Hence Opn(C) has n2g connected components, which also corresponds

to the number of ways of lifting a monodromy representation in PSLn(C) to SLn(C)
(see [Wen15, Remark 4.2]). Using Proposition 6.8 one can also prove that if a
holomorphic bundle has the structure of an oper then it must be an irreducible flat
vector bundle, or equivalently the representation that it defines is simple ([Wen15,
Prop. 4.8]).

We want now to parametrize the oper locus in such a way that it will be easy to
see why in rank 2 the oper locus corresponds to the set of holonomies of projective
structures inducing the same complex structure on C (see Proposition 7.6).

Consider the n-th order differential operator on H locally of the form

(6.1) Dy = y(n) +Q2y
(n−2) + . . . Qny

where Qj are pull-backs of local sections of KjC . This differential operator induces
a short exact sequence of C-modules

(6.2) 0→ V ϕ−→ K1−(n+1/2)
C

D−→ Kn+1/2
C → 0

and we say that the local system V is realized in K1−(n+1/2)
C . Clearly the space of all

such local systems is parametrized by the affine space modeled on
⊕n

j=2H
0(C,KjC).

We can now state another characterization of opers.

Proposition 6.9 ([Wen15]). Let (V,∇) be a flat vector bundle. Then (V,∇) is an

oper if and only if its associated local system is realized in K1−(n+1/2)
C .

This characterization defines an isomorphism between each connected component
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of Opn(C) and the affine space modeled on the Hitchin base
⊕n

j=2H
0(C,KjC). It

follows also that the dimension of Opn(C) is (n2 − 1)(g − 1).

We give now the explicit map between local systems realized in K1−(n+1/2)
C and

opers realizing the correspondence of the proposition above. Assume that we are
given the exact sequence (6.2) and let V := OC ⊗C V be the associated flat vector
bundle. Define the oper filtration by
(6.3)

Vn−k := {
n∑

i=1

fi ⊗ vi :
n∑

i=1

f
(j)
i ϕ(vi) = 0, j = 0, . . . , k − 1} for k = 1, . . . , n− 1,

where f
(j)
i is the j-th derivative of the local holomorphic function fi. We will

see that the construction (6.3) of the oper filtration is useful to relate opers and
projective structures in rank 2.

Let us finally recall the theorem stating that the oper locus is the maximal Shatz
stratum.

Theorem 6.10 ([Wen15]). The maximal stratum ofM(n)
DR is the oper locus Opn(C).

The Harder-Narashiman filtration of an oper is the oper filtration itself and the
Harder-Narashiman type is given by

µi = µ(K(n+1)/2−i
C ) = (n+ 1− 2i)(g − 1).

By upper-semicontinuity, the oper locus is a closed embedded subset of M(n)
DR.

Using a result of [Sim10] it is easy to show that there is only one variation of
Hodge structures on an each connected component of the oper locus.

Proposition 6.11. The only variation of Hodge structures on an each connected
component of the oper locus is given by the (n − 1)-th symmetric power of the
maximal Higgs one in rank 2. The maximal Higgs variation of Hodge structures in
rank 2 corresponds to the uniformizing representation of C.

Proof. Let (V,∇, {Vi}i=0,...,n) be an oper. By Proposition 6.8 the holomorphic
vector bundle V is fixed on each connected component of the oper locus. Moreover
the flat bundle (V,∇) is irreducible. Let now

F k+1 = 0 ⊂ · · · ⊂ F 0 = V
be the filtration associated to a VHS structure on V. Since (V,∇) is irreducible,
the variation of Hodge structure (V,∇, {F i}i=0,...,k+1) is irreducible as VHS. Hence
the corresponding system of Hodge bundles is stable. Since both the oper and the
VHS filtrations are semistable, by [Sim10, Prop. 4.3] they are the same and the
associated Higgs bundle has to be the maximal Higgs system of Hodge bundles. This
system of Hodge bundles is clearly given by the symmetric power of the maximal
Higgs in rank 2.

In order to check that the rank 2 maximal Higgs variation of Hodge structure
defines the uniformizing representation of C, notice that the Higgs field can be iden-
tified with the derivative of the period map p : H→ H. Since the Riemann surface
C is compact, the period map is proper. Hence if the Higgs field is an isomorphism,
the period map is a covering map, since it is a proper local isomorphism. It then
has to be an isomorphism since H is simply connected. Hence the period map
induces an isomorphism between C ∼= H /π1(C) and H /ρ(π1(C)), where ρ is the
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corresponding representation. It follows that ρ is the uniformizing representation
of C. �

6.4. Lyapunov exponents on Shatz strata. The Harder-Narasimhan type pro-
vide then a natural bound for the sum of Lyapunov exponents thanks to Theorem
2.14. It is natural then to consider the Lyapunov exponents functions with re-
spect to the Shatz strata. We also show that Lyapunov exponents functions are
unbounded on the maximal stratum.

The bound on the Lyapunov exponent functions on the minimal stratum defined
by semistable bundles is trivial, since there the Harder-Narasimhan filtration is
trivial. Notice that all Lyapunov exponent functions restricted to the closed subset
of this stratum given by the unitary locus are zeros.

On the maximal stratum, which by Theorem 6.10 is the oper locus Opn(C), we
have the maximal possible bound of the Lyapunov exponent functions. We can
actually compute the bound, since we know the Harder-Narashiman type of an
oper.

Proposition 6.12. If V ∈ Opn(C) is in the oper locus then

k∑

i=1

λi(V) ≥ k(n− k), k = 1, . . . , n.

The above inequalities are sharp, since they are achieved in the special point cor-
responding to the only flat vector bundle of the maximal Shatz stratum underlying
a variation of Hodge structures. This special point corresponds to the (n − 1)-th
symmetric power of the uniformizing representation of C.

Proof. Using Theorem 2.14 we see that the Lyapunov spectrum dominates the
Harder-Narasimhan type. By Theorem 6.10 we know that the Harder-Narasimhan
filtration of an oper is the oper filtration itself. Using Proposition 6.8 and arguing
inductively we can compute the slopes of the subbundles Vk defining the oper
filtration. We see then that

deg(Vk) = k(n− k).

To prove equality in the only variation of Hodge structures point (see Proposition
6.11) notice that in the rank 2 case the uniformizing variation of Hodge strucure is
of weight one. Hence by Theorem 5.8 we can compute the top Lyapunov exponent,
which is 1. Now it is enough to compute how Lyapunov exponents change under
symmetric power and check that we get indeed the equality. �

Now that we have proved a lower bound for the sum of Lyapunov exponents of
Shatz strata, it is natural to ask if the Lyapunov exponent functions are unbounded
on these strata. Using the recent result of Dujardin and Favre [DF18, Th. A] about
the growth of Lyapunov exponents for meromorphic families, we are able to show
the following result for the maximal stratum.

Theorem 6.13. The top Lyapunov exponent function is unbounded on the maximal
Shatz stratum, the oper locus, with logarithmic growth near the boundary of the
character variety.

Proof. First of all note that the character variety and the de Rham moduli space
are biholomorphic, hence by Theorem 6.10 the oper locus, being the maximal Shatz
stratum, is a closed embedded subset of the character variety. Now recall that by
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Proposition 6.9 each connected component of the oper locus in rank n is biholo-
morphic to the Hitchin base

⊕n
j=2 H0(C;KjC).

By the result of [DF18], a meromorphic family from the unit disk to the space of
non-elementary representations in the character variety in rank 2 which is holo-
morphic outside of zero and cannot be holomorphically extended in 0 yields a
logarithmic growth of the Lyapunov exponent near zero. A connected component
of the oper locus in rank 2 is given by the embedded vector space H0(C;K2

C) in the
character variety and does not intersect the space of elementary representations.
Since on a complex vector space there are a lot of meromorphic maps from the
disk D→ H0(C;K2

C) holomorphic in D \ {0} and not holomorphic in zero, we have
shown that the Lyapunov exponent function is unbounded in rank 2. To gener-
alize the result to any rank it is enough to recall that, by Proposition 6.8, each
component of the oper locus parametrizes the space of holomorphic connections on
a fixed holomorphic vector bundle. Since the rank n oper locus Opn(C) contains
the (n− 1)-symmetric power of the uniformizing representation, it is clear that the
(n− 1)-symmetric power of any representation in Op2(C) is contained in Opn(C).
Indeed the symmetric power of a representation in Op2(C) defines a holomorphic
connection on the holomorphic vector bundle given as the symmetric power of the
vector bundle underlying the uniformizing representation. Since the top Lyapunov
exponent of the n-symmetric power of a representation ρ is n× λ1(ρ), the result in
rank 2 implies the genral result for any rank. �

7. Special loci of Betti and de Rham moduli spaces in rank two

In this section we specialize to the study of the moduli space of rank two flat
bundles. In this special case we can focus between the relation of special loci in
the Betti moduli space and special loci in the De Rham moduli space. In the next
section we will study properties of the Lyapunov exponent function on these loci.

In particular we identify the oper locus in M(2)
DR(C) with the space of projective

structures underlying the same Riemann surface structure C . This will lead in the
next section to the generalization of the main result of [DD17b]. The material of
this section is well-known but scattered throughout the literature. We present a
summarizing picture collecting many different results.

7.1. Special loci of the Betti moduli space. Recall that the Betti moduli space

M(2)
B := Hom(π1(C),SL2(C))//SL2(C)

is the moduli space of reductive representations of the fundamental group of C into
SL2(C). A discrete subgroup Γ ⊂ PSL2(C) is called Kleinian. A quasi-Fuchsian
group is a Kleinian group Γ such that the accumulation points of the Γ-action on
∂H3 is a quasi-circle. They are quasi-conformal deformations of Fuchsian groups,
namely discrete subgroups of PSL2(R). These special subgroups of SL2(C) define

special subsets ofM(2)
B . We recall now their properties. Let QF(S) be the subspace

of quasi-Fuchsian representations and D(S) be the subspace of discrete representa-

tions. The subset of discrete representations D(S) ⊂M(2)
B is closed in the analytic

topology. Its interior is the locus QF(S) of quasi-Fuchsian representations.
Recall also that a representation is called elementary if its action on H3 fixes

a point or an ideal point, or if it preserves an unoriented geodesic. Otherwise it
is called non-elementary. Equivalently a representation is elementary if and only
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if it is unitary or reducible or if the image is conjugated to a subgroup of the

group generated by 〈
(
λ 0
0 λ−1

)
,
(

0 −1
1 0

)
〉. We denote by M(2)

B

′
the subspace of non-

elementary representations. It is a Zariski-dense subset contained in the smooth

locus of M(2)
B .

7.1.1. Real Betti moduli space. We can also consider the subset of representations
into SL2(R) as a subset of the Bett moduli space. et the real Betti moduli space
defined as

M(2)
B,R := Hom(π1(S),SL2(R))//SL2(R).

Theorem 7.1 ([Gol88]). The real representation variety M(2)
B,R has one connected

component for each even integer e with 0 ≤ |e| ≤ 2g − 2. The integer e correponds
to the Toledo invariant or the Euler number associated to a representation.

In the case of the maximal integer e = 2g− 2, the connected component M(2)
B,R,2g−2

is the same as the space of Fuchsian representations.

In the case of the minimal integer e = 0, the connected component M(2)
B,R,0 is

contained in the space of elementary representations.

7.1.2. Projective structures and holonomy map. Finally we want to recall the defini-
tion of projective structures and the properties of the holonomy map from the mod-
uli space of projective structures to the Betti moduli space. A complex projective
strucuture on S is a maximal atlas of charts mapping open sets of S into P1

C such that
the transition functions are restricition of Möbius tranformations. Equivalently, a
projective structure on S is given by a pair (dev, ρ) where ρ : π1(C)→ PSL2(C) is a
representation called holonomy representation and dev : H→ P1

C is a ρ-equivariant
immersion called developing map. The pair has to be considered modulo the natural
equivalence relation given by precomposition of developing maps with orientation-
preserving diffeomorphisms of S homotopic to the identity on one side and by
conjugation of PSL2(C) on the other.

Let P(S) be space of projective structures on S and T (S) be the Teichmüller
space. Note that since Möbius transformations are holomorphic, a projective struc-
ture also determins a complex structure. We can then consider the forgetful map

p : P(S)→ T (S).

Denote by P(C) := p−1(C) the fiber over a Riemann surface C, which is the space
of projective structures inducing the same holomorphic structure.

Remark 7.2. The space P(C) can be identified with the space of quadratic differ-
entials H0(C,K2

C), using the Schwarzian derivative. The identification is given by
associating to (dev, ρ) ∈ P(C) the push-forward to C of the quadratic differential
S(dev) on H, where S(dev) is the Schwarzian derivative. In the other direction,
one associates to φ ∈ H0(C,K2

C) the projective structure given by (u1(z)/u2(z), ρ)
where u1, u2 is a basis of solution of the differential equation

(7.1) u′′(z) +
1

2
φ̃(z)u(z) = 0.

Here φ̃(z)dz2 is the pull-back of φ to the universal cover H and ρ is the monodromy
associated to the differential equation.
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We can relate the set of projective structures and the Betti moduli space via the
holonomy map, which sends a projective structure to its associated holonomy rep-
resentation. Recall that, by a theorem of Gallo, Kapovich and Marden ([GKM00])
the holonomy map

hol : P(S)→M(2)
B

has image in M(2)
B

′
, it is surjective on this set and it is a local biholomorphism.

We will now restrict the holonomy map to the fibers P(C) of the forgetful map
p : P(S)→ T (S) and recall the following result.

Theorem 7.3 ([Dum09]). For every C ∈ T (S), the restriction hol| P(C) is a proper
holomorphic embedding. Consequently the image hol(P(C)) is a complex-analytic

subvariety of M(2)
B

′
.

Notice that, since P(C) is an affine space modeled on H0(C,K2
C) ∼= C3g−3, then

also the image hol(P(C)) is. We will later show how hol(P(C)) is the same as the

oper locus Op2(C) ⊂M(2)
DR(C). We now describe more in detail the intersection of

the the quasi-Fuchsian, the discrete and the Fuchsian loci and hol(P(C)).

Theorem 7.4 ([Fal83],[Dum09]). For each C ∈ T (S), the intersection of hol(P(C))

andM(2)
B,R is transversal. Moreover, the intersection of hol(P(C)) and the Fuchsian

locus M(2)
B,R,2g−2 is countable. Each one of these Fuchsian points is contained in

the open set of quasi-Fuchsian holonomy representations in hol(P(C)). These open
sets are connected, contractible and biholomorphic to T (S). The closure of these
open sets gives the space of discrete representations in hol(P(C)).

Remark 7.5. There is a special Fuchsian representation point in hol(P(C)), namely
the point corresponding the uniformizing representation of C. The open connected
set B(C) of quasi-Fuchsian representations containing this point is given by the
image under the holonomy map of the Bers embedding

B(C) = hol(Im(T (S) ↪→ P(C))) ⊂M(2)
B .

The Bers embedding is defined by

T (S) ↪→ P(C), Y 7→ ΣY (C)

where ΣY (C) is the projective structure on C induced by the quasi-Fuchsian group
Q(C, Y ) given by the simultaneous uniformization theorem.

7.2. Special loci of de Rham moduli space. We now specialize to subsets
of the de Rham moduli space in rank two. First we describe the variations of
Hodge structures loci and then investigate the Shatz stratification in rank two. In
particular we show that the maximal stratum is the same as the set hol| P(C) of
holonomies of projective structures underlying the same Riemann surface structure
treated above.

7.2.1. Variation of Hodge structures locus in rank 2. Thanks to Hitchin in [Hit87],

we know how the connected components Pe ⊂ M(2)
DR(C) of the variation of Hodge

structures locus look like. More in detail, we know the corresponing system of
Hodge bundles. These are indexed by an integer 0 ≤ e ≤ g − 1. For e = 0, we
already recalled that P0 is the space of variations of Hodge structures of weight 0,
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which corresponds to unitary representations. For e > 0, the space Pe parametrizes
Higgs bundles of the form

V = V0 ⊕ V1, Φ : V1 → V0 ⊗KC ,

where V0 and V1 are line bundles of degrees −e and e respectively. These systems
of Hodge bundles correspond to weight one complex variations of Hodge structures.
By the trivial determinant condition det(V0 ⊕ V1) = V0 ⊗ V1 ∼= OC , and so V0 ∼=
(V1)∗. Note that the Higgs field Φ is a section of the line bundle (V1)∗ ⊗ V0 ⊗KC
of degree 2g− 2− 2e, hence e ≤ g− 1 and in case of equality, Φ is an isomorphism.
Let D ∈ Sym2g−2−2e(C) be the divisor of Φ. Then we have only finitely many
possibilities for V1, determined by the isomorphism (V1)2 ∼= KC ⊗ OC(−D). We
have then the parametrization

Pe ∼= Sym2g−2−2e(C)× finite#

which gives that the dimension of Pe is 2g − 2− 2e. For e = g − 1, the Higgs field
is an isomorphism and we get the only variation of Hodge structure on the oper
locus, which corresponds to the uniformizing representation of C (see Proposition
6.11).

Note finally that the locus Pe belongs to the e-th Shatz stratum, which is defined
as the locus of flat bundles such that the degree of the maximal destibilizing subline
bundle is e, for 0 ≤ e ≤ g − 1. Indeed, by Proposition 5.3 the first piece of the
Hodge filtration V1 is the maximal destabilizing subsheaf of V.

7.2.2. Shatz stratification. In rank two, the Shatz stratification consists of g Shatz
strata. The degree of the maximal destabilizing subbundle varies in the set {0, 1, . . . , g−
1}. Indeed flat bundles in the oper locus, which is the maximal stratum, have max-
imal destabilizing subbundle of degree g − 1 (see Theorem 6.10).

The minimal Shatz stratum is given by semistable flat bundles. This is an open
dense subset containing the space of unitary representations as a closed subspace.
The space of unitary representations is the same as the locus P0 of variations of
Hodge structures of weight zero. The subspace of the semistable locus given by
semistable but not stable bundle is a closed subset and corresponds to non simple
representations. This subspace is contained in the space of elementary representa-
tions.

The maximal Shatz stratum can be identified with the oper locus Op2(C) ⊂
M(2)

DR(C). It is a (3g − 3)-dimensional closed subvariety given by the locus of flat
bundles having a sub-line bundle with maximal possible degree, namely g − 1.

Indeed in this case the oper filtration is given by 0 ⊂ V1 ⊂ V with V1
∼= K1/2

C (see
Proposition 6.8). We describe the correspondence between the oper locus and set
of holonomies of the projective structures inducing the same complex structure C.

Proposition 7.6. The subset hol(P(C)) ⊂ M(n)
B corresponds via the Riemann-

Hilbert correspondence to the oper locus Op2(C) ⊂M(2)
DR(C). Moreover, if V is an

oper, the meromorphic map

sV1 : H→ P1

defined by the inclusion of the sub-line bundle V1 ⊂ V given by the oper filtration is
the developing map associated to the projective structure corresponding to the oper.
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Proof. For the proof of the first statement, it is enough to combine the description
of opers given by Proposition 6.9 and Remark 7.2 about the relation of projective
structures and differential equations.

In order to prove the second statement we need to use the construction of the oper
filtration (6.3) starting from the local system defined by the differential equation.

Using the notation of as in (6.3), the inclusion V1
∼= K1/2

C ⊂ V = OC ⊗ V is given
by

V1 = {f1 ⊗ v1 + f2 ⊗ v2 : f1ϕ(v1) + f2ϕ(v2) = 0} ⊂ V
where v1, v2 are a local basis of the solution of the local system. Recall that the
devoloping map in Remark 7.2 was exactly defined as the meromorphic function
ϕ(v1)

ϕ(v2)
. It is immediate to see that the map sV1 defined by the inclusion of the pull-

back of V1 into the trivial vector bundle on H is given by the same meromorphic
map. �

7.3. Summarizing picture. We present a summarizing picture representing the
special loci that we described. In each one of the g Shatz strata we find the com-
plex variation of Hodge structures Loci Pe. The locus P0 of weight zero variation
of Hodge structures corresponds to the locus of unitary representations and it is
contained in the minimal open Shatz stratum of semistable flat bundles. The lo-
cus Pg−1 of maximal Higgs variation of Hodge structures, corresponding to the s2g

lifts to SL2(C) of the uniformizing representation of C, is contained in the oper
locus, the maximal Shatz stratum. Using the interpretation available in rank 2 of
representations as holonomies of projective structures, we can understand better
the oper locus, since it is the same as the set P(C) of projective structures on C
inducing the same original complex structure. Finally the blue locus is the maximal
real representation locus of Fuchsian representations.

8. Lyapunov exponent function in rank two

We want to describe the Lyapunov exponents invariants on the rank two de Rham
moduli space, in particular describe their behavior of the special loci described in
Figure 1. By restricting to the oper locus, we retrieve the main result of [DD17b]
and we generalize it to other Shatz strata using the bound of Proposition 6.12, which
is an equality in the compact case thanks to Theorem 4.1. This generalization is
equivalent to the generalization given in [DD17b, Theorem F] in the context of
branched projective structures. Notice that in rank two we care only about the top
Lyapunov exponent because of the symmetry of the Lyapunov spectrum. Using the
relation of the geodesic flow and the random product on the fundamental group,
we reprove known results about continuity of the top Lyapunov exponent function
and the characterization of the locus of zero exponent (see [DD17b] for the proof
in the Brownian motion setup).

8.1. Geodesic flow and random products. Before describing some properties
of the top Lyapunov exponent function, we need a lemma that relates the cocycle
Gt : Vρ → Vρ defined by parallel transport over the geodesic flow to the random
product of matrices in the monodromy group. We will argue in a similar way as in
[EM15, Proof of Th. 1]. By a result of H. Furstenberg [Fur71], there is a probability
measure ν on the uniformizing group Γ < SL2(R) of C with support equal to Γ
such that the Poisson boundary of (Γ, ν) is (SO(2,R),Leb). We will denote by
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M(2)
DR(C)

∼=M(2)
B

dimCM(2)
B = 6g − 6

Semistable locus (dense)

P0 = Hom(π1(C), SU(2))

dimC = 3g − 3

Shatz stratification

Pe

22g︷︸︸︷

Oper locus

dimC = 3g − 3

Op2(C) = Proj(C) ∼= C3g−3

Bers embedding
of Teichmüller space

Discrete locus ∩ Op2(C)
= closure of quasi-Fuchsian locus ∩ Op2(C)
(countable union of disjoint closed subsets)

M(2)
B,R,2g−2

Pg−1

Uniformizing
representation

Figure 1. Betti and de Rham moduli spaces in rank 2 and special loci.

λρ(ν)(u) the Lyapunov exponents of u ∈ Vc with respect to the random walk of law

ρ(ν) on the monodromy group ρ(π1(C, c)) = ρ(Γ). By definition, for νN-almost any
(γ1, . . . , γn, . . . ) ∈ ΓN and any norm || · || on the vector space Vc it holds

λρ(ν)(u) = lim
n→∞

1

n
||ρ(γn) · · · ρ(γ1)u||.

Lemma 8.1. The Lyapunov exponents λ(Vρ) defined by the cocycle given by parallel
transport over the geodesic flow of T 1C and the the Lyapunov exponents λρ(ν)(u)
given by the random walk on the monodromy group ρ(π1(C, c)) coincide.

Proof. Recall that by definition the Lyapunov exponent λ(Vρ) is defined to be

λ(Vρ) = lim
t→∞

1

t
log ||Gt(u)||
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for almost any c ∈ T 1C and almost all u ∈ Vc. Here || · || is the constant norm
which is integrable by Theorem 2.3. Since we are dealing with the case of a compact
Riemann surface C, we can prove a stronger property than integrability of this
norm. Consider the lift of the geodesic flow to T 1 H. Since C is compact, a geodesic
segment of unit length can cross the boundary of a fundamental domain only a finite
number of times. This number is uniformly bounded for all starting points. Hence,
there is a constant M > 0 such that

(8.1) || log(Gt(u))|| ≤M · t
for all u ∈ Vρ and all t ∈ R.
Let us denote by (z, θ) ∈ T 1 H a lift of a point c ∈ T 1C. It is well known that
a typical trajectory of the random walk in Γ · i ⊂ H tracks a geodesic ray in H
up to sublinear error (see [CE15, Lemma 4.1]). This means that for almost all
(γ1, . . . , γn, . . . ) ∈ ΓN there exists a geodesic ray {gt(z, θ) : t ∈ R} ⊂ H such that

(8.2) disthyp(γn · · · γ1 · i, gn(z, θ)) = o(n)

for almost any (z, θ) ∈ T 1 H.
Putting together the bound (8.1) and the tracking property (8.2) we get

log

( ||Gn(u)||
||ρ(γn) · · · ρ(γ1)u||

)
≤M · disthyp(γn · · · γ1 · i, gn(z, θ)) = o(n)

for any u ∈ Vρ in the fiber over (z, θ). We conclude with the desired result

λ(Vρ)− λρ(ν)(u) = lim
n→∞

1

n
log

( ||Gn(u)||
||ρ(γn) · · · ρ(γ1)u||

)
≤ lim
n→∞

1

n
o(n) = 0

�

Thanks to the last lemma we can prove some properties of the top Lyapunov
exponent function using known results about random products of matrices. The
next two proposition were already proven in [DD17b] in the context of Brownian
motion using the same core arguments about random walks. We provide an alter-
native proof relating the geodesic flow to the random walk instead of relating the
Brownian motion to the random walk. The two point of views lead to the same
result since Brownian motions tracks sublinearly the geodesic flow.

8.2. Continuity of the top Lyapunov exponent function. Using ones again
Lemma 8.1, we can use known results about random walks to prove continuity of
the top Lyapunov exponent function.

Proposition 8.2. The top Lyapunov exponent function

λ1 :M(2)
B → R≥0

is a continuous function. Moreover it is locally Holder continuous and pluri-subharmonic
on the set of non-elementary representations.

Proof. By Lemma 8.1, we can use continuity results of Lyapunov exponents proved
in the context of random walks. By [LP89] the top Lyapunov exponent function is
locally Holder continuous on the set of non-elementary representations. Moreover,
since the set of elementary representations coincides with the set of zero exponents,
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the top Lyapunov exponent function is continuous also at these points since all expo-
nents are equal (see for example [Via14, Corollary 9.3]). The pluri-subharmonicity
follows from [DeM03, Th. 1.1.] or more directly from [DD15, Th. 3.7]. �

8.3. Locus of zero top Lyapunov exponent. We can describe locus where the
top Lyapunov exponent vanishes.

Proposition 8.3. In rank 2, the Lyapunov exponent associated to a representation
ρ is zero if and only if ρ is elementary.

Proof. By Lemma 8.1, we can use classical results about random walks in the mon-
odromy group to establish if the top Lyapunov exponent vanishes. By a Theorem
of Furstenberg (see [Via14, Th. 6.11]), the Lyapunov exponents associated to a
random walk in rank 2 are non zeroes if and only if the the cocycle is pinching and
twisting.

If the cocycle is non-pinching, then the monodromy group is contained in a com-
pact subgroup of SL2(C), so it is the unitary case. If the cocycle is non-twisting
then the monodromy group is a diagonal subgroup or a triangular subgroup or the
image is contained in the subgroup generated by 〈

(
λ 0
0 λ−1

)
,
(

0 −1
1 0

)
〉. These cases

are exactly the cases of non-elementary representations. �

We will now describe special loci where we can say something about the Lyapunov
exponent. The main idea is to use Theorem 3.4 to get a lower bound for the top
Lyapunov exponent on the Shatz strata. We can then describe the special loci
where we have more information about the Lyapunov exponent. These special loci
are the ones described in Picture 1.

8.4. Lyapunov exponents on Shatz strata. Recall that the Shatz stratification
is defined by Harder-Narasimhan type. In rank 2, there is a stratum for each integer
0 ≤ e ≤ g − 1 and for opers, which define the maximal stratum, the maximal
destabilizing subbundle has degree g − 1. Recall moreover that the holonomy map

hol : P(S)→M(2)
B has image equal to the space of non-elementary representations.

Proposition 8.4. Let V be a flat vector bundle in the e-th Shatz stratum and let
L ⊂ V be the maximal destabilizing sub-line bundle of degree e. Let devL : H→ P1

C
be the associated developing map. Then the first Lyapunov exponent associated to
V is given by

λ1(V) =
e

g − 1
+ 4π lim

r→∞

1

r

∫ r

0

]{dev−1(x) ∩Dr(z)}
vol(Dr(z))

dr

for almost any z ∈ H and almost any x ∈ P1
C.

Proof. The statement follows direcly from Theorem 4.1 and the equivalent definition
of bad locus given in Remark 3.2. �

Remark 8.5. The main result of [DD17b] relating Lyapunov exponents to the cov-
ering degree defined in term of the developing map of a projective structure is a
special case of the last theorem for e = g − 1, meaning in the case of the oper lo-
cus or equivalently of hol(P(C)). In [DD17b, Theorem F], the authors generalized
the main result in the context of branched projective structures. Proposition 8.4
is equivalent to their generalization. Indeed, as explained in [BDG18], there is an
isomorphism between (V/L)⊗L∗ and TC⊗OC(S), where S is the branching divisor
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of the branched projective structure associated to the sub-line bundle L ⊂ V. In
particular then deg(L) = g − 1− deg(S)/2.

The difference in the equality of Proposition 8.4 and the ones in [DD17b] is given
by the different normalization of the hyperbolic metric on C.

In the case of the maximal stratum, which is the oper locus Op2(C), we can say
something more using the description via holonomy of projective structures given
by Proposition 7.6. Recall that in remark 7.5 we defined the subset B(C) ⊂ Op2(C)
given by the Bers embedding.

Proposition 8.6. The Lyapunov exponent function restricted to the oper locus is
greater or equal than 1 and unbounded. Moreover it is one if the representation
belongs to the closed subset B(C) ⊂ Op2(C) containing the uniformizing represen-
tation.

Proof. On the oper locus the maximal degree sub-line bundle is isomorphic to a

square root K1/2
C of the canonical bundle which has degree equal to g − 1. Hence

the Proposition 2.14 gives that the top Lyapunov exponent has to be greater than
λ1 ≥ 1. Moreover the top Lyapunov exponent function is unbounded by Theorem
6.13.

Since the closed locus B(C) ⊂ Op2(C) is defined by the Bers embedding, by the
density theorem the standard developing map giving the inclusion of the maximal
sub-line bundle V1 ⊂ V (see Proposition 7.6) is a biholomorphism of H onto one of
the two domain of discontinuity of the associated representation. Hence the image
of the developing map does not intersect the limit set of the representation. By the
condition of Corollary 3.13 we get equality. �

Remark 8.7. In [DD17b] they are able to prove the inverse of the second statement
of the last proposition, namely that if the representation is in the complement
Op2(C) \B(C) of the Bers embedding, then λ1 > 1. The tool that they can use is
that they know that the support of the harmonic measure is in the limit set and
that the error term vanishes if and only if the image of the developing map intersect
this support.

8.5. Lyapunov exponents for variations of Hodge structures. Recall that

the locus in M(2)
DR(C) corresponding to complex variation of Hodge structures is

quite well understood. We described its connected components Pe in Section 7.2.1.
Since for e = 0 we get weight zero variations of Hodge structures and for 0 < e ≤
g − 1 we get weight 1 variation of Hodge structures, we can compute exactly the
associated top Lyapunov exponent in all of these loci.

Proposition 8.8. The top Lyapunov exponent function restricted on the connected
component Pe of the variation of Hodge structure locus is constant and given by

λ1|Pe =
e

g − 1
, e = 0, . . . , g − 1.

Proof. We already saw in Proposition 5.6 that the Lyapunov spectrum of a weight
zero variation of Hodge structure is trivial. By the description of Pe we know that if
H ∈ Pe, then the Hodge bundle H1,0 ⊂ H has degree e and the result follows from
Theorem 5.8 since we are dealing with weight 1 variation of Hodge structures. �
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9. Open questions about the top Lyapunov exponent on Hitchin
components

Let C be a compact Riemann surface. Recall that Hitchin components are con-
nected components of the real character variety Hom(π1(C),SLn(R))//SLn(R) con-
taining symmetric powers of Fuchsian representations. In particular the Hitchin
component in rank 2 is Teichmüller space T (C).

There have been lately a focus on the study of dynamical invariants on Hitchin
components. Recall for example the main result of [PS17] that gives a bound of
the critical exponent on Hitchin components that is attained if and only if the rep-
resentation is the symmetric power of a Fuchsian representation. Unlike for critical
exponent, we still cannot prove a lower bound for the top Lyapunov exponent func-
tion on Hitchin components. We performed computer experiments computing the
top Lyapunov exponent on the Hitchin component of rank three character variety
Hom(∆(3, 3, 4),SL3(R))//SL3(R) associated to the triangle group ∆(3, 3, 4). We
were able to perform experiments thanks to the explicit description of matrices
in the Hitchin components given in [LRT11]. The experiments indicated that the
top Lyapunov exponent function is unbounded and grows logarithmically near the
boundary of the character variety and moreover that this function is greater than
2 on this family, where 2 here represents the top Lyapunov exponent of the sec-
ond symmetric power of the uniformizing representation. We believe that the top
Lyapunov exponent can be related to other invariants like the critical exponent or
the minimal area. Even though this relation is still unknown, if true one could
use it together with the main result of [PS17] to prove a lower bound for the top
Lyapunov exponent function on Hitchin components. Even tough such a bound
has still to be proven and investigated, we want to state the following conjecture,
which should be analogous to the bound of the critical exponent recalled above.

Conjecture. The top Lyapunov exponent function on the n-th Hitchin component
is unbounded and greater or equal than n−1 , which is the top Lyapunov exponent
of the (n− 1)-th symmetric power of the uniformizing representation.

It is not clear to expect if, as for the critical exponent, the attainment of the bound
would imply that the representation is the symmetric power of the uniformizing one.
The unboundedness on Teichmüller space should follow from [DF18]. This would
imply unboundedness on every Hitchin components.

Notice that the conjecture is the analogous for Hitchin components of Proposition
6.12 and Theorem 6.13 which are about the oper locus.
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