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1. Introduction

An important tool in studying the moduli space of (meromorphic) abelian differen-
tials PΩMg(µ) is its modular compactification, the space of multi-scale differentials

ΞMg,n(µ) for µ an integer partition of 2g − 2. The boundary is of a combinatorial
nature, parametrised, for any µ, by finitely many labeled level graphs [BCGGM3].
However, already listing isomorphism classes of these graphs is a non-trivial task,
and already for g = 3 the number of components becomes so large that even listing
them is unfeasible by hand.

Moreover, in [CMZ20] the tautological ring of ΞMg,n(µ) is described and calcula-
tions therein may be expressed purely in terms of the combinatorics of the boundary.
Again, even the simplest calculations are extremely cumbersome to perform without
the assistance of a computer.

The diffstrata package provides a framework for calculations in the tautolog-
ical ring of ΞMg,n(µ). It is implemented in sage [SageMath] and is inspired by

the package admcycles [DSZ20] for calculations in the tautological ring of Mg,n.
However, due to the differences in the structure of the boundary, the implementation
and interface of the two packages have only little in common. A key step in the
evaluation process is performed by admcycles, though.

Research of the second and third author is supported by the DFG-project MO 1884/2-1 and by
the LOEWE-Schwerpunkt “Uniformisierte Strukturen in Arithmetik und Geometrie”.
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diffstrata may be used naively for basic inquiries about strata. The following
example contains the complete code required to calculate the (orbifold) Euler
characteristic of PΩM2(2) (using [CMZ20]):

sage: from admcycles.diffstrata import *

sage: X=Stratum((2,))

sage: X.euler_characteristic()

-1/40

We can also easily display information on the compactification of a stratum:

sage: from admcycles.diffstrata import *

sage: X=Stratum((2,2))

sage: X.info()

Stratum: (2, 2)

with residue conditions: []

Genus: [3]

Dimension: 6

Boundary Graphs (without horizontal edges):

Codimension 0: 1 graph

Codimension 1: 20 graphs

Codimension 2: 86 graphs

Codimension 3: 147 graphs

Codimension 4: 110 graphs

Codimension 5: 30 graphs

Total graphs: 394

Moreover, we can compute the Masur–Veech volume as an intersection number of
ξ-powers and ψ-classes, cf. [CMSZ19]:

sage: from admcycles.diffstrata import *

sage: X=Stratum((1,1))

sage: (X.xi^2 * X.psi(1) * X.psi(2)).evaluate()

-1/720

sage: (X.xi^3 * X.psi(1)).evaluate()

-1/360

However, more extensive calculations necessarily require a deeper understanding of
the syntax and the underlying objects of the package.

The most fundamental notion is that of an (enhanced) profile, encoding isomor-
phism classes of level graphs using tuples of integers (essentially writing them as
products of divisors). It is explained in detail in Section 5 together with the algo-
rithms used to list all boundary components. This notion is used by diffstrata,
together with an encoding of ψ-polynomials, to encode all additive generators of
the tautological ring and all calculations performed involve (formal) sums of these.

Implementing the recursive structure of the boundary, even when considering
holomorphic strata, disconnected meromorphic strata with residue conditions will
appear as levels of level graphs. To encode these, we use Generalised Strata, as
introduced in [CMZ20]. These may be thought of as container objects, where the
graphs are stored and the calculations performed.

However, implementing any formula in the tautological ring will require some
understanding of the subtleties surrounding enhanced profiles and the degeneration
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of level graphs, as well as extracting levels from graphs and working with these. In
Section 10.1 we discuss, as an example, the implementation of the formula for the
Euler characteristic using level-wise evaluations of top powers of the tautological
class ξ, cf. [CMZ20].

Algorithmic aspects. Implementing the compactification ΞMg,n(µ) poses a series

of challenges not encountered in the boundary of Mg,n. First, constructing all level
graphs satisfying precisely the conditions of [BCGGM3, Def. 1.1] is a non-trivial
problem. While generating a codimension-one degeneration of a stable graph inside
Mg,n is straight-forward (add an edge either as a loop or by splitting a vertex
subject to the stability condition), for a level graph this is the more subtle problem
of splitting a level.

To solve it, we must construct all divisors in any generalised stratum, i.e. mero-
morphic, disconnected and with residue conditions, as these appear as levels already
inside low-genus holomorphic strata. Since all the calculations of the Chern classes
of the logarithmic cotangent bundle and in particular of the Euler characteristic
([CMZ20]) and also the computation of Masur-Veech volumes ([CMSZ19]) happen in
the tautological ring defined by clutching of non-horizontal divisors, the diffstrata
package treats exclusively graphs without horizontal edges. See [CMZ20, Section 8]
for other candidates of tautological rings that are potentially larger but might
actually agree with the tautological ring used here.

We usually refer to two-level graphs for brevity as BICs (bicoloured graphs, as in
[FP18]).

The combinatorics arising from the distribution of point orders, level structures,
genera and edges leads to the simplest approach, namely considering all enhanced
level structures on stable graphs in Mg,n (e.g. using admcycles), being too slow
even for low-dimensional holomorphic strata. Instead, we describe an algorithm for
directly generating all BICs in a generalised stratum in detail in Section 5.2.

Moreover, this requires checking the Global Residue Condition (GRC), discovered
in [BCGGM1], for generalised strata, i.e. implementing the R-GRC [CMZ20, §4].
For this, we refine the combinatorial criterion of [MUW17] to work for the R-GRC
in Section 3.

Having generated all BICs, this allows us to construct any graph by recursively
clutching BICs (one for each level-crossing). As a by-product, this yields discrete
coordinates for the enhanced level graphs, as any graph splits uniquely into a product
of distinct BICs: we therefore number the BICs of a stratum and associate to each
level graph its profile, the tuple of indices of BICs appearing as levels of this graph.
Unfortunately, this is not always injective: profiles may be reducible and we need
an enhanced profile to refer to a graph uniquely, see Section 5.4 for details.

However, when multiplying two tautological classes, we require an implementation
of the excess intersection formula for ΞMg,n(µ) [CMZ20, §8] and this requires a
good understanding of the degeneration graph of the boundary components. Here
again the notion of profile is key: it allows us to efficiently determine which graphs
appear as degenerations and is essential in the computation of normal bundles and
general intersections, see Section 7.

Finally, even in low-genus holomorphic strata, calculations involving top-classes
of the tautological ring are only feasible because we use extensive caching. Again,
our ability to replace graphs by enhanced profiles is essential, but already the higher-
dimensional strata in genus three require more techniques to become manageable,
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see Section 9. Also, several computed values are written to files so that they can
be easily reused between sage sessions and may be easily precomputed on another
machine and imported into the current session, see Section 9.2.

Open questions. For the moduli space of (pointed) curves Mg,n enumerating the
boundary strata, also known as tropical curves, and providing a tight estimate for
their growth rate has been discussed at various places ([Cha12], [MP11]), but we
are aware of a complete solution only in genus zero ([McM14]). It seems interesting
to address the analogous problem in ΞMg,n(µ), to count the number of boundary
strata of at least provide tight estimates for their number. Some tables are given in
Section 5 for the number of graphs without horizontal nodes. Such estimates would
also be the basis for serious runtime analysis of the algorithms in diffstrata.1

Related to this problem is the question of determining the number of components
of enhanced profiles for a given profile. There are obvious coarse upper bounds for
this number, but in practice the number is relatively small in average (for fixed µ and
codimension). Can this be proven? On the algorithmic side, it would be useful to
design an algorithm that implements directly the degeneration of enhanced profiles.
This could avoid the generation of the graphs altogether an lead to significant
speed-up.

The alternating sum of the number of enhanced profiles appear to be zero for all
holomorphic strata (we thank A. Neitzke for observing this during a talk!). Can this
be proven? Moreover, the same appears to hold for the number of profiles, although
the degeneration process of this is a main source of the complexity of the algorithm,
see Section 5.4.

Installation. The package diffstrata is included with admcycles version 1.1 or
greater. See [DSZ20] for a detailed guide to installing it.

From now on, all examples will assume that the line

sage: from admcycles.diffstrata import *

has been executed!

Structure. We begin by giving an overview of the package interface for the “casual
user” in Section 2, before explaining the implementation in more detail. In Section 3
we start by reviewing some of the mathematical background. In Section 4, we explain
the fundamental objects of diffstrata and how they relate to their mathematical
counterparts. The algorithms to construct all non-horizontal level graphs as well
as determining the degeneration graph of a stratum and computing isomorphisms
of graphs are described in Section 5. Section 6 explains how diffstrata encodes
and evaluates (using admcycles) tautological classes on strata and in Section 7 the
implementation of the excess intersection formula is discussed. In Section 8 the
subtleties around splitting graphs around a level and clutching are discussed and
the recursive evaluation of ξ on levels is explained. Finally, in Section 9 we explain
how and which computations are cached by diffstrata and how to import pre-
computed values and end in Section 10 by illustrating how diffstrata calculates
Euler characteristics and giving a few examples of cross-checks and tests.

1In practice, one runs out of memory before speed becomes a serious issue: Calculations in
genus four take several hours but need several TB of RAM.
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2. Basic Interface

Before discussing the implementation details of diffstrata, we briefly revisit
the examples of the introduction. The first step is always generating a stratum:

sage: X=Stratum((2,))

sage: print(X)

Stratum: (2,)

with residue conditions: []

Here we have defined a Stratum object. The argument is a Python tuple and may
contain integers that sum to 2g − 2 to define any meromorphic stratum (note the
trailing , if there is only one entry!). The print statement displays information
about the object and hints that this is in fact an instance of a GeneralisedStratum

that can be disconnected and have residue conditions at the poles, see Section 4 for
a more detailed discussion.

Creating a Stratum automatically performs a series of calculations. For example,
all non-horizontal divisors (BICs) are generated and can now be accessed through X:

sage: X.bics

[EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3]],[(1, 3)],{1: 0, 2: 2,

3: -2},[0, -1],True),dmp={2: (0, 0)},dlevels={0: 0, -1: -1}),
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EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)

],{1: 0, 2: 0, 3: 2, 4: -2, 5: -2},[0, -1],True),dmp={3: (0, 0)},

dlevels={0: 0, -1: -1})]

This illustrates how diffstrata represents level graphs internally. The multitude of
decorations makes the classes EmbeddedLevelGraph and LevelGraph a bit unwieldy
and there should be little reason to enter them by hand. But they do store the
essential information, they are a backbone of diffstrata, and they appear frequently
in the output. Details are described in Section 4.

For a single EmbeddedLevelGraph, e.g. an element of X.bics, we may use its
explain method to produce a human-readable description of the graph:

sage: X.bics[0].explain()

LevelGraph embedded into stratum Stratum: (2,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 1

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 2 on vertex 1 on level 1

Finally, we have one edge. More precisely:

* one edge between vertex 0 (on level 0) and vertex 1 (on level 1) with

prong 1.

Instead of entering graphs by hand, we should always use (enhanced) profiles to
refer to them inside X. For BICs, this is simply their index in X.bics. We can list
all profiles of a given length:

sage: X.enhanced_profiles_of_length(2)

(((0, 1), 0),)

sage: X.enhanced_profiles_of_length(3)

()

Note that there are no profiles of length 3 even though

sage: X.dim()

3

The reason is that diffstrata ignores all graphs with horizontal edges in the
boundary. We can also retrieve the EmbeddedLevelGraph from an (enhanced)
profile:

sage: X.lookup_graph((0,1))

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1], [2, 3, 4], [5, 6, 7]],[(1,

4), (2, 6), (3, 7)],{1: 0, 2: 0, 3: 0, 4: -2, 5: 2, 6: -2, 7: -2},[0,

-1, -2],True),dmp={5: (0, 0)},dlevels={0: 0, -1: -1, -2: -2})

See Section 5 for details on profiles and graph generation.
The examples of the introduction also illustrated working in the tautological ring

of X. We may inspect the individual classes. Using print gives a more readable
output:
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sage: print(X.psi(1))

Tautological class on Stratum: (2,)

with residue conditions: []

1 * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

sage: X.psi(1)

ELGTautClass(X=GeneralisedStratum(sig_list=[Signature((2,))],res_cond=[]),

psi_list=[(1, AdditiveGenerator(X=GeneralisedStratum(sig_list=[

Signature((2,))],res_cond=[]),enh_profile=((), 0),leg_dict={1: 1}))])

This illustrates how diffstrata encodes elements of the tautological ring: a tau-
tological class is represented by an ELGTautClass, which is in turn a sum of
AdditiveGenerators. Each AdditiveGenerator corresponds to a ψ-monomial on
a graph and thus carries the information of an enhanced profile and a leg_dict

encoding the ψ-powers: every ψ-class is associated to a marked point of a level
[CMZ20, Thm. 1.5], i.e. a leg of the graph. A ψ-monomial is thus encoded by a
Python dict with entries of the form l : n where l is the number of a leg of the
graph and n is the exponent of the ψ-class associated to this leg. For example, we
saw above that X.bics[0] is the compact-type graph in the boundary of ΩM2(2).
We see from the LevelGraph that the marked point is at leg 2 (cf. Section 4), the
ψ-class at this point is therefore represented by the leg_dict {2 : 1}. We can
enter this into diffstrata as follows:

sage: A = X.additive_generator(((0,), 0), {2 : 1})

sage: print(A)

Psi class 2 with exponent 1 on level 1 * Graph ((0,), 0)

Note that we had to use the enhanced profile ((0,), 0) to refer to the graph.
Details and more examples may be found in Section 6.

Tautological classes may be added and multiplied. We can check that the class A
we defined agrees with the product of the ψ-class on the stratum with the class of
the graph:

sage: A == X.psi(1) * X.additive_generator(((0,), 0))

True

Moreover, when squaring, e.g., the class of a graph, a normal bundle contribution
appears:

sage: print(X.additive_generator(((0,), 0))^2)

Tautological class on Stratum: (2,)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((0,), 0) +

-1 * Psi class 3 with exponent 1 on level 1 * Graph ((0,), 0) +

The multiplication process is described in detail in Section 7.
In the formulas for the Euler characteristic [CMZ20], the class ξ = c1(O(−1)) of

the tautological bundle and its restriction ξ
B

[i]
Γ

to a level i of a graph Γ were key.

For a stratum, the class ξ is easily accessible:

sage: print(X.xi)
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Tautological class on Stratum: (2,)

with residue conditions: []

3 * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

-1 * Graph ((0,), 0) +

-1 * Graph ((1,), 0) +

Moreover, it is not difficult to compute ξ
B

[i]
Γ

(here for the top-level of the compact-

type graph):

sage: print(X.xi_at_level(0, ((0,),0)))

Tautological class on Stratum: (2,)

with residue conditions: []

1 * Psi class 1 with exponent 1 on level 0 * Graph ((0,), 0) +

More details and examples may be found in Example 7.2 and Remark 8.3.
We now describe these objects and the implementation in more detail.

3. Generalised Strata

We begin by briefly recalling the notions from [BCGGM3] and [CMZ20] in the
generality that we here require.

3.1. Strata with residue conditions. To obtain a recursive structure on the
boundary of ΞMg,n(µ), recall the definition of generalised stratum, introduced in
[CMZ20, §4] to cover the case of a level of an enhanced level graph. More precisely, we
allow differentials on disconnected surfaces: denote by µi = (mi,1, . . . ,mi,ni

) ∈ Zni

the type of a differential, i.e., we require that
∑ni

j=1mi,j = 2gi − 2 for some gi ∈ Z
and i = 1, . . . , k. Then we define, for a tuple g = (g1, . . . , gk) of genera and a tuple
n = (n1, . . . , nk) together with µ = (µ1, . . . , µk), the disconnected stratum

ΩMg,n(µ) =

k∏
i=1

ΩMgi,ni
(µi) .

Note that the projectivized stratum PΩMg,n(µ) is the quotient by the diagonal
action of C∗, not the quotient by the action of (C∗)k.

Moreover, we consider subspaces of these cut out by residue conditions. More
precisely, denote by Hp ⊆ ∪ki=1{(i, 1), · · · (i, ni)} the subset of the marked points
such that mi,j < −1. Now consider vector spaces R of the following special shape,
modelled on the global residue condition from [BCGGM1]: for λ a partition of Hp,

with parts denoted by λ(k), and a subset λR of the parts of λ, we define the C-vector
space

R :=
{
r = (ri,j)(i,j)∈Hp

∈ CHp and
∑

(i,j)∈λ(k)

ri,j = 0 for all λ(k) ∈ λR
}
.

We denote the subspace of surfaces with residues in R by ΩMR
g,n(µ).

In [CMZ20, Prop. 4.2] a modular compactification PΞMR

g,n(µ) of PΩMR
g,n(µ) is

constructed in analogy to [BCGGM3]. Consequently, the boundary components are
parametrised by enhanced level graphs. More precisely, a level graph is defined to be
a stable graph together with a level function. Recall that a stable graph is a tuple
Γ = (Vi, Hi, Ei, gi, vi, ιi)i=1,...,k consisting of vertices Vi, a genus map gi : Vi → Z≥0,
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legs Hi that are associated to the vertices by a vertex map vi : Hi → Vi and come
with an involution ιi : Hi → Hi, the two-cycles of which form the edges Ei ⊆ Hi×Hi

while the fixed points (denoted Hm
i ) are in bijection with the ni marked points. The

k graphs Γi = (Vi, Hi, Ei, gi, vi, ιi) are required to be connected and satisfy the usual
stability conditions. Moreover, we set g = tgi, v = tvi, E = tEi, H = tHi, and
V = tVi. Note that this data induces a unique bijection o :

⊔
Hm
i → µ associating

to each marked point (i, j) the order mi,j of the differential.
A level function on the vertices is a map ` : V → Z, which we normalise to take

values in {0,−1, . . . ,−L} and require that, for all edges e ∈ E, `(v(e+)) ≥ `(v(e−)),
where we write e =: (e+, e−) ∈ H ×H.

Moreover, an enhancement is a map κ : E → Z≥0 such that κ(e) = 0 if and
only if e is horizontal (i.e. `(v(e+)) = `(v(e−))), subject to the following stability
condition: define the degree of a vertex v in V to be

deg(v) =
∑

h∈Hm,v(h)=v

o(h) +
∑

e∈E,v(e+)=v

(κ(e)− 1)−
∑

e∈E,v(e−)=v

(κ(e) + 1) .

Then the enhancement is admissible, if deg(v) = 2g(v)− 2 holds for every vertex v
of Γ.

The enhanced level graph then consists of the triple (Γ, `, κ). We denote the

corresponding boundary component of PΞMR

g,n(µ) by DΓ.

Remark 3.1. Note that κ(e) corresponds to the number of prongs at e and, for
a non-horizontal edge, the associated differential has a zero of order κ(e) − 1 on
the top component and a pole of order −κ(e)− 1 on the bottom component (for
horizontal edges there is a simple pole on each component). This gives an extension
of o to H.

Using this identification, the stability condition of [BCGGM3, §2] is simply the
requirement that the orders of zeros and poles sum to 2gi,j − 2 on each vertex. See
[BCGGM3, §2] and [CMZ20, §3.2] for details.

To determine, for a generalised stratum PΞMR

g,n(µ), which enhanced level graphs
give non-empty boundary components, we recall the R-GRC from [CMZ20, §4]:

starting with an enhanced level graph Γ, we construct a new auxiliary level graph Γ̃
by adding, for each λ(k) ∈ λR, a new vertex vλ(k) to Γ at level ∞ and converting
a tuple (i, j) ∈ λ(k) into an edge from the marked point (i, j) to the vertex vλ(k) .
We then say that Γ satisfies the R-global residue condition (R-GRC) if the tuple of

residues at the legs in Hp belongs to R and for every level L <∞ of Γ̃ and every

connected component Y of the subgraph Γ̃>L one of the following conditions holds.

(1) The component Y contains a marked point with a prescribed pole that is
not in λR.

(2) The component Y contains a marked point with a prescribed pole (i, j) ∈ Hp

and there is an r ∈ R with r(i,j) 6= 0.

(3) Let e1, . . . , eb denote the set of edges where Y intersects Γ̃=L. Then

b∑
j=1

Rese−j
ηv(e−j ) = 0 ,

where v(e−j ) ∈ Γ̃=L.
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By [CMZ20, Prop. 4.2], the boundary components DΓ of PΞMR

g,n(µ) are parametri-
sed by enhanced level graphs (Γ, `, κ) satisfying the R-GRC.

For applications such as listing all graphs in the boundary of a stratum, it
is convenient to have a purely graph-theoretic criterion in analogy to the one
shown for the classical GRC in [MUW17]. The following proposition strips the
tropical language away in the criterion [MUW17, Theorem 1] and generalises it to
meromorphic strata with residue conditions.

Let (Γ, `, κ) be an enhanced level graph.
We call a vertex v of Γ inconvenient if g(v) = 0, if it is not adjacent to any

edge e with enhancement κ(e) = 0 and if it is adjacent to a leg with a very high
enhancement in the following precise sense: denote by p(v) the set of half-edges on
the vertex v that are poles (in the sense of Remark 3.1). Then the condition is that
there is a p ∈ p(v) such that

o(p) >
∑

p′∈p(v)

(o(p′)− 1)− 1.

Proposition 3.2. The boundary stratum DΓ of ΩMR
g,n(µ) associated with the

enhanced level graph (Γ, `, κ) is non-empty if and only if both of the following
conditions are satisfied

(1) For every inconvenient vertex v of Γ there is
(a) a simple cycle based at v that does not pass through any vertex of level

smaller than v, or
(b) the graph of levels ≥ `(v) deprived of the vertex v has two components,

each of which has a marked pole in Hp whose residue is not constrained
to zero for all elements of R.

(2) For every horizontal edge e of Γ there is
(a) a simple cycle based through e that does not pass through any vertex

of level smaller than `(e), or
(b) the graph of levels ≥ `(e) deprived of the edge e has two components,

each of which has a marked pole in Hp whose residue is not constrained
to zero for all elements of R.

Proof. Consider first the case that Γ̃ is connected. We view Γ̃ as an enhanced level

graph of an auxiliary stratum X̃ as follows: we add prongs to the new edges of Γ̃ in
accordance with the pole orders of the half-edges on Γ. For each vertex v at level
∞, we then extend the genus function by gv setting 2gv − 2 as the sum of orders of
the half-edges on v induced by the newly added prongs, possibly adding an extra
simple zero to fix parity issues. Note that all new vertices are of positive genus, so

stability is not an issue. Therefore, for the stratum X̃, we are now reduced to the
situation of [MUW17, Theorem 1].

In a product of strata, clearly a graph is admissible if and only if each component
is admissible. �

See Section 4.2 for examples illustrating this criterion.
This criterion allows us to explicitly construct all graphs in a given stratum.

In fact, we can construct all graphs with no horizontal edges recursively from the
two-level graphs.
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3.2. Constructing Level Graphs. Recall the undegeneration maps δi [CMZ20,
§3.3], contracting all level crossing of an enhanced level graph Γ without horizontal
edges except for the i-th level crossing, yielding a two-level graph. The component of
Γ is contained in the product of the components of δi(Γ), which may be irreducible.

Definition 3.3. Let (Γ, `, κ) be an enhanced level graph with L levels and without
horizontal edges. We define the profile of Γ to be the tuple (δ1(Γ), . . . , δL(Γ)). An
enhanced profile is a profile together with a choice of irreducible component.

Note that the association of a profile to a graph is not injective, see Example 5.6.
It is primarily useful to encode efficiently how graphs degenerate. By definition, the
information of an enhanced profile of Γ is equivalent to the data of Γ.

Generating all non-horizontal graphs inside a stratum is thus equivalent to listing
all non-empty enhanced profiles. We do this recursively. For X a generalised
stratum, denote by BIC(X) the (non-horizontal) two-level graphs in the boundary
of X.

Definition 3.4. Let X be a generalised stratum. For each Γ ∈ BIC(X) we define:

(1) the generalised strata Γ> and Γ⊥, the top and bottom levels of Γ;
(2) a map β>Γ : BIC(Γ>)→ BIC(X) that associates to a graph Γ′ ∈ BIC(Γ>)

the graph δ0(Λ) ∈ BIC(X) where Λ is the graph obtained by clutching Γ′

to Γ⊥;
(3) a map β⊥Γ : BIC(Γ⊥)→ BIC(X) that associates to a graph Γ′ ∈ BIC(Γ⊥)

the graph δ1(Λ) ∈ BIC(X) where Λ is the graph obtained by clutching Γ>

to Γ′.

The following proposition is an immediate consequence of [CMZ20, Prop. 5.1].

Proposition 3.5. Let X be a generalised stratum and Γ ∈ BIC(X).

(1) The images of β>Γ and β⊥Γ are disjoint.
(2) The profile (Γ′,Γ) is non-empty if and only if Γ′ is in the image of β>Γ .
(3) The profile (Γ,Γ′) is non-empty if and only if Γ′ is in the image of β⊥Γ .

As a consequence, we may define a partial order ≺ on BIC(X) by defining Γ ≺ Γ′

if and only if (Γ′,Γ) is non-empty.

Remark 3.6. The maps β are not necessarily injective. Indeed, whenever a profile
(Γ1,Γ2) is reducible, i.e. contains at least two distinct enhanced level graphs
Λ1 6= Λ2, cutting the bottom level off these three-level graphs gives two distinct
BICs Λ̃1, Λ̃2 ∈ BIC(Γ>2 ) (the “cut” edges correspond to edges of Γ2 and become

marked points in Γ>2 and Γ⊥2 ) with β>Γ2
(Λ̃1) = β>Γ2

(Λ̃2) = Γ1. See also Example 5.22.
However, non-injectivity does not imply reducibility. Degenerating a level in

different ways may give isomorphic graphs, see Example 8.1 and Figure 7.

This allows us to recursively compute all profiles.

Proposition 3.7. Let X be a generalised stratum.

(1) The enhanced level graphs in BIC(X) can be listed explicitly.
(2) All non-empty profiles in X can be constructed recursively from BIC(X).
(3) All graphs inside a profile can be constructed explicitly from the profile’s

components.
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Proof. This is essentially the content of Section 5: the effective construction of BICs
is explained in detail in Section 5.2, in particular Algorithm 5.7.

The non-empty profiles are constructed recursively: a non-empty profile (Γ1, . . . ,Γl)
of length l may be extended to a non-empty profile (Γ0,Γ1, . . . ,Γl) if and only if
Γ1 ≺ Γ0. Indeed, Γ>1 is also the top level of any graph Λ in (Γ1, . . . ,Γl) and thus a
preimage (β>Γ1

)−1(Γ0) exists in BIC(Γ>1 ) and can be clutched to Λ to yield a graph
in (Γ0,Γ1, . . . ,Γl). Similarly, the profile may be extended to (Γ1, . . . ,Γl,Γl+1) if
and only if Γl+1 ≺ Γl.

The converse direction is simply squishing of a level.
To get all the graphs we follow the above procedure, noting that we might obtain

several graphs in the same profile if β is non-injective (we clutch each preimage with
each other graph). �

The key observation is that BICs and three-level graphs are sufficient for con-
structing the entire stratum. In particular, all levels are seen by these.

Remark 3.8. Let X be a generalised stratum. Note that any level L appearing in
any graph in X is one of the following three types:

(1) a top level of a BIC,
(2) a bottom level of a BIC, or
(3) a middle level of a three-level graph.

Indeed, given a graph Γ, level l of Γ remains unchanged by contracting any level
crossing not adjacent to l. Contracting all non-adjacent levels results either in a
BIC (if l is top or bottom level) or in a three-level graph around level l.

While the reducibility is recorded by the three-level graphs, determining the
componentes of a profile is not straight-forward. Indeed, given two non-empty profiles
(Γ1,Γ2) and (Γ2,Γ3) the profile (Γ1,Γ2,Γ3) is non-empty, but in the reducible case
it is not clear how the reducibility and the individual graphs are related.

Remark 3.9. Determining the reducibility of a profile is a delicate issue and is
discussed in detail in Section 5.4. In particular, each of the following may occur:

(1) a degeneration of an irreducible profile can be reducible (Example 5.6);
(2) a degeneration of a reducible profile can be irreducible (Example 5.22);
(3) A reducible profile implies a non-injectivity of one of the maps β.

The converse of the last statement is false in general, as the non-injectivity may
stem from the presence of automorphisms.

4. Level Graphs and Embeddings

The diffstrata package uses three basic classes to model the objects appearing
in the boundary of PΞMg,n(µ).

• GeneralisedStratum models the strata PΞMg,n(µ). All essential opera-
tions will be performed by an object of this type.
• LevelGraph is a low-level object that represents the actual underlying graph.

While it is important for the underlying calculations, there should be little
or no reason to construct an explicit LevelGraph directly. It was originally
modelled on the class stgraph of admcycles.
• EmbeddedLevelGraph is essentially a wrapper to encode how a LevelGraph

is embedded into a GeneralisedStratum. A LevelGraph will usually appear



diffstrata – A SAGE PACKAGE 13

as an EmbeddedLevelGraph and should be accessed through its profile, see
Section 5.

Note that every level of an EmbeddedLevelGraph is itself a GeneralisedStratum

of lower dimension, hence the recursive structure.
A GeneralisedStratum is given by the following data:

• a list of Signature objects, giving the signatures of the (possibly) mero-
morphic strata appearing as factors, and
• optionally a list of residue conditions, signalling which residues add up to

zero.

Consequently, the marked points of a stratum may be uniquely referred to by
their coordinates inside the signature tuple.

Note that there is also the Stratum class, which is simply a frontend for the
class GeneralisedStratum with a simpler syntax: It can only be used to create
connected strata with no residue conditions:

sage: X=Stratum((2,))

sage: print(X)

Stratum: (2,)

with residue conditions: []

sage: isinstance(X, GeneralisedStratum)

True

Note that tuples with only one entry must be terminated by a ,!

Remark 4.1. A GeneralisedStratum must be provided with a list of Signature
objects, a tuple will raise an error! A Signature object is initialised by a signature
tuple and makes all its intrinsic properties easily accessible. It is easiest understood
via the package documentation:

sage: Signature?

Init signature: Signature(sig)

Docstring:

A signature of a stratum.

Attributes:

sig (tuple): signature tuple

g (int): genus

n (int): total number of points

p (int): number of poles

z (int): number of zeroes

poles (tuple): tuple of pole orders

zeroes (tuple): tuple of zero orders

pole_ind (tuple): tuple of indices of poles

zero_ind (tuple): tuple of indices of zeroes

EXAMPLES

sage: from admcycles.diffstrata.sig import Signature

sage: sig=Signature((2,1,-1,0))

sage: sig.g

2

sage: sig.n
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4

sage: sig.poles

(-1,)

sage: sig.zeroes

(2, 1)

sage: sig.pole_ind

(2,)

sage: sig.zero_ind

(0, 1)

sage: sig.p

1

sage: sig.z

2

Init docstring:

Initialise signature

Args:

sig (tuple): signature tuple of integers adding up to 2g-2

4.1. Points on graphs and strata. Analogous to Section 3, the diffstrata

package uses zeros and poles of a differential in two different contexts: the marked
points of the stratum, as elements of µ, have associated half-edges of the graph.
To illustrate these, we need to first briefly explain how a LevelGraph encodes the
information of an enhanced level graph.

A point or leg of a LevelGraph is given by a positive integer. Each vertex of a
LevelGraph has a (possibly empty) list of legs associated to it and each edge is a
tuple of two legs: the command

sage: L=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)],{1: 0, 2: 0,

3: 2, 4: -2, 5: -2},[0, -1])

encodes a graph L with two vertices, one of genus 1 (with internal name, the position
in the list, 0) and one of genus 0 (with internal name 1). The (nested) list of legs is
in the same order as the list of vertices: the vertex 0 has two legs, stored in the list
[1, 2] and the vertex 1 has three legs, stored in [3, 4, 5].

Furthermore, the graph has two edges, the first, (1, 4), connecting leg 1 on
vertex 0 with leg 4 on vertex 1, and the second, (2, 5), connecting leg 2 on vertex 0

to leg 5 on vertex 1.
There are two more pieces of information needed to determine a LevelGraph: a

dict, associating to every leg the order of the differential at this point (e.g. leg 4 is
a pole of order −2 and leg 3 is a zero of order 2; leg 1 is simply a marked point (of
order 0)) and a list of levels, [0, -1], indicating that vertex 0 is on level 0 and
vertex 1 is on level −1.

This uniquely determines an enhanced level graph in the sense of Section 3. We
see that L describes the “banana” graph in the boundary of ΩM2(2):

1

−2

0

−2

0

2
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We can access all of this information about the LevelGraph from within sage:

sage: L=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)],{1: 0, 2: 0,

3: 2, 4: -2, 5: -2},[0, -1])

sage: L.genus(0)

1

sage: L.legsatvertex(1)

[3, 4, 5]

sage: L.edges

[(1, 4), (2, 5)]

sage: L.vertex(1) # vertex of leg

0

sage: L.levelofvertex(1)

-1

sage: L.orderatleg(3)

2

The orders are equivalent to the number of prong-matchings at the edges. The
prongs are stored in a dictionary and their lcm can be calculated easily:

sage: L=LevelGraph([0, 0, 0],[[1, 2, 3], [4, 5, 6], [7, 8, 9]],[(3, 6), (4,

8), (5, 9)],{1: 1, 2: -4, 3: 1, 4: 1, 5: 0, 6: -3, 7: 3, 8: -3, 9:

-2},[0, -1, -2])

sage: L.prongs.items()

dict_items([((3, 6), 2), ((4, 8), 2), ((5, 9), 1)])

sage: L.prongs[(3,6)]

2

sage: lcm(L.prongs.values())

2

sage:

Remark 4.2. Note that, as mentioned above, LevelGraphs should not be entered
“by hand”, but instead EmbeddedLevelGraphs and profiles should be used.

A marked point as an element of µ is considered by diffstrata as a point of
the GeneralisedStratum. An EmbeddedLevelGraph is, essentially, a LevelGraph

together with the information, which of its legs correspond to marked points of the
stratum.

This is encoded by a dict usually denoted dmp (dictionary of marked points)
that identifies legs of the LevelGraph (integers) with points of the stratum (tuples:
index of component, index of point in signature, as in Section 3).

For technical reasons, the embedding also requires a dictionary of levels, dlevels.
In the above example, giving such an embedding is straight-forward:

sage: L=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)],{1: 0, 2: 0,

3: 2, 4: -2, 5: -2},[0, -1])

sage: X=Stratum((2,))

sage: ELG=EmbeddedLevelGraph(X, L, dmp={3: (0,0)}, dlevels={0: 0, -1: -1})

Of course, our graph is isomorphic to one of the two BICs generated automatically
by the stratum X:

sage: any(ELG.is_isomorphic(B) for B in X.bics)

True
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sage: len([B for B in X.bics if ELG.is_isomorphic(B)])

1

Our GeneralisedStratum objects may have several connected components, as
well as residue conditions, since we want to consider arbitrary levels of LevelGraphs
as strata,

Consider the “V”-shaped graph in the boundary of the stratum ΩM2(1, 1):

1 1

−2

0

−2

0

11

In sage, we may extract the two levels to see examples of more complicated strata:

sage: X=Stratum((1,1))

sage: V=LevelGraph([1, 1, 0],[[1], [2], [3, 4, 5, 6]],[(1, 5), (2, 6)],{1:

0, 2: 0, 3: 1, 4: 1, 5: -2, 6: -2},[0, 0, -1])

sage: ELV=EmbeddedLevelGraph(X, V, dmp={3: (0, 0), 4: (0, 1)}, dlevels={0:

0, -1: -1})

sage: ELV.level(0)

LevelStratum(sig_list=[Signature((0,)), Signature((0,))],res_cond=[],

leg_dict={1: (0, 0), 2: (1, 0)})

sage: ELV.level(1)

LevelStratum(sig_list=[Signature((1, 1, -2, -2))],res_cond=[[(0, 2)], [(0,

3)]],leg_dict={3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)})

Using print gives more readable output:

sage: print(ELV.level(0))

Product of Strata:

Signature((0,))

Signature((0,))

with residue conditions:

dimension: 3

leg dictionary: {1: (0, 0), 2: (1, 0)}

leg orbits: [[(1, 0), (0, 0)]]

sage: print(ELV.level(1))

Stratum: Signature((1, 1, -2, -2))

with residue conditions: [(0, 2)] [(0, 3)]

dimension: 0

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)}

leg orbits: [[(0, 0)], [(0, 1)], [(0, 3), (0, 2)]]

Observe that the extracted levels also remember the action of the automorphism
group of the graph they were extracted from on their marked points.

The residue conditions are given by a nested list of points of the stratum. Marked
poles whose residue adds up to 0 are contained in the same list.

To illustrate this, let us compare the lower level of the Banana graph of above:

sage: B=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)],{1: 0, 2: 0,

3: 2, 4: -2, 5: -2},[0, -1])

sage: Y=Stratum((2,))
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sage: ELB=EmbeddedLevelGraph(Y, B, dmp={3: (0,0)}, dlevels={0: 0, -1: -1})

sage: ELB.level(1)

LevelStratum(sig_list=[Signature((2, -2, -2))],res_cond=[[(0, 1), (0, 2)]],

leg_dict={3: (0, 0), 4: (0, 1), 5: (0, 2)})

sage: print(ELB.level(1))

Stratum: Signature((2, -2, -2))

with residue conditions: [(0, 1), (0, 2)]

dimension: 0

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2)}

leg orbits: [[(0, 0)], [(0, 1), (0, 2)]]

In this case, the stratum records that the poles share a residue condition.

Remark 4.3. Note that while, mathematically, levels are usually indexed with
negative numbers starting at 0, in diffstrata it is often much less confusing to
work with positive level numbers. To ease this translation, LevelGraphs come with
a notion of “internal” versus “relative” level number:

sage: B.internal_level_number(1)

-1

sage: B.level_number(-1)

1

In particular, the internal level numbers might not even be consecutive, while the
level_numbers are guaranteed to run from 0 to the number of levels.

EmbeddedLevelGraphs also come with an explain method, intended to describe
them in a more human-readable format. For the above examples:

sage: ELV.explain()

LevelGraph embedded into stratum Stratum: (1, 1)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

* A vertex (number 1) of genus 1

On level 1:

* A vertex (number 2) of genus 0

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 1 on vertex 2 on level 1

* Marked point (0, 1) of order 1 on vertex 2 on level 1

Finally, we have 2 edges. More precisely:

* one edge between vertex 0 (on level 0) and vertex 2 (on level 1) with

prong 1.

* one edge between vertex 1 (on level 0) and vertex 2 (on level 1) with

prong 1.

sage: ELB.explain()

LevelGraph embedded into stratum Stratum: (2,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 0
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1 1

2

1 1

1 1

2

1 1

Figure 1. An illegal (left) and legal (right) graph in the boundary
of ΩM3(2, 1, 1).

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 2 on vertex 1 on level 1

Finally, we have 2 edges. More precisely:

* 2 edges between vertex 0 (on level 0) and vertex 1 (on level 1) with

prongs 1 and 1.

4.2. Checking the R-GRC: points “at level ∞”. Checking the R-GRC is split
into two steps. First, for any LevelGraph, we may check the classical GRC:

sage: L=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)],{1: 0, 2: 0,

3: 2, 4: -2, 5: -2},[0, -1])

sage: L.is_legal()

True

Example 4.4. Consider the graphs in the stratum (2, 1, 1) that are depicted in
Figure 1. Note that the left graph is illegal, as the bottom-left vertex is inconvenient
as defined in Section 3.1: It is a stratum with signature (2,−2,−2) and both residues
are forced zero, as there is no cycle or pole in the graph above to rectify this. This
problem does not occur in the right graph.

In diffstrata, we observe:

sage: L=LevelGraph([1, 1, 0, 0],[[1, 2], [3, 4], [5, 6, 7], [8, 9, 10,

11]],[(1, 6), (3, 7), (4, 10), (2, 11)],{1: 0, 2: 0, 3: 0, 4: 0, 5: 2,

6: -2, 7: -2, 8: 1, 9: 1, 10: -2, 11: -2},[0, 0, -1, -2])

sage: L.is_legal()

Vertex 2 is illegal!

False

sage: R=LevelGraph([1, 1, 0, 0],[[1, 2], [3, 4], [5, 6, 7], [8, 9, 10,

11]],[(1, 6), (3, 7), (4, 10), (2, 11)],{1: 0, 2: 0, 3: 0, 4: 0, 5: 2,

6: -2, 7: -2, 8: 1, 9: 1, 10: -2, 11: -2},[0, 0, -2, -1])

sage: R.is_legal()

True

Similarly, if we start with an EmbeddedLevelGraph, we may check the R-GRC.

Example 4.5. Consider the example from above as a degeneration of the bottom
level of the “zigzag-graph”, the BIC that is the common δ1 of the two graphs
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1 1

2 1 1
2

1 1

1 1

1 1

2

1 1

1 1

1 1

Figure 2. The “zigzag-graph” (left) in the boundary of the stra-
tum ΩM3(2, 1, 1) and an legal (center) and illegal (right) degenera-
tion of its bottom level.

of Example 4.4, as depicted in Figure 2. Note that there are residue conditions
intertwining the simple zeros on the two components. These imply that the middle
graph is legal, while the right one is not.

To check this in diffstrata, we begin by generating the stratum and entering
the graph:

sage: X=Stratum((2,1,1))

sage: LG=LevelGraph([1, 1, 0, 0],[[1, 2], [3, 4], [5, 6, 7], [8, 9, 10,

11]],[(1, 6), (3, 7), (4, 10), (2, 11)],{1: 0, 2: 0, 3: 0, 4: 0, 5: 2,

6: -2, 7: -2, 8: 1, 9: 1, 10: -2, 11: -2},[0, 0, -1, -1])

sage: ELG=EmbeddedLevelGraph(X,LG,dmp={5: (0, 0), 8: (0, 1), 9: (0, 2)},

dlevels={0: 0, -1: -1})

We may convince ourselves that the graph is as depicted in Figure 2:

sage: ELG.explain()

LevelGraph embedded into stratum Stratum: (2, 1, 1)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

* A vertex (number 1) of genus 1

On level 1:

* A vertex (number 2) of genus 0

* A vertex (number 3) of genus 0

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 2 on vertex 2 on level 1

* Marked point (0, 1) of order 1 on vertex 3 on level 1

* Marked point (0, 2) of order 1 on vertex 3 on level 1

Finally, we have 4 edges. More precisely:

* one edge between vertex 0 (on level 0) and vertex 2 (on level 1) with

prong 1.

* one edge between vertex 1 (on level 0) and vertex 2 (on level 1) with

prong 1.

* one edge between vertex 1 (on level 0) and vertex 3 (on level 1) with

prong 1.

* one edge between vertex 0 (on level 0) and vertex 3 (on level 1) with

prong 1.
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We may extract the bottom level of this EmbeddedLevelGraph:

sage: L=ELG.level(1); L # extract bottom level

LevelStratum(sig_list=[Signature((2, -2, -2)), Signature((1, 1, -2, -2))],

res_cond=[[(0, 1), (1, 3)], [(0, 2), (1, 2)]],leg_dict={5: (0, 0), 6:

(0, 1), 7: (0, 2), 8: (1, 0), 9: (1, 1), 10: (1, 2), 11: (1, 3)})

Embedding (into L!) the two degenerations depicted in Figure 2, we confirm that
one is legal, while the other is not:

sage: M=EmbeddedLevelGraph(L, LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6,

7]],[],{1: 2, 2: -2, 3: -2, 4: 1, 5: 1, 6: -2, 7: -2},[-1, 0]),dmp={1:

(0, 0), 2: (0, 1), 3: (0, 2), 4: (1, 0), 5: (1, 1), 6: (1, 2), 7: (1, 3)

},dlevels={-1: -1, 0: 0})

sage: M.is_legal()

True

sage: R=EmbeddedLevelGraph(L, LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6,

7]],[],{1: 2, 2: -2, 3: -2, 4: 1, 5: 1, 6: -2, 7: -2},[0, -1]),dmp={1:

(0, 0), 2: (0, 1), 3: (0, 2), 4: (1, 0), 5: (1, 1), 6: (1, 2), 7: (1, 3)

},dlevels={-1: -1, 0: 0})

sage: R.is_legal()

False

4.3. The Underlying Graph. Each EmbeddedLevelGraph has an associated “un-
derlying graph”, which is a Sage Graph. It’s main use is checking the graph-theoretic

conditions for the R-GRC corresponding, essentially, to the auxiliary graph Γ̃ con-
structed in the proof of Proposition 3.2. To encode all necessary data, it has a
slightly more involved format, which we briefly explain.

The underlying graph is, formally, associated to the underlying LevelGraph. The
vertices are formally tuples encoding the vertex number and its genus:

sage: LG=LevelGraph([1, 1, 0, 0],[[1, 2], [3, 4], [5, 6, 7], [8, 9, 10,

11]],[(1, 6), (3, 7), (4, 10), (2, 11)],{1: 0, 2: 0, 3: 0, 4: 0, 5: 2,

6: -2, 7: -2, 8: 1, 9: 1, 10: -2, 11: -2},[0, 0, -1, -1])

sage: LG.genus(0)

1

sage: LG.UG_vertex(0)

(0, 1, ’LG’)

sage: LG.underlying_graph

Looped multi-graph on 4 vertices

sage: LG.underlying_graph.vertices()

[(0, 1, ’LG’), (1, 1, ’LG’), (2, 0, ’LG’), (3, 0, ’LG’)]

sage: LG.underlying_graph.edges()

[((0, 1, ’LG’), (2, 0, ’LG’), (1, 6)), ((0, 1, ’LG’), (3, 0, ’LG’), (2, 11))

, ((1, 1, ’LG’), (2, 0, ’LG’), (3, 7)), ((1, 1, ’LG’), (3, 0, ’LG’), (4,

10))]

The entry ’LG’ indicates that this vertex comes from a vertex of the LevelGraph.
In the case of an EmbeddedLevelGraph, the underlying LevelGraph may be

endowed with extra “points at ∞” to encode residue conditions. To illustrate this,
we consider again the situation of Example 4.5.

sage: ELG=EmbeddedLevelGraph(X, LG, dmp={5: (0, 0), 8: (0, 1), 9: (0, 2)},

dlevels={0: 0, -1: -1})
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sage: X=Stratum((2,1,1))

sage: LG=LevelGraph([1, 1, 0, 0],[[1, 2], [3, 4], [5, 6, 7], [8, 9, 10,

11]],[(1, 6), (3, 7), (4, 10), (2, 11)],{1: 0, 2: 0, 3: 0, 4: 0, 5: 2,

6: -2, 7: -2, 8: 1, 9: 1, 10: -2, 11: -2},[0, 0, -1, -1])

sage: ELG=EmbeddedLevelGraph(X, LG, dmp={5: (0, 0), 8: (0, 1), 9: (0, 2)},

dlevels={0: 0, -1: -1})

sage: L=ELG.level(1); print(L)

Product of Strata:

Signature((2, -2, -2))

Signature((1, 1, -2, -2))

with residue conditions: [(0, 1), (1, 3)] [(0, 2), (1, 2)]

dimension: 1

leg dictionary: {5: (0, 0), 6: (0, 1), 7: (0, 2), 8: (1, 0), 9: (1, 1), 10:

(1, 2), 11: (1, 3)}

leg orbits: [[(0, 0)], [(0, 1), (0, 2)], [(1, 0)], [(1, 1)], [(1, 2), (1, 3)

]]

sage: L.bics[0] # numbering of list items might differ

EmbeddedLevelGraph(LG=LevelGraph([0, 0, 0],[[1, 2, 3], [4, 5, 6], [7, 8,

9]],[(6, 9)],{1: 2, 2: -2, 3: -2, 4: -2, 5: -2, 6: 2, 7: 1, 8: 1, 9:

-4},[0, 0, -1],True),dmp={1: (0, 0), 2: (0, 1), 3: (0, 2), 4: (1, 2), 5:

(1, 3), 7: (1, 0), 8: (1, 1)},dlevels={0: 0, -1: -1})

sage: L.bics[0].LG.underlying_graph.vertices()

[(0, 0, ’LG’), (0, 0, ’res’), (1, 0, ’LG’), (1, 0, ’res’), (2, 0, ’LG’)]

sage: L.bics[0].LG.underlying_graph.edges()

[((0, 0, ’LG’), (0, 0, ’res’), ’res0edge2’), ((0, 0, ’LG’), (1, 0, ’res’), ’

res1edge3’), ((0, 0, ’res’), (1, 0, ’LG’), ’res0edge5’), ((1, 0, ’LG’),

(1, 0, ’res’), ’res1edge4’), ((1, 0, ’LG’), (2, 0, ’LG’), (6, 9))]

Each residue condition corresponds to one vertex of the underlying graph, labelled
with ’res’. This vertex is connected to all poles sharing this residue condition.

Note that the residue conditions of a stratum are stored most transparently in
the “smooth” (0-level) graph inside the stratum. In the above situation:

sage: L.smooth_LG

EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6, 7]],[],{1: 2,

2: -2, 3: -2, 4: 1, 5: 1, 6: -2, 7: -2},[0, 0],True),dmp={1: (0, 0), 2:

(0, 1), 3: (0, 2), 4: (1, 0), 5: (1, 1), 6: (1, 2), 7: (1, 3)},dlevels

={0: 0})

sage: L.smooth_LG.LG.underlying_graph.vertices()

[(0, 0, ’LG’), (0, 0, ’res’), (1, 0, ’LG’), (1, 0, ’res’)]

sage: L.smooth_LG.LG.underlying_graph.edges()

[((0, 0, ’LG’), (0, 0, ’res’), ’res0edge2’), ((0, 0, ’LG’), (1, 0, ’res’), ’

res1edge3’), ((0, 0, ’res’), (1, 0, ’LG’), ’res0edge7’), ((1, 0, ’LG’),

(1, 0, ’res’), ’res1edge6’)]

4.4. Checking the R-GRC. To check the Global Residue Condition, we use
Proposition 3.2. This is checked on the level of vertices (and horizontal edges,
although we do not care for them here).

More precisely, LevelGraph uses the following check for legality:

Algorithm 4.6 (Vertex Legality (GRC)). The method is_illegal_vertex checks
the legality of a vertex v in the following steps:



22 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

Step 1: We first check if v is inconvenient in the sense of Section 3, that is
gv = 0, there are no simple poles on v and there exists a pole order that is
greater than the difference of the sum of the pole orders and the number of
poles, i.e., denoting by mi the pole orders and by p the number of poles,
there exists an mi such that mi >

∑
mj − p− 1.

If v is not inconvenient, v is legal.
Step 2: We next check for loops above v: If there are less than two edges

going up from v, there can be no loop and v is illegal. Otherwise we build
the subgraph of the underlying graph that consists of vertices above the
level of v and generate a list of its connected components (this is easy, as
this are sage Graphs).

Step 3: For each of these connected components, we check if there are two
edges connecting v to this connected component. (there is a technical
subtlety here: the subgraph described above does not contain v and hence
non of the edges we are interested in. We also can’t restrict to the edges
of the LevelGraph as will become clear when describing the R-GRC below.
Therefore, we actually work with two subgraphs, the abovegraph consisting
of all edges with level ≥ the level of v and the subgraph yielding the
connected components, which consists of the vertices above the level of v in
the connected component of abovegraph containing v.) If this is the case,
v is legal.

Step 4: In the case of a meromorphic stratum, v is legal if there are at least
two “free” poles on the connected component of v. We thus count all free
poles at v and in the connected components above.

Step 5: If all of this fails, v is illegal.

In the case that there are residue conditions, we have to slightly modify Step 3
above. More precisely, also EmbeddedLevelGraph includes an is_legal method
that checks the R-GRC in a stratum with residue conditions.

Moreover, is_legal also checks if any of the levels of the graph are empty (i.e.
calls the appropriate is_empty methods, described below).

Then a list of all poles (as points on the graph) contained in any residue condition
passed to the enveloping stratum is compiled. In particular, poles are not included
in this list, if they are only constrained by the Residue Theorem on some component.
This list is used in Step 4 of the above algorithm: a pole is free if it is not contained
in this list, i.e. not involved in any residue condition passed to the stratum.

Note that, as we are working with the underlying graph, the vertices “at ∞” are
considered for all connectivity issues (once these have been set up correctly by the
EmbeddedLevelGraph).

Remark 4.7. While most of diffstrata works only for graphs with no horizontal
edges (in particular the notion of profile does not immediately extend) LevelGraphs
may have horizontal edges and is_legal can be used to check legality of edges, cf.
Proposition 3.2.

4.5. Residue Matrices and Dimension. To see how the residue conditions in-
teract, it is often helpful to consider the matrix given by their linear equations.
Moreover, for correctly degenerating residue conditions, it is important to distinguish
residue conditions imposed “from the stratum” from those imposed on a particular
graph by the Residue Theorem on each vertex.
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Given a list of residue conditions and a GeneralisedStratum, one can transform
these into a matrix using the matrix_from_res_conditions method:

sage: X=GeneralisedStratum([Signature((2,-2,-2)),Signature((2,-2,-2))])

sage: X.matrix_from_res_conditions([[(0,1),(0,2),(1,2)],[(0,1),(1,1)],[(1,1)

,(1,2)]])

[1 1 0 1]

[1 0 1 0]

[0 0 1 1]

The residue_matrix of a stratum is this matrix for the residue conditions of the
stratum.

For calculating the dimension of a stratum, we need to consider all imposed
residue conditions, i.e. also the conditions imposed by the Residue Theorem on each
component. This can be done for any EmbeddedLevelGraph by using the method
residue_matrix_from_RT, the combined matrix (with all residue conditions) is
available via full_residue_matrix.

Example 4.8. We illustrate the difference by considering the bottom level of the
V-graph, the Banana graph and the zigzag graph introduced above.

Again, we input the graphs a LevelGraphs and embed them into their corre-
sponding strata:

sage: V=LevelGraph([1, 1, 0],[[1], [2], [3, 4, 5, 6]],[(1, 5), (2, 6)],{1:

0, 2: 0, 3: 1, 4: 1, 5: -2, 6: -2},[0, 0, -1])

sage: X=Stratum((1,1))

sage: ELV=EmbeddedLevelGraph(X, V, dmp={3: (0, 0), 4: (0, 1)}, dlevels={0:

0, -1: -1})

sage: B=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)],{1: 0, 2: 0,

3: 2, 4: -2, 5: -2},[0, -1])

sage: Y=Stratum((2,))

sage: ELB=EmbeddedLevelGraph(Y, B, dmp={3: (0,0)}, dlevels={0: 0, -1: -1})

sage: Z=Stratum((2,1,1))

sage: LG=LevelGraph([1, 1, 0, 0],[[1, 2], [3, 4], [5, 6, 7], [8, 9, 10,

11]],[(1, 6), (3, 7), (4, 10), (2, 11)],{1: 0, 2: 0, 3: 0, 4: 0, 5: 2,

6: -2, 7: -2, 8: 1, 9: 1, 10: -2, 11: -2},[0, 0, -1, -1])

sage: ELZ=EmbeddedLevelGraph(Z, LG, dmp={5: (0, 0), 8: (0, 1), 9: (0, 2)},

dlevels={0: 0, -1: -1})

We extract the bottom levels of each graph:

sage: V_bottom=ELV.level(1)

sage: B_bottom=ELB.level(1)

sage: Z_bottom=ELZ.level(1)

Inspecting these, we see the different residue conditions imposed on the poles:

sage: print(V_bottom)

Stratum: Signature((1, 1, -2, -2))

with residue conditions: [(0, 2)] [(0, 3)]

dimension: 0

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)}

leg orbits: [[(0, 0)], [(0, 1)], [(0, 3), (0, 2)]]

sage: print(B_bottom)
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Stratum: Signature((2, -2, -2))

with residue conditions: [(0, 1), (0, 2)]

dimension: 0

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2)}

leg orbits: [[(0, 0)], [(0, 1), (0, 2)]]

sage: print(Z_bottom)

Product of Strata:

Signature((2, -2, -2))

Signature((1, 1, -2, -2))

with residue conditions: [(0, 1), (1, 3)] [(0, 2), (1, 2)]

dimension: 1

leg dictionary: {5: (0, 0), 6: (0, 1), 7: (0, 2), 8: (1, 0), 9: (1, 1), 10:

(1, 2), 11: (1, 3)}

leg orbits: [[(0, 0)], [(0, 1), (0, 2)], [(1, 0)], [(1, 1)], [(1, 2), (1, 3)

]]

We can now calculate the residue matrices of the strata:

sage: V_bottom.residue_matrix()

[1 0]

[0 1]

sage: B_bottom.residue_matrix()

[1 1]

sage: Z_bottom.residue_matrix()

[1 0 0 1]

[0 1 1 0]

and compare these to the full_residue_matrix of the smooth_LG inside each
stratum.

sage: B_bottom.smooth_LG.residue_matrix_from_RT

[1 1]

sage: V_bottom.smooth_LG.residue_matrix_from_RT

[1 1]

sage: Z_bottom.smooth_LG.residue_matrix_from_RT

[1 1 0 0]

[0 0 1 1]

sage: B_bottom.smooth_LG.full_residue_matrix

[1 1]

[1 1]

sage: V_bottom.smooth_LG.full_residue_matrix

[1 0]

[0 1]

[1 1]

sage: Z_bottom.smooth_LG.full_residue_matrix

[1 0 0 1]

[0 1 1 0]

[1 1 0 0]

[0 0 1 1]

The rank of the full_residue_matrix is the rank of the residue space of the
stratum. It is vital for calculating the dimension of a stratum. Recall [CMZ20,
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Remark 4.1] that

dimX =

k∑
i=1

(2gi + ni − 1)− rk(M)− 1,

where k is the number of connected components and M is the full residue matrix.
We use this to calculate the correct dimensions:

sage: B_bottom.dim()

0

sage: V_bottom.dim()

0

sage: Z_bottom.dim()

1

Example 4.9. We can check that the top and bottom level of every BIC in a
stratum do indeed add up to one less than the dimension:

sage: X4=GeneralisedStratum([Signature((4,))])

sage: all(B.level(0).dim() + B.level(1).dim() == X4.dim() - 1 for B in X4.

bics)

True

Remark 4.10. We can also check if the residue at a pole is forced 0 by the residue
conditions (i.e. if the rank of the full_residue_matrix changes by adding this
condition). In the case that a stratum has simple poles, we use this to determine if
the stratum is empty (if a simple pole is forced 0):

sage: I=Stratum((1,-1))

sage: I.smooth_LG.residue_zero((0,1))

True

sage: I.is_empty()

True

4.6. Level Extraction. We have already seen level extraction in action and describe
the process now in some more detail.

Note that, strictly speaking, an extracted level is a LevelStratum, which inherits
from GeneralisedStratum.

Revisiting the V-graph from above:

sage: ELV.level(1)

LevelStratum(sig_list=[Signature((1, 1, -2, -2))],res_cond=[[(0, 2)], [(0,

3)]],leg_dict={3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)})

sage: type(ELV.level(1))

<class ’admcycles.diffstrata.levelstratum.LevelStratum’>

sage: isinstance(ELV.level(1), GeneralisedStratum)

True

The main extra piece of information it holds is leg_dict, a dictionary mapping
the legs of the LevelGraph we extracted the level of (in this case V) to the marked
points of the LevelStratum. Also, the orbits of the automorphism group are
recorded:
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sage: ELV

EmbeddedLevelGraph(LG=LevelGraph([1, 1, 0],[[1], [2], [3, 4, 5, 6]],[(1, 5),

(2, 6)],{1: 0, 2: 0, 3: 1, 4: 1, 5: -2, 6: -2},[0, 0, -1],True),dmp={3:

(0, 0), 4: (0, 1)},dlevels={0: 0, -1: -1})

sage: print(ELV.level(1))

Stratum: Signature((1, 1, -2, -2))

with residue conditions: [(0, 2)] [(0, 3)]

dimension: 0

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)}

leg orbits: [[(0, 0)], [(0, 1)], [(0, 3), (0, 2)]]

The main part of the extraction happens again on the level of the LevelGraph,
more precisely in the method stratum_from_level.

Algorithm 4.11 (Level Extraction). The method stratum_from_level is imple-
mented as follows:

Step 1: Extraction of the relevant data from the graph: vertices at the current
level as well as the legs and their orders. Here, we must be careful with the
level numbering, cf. Remark 4.3. As we sort the marked points into their
new signatures, we create leg_dict.

Step 2: Adding the residue conditions is implemented analogous to the R-
GRC check: the poles on the level are sorted by the connected component of
the underlying graph they are attached to. Recall that the underlying graph
includes the “level at ∞”. Again, components containing free poles must be
ignored. Moreover, the poles need to translated into their respective strata
points for storing the residue conditions.

When a level is extracted from an EmbeddedLevelGraph (as is usually the case),
first the free poles determined by the residue conditions of the “big” graph, as de-
scribed above and then stratum_from_level is called on the underlying LevelGraph
with this information.

The resulting LevelStratum is then equipped with the automorphism orbits of
the legs and cached.

Remark 4.12. In the case of a BIC, i.e. an EmbeddedLevelGraph with exactly
two levels, the levels are also stored in the top and bot attributes:

sage: ELV.is_bic()

True

sage: ELV.top == ELV.level(0)

True

sage: ELV.bot == ELV.level(1)

True

5. Generating all Level Graphs

In this section, we give a detailed description of the explicit construction of
Proposition 3.7.

Generating all level graphs (as EmbeddedLevelGraphs) inside a generalised stra-
tum is done recursively: first, we generate all two-level graphs (BICs) and then we
clutch them together in all possible ways. This gives the degeneration graph as a
by-product.
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We can inspect this data for any stratum:

sage: X=Stratum((4,))

sage: X.info()

Stratum: (4,)

with residue conditions: []

Genus: [3]

Dimension: 5

Boundary Graphs (without horizontal edges):

Codimension 0: 1 graph

Codimension 1: 8 graphs

Codimension 2: 19 graphs

Codimension 3: 16 graphs

Codimension 4: 4 graphs

Total graphs: 48

Note that the number of graphs increases quickly:

sage: X=Stratum((1,1,1,1))

sage: X.info()

Stratum: (1, 1, 1, 1)

with residue conditions: []

Genus: [3]

Dimension: 8

Boundary Graphs (without horizontal edges):

Codimension 0: 1 graph

Codimension 1: 102 graphs

Codimension 2: 1100 graphs

Codimension 3: 4222 graphs

Codimension 4: 7531 graphs

Codimension 5: 6708 graphs

Codimension 6: 2856 graphs

Codimension 7: 456 graphs

Total graphs: 22976

Remark 5.1. For genus 4, strata having several million boundary components
appear. Already the generation of the strata requires significant computational and
memory power.

The key observation is that, by Proposition 3.5, each three-level graph arises by
either clutching a top level of a BIC to a BIC of its bottom level or a BIC of the top
level to the bottom level. On the other hand, each three-level graph is contained in
the intersection of two (different) BICs of the Stratum.

More explicitly, any three-level graph is contained in a profile (β>Γ (Γ′),Γ) for some
Γ ∈ BIC(X) and Γ′ ∈ BIC(Γ>) (or equivalently (Λ, β⊥Λ (Λ′)) for some Λ ∈ BIC(X)
and Λ′ ∈ BIC(Λ⊥).

We can thereby express the clutching of a product of BICs in the top and bottom
components of a BIC in our stratum as a product of BICs of our stratum. Hence
the procedure is recursive.

Therefore, to generate all graphs, we need to generate only the BICs together
with, for each BIC, top and bottom components and the two maps.
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More precisely, the degeneration graph of a GeneralisedStratumX is determined
by the following information:

• The set BIC(X) corresponding to the list X.bics.
• For each Γ ∈ BIC(X), its top and bottom component Γ> and Γ⊥ (each a
GeneralisedStratum together with a dictionary mapping Stratum points
to LevelGraph points). If Γ corresponds to an EmbeddedLevelGraph B, Γ>

is given by B.top and Γ⊥ is given by B.bot.
• For each Γ ∈ BIC(X), the sets BIC(Γ>) and BIC(Γ⊥) together with the

maps β>Γ and β⊥Γ . The maps β are given as dictionaries of indices of lists:
if Γ corresponds to X.bics[i], then

– top_to_bic(i) is a dict mapping indices of X.bics[i].top.bics to
indices of X.bics such that X.DG.top_to_bic(i)[j] corresponds to
β>Γ (Γ′) if Γ′ corresponds to X.bics[i].top.bics[j] and

– bot_to_bic(i) is a dict mapping indices of X.bics[i].bot.bics to
indices of X.bics such that X.DG.bot_to_bic(i)[j] corresponds to
β⊥Γ (Γ′) if Γ′ corresponds to X.bics[i].bot.bics[j].

See Example 5.8 for details.

Remark 5.2. For caching purposes, it is essential for diffstrata to refer to a BIC
by its index in the list X.bics.

Correspondingly, a profile is encoded as a tuple of ints, an enhanced profile is
encoded as a nested tuple, (p, i), where p is a profile and i is an int determining
the component. As described above, the maps β are also given by dicts mapping
indices to indices.

Note, however, that starting with Sage 9, the numbering of profiles can (and
will!) change between every sage session!

We can now calculate the degeneration graph.

Algorithm 5.3 (Degeneration Graph).

Step 1: Calculate all BICs in a GeneralisedStratum.
Step 2: Separate these into top and bottom component.
Step 3: Calculate all BICs in every top and bottom component.
Step 4: Calculate top_to_bic and bot_to_bic for each BIC in the Stratum

(as dictionaries mapping an index of bics of top/bot to an index of bics
of the stratum).

In particular, this yields a recursive algorithm for the EmbeddedLevelGraph of
an arbitrary product of BICs in the stratum as follows:

Algorithm 5.4 (Building a Graph from BICs).

INPUT: Product of BICs.
OUTPUT: EmbeddedLevelGraph.
Step 1: Choose a BIC B from the product (e.g. the first).
Step 2: Find the preimages of the other BICs in the product under top_to_bic

and bot_to_bic of B.
This gives (possibly multiple) products of BICs in the top and bottom

stratum of B.
Step 3: Apply to product in top an bottom to get two EmbeddedLevelGraphs.
Step 4: Return the clutching of the top and bottom graph.
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Figure 3. The degeneration graph of ΩM2(2).

Moreover, we can generate the “lookup list”, consisting of the non-empty profiles
in each stratum.

Before we discuss the details of the implementation, we give an overview of the
relevant interface and some examples.

5.1. Interface and Examples. Let X be a GeneralisedStratum. To access an
EmbeddedLevelGraph inside X, we need to provide an enhanced profile, that is

• a tuple of indices of X.bics, the profile, and
• an int as a choice of component, in case this profile is reducible.

The relevant methods are

• X.lookup with argument a profile tuple and returns a list of all the
EmbeddedLevelGraphs matching this profile (even if the profile is irreducible,
this returns a list of length 1!).
• X.lookup_graph with argument a profile tuple and optional argument a

choice of connected component to be provided as an int index of X.lookup,
which defaults to 0.
• X.lookup_list is a nested list, where X.lookup_list[codim] is a list of

profiles of length codim (i.e. the corresponding level graph is of codimension
codim).
• X.enhanced_profiles_of_length with argument an int returns a list of

all enhanced profiles of this length.

Example 5.5. Let us consider the stratum ΩM2(2). The degeneration graph
consists of the three graphs depicted in Figure 3

In diffstrata, the situation is as follows. We first generate the stratum and
may then inspect the BICs:

sage: X=Stratum((2,))

sage: X.bics # order might differ

[EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)

],{1: 0, 2: 0, 3: 2, 4: -2, 5: -2},[0, -1],True),dmp={3: (0, 0)},

dlevels={0: 0, -1: -1}),
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EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3]],[(1, 3)],{1: 0, 2: 2,

3: -2},[0, -1],True),dmp={2: (0, 0)},dlevels={0: 0, -1: -1})]

As these are EmbeddedLevelGraphs, we may use the explain method to relate them
to Figure 3:

sage: X.bics[0].explain()

LevelGraph embedded into stratum Stratum: (2,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 0

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 2 on vertex 1 on level 1

Finally, we have 2 edges. More precisely:

* 2 edges between vertex 0 (on level 0) and vertex 1 (on level 1) with

prongs 1 and 1.

sage: X.bics[1].explain()

LevelGraph embedded into stratum Stratum: (2,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 1

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 2 on vertex 1 on level 1

Finally, we have one edge. More precisely:

* one edge between vertex 0 (on level 0) and vertex 1 (on level 1) with

prong 1.

The profiles are stored in the lookup_list of X:

sage: X.lookup_list

[[()], [(0,), (1,)], [(1, 0)]]

We can inspect the graph in a profile:

sage: X.lookup_graph((1,0)) # this might be (0,1) !!

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1], [2, 3, 4], [5, 6, 7]],[(1,

4), (2, 6), (3, 7)],{1: 0, 2: 0, 3: 0, 4: -2, 5: 2, 6: -2, 7: -2},[0,

-1, -2],True),dmp={5: (0, 0)},dlevels={0: 0, -1: -1, -2: -2})

sage: X.lookup((1,0)) # list

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1], [2, 3, 4], [5, 6, 7]],[(1,

4), (2, 6), (3, 7)],{1: 0, 2: 0, 3: 0, 4: -2, 5: 2, 6: -2, 7: -2},[0,

-1, -2],True),dmp={5: (0, 0)},dlevels={0: 0, -1: -1, -2: -2})]

Again, the explain method relates this graph to Figure 3:

sage: X.lookup_graph((1,0)).explain()

LevelGraph embedded into stratum Stratum: (2,)

with residue conditions: []
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with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 0

On level 2:

* A vertex (number 2) of genus 0

The marked points are on level 2.

More precisely, we have:

* Marked point (0, 0) of order 2 on vertex 2 on level 2

Finally, we have 3 edges. More precisely:

* one edge between vertex 0 (on level 0) and vertex 1 (on level 1) with

prong 1.

* 2 edges between vertex 1 (on level 1) and vertex 2 (on level 2) with

prongs 1 and 1.

Note that we should always keep Remark 5.2 in mind when working with (enhanced)
profiles! We convince ourselves, that the profile works as described, i.e. are
compatible with the maps δi:

sage: G=X.lookup_graph((1,0))

sage: G.delta(1)

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [4, 5]],[(1, 4)],{1: 0, 4: -2,

5: 2},[0, -1],True),dmp={5: (0, 0)},dlevels={0: 0, -1: -1})

sage: G.delta(1).is_isomorphic(X.bics[1])

True

sage: G.delta(2)

EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[2, 3], [5, 6, 7]],[(2, 6), (3, 7)

],{2: 0, 3: 0, 5: 2, 6: -2, 7: -2},[0, -2],True),dmp={5: (0, 0)},

dlevels={0: 0, -2: -1})

sage: G.delta(2).is_isomorphic(X.bics[0])

True

We can also list the enhanced profiles and convince ourselves that all profiles are
irreducible in this case.

sage: X.enhanced_profiles_of_length(0)

(((), 0),)

sage: X.enhanced_profiles_of_length(1)

(((0,), 0), ((1,), 0))

sage: X.enhanced_profiles_of_length(2)

(((1, 0), 0),)

Note that the empty profile always corresponds to the 0-level graph, smooth_LG:

sage: X.lookup_graph(()) == X.smooth_LG

True

While the profile gives a good first approximation of an EmbeddedLevelGraph,
there can be distinct level graphs sharing the same profile.

Example 5.6. Consider the following level graphs in the boundary of ΩM3(4)
depicted in Figure 4.

In light of Remark 5.2, it is always a good idea to use intrinsic properties of the
graphs to safely retrieve their profile:
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G =

1

1 1

1 3

4

H =

1

1

1

1

3

4

δ1(H) =
δ1(G) =

1

1

1 1

4

δ2(H) =
δ2(G) =

2

1 3

4

Figure 4. An example of a reducible profile: the two non-
isomorphic three-level graphs G and H have the same two-level
graphs as undegenerations.

sage: X=GeneralisedStratum([Signature((4,))])

sage: left_graph = [ep for ep in X.enhanced_profiles_of_length(2)

....: if set(X.lookup_graph(*ep).LG.prongs.values()) == set([1,3]) \

....: and len(X.lookup_graph(*ep).LG.edges) == 4 \

....: and not X.lookup_graph(*ep).LG.has_long_edge()]

sage: assert len(left_graph) == 1

sage: left_graph = left_graph[0]

sage: right_graph = [ep for ep in X.enhanced_profiles_of_length(2)

....: if set(X.lookup_graph(*ep).LG.prongs.values()) == set([1,3]) \

....: and len(X.lookup_graph(*ep).LG.edges) == 3 \

....: and X.lookup_graph(*ep).LG.has_long_edge()]

sage: assert len(right_graph) == 1

sage: right_graph = right_graph[0]

We check that the undegenerations agree as claimed:

sage: assert right_graph[0] == left_graph[0] # compare profiles

sage: assert X.lookup_graph(*right_graph).delta(1).is_isomorphic(X.bics[

right_graph[0][0]]) # check profiles are compatible with delta as

claimed

sage: assert X.lookup_graph(*right_graph).delta(2).is_isomorphic(X.bics[

right_graph[0][1]])

sage: assert X.lookup_graph(*left_graph).delta(1).is_isomorphic(X.bics[

left_graph[0][0]])

sage: assert X.lookup_graph(*left_graph).delta(2).is_isomorphic(X.bics[

left_graph[0][1]])

We confirm that the found graphs correspond to Figure 4:

sage: X.lookup_graph(*left_graph).explain()

LevelGraph embedded into stratum Stratum: (4,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 0
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On level 2:

* A vertex (number 2) of genus 0

The marked points are on level 2.

More precisely, we have:

* Marked point (0, 0) of order 4 on vertex 2 on level 2

Finally, we have 4 edges. More precisely:

* 2 edges between vertex 0 (on level 0) and vertex 1 (on level 1) with

prongs 1 and 1.

* 2 edges between vertex 1 (on level 1) and vertex 2 (on level 2) with

prongs 3 and 1.

sage: X.lookup_graph(*right_graph).explain()

LevelGraph embedded into stratum Stratum: (4,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 1

On level 2:

* A vertex (number 2) of genus 0

The marked points are on level 2.

More precisely, we have:

* Marked point (0, 0) of order 4 on vertex 2 on level 2

Finally, we have 3 edges. More precisely:

* one edge between vertex 0 (on level 0) and vertex 1 (on level 1) with

prong 1.

* one edge between vertex 1 (on level 1) and vertex 2 (on level 2) with

prong 3.

* one edge between vertex 0 (on level 0) and vertex 2 (on level 2) with

prong 1.

One can (and should) inspect the enhanced profile stored in right_graph and
left_graph but, as mentioned above, the actual numbers will differ between sage

sessions, while the above code should always retrieve the same graphs.
For the record, in ΩM3(4), among the 19 three-level graphs, 15 have an irreducible

profile, while there are two pairs sharing a profile:

sage: len(X.enhanced_profiles_of_length(2))

19

sage: len([p for p in X.lookup_list[2] if len(X.lookup(p)) == 1])

15

sage: len([p for p in X.lookup_list[2] if len(X.lookup(p)) == 2])

2

We end this section with a brief summary of the various methods around unde-
generation. They come, broadly speaking, in two groups: the first are methods of
EmbeddedLevelGraph and thus use the explicit graphs; the second are methods of
GeneralisedStratum and deal exclusively with (enhanced) profiles.

In EmbeddedLevelGraph:

• squish_vertical returns the EmbeddedLevelGraph where the supplied
level-crossing has been squished.
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• delta returns the BIC (as an EmbeddedLevelGraph) where all but the
supplied level-crossings have been squished.

In GeneralisedStratum:

• squish may be applied to an enhanced profile and performs the vertical
squish in the language of enhanced profiles.
• is_degeneration may be applied to two enhanced profiles and answers if

the first is a degeneration of the second.
• lies_over may be applied to two BICs i and j (as indices of bics, i.e.
ints) and answers if (i, j) is a non-empty profile.
• merge_profiles takes two profiles (i.e. tuples of indices of bics) and

merges them with respect to the ordering of lies_over.
• common_degenerations may be applied to a pair of enhanced profiles and

returns a list of enhanced profiles that occur as common degenerations.
• codim_one_degenerations may be applied to an enhanced profile and

returns a list of enhanced profiles corresponding to all degenerations with
exactly one more level.
• codim_one_common_undegenerations may be applied to three enhanced

profiles and gives a list of codimension one degenerations of the third, that
are also degenerations of the other two enhanced profiles provided.
• minimal_common_undegeneration given two enhanced profiles return the

enhanced profile of the graph of minimal dimension that is a common
degeneration of both.

More details can be found in the docstrings of the methods.
We now explain the relevant steps of the implementation in more detail.

5.2. Generating all BICs. The generation of all BICs is again accomplished
by diffstrata in several steps: first, a list of all combinatorially possible 2-
level graphs is generated for each component of the stratum, then the GRC is
checked for each graph and these are then combined to give all possible BICs for a
GeneralisedStratum. Finally, they are sorted by isomorphism class and checked
against the R-GRC.

For a GeneralisedStratum X, the BICs are automatically generated (as a list
of EmbeddedLevelGraphs) and accessed through X.bics. Note that in Sage 9 the
numbering of this list changes with every sage session. The BICs are generated by
GeneralisedStratum.gen_bics().

sage: X=GeneralisedStratum([Signature((0,0))])

sage: X.bics

[EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1], [2, 3, 4]],[(1, 4)],{1: 0, 2:

0, 3: 0, 4: -2},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0: 0,

-1: -1})]

sage: X=GeneralisedStratum([Signature((2,))])

sage: X.bics # order will change!

[EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)

],{1: 0, 2: 0, 3: 2, 4: -2, 5: -2},[0, -1],True),dmp={3: (0, 0)},

dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3]],[(1, 3)],{1: 0, 2: 2,

3: -2},[0, -1],True),dmp={2: (0, 0)},dlevels={0: 0, -1: -1})]

sage: assert X.bics == X.gen_bic()
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Combinatorial enumeration. The combinatorial enumeration occurs inside the bic

module of diffstrata. More precisely, the raw list of LevelGraphs is generated by
bic.bic_alt_noiso (which needs to be provided a Signature or signature tuple
as an argument).

sage: from admcycles.diffstrata.bic import bic_alt_noiso

sage: bic_alt_noiso((1,1))

[LevelGraph([1, 1],[[3], [1, 2, 4]],[(3, 4)],{1: 1, 2: 1, 4: -2, 3: 0},[0,

-1],True),

LevelGraph([2, 0],[[3], [1, 2, 4]],[(3, 4)],{1: 1, 2: 1, 4: -4, 3: 2},[0,

-1],True),

LevelGraph([1, 1, 0],[[3], [4], [1, 2, 5, 6]],[(3, 5), (4, 6)],{1: 1, 2: 1,

5: -2, 6: -2, 3: 0, 4: 0},[0, 0, -1],True),

LevelGraph([1, 1, 0],[[4], [3], [1, 2, 5, 6]],[(3, 5), (4, 6)],{1: 1, 2: 1,

5: -2, 6: -2, 3: 0, 4: 0},[0, 0, -1],True),

LevelGraph([1, 0],[[3, 4], [1, 2, 5, 6]],[(3, 5), (4, 6)],{1: 1, 2: 1, 5:

-2, 6: -2, 3: 0, 4: 0},[0, -1],True)]

Note that in Sage 9 the ordering of these is no longer deterministic, i.e. the BICs
will be produced in a different ordering in every sage session.

To describe the algorithm, we denote by z the number of zeros and by z the
corresponding vector of these zeros. By analogy, we denote by p the number of poles,
by p the vector of poles and by n the number of marked points (the marked points
are all of order zero and thus do not need to be distinguished here). Furthermore,
we denote the associated genus by g.

We recall some elementary bounds: We denote the maximal sum of genera of
vertices on bottom level by g_bot_max and the minimal sum of genera of vertices
on top level by g_top_min. As every top-level vertex v with gv = 0 requires at
least one pole, g_bot_max = g − 1 and g_top_min = 1 for holomorphic strata and
correspondingly g_bot_max = g and g_top_min = 0 for meromorphic strata.

We now summarise the actual algorithm. The steps correspond mostly to nested
loops.

Algorithm 5.7 (BIC Generation).

Step 1: We begin by iterating over bot_comp_len, the possible number of
vertices on bottom level. As every bottom-level vertex needs at minimum
either a zero or (if it’s genus 0 and has only one edge going up) two marked
points, we note that z + n is an upper bound for bot_comp_len.

Step 2: Next, we distribute the zeros between upper and lower level by
iterating over all 2-length partitions of z (and also include the case where
all zeros are on bottom level), ensuring at each step that we have enough
zeros to satisfy bot_comp_len.

Step 3: The zeros are distributed onto the bottom components. If there are
no marked points, every component needs at least one zero, otherwise we are
more flexible. We use the appropriate helper function, _distribute_fully
(partitions composed with permutations) or _distribute_points (essen-
tially a powerset, implemented via computing b-ary representations of num-
bers up to bl and using this to place the points on the components).

Step 4: The genus is partitioned into the contribution from the top vertices,
the bottom vertices and the graph. For this, we iterate over total_g_bot

and total_g_bot (using the bounds described above).
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Step 5: total_g_bot is distributed onto the bottom components. For this,
we use the helper function _distribute_part_ordered, which is essentially
a wrapper for partitions of a fixed length filled with zeros. At this point,
we have added all zeros and will have to add (at least) double poles for the
edges. Thus, if the orders on any vertex v sum up to less than 2gv, we can
move on to the next iteration.

Step 6: We now distribute the poles p. This is again achieved via 2-length
partitions. Note that every g = 0 vertex on top needs at least one pole (to
compensate the edge(s) going down), so this gives an immediate check for
the partitions.

Step 7: Next, we distribute the poles among the bottom components. As
poles are optional, we use _distribute_points. At this point, we also save
the difference of 2gv − 2 and the orders distributed to v, i.e. the “space”
left for half-edges. We test that this is at least −2 on each component, so
that there is potential for at least one edge going up for every vertex.

Step 8: Now we consider the top level for the first time. We iterate through
the number of top-level vertices, top_comp_len, which is bounded by the
sum of total_g_bot and the number of poles on top-level. As we know
the number of vertices and the distribution of genus, the Euler formula
determines the number of edges, num_of_edges. This gives a “global” check
for the “spaces” left on the bottom components: they must sum up to
−2 · num_of_edges.

Step 9: Similar to above, we now distribute genus, poles and zeros on top
level: we use again _distribute_part_ordered and _distribute_points,
as any zeros and poles are optional on top-level. We also run the obvious
tests on the orders and record the spaces on top (there are much fewer
constraints here, as the spaces may well be zero).

Step 10: We now place the half-edges. We again start on bottom-level,
because the poles give stronger constraints. Moreover, the half-edge orders
on bottom determine those on top. The distribution of the half-edges into the
spaces is accomplished by _place_legs_on_bot, which uses partitions to
recursively place the poles, and _place_legs_on_top, which works similar
but uses the orders distributed on bottom-level.

Step 11: To assert that the graph we have created is connected, we create a
Sage Graph consisting of the edges we have placed. Note that every vertex
is attached to an edge and we don’t care for multi-edges when checking
connectedness, so a very basic Sage Graph suffices here.

Step 12: The only thing missing are the marked points. These are distributed
via _distribute_points among all the vertices. We now check for stability.

Step 13: In the final step, the legs are renumbered for consistency and the
data is used to create a LevelGraph. At this point, we check the GRC
(via LevelGraph.is_legal()). We also remove duplicates from the list of
generated graphs.

While we do not claim that algorithm is optimal, it certainly runs in a reasonable
time even for large strata:

sage: from admcycles.diffstrata.bic import bic_alt_noiso

sage: %time len(bic_alt_noiso((1,1,1,1)))

CPU times: user 678 ms, sys: 9.38 ms, total: 688 ms
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Wall time: 691 ms

384

Uniting LevelGraphs. The BICs of a GeneralisedStratum are the products of the
BICs inside each component, subject to the residue conditions. Moreover, if there
are several connected components, we also need to include the smooth stratum on
each level.

Therefore, gen_bic starts by running bic_alt_noiso on each connected compo-
nent and generating the dmp for the embedding into the enveloping stratum. This is
possible, because the BIC algorithm described above places the points on specific
legs2: on each BIC, the i-th point of the signature is the point i+ 1.

Then, potentially the smooth_LG of each component is added and we iterate over
the product of these EmbeddedLevelGraphs. Building the “product graph” is now
simply a renumbering issue and accomplished by unite_embedded_graphs.

The result is a list of valid EmbeddedLevelGraphs (dmp is now surjective), on
which we can check the R-GRC via is_legal. Finally, we sort this list into
isomorphism classes.

All BICs of a stratum are stored in the list bics, which is generated automatically
on first call:

sage: P=GeneralisedStratum([Signature((0,0)),Signature((0,))])

sage: P.bics # order might change

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 1],[[1], [2, 3, 4], [5]],[(1, 4)

],{1: 0, 2: 0, 3: 0, 4: -2, 5: 0},[0, -1, 0],True),dmp={2: (0, 0), 3:

(0, 1), 5: (1, 0)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 1],[[1], [2, 3, 4], [5]],[(1, 4)

],{1: 0, 2: 0, 3: 0, 4: -2, 5: 0},[0, -1, -1],True),dmp={2: (0, 0), 3:

(0, 1), 5: (1, 0)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1, 2], [3]],[],{1: 0, 2: 0, 3:

0},[0, -1],True),dmp={1: (0, 0), 2: (0, 1), 3: (1, 0)},dlevels={0: 0, -1

: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1, 2], [3]],[],{1: 0, 2: 0, 3:

0},[-1, 0],True),dmp={1: (0, 0), 2: (0, 1), 3: (1, 0)},dlevels={-1: -1,

0: 0})]

5.3. Generating Profiles and Graphs. We now make Algorithm 5.4 more ex-
plicit.

Listing all Profiles. We begin by constructing the lookup_list of all profiles in a
GeneralisedStratum. The codimension 0 and 1 lists have already been treated:
the first consists of the empty profile, the second of (the indices of) all BICs.

The key tool for working with profiles are the maps top_to_bic and bot_to_bic

described above. These are implemented as dictionary objects.
More precisely, let X be aGeneralisedStratum. Then, for each index i of

X.bics, X.DG.top_to_bic(i) is a dict mapping indices of X.bics[i].top.bics
to indices of X.bics. Similarly, X.DG.bot_to_bic(i) is a dict mapping indices of
X.bics[i].bot.bics to indices of X.bics.

Example 5.8. We illustrate this in ΩM2(2), cf. Example 5.5 and note Remark 5.2:

2This is only true for the LevelGraphs generated on a single component. In the final
EmbeddedLevelGraph, the legs will be renumbered and this assumption is no longer valid!
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sage: X=Stratum((2,))

sage: X.bics # order might differ

[EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)

],{1: 0, 2: 0, 3: 2, 4: -2, 5: -2},[0, -1],True),dmp={3: (0, 0)},

dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3]],[(1, 3)],{1: 0, 2: 2,

3: -2},[0, -1],True),dmp={2: (0, 0)},dlevels={0: 0, -1: -1})]

sage: X.DG.top_to_bic(0)

{0: 1}

sage: X.DG.bot_to_bic(0)

{}

sage: X.DG.top_to_bic(1)

{}

sage: X.DG.bot_to_bic(1)

{0: 0}

sage: X.lookup_list[0]

[()]

sage: X.lookup_list[1]

[(0,), (1,)]

sage: X.lookup_list[2]

[(1, 0)]

For completeness, we list the divisors of the top and bottom strata:

sage: X.bics[0].top.bics

[EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1], [2, 3, 4]],[(1, 4)],{1: 0, 2:

0, 3: 0, 4: -2},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0: 0,

-1: -1})]

sage: X.bics[0].bot.bics

[]

sage: X.bics[1].top.bics

[]

sage: X.bics[1].bot.bics

[EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6]],[(2, 5), (3,

6)],{1: -2, 2: 0, 3: 0, 4: 2, 5: -2, 6: -2},[0, -1],True),dmp={1: (0,

1), 4: (0, 0)},dlevels={0: 0, -1: -1})]

Note that these are of course not graphs in X (there are more marked points in dmp!)
but instead the top and bot strata of the BICs:

sage: X.bics[0].top

LevelStratum(sig_list=[Signature((0, 0))],res_cond=[],leg_dict={1: (0, 0), 2

: (0, 1)})

sage: X.bics[0].bot

LevelStratum(sig_list=[Signature((2, -2, -2))],res_cond=[[(0, 1), (0, 2)]],

leg_dict={3: (0, 0), 4: (0, 1), 5: (0, 2)})

sage: X.bics[1].top

LevelStratum(sig_list=[Signature((0,))],res_cond=[],leg_dict={1: (0, 0)})

sage: X.bics[1].bot

LevelStratum(sig_list=[Signature((2, -2))],res_cond=[[(0, 1)]],leg_dict={2:

(0, 0), 3: (0, 1)})
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For examples of top_to_bic and bot_to_bic failing to be injective, see Exam-
ple 5.22 and Example 8.1 below.

Remark 5.9. Similar to top_to_bic and bot_to_bic there is also the function
X.DG.middle_to_bic describing degenerations of the middle levels of 3-level graphs.
In light of Remark 3.8, these give all ways of recursively extending a profile.

While middle_to_bic is not needed for generating all EmbeddedLevelGraphs it
is essential for pulling back classes from a level, cf. Section 8.

With the help of top_to_bic and bot_to_bic, it is not difficult to construct the
lookup_list recursively:

Algorithm 5.10 (Profile Generation).

Step 1: Construct lookup_list[0] and lookup_list[1].
Step 2: Constructing profiles of length l + 1 ≥ 2: for every profile p =

(p1, . . . , pl) of length l, add any profile of the form (p0, . . . , pl), where p0

lies in the top_to_bic-image of p1. If l > 1, i.e. p1 6= pl, we also add the
profiles (p1, . . . , pl+1), where pl+1 lies in the bot_to_bic-image of pl.

Step 3: Duplicates are removed and the list constructed in the previous
step is appended to lookup_list.

Step 4: Steps 2 and 3 are repeated until the list produced in Step 3 is empty.

Remark 5.11. A few notes on the validity of the above algorithm:

(1) The algorithm terminates, as there are no graphs with more levels than the
dimension of the stratum. Indeed, each level increases the codimension of
the corresponding boundary contribution by 1 and thus also the dimension
of the levels must eventually decrease and they will stop having BICs.

(2) The entries pi of a profile are distinct, cf. [CMZ20, §5]. Moreover, a BIC
can appear only as a top or a bottom degeneration of another BIC. Hence
p0 and pl cannot have been contained in the previous profile.

(3) In the case l = 1, the bottom-level degenerations (p1, p2) of p1 are also
obtained as top-level degenerations of p2.

All that is needed in the above construction are the maps top_to_bic and
bot_to_bic, which are constructed as follows (for top_to_bic(i), bot_to_bic(i)
uses the same algorithm, with the obvious changes).

Algorithm 5.12 (Construction of top_to_bic and bot_to_bic).

Step 1: Loop through all BICs X.bics[i].top.
We denote X.bics[i].top.bics[j] by Bt.

Step 2: Clutch Bt to X.bics[i].bot to obtain a (3-level) graph G.
Step 3: Squish the bottom level of G to obtain the BIC G.delta(1).
Step 4: Go through the list X.bics and check which of these is isomorphic

to G.delta(1). The index of this graph (in X.bics) is stored as the image
of j in top_to_bic(i).

Remark 5.13. The implementation includes a small optimisation: Using the fact
that a BIC can only appear as a top- or a bottom-level degeneration of another BIC,
we remove the BICs used for top_to_bic(i) from the candidates for bot_to_bic(i)
and vice versa.

Two operations are used in the above algorithm: Clutching and delta. Clutching
and splitting graphs is a delicate issue and is described in more detail in Section 8.
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We briefly describe the process of squishing graphs and the implementation of
delta.

While we may apply delta to an EmbeddedLevelGraph, the actual work happens
on the underlying LevelGraph (the dmp is not changed by applying delta).

On the LevelGraph, delta is implemented by consecutively contracting all levels,
except for one. Because the graph has fewer levels on each iteration, it is easier to
keep track of the numbering when iterating through the levels starting at bottom
level.

Remark 5.14. Every LevelGraph object should be considered immutable. In
particular, all these operations do not change the LevelGraph, but instead always
return a new object.

Squishing a single level is achieved by squish_vertical(i).
While level-crossings can be very non-trivial, squishing horizontal edges is straight-

forward. There are only two possibilities:

(1) The edge is a loop. In this case, remove the edge and increase the genus of
the vertex by one.

(2) The edge connects two distinct vertices v1 and v2. In this case, remove the
edge, add the genus of v2 to the genus of v1 and all the legs of v2 to the legs
of v1 and remove v2.

We can fall back to this for vertical squishing:

Algorithm 5.15 (Vertical Squishing).

Step 1: Determine the set of vertices vv on the next lower level, as well as
the edges, ee, passing from level i to the next lower level.

Step 2: Make a copy of the information needed to generate the LevelGraph

(i.e. genera, legs, edges, pole orders and levels).
Step 3: Raise the level of every vertex in vv to i in the copied data.
Step 4: Create a new LevelGraph from this data.
Step 5: Squish each of the (now horizontal!) edges in ee on this graph.

Remark 5.16. This is not very efficient, because a new graph has to be created
for every edge crossing the level. However, this implementation can still be found
in the method LevelGraph.squish_vertical_slow. The actual squish_vertical
avoids this, by reimplementing the book-keeping that is avoided by the recursive
graph creation, creates the “correct” data in one go and thus creates only one new
LevelGraph.

Example 5.17. We briefly illustrate squishing a 4-level graph and how this relates
to the numbering of the profile. Note that we use any so that we make no assumptions
about the irreducibility of the profiles.

sage: X=GeneralisedStratum([Signature((4,))])

sage: p = X.enhanced_profiles_of_length(4)[0][0]

sage: g = X.lookup_graph(p)

sage: assert any(g.squish_vertical(0).is_isomorphic(G)

for G in X.lookup(p[1:]))

sage: assert any(g.squish_vertical(1).is_isomorphic(G)

for G in X.lookup(p[:1]+p[2:]))

sage: assert any(g.squish_vertical(2).is_isomorphic(G)

for G in X.lookup(p[:2]+p[3:]))
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sage: assert any(g.squish_vertical(3).is_isomorphic(G)

for G in X.lookup(p[:3]))

Remark 5.18. There are some subtleties regarding the level numbering.

(1) The arguments of delta and squish_vertical are shifted by one, that is
delta(i) squishes all level passages except the one from i− 1 to i, while
squish_vertical(i) squishes the level passage from i to i+ 1.

(2) Note that the squish_vertical method exists both for LevelGraphs and
EmbeddedLevelGraphs. Of course, the EmbeddedLevelGraph version should
be used (the level dictionary needs to be adapted) and the argument is the
relative level number (while the LevelGraph version requires the internal
level number).

Building Graphs from Profiles. Now that we have generated all possible profiles, the
question remains how to build the graph(s) associated to a profile. This is achieved
by recursive clutching. The idea is to pick a BIC B from the profile and sort the
remainder into profiles in B> an B⊥, build the graphs there and then clutch these
together.

More precisely, the lookup method of a GeneralisedStratum X is implemented,
for a profile (p0, . . . , pl), as follows:

Algorithm 5.19 (Graph lookup).

Step 1: Denote by B the BIC with index p0 in X.bics.
Step 2: Create a new nested list bot_lists.
Step 3: For every j in the (remaining) profile (p1, . . . , pl), find all occurrences

of j in the values of bot_to_bic.
Step 4: For each occurrence of j in the values of bot_to_bic, append the

corresponding key to (a copy of) each list in bot_lists.
Step 5: Replace bot_lists by this nested list and continue the loop at Step

3.
Step 6: Apply B.bot.lookup to each profile in bot_lists to obtain a list

of EmbeddedLevelGraphs in B.bot.
Step 7: Clutch each of these graphs to the graph B.top to obtain a list of

EmbeddedLevelGraphs in X.
Step 8: Return this list, sorted by isomorphism classes.

As mentioned above, clutching and splitting are subtle issues and will be addressed
in detail in Section 8.

Remark 5.20. The “branching out” in Step 4 can cause reducible profiles (if
bot_to_bic is not injective and the clutching also results in non-isomorphic graphs
in X).

The “inverse” dictionaries of top_to_bic and bot_to_bic needed in Step 3 are
also readily available: Revisiting Example 5.8, we see that

sage: X.DG.top_to_bic(0)

{0: 1}

sage: X.DG.top_to_bic_inv(0)

{1: [0]}

sage: X.DG.bot_to_bic(0)

{}
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sage: X.DG.bot_to_bic_inv(0)

{}

Obviously, the values of top_to_bic_inv and bot_to_bic_inv have to be lists,
as the dictionaries are not necessarily injective.

Now, lookup_graph simply returns elements of the list generated by lookup

(by default the first).

Remark 5.21. Note that the lookup algorithm actually checks both top_to_bic

and bot_to_bic and thus works for an arbitrary permutation of the profile (cf.
[CMZ20, Prop. 5.1]).

As the ordering given by delta is important at many other places, for useful
comparison and caching, it makes sense to restrict to the “ordered” profile.

For example (note that the profile values are “arbitrary”, cf. Remark 5.2):

sage: X=Stratum((4,))

sage: X.lookup_list[2][0]

(2, 7)

sage: X.lookup((2,7))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1], [2, 3, 4, 5], [6, 7, 8,

9]],[(1, 5), (2, 7), (3, 8), (4, 9)],{1: 0, 2: 0, 3: 0, 4: 0, 5: -2, 6:

4, 7: -2, 8: -2, 9: -2},[0, -1, -2],True),dmp={6: (0, 0)},dlevels={0:

0, -1: -1, -2: -2})]

sage: X.lookup((7,2))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1], [2, 3, 4, 5], [6, 7, 8,

9]],[(3, 7), (4, 8), (5, 9), (1, 2)],{1: 0, 2: -2, 3: 0, 4: 0, 5: 0, 6:

4, 7: -2, 8: -2, 9: -2},[0, -1, -2],True),dmp={6: (0, 0)},dlevels={0:

0, -1: -1, -2: -2})]

sage: X.lookup((7,2))[0].is_isomorphic(X.lookup((2,7))[0])

True

However, lookup_graph does not permit this and requires the profile to be ordered:

sage: X.lookup_graph((2,7))

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1], [2, 3, 4, 5], [6, 7, 8,

9]],[(1, 5), (2, 7), (3, 8), (4, 9)],{1: 0, 2: 0, 3: 0, 4: 0, 5: -2, 6:

4, 7: -2, 8: -2, 9: -2},[0, -1, -2],True),dmp={6: (0, 0)},dlevels={0:

0, -1: -1, -2: -2})

sage: X.lookup_graph((7,2))

5.4. Checking Degenerations. Clearly, for a graph Γ′ to be a degeneration of
Γ, it is necessary for the profile of Γ to be an (ordered) subset of the profile of Γ′.
However, if Γ is reducible, this criterion is no longer sufficient.

To check whether a graph associated to an enhanced profile is the degeneration of
the graph associated to another enhanced profile, diffstrata provides the method
is_degeneration:

sage: X=Stratum((2,))

sage: X.is_degeneration(((1,), 0), ((), 0))

True

sage: X.is_degeneration(((1,), 0), ((0,), 0))

False

sage: X.is_degeneration(((), 0), ((0,), 0))
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False

Note that the arguments are enhanced profiles, i.e. tuples of tuples.
Before describing the implementation, we continue to examine some of the

phenomena in ΩM3(4), the minimal stratum in genus 3, continuing Example 5.6.
Keeping Remark 5.2 in mind, we nonetheless work with concrete enhanced profiles

to ease readability.

Example 5.22. We revisit the situation of Example 5.6. It is not difficult to find
the BICs δ1(G) and δ2(G) in the list of (8) BICs in ΩM3(4). In our case, we see
that δ1(G) corresponds to BIC 1 and δ2(G) corresponds to BIC 6 (note the values
of the prongs!).

sage: X=Stratum((4,))

sage: len(X.bics)

8

sage: X.bics[1].explain()

LevelGraph embedded into stratum Stratum: (4,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 1

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 4 on vertex 1 on level 1

Finally, we have 2 edges. More precisely:

* 2 edges between vertex 0 (on level 0) and vertex 1 (on level 1) with

prongs 1 and 1.

sage: X.bics[6].explain()

LevelGraph embedded into stratum Stratum: (4,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 2

On level 1:

* A vertex (number 1) of genus 0

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 4 on vertex 1 on level 1

Finally, we have 2 edges. More precisely:

* 2 edges between vertex 0 (on level 0) and vertex 1 (on level 1) with

prongs 3 and 1.

Consequently, the profile (1, 6) is reducible and contains the graphs G and H. Here,
H has enhanced profile ((1, 6), 0) and G is ((1, 6), 1) (note the genera!):

sage: X.lookup((1,6))

[EmbeddedLevelGraph(LG=LevelGraph([1, 1, 0],[[1, 2], [3, 4], [5, 6, 7]],[(2,

4), (3, 6), (1, 7)],{1: 0, 2: 0, 3: 2, 4: -2, 5: 4, 6: -4, 7: -2},[0,

-1, -2],True),dmp={5: (0, 0)},dlevels={0: 0, -1: -1, -2: -2}),
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Figure 5. The four-level graphs degenerating from the reducible
profile (1, 6). From left to right: ((5,1, 6), 0), ((5, 1,

6), 1), ((1, 4, 6), 0), ((1, 3, 6), 0) and ((1, 3, 6), 1).
Note that (1, 4, 6) is irreducible.

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1, 2], [3, 4, 5, 6], [7, 8,

9]],[(1, 5), (2, 6), (3, 8), (4, 9)],{1: 0, 2: 0, 3: 2, 4: 0, 5: -2, 6:

-2, 7: 4, 8: -4, 9: -2},[0, -1, -2],True),dmp={7: (0, 0)},dlevels={0:

0, -1: -1, -2: -2})]

We see the reducibility reflected in top_to_bic and bot_to_bic (illustrated best
by their inverse dictionaries):

sage: X.DG.bot_to_bic_inv(1)

{3: [0, 2], 6: [1, 4, 7], 0: [3], 4: [5], 2: [6]}

sage: X.DG.top_to_bic_inv(6)

{1: [0, 4], 4: [1], 5: [2], 3: [3]}

The four-level graphs degenerating from this profile can be seen in Figure 5. Applying
a compact-type degeneration on top level, the profile remains reducible:

sage: X.lookup((5,1,6))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 1, 0],[[1], [2, 3, 4], [5, 6], [7,

8, 9]],[(1, 4), (3, 6), (5, 8), (2, 9)],{1: 0, 2: 0, 3: 0, 4: -2, 5: 2,

6: -2, 7: 4, 8: -4, 9: -2},[0, -1, -2, -3],True),dmp={7: (0, 0)},

dlevels={0: 0, -1: -1, -2: -2, -3: -3}),

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0, 0],[[1], [2, 3, 4], [5, 6, 7,

8], [9, 10, 11]],[(1, 4), (2, 7), (3, 8), (5, 10), (6, 11)],{1: 0, 2: 0,

3: 0, 4: -2, 5: 2, 6: 0, 7: -2, 8: -2, 9: 4, 10: -4, 11: -2},[0, -1,

-2, -3],True),dmp={9: (0, 0)},dlevels={0: 0, -1: -1, -2: -2, -3: -3})]

We thus see the necessity of considering the enhanced profile when considering
degenerations:

sage: X.is_degeneration(((5,1,6),0), ((1,6),0))

True

sage: X.is_degeneration(((5,1,6),0), ((1,6),1))

False

sage: X.is_degeneration(((5,1,6),1), ((1,6),0))
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False

sage: X.is_degeneration(((5,1,6),1), ((1,6),1))

True

Also, G admits a compact-type degeneration on middle level that is not possible in
H for stability reasons. The profile (1, 4, 6) is irreducible:

sage: X.lookup((1,4,6))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0, 0],[[1, 2], [3, 4, 5], [6, 7,

8], [9, 10, 11]],[(1, 4), (2, 5), (3, 8), (6, 10), (7, 11)],{1: 0, 2: 0,

3: 2, 4: -2, 5: -2, 6: 2, 7: 0, 8: -4, 9: 4, 10: -4, 11: -2},[0, -1,

-2, -3],True),dmp={9: (0, 0)},dlevels={0: 0, -1: -1, -2: -2, -3: -3})]

sage: X.is_degeneration(((1,4,6),0), ((1,6),0))

False

sage: X.is_degeneration(((1,4,6),0), ((1,6),1))

True

The final two degenerations come from intersecting with BIC 3, the “triple banana”
(cf. Example 5.24 and Figure 6). Again, the profile remains reducible but note that
both graphs have long edges now.

sage: X.lookup((1,3,6))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0, 0],[[1, 2], [3, 4, 5], [6, 7,

8], [9, 10, 11]],[(2, 5), (3, 7), (4, 8), (6, 10), (1, 11)],{1: 0, 2: 0,

3: 0, 4: 0, 5: -2, 6: 2, 7: -2, 8: -2, 9: 4, 10: -4, 11: -2},[0, -1,

-2, -3],True),dmp={9: (0, 0)},dlevels={0: 0, -1: -1, -2: -2, -3: -3}),

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0, 0],[[1, 2], [3, 4, 5], [6, 7,

8], [9, 10, 11]],[(2, 5), (1, 7), (4, 8), (6, 10), (3, 11)],{1: 0, 2: 0,

3: 0, 4: 0, 5: -2, 6: 2, 7: -2, 8: -2, 9: 4, 10: -4, 11: -2},[0, -1,

-2, -3],True),dmp={9: (0, 0)},dlevels={0: 0, -1: -1, -2: -2, -3: -3})]

sage: X.is_degeneration(((1,3,6),0), ((1,6),0))

True

sage: X.is_degeneration(((1,3,6),1), ((1,6),0))

False

sage: X.is_degeneration(((1,3,6),1), ((1,6),1))

True

sage: X.is_degeneration(((1,3,6),0), ((1,6),1))

False

Note that the two graphs in the profile (1, 3, 6) cannot be distinguished by their
levels.

Remark 5.23. We summarise the following observations from Example 5.22.

(1) Extending an irreducible profile can make it reducible.
(2) Extending a reducible profile can make it irreducible.
(3) A reducible profile implies a non-injectivity of top_to_bic and bot_to_bic.

The converse of the last statement is not true in general.

Example 5.24. We continue in the notation of Example 5.22. Consider the “triple
banana”, the BIC with a non-trivial S3 action (cf. Figure 6). It is again not difficult
to find in the list of BICs, here it is number 3:

sage: X.bics[3].explain()

LevelGraph embedded into stratum Stratum: (4,)
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Figure 6. From left to right: the “triple banana”, BIC 3; the
compact type BIC inside ΩM0(4,−2,−2,−2), the bottom level of
the “triple banana”; the unique graph in the profile (3, 6); the
unique graph in the profile (1, 3).

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 0

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 4 on vertex 1 on level 1

Finally, we have 3 edges. More precisely:

* 3 edges between vertex 0 (on level 0) and vertex 1 (on level 1) with

prongs 1, 1 and 1.

sage: len(X.bics[3].automorphisms)

6

The bottom level is the stratum ΩM0(4,−2,−2,−2), which is one-dimensional and
contains three BICs of compact type, distinguished only by the numbering of their
marked points (dmp!):

sage: B=X.bics[3].bot; print(B)

Stratum: Signature((4, -2, -2, -2))

with residue conditions: [(0, 1), (0, 2), (0, 3)]

dimension: 1

leg dictionary: {4: (0, 0), 5: (0, 1), 6: (0, 2), 7: (0, 3)}

leg orbits: [[(0, 0)], [(0, 1), (0, 3), (0, 2)]]

sage: B.bics

[EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6]],[(3, 6)],{1:

-2, 2: -2, 3: 2, 4: 4, 5: -2, 6: -4},[0, -1],True),dmp={1: (0, 1), 2:

(0, 3), 4: (0, 0), 5: (0, 2)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6]],[(3, 6)],{1:

-2, 2: -2, 3: 2, 4: 4, 5: -2, 6: -4},[0, -1],True),dmp={1: (0, 2), 2:

(0, 3), 4: (0, 0), 5: (0, 1)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6]],[(3, 6)],{1:

-2, 2: -2, 3: 2, 4: 4, 5: -2, 6: -4},[0, -1],True),dmp={1: (0, 1), 2:

(0, 2), 4: (0, 0), 5: (0, 3)},dlevels={0: 0, -1: -1})]



diffstrata – A SAGE PACKAGE 47

Checking bot_to_bic, one might expect the profile (3, 6) to be reducible, but it
turns out that, no matter how we glue the compact type graph into the bottom
level, the resulting graphs are always isomorphic:

sage: X.DG.bot_to_bic_inv(3)

{6: [0, 1, 2]}

sage: X.lookup((3,6))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1, 2, 3], [4, 5, 6], [7, 8,

9]],[(2, 5), (3, 6), (4, 8), (1, 9)],{1: 0, 2: 0, 3: 0, 4: 2, 5: -2, 6:

-2, 7: 4, 8: -4, 9: -2},[0, -1, -2],True),dmp={7: (0, 0)},dlevels={0:

0, -1: -1, -2: -2})]

Recall, however, that after intersecting with BIC 1, the profile (1, 3, 6) is re-
ducible! In other words, gluing the three BICs of B into the bottom level of (1, 3)

yields two non-isomorphic graphs, cf. Example 5.22 and Figure 5.

Example 5.25. The last point of Example 5.24 is worth emphasizing. Using
the notation of above, we observe the following situation: the profile (1, 3) is
irreducible, the profile (3, 6) is irreducible, but the profile (1, 3, 6) is reducible!

sage: X.lookup((1,3))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1, 2], [3, 4, 5], [6, 7, 8,

9]],[(2, 5), (1, 7), (3, 8), (4, 9)],{1: 0, 2: 0, 3: 0, 4: 0, 5: -2, 6:

4, 7: -2, 8: -2, 9: -2},[0, -1, -2],True),dmp={6: (0, 0)},dlevels={0:

0, -1: -1, -2: -2})]

sage: X.lookup((3,6))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1, 2, 3], [4, 5, 6], [7, 8,

9]],[(2, 5), (3, 6), (4, 8), (1, 9)],{1: 0, 2: 0, 3: 0, 4: 2, 5: -2, 6:

-2, 7: 4, 8: -4, 9: -2},[0, -1, -2],True),dmp={7: (0, 0)},dlevels={0:

0, -1: -1, -2: -2})]

sage: X.lookup((1,3,6))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0, 0],[[1, 2], [3, 4, 5], [6, 7,

8], [9, 10, 11]],[(2, 5), (3, 7), (4, 8), (6, 10), (1, 11)],{1: 0, 2: 0,

3: 0, 4: 0, 5: -2, 6: 2, 7: -2, 8: -2, 9: 4, 10: -4, 11: -2},[0, -1,

-2, -3],True),dmp={9: (0, 0)},dlevels={0: 0, -1: -1, -2: -2, -3: -3}),

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0, 0],[[1, 2], [3, 4, 5], [6, 7,

8], [9, 10, 11]],[(2, 5), (1, 7), (4, 8), (6, 10), (3, 11)],{1: 0, 2: 0,

3: 0, 4: 0, 5: -2, 6: 2, 7: -2, 8: -2, 9: 4, 10: -4, 11: -2},[0, -1,

-2, -3],True),dmp={9: (0, 0)},dlevels={0: 0, -1: -1, -2: -2, -3: -3})]

Recall also Figure 5 and Figure 6.
Determining how and when a profile becomes reducible is still very mysterious.

It is also not immediately obvious from bot_to_bic and top_to_bic:

sage: X.DG.bot_to_bic_inv(1)

{3: [0, 2], 6: [1, 4, 7], 0: [3], 4: [5], 2: [6]}

sage: X.DG.bot_to_bic_inv(3)

{6: [0, 1, 2]}

sage: X.DG.top_to_bic_inv(6)

{1: [0, 4], 4: [1], 5: [2], 3: [3]}

sage: X.DG.top_to_bic_inv(3)

{1: [0, 1, 2], 5: [3]}

Moreover, one should not expect the reducibility of a profile to be determined by
the reducibility of the consecutive length-2 profiles appearing in it. In particular,
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while the product of the number of components of all length-2-profiles appearing as
undegenerations gives an upper bound, this is very coarse and it is not clear how it
can be improved (e.g. how to see the irreducibility of (1, 4, 6) in this example).

As these examples illustrate, working with enhanced profiles can be quite subtle
and is not yet completely understood. Therefore, diffstrata has to occasionally
work with the underlying graph. Most methods in GeneralisedStratum that give re-
lationships between the underlying LevelGraphs of profiles start with explicit. The
backbone of is_degeneration is explicit_leg_maps, which raises a UserWarning

if no map is found, i.e. the enhanced profiles are not degenerations of each other.
Using the notation from the above examples, we see e.g.

sage: X.lookup_graph((5,))

EmbeddedLevelGraph(LG=LevelGraph([1, 2],[[1], [2, 3]],[(1, 3)],{1: 0, 2: 4,

3: -2},[0, -1],True),dmp={2: (0, 0)},dlevels={0: 0, -1: -1})

sage: X.lookup_graph((5,6))

EmbeddedLevelGraph(LG=LevelGraph([1, 1, 0],[[1], [2, 3, 4], [5, 6, 7]],[(1,

4), (2, 6), (3, 7)],{1: 0, 2: 2, 3: 0, 4: -2, 5: 4, 6: -4, 7: -2},[0,

-1, -2],True),dmp={5: (0, 0)},dlevels={0: 0, -1: -1, -2: -2})

sage: X.explicit_leg_maps(((5,),0), ((5,6),0))

[{1: 1, 2: 5, 3: 4}]

Of course, if there are automorphisms involved, there will be many leg maps:

sage: X.lookup_graph((1,))

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)

],{1: 0, 2: 0, 3: 4, 4: -2, 5: -2},[0, -1],True),dmp={3: (0, 0)},

dlevels={0: 0, -1: -1})

sage: X.lookup_graph((1,3))

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1, 2], [3, 4, 5], [6, 7, 8,

9]],[(2, 5), (1, 7), (3, 8), (4, 9)],{1: 0, 2: 0, 3: 0, 4: 0, 5: -2, 6:

4, 7: -2, 8: -2, 9: -2},[0, -1, -2],True),dmp={6: (0, 0)},dlevels={0:

0, -1: -1, -2: -2})

sage: X.explicit_leg_maps(((1,),0), ((1,3),0))

[{2: 1, 1: 2, 3: 6, 5: 7, 4: 5}, {2: 2, 1: 1, 3: 6, 5: 5, 4: 7}]

sage: len(X.lookup_graph((1,)).automorphisms)

2

sage: len(X.lookup_graph((1,3)).automorphisms)

2

In fact, explicit_leg_maps first squishes the larger graph at the appropriate places
to land in the profile of the smaller graph. Recall from Section 5.3 that this removes
legs and vertices but leaves the numbering of the remaining graph untouched! Then
it goes through this profile and checks if any component is isomorphic to the squished
graph. When one is found, all isomorphisms are returned. Now, is_degeneration
simply returns a boolean if there exists a leg map.

Now, implementing the methods described in Section 5.1 from these building
blocks is fairly straight-forward.

5.5. Isomorphisms. The final step in the discussion of graphs and their degenera-
tions is determining, when two graphs are isomorphic. Obviously, an isomorphism of
EmbeddedLevelGraphs must respect the embedding: recall, e.g., the three compact
type BICs in the stratum ΩM0(4,−2,−2,−2) from Example 5.24. In that case, the
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underlying LevelGraphs were identical and the isomorphism classes depended only
on the embedding.

On the other hand, an isomorphism of EmbeddedLevelGraphs can permute the
marked points of a LevelGraph if this is “corrected” by the embedding dmp.

Definition 5.26. An isomorphism of EmbeddedLevelGraphs is a tuple of dicts,
(isom_vertices, isom_legs), satisfying the following compatibility conditions:

(1) isom_vertices maps vertices to vertices (as indices of the corresponding
lists), respecting the genera and levels.

(2) isom_legs maps half-edges to half-edges, respecting the edges, the pole-
orders and the marked points of the stratum (via dmp).

Remark 5.27. The leg maps of Section 5.4 consisted only of the isom_legs

component.

The methods regarding isomorphisms are quite straight-forward to use. However,
as the isomorphism classes are already encoded in the enhanced profiles, this “higher-
level” access should be preferred. The number of automorphisms is, obviously, still
important.

Automorphisms are recorded in a list. We briefly illustrate that they respect
the prongs:

sage: X=Stratum((4,))

sage: symmetric_banana=EmbeddedLevelGraph(X,LG=LevelGraph([2, 0],[[1, 2],

[3, 4, 5]],[(1, 4), (2, 5)],{1: 1, 2: 1, 3: 4, 4: -3, 5: -3},[0, -1],

True),dmp={3: (0, 0)},dlevels={0: 0, -1: -1})

sage: symmetric_banana.automorphisms

[({0: 0, 1: 1}, {2: 1, 1: 2, 3: 3, 5: 4, 4: 5}),

({0: 0, 1: 1}, {2: 2, 1: 1, 3: 3, 5: 5, 4: 4})]

sage: asymmetric_banana=EmbeddedLevelGraph(X,LG=LevelGraph([2, 0],[[1, 2],

[3, 4, 5]],[(1, 4), (2, 5)],{1: 2, 2: 0, 3: 4, 4: -4, 5: -2},[0, -1],

True),dmp={3: (0, 0)},dlevels={0: 0, -1: -1})

sage: asymmetric_banana.automorphisms

[({0: 0, 1: 1}, {2: 2, 1: 1, 3: 3, 5: 5, 4: 4})]

The cardinality of the automorphism group is seen easily using len:

sage: len(symmetric_banana.automorphisms)

2

sage: len(asymmetric_banana.automorphisms)

1

sage: set([len(B.automorphisms) for B in X.bics])

{1, 2, 6}

We can also simply check if two graphs are isomorphic:

sage: symmetric_banana.is_isomorphic(asymmetric_banana)

False

sage: symmetric_banana.is_isomorphic(symmetric_banana)

True

Note that the isomorphisms are generators (for checking, it is enough to construct
the first). If we want to list all, we should convert them to a list:
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sage: symmetric_banana.isomorphisms(asymmetric_banana)

<generator object EmbeddedLevelGraph.isomorphisms at 0x1cf5112a0>

sage: list(symmetric_banana.isomorphisms(asymmetric_banana))

[]

sage: list(symmetric_banana.isomorphisms(symmetric_banana))

[({0: 0, 1: 1}, {2: 1, 1: 2, 3: 3, 5: 4, 4: 5}),

({0: 0, 1: 1}, {2: 2, 1: 1, 3: 3, 5: 5, 4: 4})]

For the implementation, we decided to construct isomorphisms level by level. An
isomorphism of EmbeddedLevelGraphs is then a set of compatible level isomorphisms.
We iterate through the isomorphisms on each level and yield whenever we find
compatible (i.e. respecting the edges) level isomorphisms for all levels. Note that
we use dlevels for this, as these should be compatible.

An isomorphism of levels now consists of a map (dict) vertices to vertices and a
map (dict) legs to legs, respecting the genus, the number of legs on every vertex,
the order at every leg and the marked points of the stratum (via dmp).

These are constructed by the following algorithm:

Algorithm 5.28 (Level Isomorphisms).

Step 1: Extract the information about the current level from the LevelGraph.
Note that we do not use level to avoid all the overhead (residue conditions,
etc.).

Step 2: If the number of vertices, legs, legs per vertex, or the genera do not
match, we are done: there can be no isomorphism.

Step 3: The same marked points have to be on this level. Also, this gives the
first part of the maps, as their legs (and thus also their vertices) must be
mapped to each other. Note that we must also ensure that the vertices are
compatible (same genera, numbers of legs, orders) and the marked points
are split among vertices the same way.

Step 4: For each genus g appearing, we map the vertices of genus g to the
vertices of genus g on the target level. For this, we use a simple recursive
algorithm, enumerating all legal maps.

Step 5: For each of these vertex maps, we construct all legal leg maps in a
similar fashion (vertex by vertex).

Step 6: Finally, we take the product of all constructed level isomorphisms
and check which of these are compatible with the edges.

This allows us to construct the degeneration graph of the isomorphism classes
non-horizontal level graphs of any generalised stratum and reference the objects in
a fairly efficient way.

6. Additive Generators, Tautological Classes and Evaluation

The purpose of the diffstrata package is to facilitate calculations in the tauto-
logical ring of strata. In light of [CMZ20, Thm. 1.5], any tautological class may be
expressed as a formal sum of ψ-classes on graphs.

The diffstrata package uses two classes to model the situation. Denote by X a
GeneralisedStratum.

• An AdditiveGenerator encodes a product of ψ-classes on (various levels
of) an EmbeddedLevelGraph inside X.
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• An ELGTautClass is a formal sum of AdditiveGenerators, all on the same
stratum X.

Any ELGTautClasses on X can be added, multiplied and evaluated (i.e. integrated
against the class of X), although this will give 0 if the class is not of top degree. The
evaluation works by breaking down the expression into ψ-products on meromorphic
strata and using the admcycles package [DSZ20] to evaluate these, see Section 6.3
for details.

Moreover, the class ξ = c1(O(−1)) of X is encoded using Sauvaget’s relation (cf.
[Sau19, Thm. 6(1)], [CMZ20, Prop. 8.2] for the adaption to this setting) by X.xi:

sage: X=Stratum((2,))

sage: print(X.xi)

Tautological class on Stratum: (2,)

with residue conditions: []

3 * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

-1 * Graph ((0,), 0) +

-1 * Graph ((1,), 0) +

sage: print(X.xi^X.dim())

Tautological class on Stratum: (2,)

with residue conditions: []

27 * Psi class 1 with exponent 3 on level 0 * Graph ((), 0) +

-9 * Psi class 1 with exponent 1 on level 0 * Psi class 2 with exponent 1 on

level 1 * Graph ((0,), 0) +

-2 * Psi class 1 with exponent 1 on level 0 * Psi class 3 with exponent 1 on

level 1 * Graph ((0,), 0) +

3 * Psi class 1 with exponent 1 on level 0 * Graph ((0, 1), 0) +

-1/2 * Psi class 1 with exponent 1 on level 0 * Psi class 2 with exponent 1

on level 0 * Graph ((1,), 0) +

-1/4 * Psi class 1 with exponent 2 on level 0 * Graph ((1,), 0) +

-1/4 * Psi class 2 with exponent 2 on level 0 * Graph ((1,), 0) +

sage: (X.xi^X.dim()).evaluate()

-1/640

We now describe these classes in some more detail and explain the evaluation
process.

6.1. AdditiveGenerators. An AdditiveGenerator requires three pieces of infor-
mation:

• a GeneralisedStratum, X;
• an enhanced profile describing a level graph in X (cf. Section 5.1) and
• a dict encoding the powers of psi classes on this graph.

We explain the last item: the enhanced profile has an EmbeddedLevelGraph associ-
ated to it and each leg of the underlying LevelGraph is determined by a number
(int). The leg_dict of an AdditiveGenerator is a dict with entries of the from
{l : e}, where l is the number of a leg and e is the exponent of the ψ-class at that
leg (more precisely: the pullback of the ψ-class on the level the leg is on).
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Remark 6.1. For caching purposes, AdditiveGenerators should never be created
directly. Instead, the additive_generator method of GeneralisedStratum should
be used:

sage: A = X.additive_generator(((0,), 0), {2 : 1})

sage: print(A)

Psi class 2 with exponent 1 on level 1 * Graph ((0,), 0)

Remark 6.2. AdditiveGenerators should be considered immutable, i.e. once
generated they should not be changed. Indeed, each AdditiveGenerator has a
unique hash, consisting of the enhanced profile and the ψ-dictionary that is used for
fast lookup and comparison.

6.2. Tautological Classes. An ELGTautClass consists of

• a GeneralisedStratum, X and
• a list, psi_list, of tuples, each consisting of a coefficient (usually a

rational number) and an AdditiveGenerator on X.

ELGTautClass has a reduce method that is called upon initialisation and after
every operation. This method combines elements of psi_list having the same
AdditiveGenerator and removes elements with coefficient zero or that vanish for
dimension reasons.

ELGTautClasses associated to the same stratum can be added (the psi_lists
are united and the reduce method is applied) and multiplied (see Section 7). Each
of these operations yields again an ELGTautClass.

Remark 6.3. For summing ELGTautClasses, one may use the sum function. How-
ever, this calls reduce at every step of the summation. It is therefore often prefer-
able to use GeneralisedStratum’s ELGsum method, which first concatenates all
psi_lists and only calls reduce on the total list.

Any AdditiveGenerator may be converted to its associated ELGTautClass

using its as_taut method. Any graph in X can be converted to its associated
ELGTautClass using X.taut_from_graph. Moreover, every GeneralisedStratum,
X, comes with a set of “builtin” tautological classes:

• X.ZERO is the class with empty psi_list.
• X.ONE is the class that consists only of the zero-level graph X.smooth_LG

representing smooth curves.
• X.psi(l) is the ψ-class associated to the marked point l of X. Note that
l is a leg number of X.smooth_LG. This should only be used for connected
strata.
• X.xi is the class of ξ in X using Sauvaget’s relation (cf. [Sau19, Thm. 6(1)],

[CMZ20, Prop. 8.2]). Note that this involves a choice of leg. By default,
we choose the one resulting in the expression with the least number of
summands. To choose a leg manually, use X.xi_with_leg and provide a
stratum point (cf. Section 4.1).
• X.exp_xi is the class exp(ξ) on X.
• X.c1_E is the first Chern class of Ω1(log) on X (cf. [CMZ20, Thm. 1.1]).
• X.chern_class(n) gives the n-th Chern class of Ω1(log) on X (cf. [CMZ20,

Thm. 9.10]).
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• X.calL() (or more generally, X.calL(ep, i) for an enhanced profile ep

associated to a graph Γ in X and a level i of Γ) gives the class L or more

generally L[i]
Γ , see Section 7.3.

Note that we can multiply an ELGTautClass not only with any rational number,
but also with any sage object that can be multiplied with a rational number. In
particular, this allows us to use sage symbolic expressions:

sage: X=Stratum((2,))

sage: var(’a’, ’b’)

(a, b)

sage: T=a*X.ONE + b*X.psi(1)

sage: print(T^2)

Tautological class on Stratum: (2,)

with residue conditions: []

a^2 * Graph ((), 0) +

2*a*b * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

b^2 * Psi class 1 with exponent 2 on level 0 * Graph ((), 0) +

sage: (T^3).evaluate()

1/1920*b^3

6.3. Evaluation. Any ELGTautClass can be evaluated, AdditiveGenerators that
are not top degree will evaluate to 0 without complaining:

sage: X=Stratum((2,))

sage: (X.psi(1)).evaluate()

0

sage: (X.psi(1)^3).evaluate()

1/1920

Note that ELGTautClass offers the check is_equidimensional and the methods
degree and list_by_degree:

sage: X.xi.is_equidimensional()

True

sage: T=X.ONE + X.psi(1)

sage: T.is_equidimensional()

False

sage: print(T.degree(1))

Tautological class on Stratum: (2,)

with residue conditions: []

1 * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

sage: print(T.degree(0))

Tautological class on Stratum: (2,)

with residue conditions: []

1 * Graph ((), 0) +

Observe that list_by_degree is a list of length X.dim() filled up with X.ZERO:
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sage: T.list_by_degree()

[ELGTautClass(X=GeneralisedStratum(sig_list=[Signature((2,))],res_cond=[]),

psi_list=[(1, AdditiveGenerator(X=GeneralisedStratum(sig_list=[

Signature((2,))],res_cond=[]),enh_profile=((), 0),leg_dict={}))]),

ELGTautClass(X=GeneralisedStratum(sig_list=[Signature((2,))],res_cond=[]),

psi_list=[(1, AdditiveGenerator(X=GeneralisedStratum(sig_list=[

Signature((2,))],res_cond=[]),enh_profile=((), 0),leg_dict={1: 1}))]),

ELGTautClass(X=GeneralisedStratum(sig_list=[Signature((2,))],res_cond=[]),

psi_list=[]),

ELGTautClass(X=GeneralisedStratum(sig_list=[Signature((2,))],res_cond=[]),

psi_list=[])]

The key to evaluating an ELGTautClass is to split it into pieces that can be
evaluated by admcycles using the expression of the class of a stratum in the
tautological ring ofMg,n by Sauvaget [Sau19]. For this purpose, the stack_factor

of an AdditiveGenerator is defined as follows: let G be the associated graph, then
the stack_factor is the quotient of the product of the prongs of G and the product
of B.ell for every B appearing in the profile of G and the number of automorphisms
of G. For a BIC B, the number B.ell is the lcm of the prongs of B. By [CMZ20,
Lemma 9.12] this factor is necessary to convert an integral over a boundary stratum
DΓ into the product of level-wise evaluations.

Algorithm 6.4 (Evaluation).

Step 1: Go through psi_list and take the sum of the evaluation of the
AdditiveGenerators multiplied with their respective coefficients.

Step 2: Each AdditiveGenerator is evaluated by sorting the ψ-classes by
level and taking the product of the evaluations of these ψ-polynomials on
each level. This product is then multiplied with the stack_factor.

Step 3: If the residue space R is empty, we evaluate as follows. If the level
is disconnected, it evaluates to 0; if it is 0-dimensional, it evaluates to 1;
otherwise we use the Strataclass function of admcycles to generate the
tautological class of the stratum on Mg,n and integrate this against the
ψ-classes, using admcycle’s evaluate.

Step 4: If the level splits as a product (with residue conditions, i.e. on the
level of the underlying graph, cf. Section 4.3), it evaluates to 0, since the
fiber dimension to the product of moduli spaces is positive and the ψ-classes
are pullbacks from there.

Otherwise, we create a new GeneralisedStratum with one residue con-
dition removed. We repeat until this condition is non-trivial (or R = ∅)
and evaluate the product of the (original) ψ-expression and the class cut
out by this residue condition (using [CMZ20, Prop. 8.3]). The class cut out
by a residue condition inside a GeneralisedStratum can be obtained by
res_stratum_class.

Remark 6.5. We provide some more details on the above algorithm.

(1) If a level of an AdditiveGenerator evaluates to 0, the evaluation returns
immediately and lower levels are not evaluated.

(2) The evaluations in Step 3 are based on the algorithms in [DSZ20]. In partic-
ular the Strataclass function is based on the description of fundamental
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classes of (non-generalised) strata conjectured in [FP18] and [Sch18] and
proven recently in [BHPSS20] based on results from [HS19].

Example 6.6. We illustrate the calculation of a class cut out by a residue condition:

sage: X=GeneralisedStratum([Signature((23,5,-13,-17))])

sage: assert X.res_stratum_class([(0,2)]).evaluate() == 5

In fact, this stratum has three boundary points corresponding to graphs Γ1, Γ2

and Γ3 that have respectively the marked points of order (23, 5), (23,−13) and
(23,−17) on lower level. By [CMZ20, Prop. 8.2] we can express ξ using the first ψ-
class as

∫
X
ξ = 24− 29− 11− 7 = −23. Now in [CMZ20, Prop. 8.3] the contributing

boundary graphs are Γ2 (because the point with order −13 is on lower level) and Γ3

(because the zero residue at the point of order −13 on upper level is automatic), but
not Γ1. We find that the evaluation of the boundary stratum is −(−23)−11−7 = 5,
as claimed.

7. Normal Bundles, Pullback and Multiplication

While adding two AdditiveGenerators is straight-forward, expressing the in-
tersection of two AdditiveGenerators again as a sum of AdditiveGenerators is
subtle, in particular if the intersection is not transversal.

A first approximation is finding common degenerations of two graphs, but if these
graphs have a common undegeneration, there is a normal bundle contribution. The
precise answer is the excess intersection formula [CMZ20, Prop. 8.1].

Example 7.1. Consider the minimal stratum in genus two, ΩM2(2). The class of
ξ can be expressed, by Sauvaget’s relation, as a sum of AdditiveGenerators (cf.
Section 6).

sage: X=Stratum((2,))

sage: print(X.xi)

Tautological class on Stratum: (2,)

with residue conditions: []

3 * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

-1 * Graph ((0,), 0) +

-1 * Graph ((1,), 0) +

As dim ΩM2(2) = 3, we can evaluate ξ3. However, calculating this class requires
several applications of the excess intersection formula described above:

sage: X.dim()

3

sage: print(X.xi^3)

Tautological class on Stratum: (2,)

with residue conditions: []

27 * Psi class 1 with exponent 3 on level 0 * Graph ((), 0) +

-9 * Psi class 1 with exponent 1 on level 0 * Psi class 2 with exponent 1 on

level 1 * Graph ((0,), 0) +

-2 * Psi class 1 with exponent 1 on level 0 * Psi class 3 with exponent 1 on

level 1 * Graph ((0,), 0) +

3 * Psi class 1 with exponent 1 on level 0 * Graph ((0, 1), 0) +
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-1/2 * Psi class 1 with exponent 1 on level 0 * Psi class 2 with exponent 1

on level 0 * Graph ((1,), 0) +

-1/4 * Psi class 1 with exponent 2 on level 0 * Graph ((1,), 0) +

-1/4 * Psi class 2 with exponent 2 on level 0 * Graph ((1,), 0) +

The resulting top degree class can now be evaluated (cf. Section 6.3) to give the
expected result:

sage: (X.xi^3).evaluate()

-1/640

Before going into the details of the implementation, we illustrate the use and
necessity of multiplication inside an ambient stratum. The standard operations *

and ^ are performed in the Chow ring of the stratum as illustrated above. We can
instead work in the Chow ring of any substratum DΓ by specifying as ambient the
enhanced profile of Γ.

Example 7.2. Consider the stratum ΩM2(1, 1) and the boundary divisor repre-
sented by a compact-type graph with a genus two component on top and a genus
zero component on bottom level. By inspecting the list of BICs we find that it is
BIC 3 (cf. Remark 5.2):

sage: Y=Stratum((1,1))

sage: Y.bics[3]

EmbeddedLevelGraph(LG=LevelGraph([2, 0],[[1], [2, 3, 4]],[(1, 4)],{1: 2, 2:

1, 3: 1, 4: -4},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0: 0,

-1: -1})

As the stratum Y is four-dimensional, we can multiply this graph with ξ3 to obtain
a top-degree class that we may evaluate to find a number:

sage: Y.dim()

4

sage: (Y.xi^3*Y.additive_generator(((3,),0))).evaluate()

-1/640

This matches the observation that the top level is the minimal stratum in genus
two where ξ3 evaluates to − 1

640 , the bottom level is a point and there are no prongs
or automorphisms involved, compare [CMZ20, §4.3 and Lemma 9.12]:

sage: Y.bics[3].top

LevelStratum(sig_list=[Signature((2,))],res_cond=[],leg_dict={1: (0, 0)})

sage: (Y.bics[3].top.xi^3).evaluate() # calculating on Y.bics[3].top

-1/640

We can perform the same calculation in Y using xi_at_level, see Remark 8.3.

However, as the class ξ
[i]
Γ correspoding to xi_at_level lives not on Y but on the

BIC 3, performing the normal multiplication with * or ^ will not yield the correct
result: we must use our BIC Γ as the ambient stratum, as we want to perform the
multiplication in CH(DΓ), i.e. before pushing forward to Y.

Indeed, while the evaluation of the cube of xi_at_level performed in Y is

sage: (Y.xi_at_level(0, ((3,),0))^3).evaluate()

0
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we obtain the expected result when using the correct ambient stratum, the BIC 3:

sage: CT_xi_top = Y.xi_at_level(0, ((3,),0))

sage: (Y.intersection(Y.intersection(CT_xi_top, CT_xi_top, ((3,),0)),

CT_xi_top, ((3,),0))).evaluate()

-1/640

In the special case of taking exponents of xi_at_level, we can use the method
xi_at_level_pow, which computes the exponent with the correct ambient graph:

sage: (Y.xi_at_level_pow(0, ((3,),0), 3)).evaluate()

-1/640

Indeed, in this case we may even use the method top_xi_at_level which computes
and evaluates the top-power of ξ:

sage: Y.top_xi_at_level(((3,),0), 0)

-1/640

In fact, whenever possible this method should be used (even for ξ on the whole
stratum), as the results are cached and reused, see Section 9.

Remark 7.3. Note that by Sauvaget [Sau18, Prop. 3.3], for a connected holomor-
phic stratum X of genus g,

∫
X
ξk = 0 for k ≥ 2g. In this case, nothing is computed

and X.ZERO is returned immediately.

7.1. Interface. While the operations * and ^ should work intuitively, the syntax
of the underlying methods is more involved. In particular, when enhanced profiles,
AdditiveGenerators and ELGTautClasses appear is a subtle issue that we try to
explain in the following summary.

In the following, ambient is always an enhanced profile corresponding to the
ambient stratum in which the multiplication is taking place (see Section 7.2 for
details). By default, it always corresponds to the full enveloping stratum, i.e. the
empty enhanced profile ((), 0).

The following are methods of GeneralisedStratum:

• intersection calculates the product of two tautological classes inside
ambient.

Arguments: ELGTautClass, ELGTautClass, ambient
Returns: ELGTautClass

• intersection_AG calculates the product of two additive generators inside
ambient

Arguments: AdditiveGenerator, AdditiveGenerator, ambient
Returns: ELGTautClass

• normal_bundle calculates the normal bundle of a graph inside ambient.
Arguments: enhanced profile, ambient
Returns: ELGTautClass

• cnb calculates the common normal bundle of two graphs inside ambient.
Arguments: Enhanced profile, enhanced profile, ambient
Returns: ELGTautClass

• gen_pullback calculates the generalised pullback of an additive generator
to a graph inside ambient.

Arguments: AdditiveGenerator, enhanced profile, ambient
Returns: ELGTautClass
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• gen_pullback_taut calculates the generalised pullback of a tautological
class to a graph inside ambient.

Arguments: ELGTautClass, enhanced profile, ambient
Returns: ELTTautClass

Moreover, the graphs needed are calculated by a series of methods that are
straight-forwardly implemented using the observations of Section 5.4. In contrast to
the methods described above, the arguments are always enhanced profiles and they
return lists of enhanced profiles:

• common_degenerations finds the common degenerations of two graphs;
• codim_one_degenerations finds degenerations of an enhanced profile asso-

ciated to a graph with one more level;
• codim_one_common_undegenerations finds degenerations of ambient with

one more level that are additionally undegenerations of two given enhanced
profiles;
• minimal_common_undegeneration finds the graph of minimal dimension

that is undegeneration of two supplied graphs.

Finally, an expression of the form A*B is evaluated according to the following rules:

• if A and B are both ELGTautClasses, intersection is called (with empty
ambient);
• if one of the two is an AdditiveGenerator and the other an ELGTautClass,

they are multiplied using the as_taut method;
• otherwise, if one of the two is an ELGTautClass, scalar multiplication with

the other is attempted. This can be used, e.g., for multiplication with
symbolic variables, cf. Section 6.2.

Note that two AdditiveGenerators may only be multiplied (using *) if the under-
lying graphs are the same; otherwise intersection_AG should be used. Moreover,
multiplying with X.ONE is the identity and with 0 or X.ZERO gives X.ZERO.

Using ^, we may calculate powers of a ELGTautClass (with empty ambient).
The method pow of GeneralisedStratum allows the specification of an ambient.

7.2. Intersections. Mathematically, the situation is the following: we implement
the general version of the excess intersection formula [CMZ20, eq. (61)].

Let Λ1 and Λ2 be degenerations of a k-level graph Γ and denote the associated
strata by DΛ1

, DΛ2
and DΓ, as in the following diagram:

DΠ DΛ2

DΛ1 DΓ

jΠ,Λ2

jΠ,Λ1 jΛ2,Γ

jΛ1,Γ

Furthermore, we define νΠ
(Λ1∩Λ2)/Γ to be the product of the pullback to DΠ of the

normal bundles NΓ′,Γ where Γ′ ranges over all k + 1-level graphs Γ′ that are a
degeneration of Γ and that are moreover common to Λ1 and Λ2, see Section 7.3.
For any α ∈ CH•(DΛ2

) we can then express its push-forward pulled back to Λ1 as

j∗Λ1,ΓjΛ2,Γ∗α =
∑
Π

jΠ,Λ1,∗

(
νΠ

(Λ1∩Λ2)/Γ · j
∗
Π,Λ2

α
)
,

where the sum ranges over all (Λ1,Λ2)-graphs Π. This corresponds to the product
of α with the class of Λ2 in CH(DΓ). A level graph Π is a (Λ1,Λ2)-graph if there



diffstrata – A SAGE PACKAGE 59

are undegeneration morphisms ρi : Π→ Λi, i.e. edge contraction morphisms with
the property that there are subsets I and J of levels such that δI(Π) = Λ1 and
δJ(Π) = Λ2. For details, see [CMZ20, §8.1].

Remark 7.4. We briefly summarise the relationship to Section 7.1. The correspon-
dence between the mathematical and the diffstrata objects is as follows:

• the enveloping (projective) stratum is a GeneralisedStratum X;
• the graphs Λ1,Λ2 correspond to enhanced profiles ep_1 and ep_2 in X;
• the graph Γ corresponds to the enhanced profile ambient;
• the class α corresponds to an AdditiveGenerator A with underlying graph
ep_1.

Then we may perform the following calculations in diffstrata:

• X.common_undegenerations(ep_1, ep_2) gives the set of (Λ1,Λ2)-graphs;
• each ρi is given by X.explicit_leg_maps;
• j∗Π,Λ2

α is given by X.gen_pullback(A, pi_i, ambient) for pi_i an en-
hanced profile in X.common_undegenerations(ep_1, ep_2);
• the individual normal bundles NΓ′,Γ can be calculated using normal_bundle;
• X.cnb(ep_1, ep_2, ambient) corresponds to the product of normal bun-

dles appearing in ν(Λ1∩Λ2)/Γ (not yet pulled back to Λ1∩Λ2, see Section 7.3);
• j∗Λ1,Γ

jΛ2,Γ∗α is given by setting AG_2=X.additive_generator(ep_2) and
then performing X.intersection_AG(A, AG_2, ambient).

Of course, the product of two AdditiveGenerators on the same graph is simply
the product of their ψ-polynomials (sum of the leg_dicts) and the product of two
tautological classes is the sum of the products of their AdditiveGenerators.

Therefore, the excess intersection formula is given by a pullback as the base case
(no common intersection) and recursive multiplication with normal bundles. Note
that the codimension of ambient increases at each step and therefore the normal
bundle becomes trivial after finitely many iterations.

7.3. Normal bundles. The key ingredient for the multiplication is the calculation
of normal bundles.

The first Chern class of the normal bundle of a divisor is computed in [CMZ20,
Thm 7.1]. In diffstrata, this can be computed using normal_bundle:

sage: X=Stratum((2,))

sage: X.normal_bundle(((0,),0)) == X.taut_from_graph((0,),0)^2

True

sage: X.normal_bundle(((1,),0)) == X.taut_from_graph((1,),0)^2

True
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However, for the excess intersection formula, we need to compute νΠ
(Λ1∩Λ2)/Γ. The

situation is summarised in the following diagram of the involved graphs:

Λ1 ∩ Λ2 Λ2

Γ′′

Γ′

Λ1 Γ

codim1

where the arrows represent undegeneration maps. The graph Γ′′ is the minimal
common undegeneration of Λ1 and Λ2 (X.minimal_common_undegeneration), cor-
responding to the intersection of the profiles, while Λ1 ∩ Λ2 corresponds to the
union of the profiles (up to reducibility issues, cf. Section 5.4). The graph(s) Γ′ are
codimension one degenerations of Γ that are common undegenerations of Λ1 and Λ2

(X.codim_one_common_undegenerations).
For the excess intersection formula, we need the product of the normal bundles

NΓ′,Γ = NDΓ′/DΓ
where Γ′ is a k+ 1-level degeneration of the k-level graph Γ. More

precisely, the normal bundles NDΓ′/DΓ
are pulled back to DΓ′′ and the product is

computed in CH(DΓ′′). The normal bundle is computed in [CMZ20, Prop. 7.5]:

c1(NΓ′,Γ) =
1

`δi(Γ′)

(
−ξ′[i]Γ − c1(L′[i]Γ ) + ξ

′[i+1]
Γ

)
in CH1(DΓ′) ,

where

L[i]
Γ′ = OD′Γ

( ∑
Γ′

[i]
 ∆̂

`δi+1(∆̂)D∆̂

)
,

where the sum runs over all graphs ∆̂ ∈ LGk+2(B) that yield divisors in D′Γ by
splitting the i-th level. These are then pulled back to DΓ′′ , see Section 7.4, and
then they are multiplied (in CH(DΓ′′), i.e. using ambient Γ′′).

Remark 7.5. Observe that this recursive procedure terminates: indeed, the product
in CH(DΓ) has been transformed to a product in CH(DΓ′′) which is of strictly smaller
dimension. Moreover, if the dimension is small enough, transversality is ensured by
dimension reasons.

In diffstrata, ξ
[i]
Γ is given by X.xi_at_level(i, ep), where ep is the enhanced

profile corresponding to Γ in X, see Remark 8.3. The easiest way to produce L[i]
Γ is

by generating all the BICs inside the GeneralisedStratum at level i and glue these

into Γ (see Section 8 for details about gluing BICs into a level). The class of L[i]
Γ is

computed by the method calL.
Recall that `δi(Γ) is the lcm of the prongs of the BIC δi(Γ). In diffstrata this

is stored in the attribute ell of EmbeddedLevelGraph (if it is a BIC).
We summarise the normal bundle algorithm:

Algorithm 7.6 (Normal Bundle).

Step 1: Compute the minimal_common_undegeneration, min_com (corres-
ponding to Γ′′).
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Step 2: If min_com is ambient the intersection is transversal, we return 1.
Step 3: Loop through ep in codim_one_common_undegenerations (corre-

sponding to Γ′).
Step 4: Calculate the level i where ep and min_com differ.
Step 5: Calculate the normal bundle as in [CMZ20, Eq. (58)] with the

function xi_at_level for ξ[i] and glue_AG_at_level for L (see Section 8
for details).

Step 6: Pull this normal bundle back to min_com, cf. Section 7.4.
Step 7: Return the product of the normal bundles (one for each ep) inside

min_com.

Remark 7.7. Note that in the case of a transversal intersection, the “dummy”
value 1 is returned:

sage: X.cnb(((1,),0),((0,),0))

1

The reason for this inconsistency is that the normal bundle should correspond to
the class ONE, but inside an ambient this would be ambient, which is not what we
want. Therefore, this case must be handled separately!

Example 7.8. We continue in the setting of Example 7.2 in the boundary of
ΩM2(1, 1). Recall that Y.bics[3] was the compact-type graph with top-level
an M2(2). We may intersect this graph with the banana graph and the other
compact-type graph in Y:

sage: Y.bics[3]

EmbeddedLevelGraph(LG=LevelGraph([2, 0],[[1], [2, 3, 4]],[(1, 4)],{1: 2, 2:

1, 3: 1, 4: -4},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0: 0,

-1: -1})

sage: Y.bics[1]

EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5, 6]],[(1, 5), (2,

6)],{1: 0, 2: 0, 3: 1, 4: 1, 5: -2, 6: -2},[0, -1],True),dmp={3: (0, 0),

4: (0, 1)},dlevels={0: 0, -1: -1})

sage: Y.bics[2]

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3, 4]],[(1, 4)],{1: 0, 2:

1, 3: 1, 4: -2},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0: 0,

-1: -1})

Calculating the common normal bundle of these intersections we obtain:

sage: print(Y.cnb(((1,3),0),((2,3),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((3,), 0) +

As expected, this is the normal of the BIC 3, as the other two BICs intersect
transversally:

sage: print(Y.normal_bundle(((3,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((3,), 0) +



62 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

Calculating, e.g.

sage: print(Y.cnb(((1,3),0),((1,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1/2 * Psi class 2 with exponent 1 on level 0 * Graph ((1,), 0) +

-1/2 * Psi class 1 with exponent 1 on level 0 * Graph ((1,), 0) +

-1/2 * Psi class 5 with exponent 1 on level 1 * Graph ((1,), 0) +

-1/2 * Psi class 6 with exponent 1 on level 1 * Graph ((1,), 0) +

gives the normal bundle of the banana graph.

7.4. Pulling back classes. To calculate the pullback of an AdditiveGenerator,
we consider first the base case and then the generalised case.

Let ep be the enhanced profile of a graph Λ in X, A an AdditiveGenerator on ep

corresponding to a class α on DΛ and ep_deg the enhanced profile of a degeneration
Π of Λ, i.e. we obtain Λ by contracting some of the level-crossings of Π. Then
there are finitely many contraction morphisms ρ : Π→ Λ and each of these gives a
well-defined pullback map of α. The pullback is the weighted sum of these and is
given by A.pull_back(ep_deg).

Example 7.9. Consider the minimal stratum in genus 2, ΩM2(2), with the notation
of Example 5.5, see also Figure 3. Let A denote the ψ-class on the top-level of the
compact-type divisor:

sage: X=Stratum((2,))

sage: X.bics

[EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)

],{1: 0, 2: 0, 3: 2, 4: -2, 5: -2},[0, -1],True),dmp={3: (0, 0)},

dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3]],[(1, 3)],{1: 0, 2: 2,

3: -2},[0, -1],True),dmp={2: (0, 0)},dlevels={0: 0, -1: -1})]

sage: A=X.additive_generator(((1,),0), {1:1})

sage: print(A)

Psi class 1 with exponent 1 on level 0 * Graph ((1,), 0)

We may pull this class back to the intersection with the banana graph ((1,0), 0):

sage: print(A.pull_back(((1,0),0)))

Tautological class on Stratum: (2,)

with residue conditions: []

1 * Psi class 1 with exponent 1 on level 0 * Graph ((1, 0), 0) +

Considering instead the class B of the ψ-class on bottom-level of the same divisor:

sage: B=X.additive_generator(((1,),0), {3:1}); print(B)

Psi class 3 with exponent 1 on level 1 * Graph ((1,), 0)

sage: print(B.pull_back(((1,0),0)))

Tautological class on Stratum: (2,)

with residue conditions: []

It vanishes for dimension reasons when pulled back to the intersection.
Finally, consider the class S of one of the top half-legs of the banana graph.

Pulling it back to the intersection will also vanish for dimension reasons, but pulling
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it back to the banana graph itself illustrates the weighted sum: there are two graph
morphisms (switching the edges).

sage: S=X.additive_generator(((0,),0), {1:1}); print(S)

Psi class 1 with exponent 1 on level 0 * Graph ((0,), 0)

sage: print(S.pull_back(((0,),0)))

Tautological class on Stratum: (2,)

with residue conditions: []

1/2 * Psi class 2 with exponent 1 on level 0 * Graph ((0,), 0) +

1/2 * Psi class 1 with exponent 1 on level 0 * Graph ((0,), 0) +

Notice that in all of the above cases an ELGTautClass is returned.

The implementation of pull_back is simply a matter of transforming the leg_dict
of A via the map ρ to ep_deg and dividing by the number of these maps. The maps
are given by explicit_leg_maps, cf. Section 5.4.

However, for the excess intersection formula, we require a more general notion
of pullback. As above, let ep be the enhanced profile of a graph Λ in X, A an
AdditiveGenerator on ep corresponding to a class α on DΛ, but now we do not
require the “target” graph Λ′ to be a degeneration of Λ. Instead, we will pull α
back to the intersection Λ ∩ Λ′:

Λ ∩ Λ′ Λ

Γ′′

Λ′ Γ

Note that this must include the normal bundle contribution of the minimal common
undegeneration Γ′′ of Λ and Λ′ (in DΓ).

More precisely, the algorithm to compute the pullback of α to Λ ∩ Λ′ is:

Algorithm 7.10 (Pullback).

Step 1: Compute the common normal bundle of α and Λ′ in DΓ (Section 7.3).
Step 2: If it is 1, i.e. the intersection is transversal, perform the pullback to

each graph of Λ ∩ Λ′ as described above.
Step 3: Otherwise, multiply (in CH(Λ ∩ Λ′)) the pullback to each graph of

Λ ∩ Λ′ with the normal bundle, with ambient Γ′′.

Remark 7.11. Observe that this recursive procedure terminates: indeed, as for
the normal bundle calculation, the involved intersections are always performed in
an ambient stratum of strictly lower dimension, cf. Remark 7.5.

Example 7.12. We continue in the setting of Example 7.2 and Example 7.8 in
the boundary of ΩM2(1, 1). Recall that Y.bics[3] was the compact-type graph
with top-level an M2(2). The normal bundle of this graph is simply a ψ-class on
top-level:

sage: N = Y.normal_bundle(((3,),0))

sage: print(N)

Tautological class on Stratum: (1, 1)

with residue conditions: []
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-1 * Psi class 1 with exponent 1 on level 0 * Graph ((3,), 0) +

Here, the V-graph is BIC 0. It has empty intersection with the BIC 3. We may still
perform the pullback and obtain the ZERO class:

sage: Y.bics[0]

EmbeddedLevelGraph(LG=LevelGraph([1, 1, 0],[[1], [2], [3, 4, 5, 6]],[(2, 5),

(1, 6)],{1: 0, 2: 0, 3: 1, 4: 1, 5: -2, 6: -2},[0, 0, -1],True),dmp={3:

(0, 0), 4: (0, 1)},dlevels={0: 0, -1: -1})

sage: print(Y.gen_pullback_taut(N, ((0,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

Note that we must use gen_pullback_taut if we want to pull back an ELGTautClass

instead of an AdditiveGenerator!
Consider now the normal bundle N2 of the BIC 2 (the other compact type graph).

Pulling this back to the BIC 3, we obtain the normal bundle on the intersection:

sage: N2=Y.normal_bundle(((2,),0))

sage: print(Y.gen_pullback_taut(N2, ((3,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((2, 3), 0) +

-1 * Psi class 3 with exponent 1 on level 1 * Graph ((2, 3), 0) +

However, this is N2 pulled back to (2, 3) inside BIC 2:

sage: print(Y.gen_pullback_taut(N2, ((2,3),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

2 * Psi class 1 with exponent 1 on level 0 * Psi class 3 with exponent 1 on

level 1 * Graph ((2, 3), 0) +

sage: print(Y.gen_pullback_taut(N2, ((2,3),0), ((2,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((2, 3), 0) +

-1 * Psi class 3 with exponent 1 on level 1 * Graph ((2, 3), 0) +

The generalised pullback in Y is this pullback multiplied with N2 inside the BIC 2:

sage: print(Y.intersection(Y.gen_pullback_taut(N2, ((2,3),0), ((2,),0)),N2,

((2,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

2 * Psi class 1 with exponent 1 on level 0 * Psi class 3 with exponent 1 on

level 1 * Graph ((2, 3), 0) +
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Figure 7. From left to right: the V-graph in ΩM3(4); the BICs 0
and 2 in the bottom level of V, distinguished only by the labelings
of the marked points on top and bottom level; the unique graph in
the profile (0, 5).

Using gen_pullback and cnb it is not difficult to implement the multiplication of
arbitrary tautological classes of a GeneralisedStratum using the excess intersection
formula [CMZ20, Eq. (61)].

8. Clutching, Splitting and Gluing

Following the philosophy of trading geometric for combinatorial complexity, we
wish to transform an expression of classes inside a stratum X into expressions
on the levels of the graphs in X. Mathematically, this requires a well-behaved
level-projection map, cf. [CMZ20, §4.2]. In practice, this requires us, given a graph
Γ and a level L of Γ, to glue a graph Γ′ of the generalised stratum L into Γ to obtain
a graph Γ′′ in X.

In light of Remark 3.8 this allows to reduce any calculation to the levels of two
and three level graphs together with the combinatorial data of the degeneration
graph of X.

For our purposes, it will suffice to consider the situation that Γ′ is a BIC,
resulting in a graph in X with one more level than Γ. However, the implementation
of this is rather delicate. The main difficulty stems from a level occuring in several
degenerations of the same graph but with different automorphism groups acting on
the legs. These automorphisms will, in general, not respect the numbering of the
BICs, so extra care must be taken when calculating the profile of Γ′′ from that of Γ
and Γ′.

Example 8.1. Consider the V -graph in the boundary of ΩM3(4), cf. Figure 7.
Here it is BIC 0 (cf. Remark 5.2)

sage: X=Stratum((4,))

sage: V=X.bics[0] # index might change!

sage: V.explain()

LevelGraph embedded into stratum Stratum: (4,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

* A vertex (number 1) of genus 1

On level 1:
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Figure 8. From left to right: the long V (1, 0); the two graphs in
(1, 0, 5) (distinguished by one long edge versus two long edges).

* A vertex (number 2) of genus 1

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 4 on vertex 2 on level 1

Finally, we have 2 edges. More precisely:

* one edge between vertex 0 (on level 0) and vertex 2 (on level 1) with

prong 1.

* one edge between vertex 1 (on level 0) and vertex 2 (on level 1) with

prong 1.

In the following discussion, the underlying LevelGraph and the leg numbering will
be important. Note that the bottom level of V has three BICs, each in the shape of
a banana, distinguished only by the location of the marked points: for BIC 1, both
are on top, while for 0 and 2 one is on top and one on bottom.

sage: V

EmbeddedLevelGraph(LG=LevelGraph([1, 1, 1],[[1], [2], [3, 4, 5]],[(1, 4),

(2, 5)],{1: 0, 2: 0, 3: 4, 4: -2, 5: -2},[0, 0, -1],True),dmp={3: (0, 0)

},dlevels={0: 0, -1: -1})

sage: V.bot.bics

[EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6, 7]],[(2, 6),

(3, 7)],{1: -2, 2: 0, 3: 0, 4: 4, 5: -2, 6: -2, 7: -2},[0, -1],True),

dmp={1: (0, 1), 4: (0, 0), 5: (0, 2)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[1, 2, 3, 4], [5, 6, 7]],[(3, 6),

(4, 7)],{1: -2, 2: -2, 3: 1, 4: 1, 5: 4, 6: -3, 7: -3},[0, -1],True),

dmp={1: (0, 1), 2: (0, 2), 5: (0, 0)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[1, 2, 3], [4, 5, 6, 7]],[(2, 6),

(3, 7)],{1: -2, 2: 0, 3: 0, 4: 4, 5: -2, 6: -2, 7: -2},[0, -1],True),

dmp={1: (0, 2), 4: (0, 0), 5: (0, 1)},dlevels={0: 0, -1: -1})]

Gluing either of 0 or 2 into bottom level results in the same graph (cf. Figure 7),
as they are exchanged by an automorphism of V. This corresponds to both being
mapped to the same index by bot_to_bic and the corresponding profile (0, 5)

being irreducible:

sage: X.DG.bot_to_bic(0)
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{0: 5, 1: 7, 2: 5}

sage: X.lookup((0,5))

[EmbeddedLevelGraph(LG=LevelGraph([1, 0, 1, 0],[[1], [2, 3, 4], [5], [6, 7,

8, 9]],[(1, 4), (2, 7), (3, 8), (5, 9)],{1: 0, 2: 0, 3: 0, 4: -2, 5: 0,

6: 4, 7: -2, 8: -2, 9: -2},[0, -1, 0, -2],True),dmp={6: (0, 0)},

dlevels={0: 0, -1: -1, -2: -2})]

However, the edges are distinguishable in this graph, so e.g. ψ-classes might behave
differently!

If we do a top-level degeneration of V first, resulting in the “long” V graph (cf.
Figure 8), however, the situation changes. The profile of the long V can be found
by inspecting top_to_bic.

sage: X.DG.top_to_bic(0)

{0: 1, 1: 1}

sage: long_V=X.lookup_graph((1,0)); long_V

EmbeddedLevelGraph(LG=LevelGraph([1, 1, 1],[[1], [2], [3, 4, 5]],[(1, 4),

(2, 5)],{1: 0, 2: 0, 3: 4, 4: -2, 5: -2},[0, -1, -2],True),dmp={3: (0,

0)},dlevels={0: 0, -1: -1, -2: -2})

Indeed, even though the bottom level has not changed, gluing in BIC 0 or 1 now
results in different graphs: the profile (1, 0, 5) is reducible (cf. Figure 7).

sage: X.lookup((1,0,5))

[EmbeddedLevelGraph(LG=LevelGraph([1, 1, 0, 0],[[1], [2], [3, 4, 5], [6, 7,

8, 9]],[(1, 5), (3, 7), (4, 8), (2, 9)],{1: 0, 2: 0, 3: 0, 4: 0, 5: -2,

6: 4, 7: -2, 8: -2, 9: -2},[0, -1, -2, -3],True),dmp={6: (0, 0)},

dlevels={0: 0, -1: -1, -2: -2, -3: -3}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1, 0, 0],[[1], [2], [3, 4, 5], [6, 7,

8, 9]],[(1, 5), (3, 7), (4, 8), (2, 9)],{1: 0, 2: 0, 3: 0, 4: 0, 5: -2,

6: 4, 7: -2, 8: -2, 9: -2},[-1, 0, -2, -3],True),dmp={6: (0, 0)},

dlevels={0: 0, -1: -1, -2: -2, -3: -3})]

Therefore, when gluing in a graph of the “reference” level (here X.bics[0].bot,
the bottom level of the bottom BIC), we must keep track of the isomorphism used
to identify delta of the graph with the “reference” BIC.

8.1. Splitting Dictionaries. To resolve the ambiguities described above, we always
have to work with a fixed reference stratum. In accordance with Remark 3.8 this
will be either a top or bottom level of a BIC or the middle level of a three-level
graph. In the first two cases, this level can be found directly from the profile p: it is
either X.bics[p[0]].top or X.bics[p[-1]].bot.

However, the length-two profile around an intermediate level could be reducible.
The method three_level_profile_for_level retrieves the enhanced profile of
the three-level graph around a given level of the graph associated to an enhanced
profile.

To extract all the data we need from a graph to glue a BIC into one of its
levels, we use splitting dictionaries. The easiest way to create a splitting dictio-
nary is via splitting_info_at_level. We illustrate this for the graph (5,0) in
X=Stratum((4,)), in the situation of Figure 7, see Example 8.1:

sage: d, leg_dict, L = X.splitting_info_at_level(((0,5),0), 1)

sage: d

{’X’: GeneralisedStratum(sig_list=[Signature((4,))],res_cond=[]),
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’top’: EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [5]],[],{1: 0, 5:

0},[0, 0],True),dmp={5: (0, 0), 1: (1, 0)},dlevels={0: 0}),

’bottom’: EmbeddedLevelGraph(LG=LevelGraph([0],[[6, 7, 8, 9]],[],{6: 4, 7:

-2, 8: -2, 9: -2},[-2],True),dmp={6: (0, 0), 9: (0, 3), 8: (0, 1), 7:

(0, 2)},dlevels={-2: -2}),

’middle’: LevelStratum(sig_list=[Signature((0, 0, -2))],res_cond=[[(0, 2)

]],leg_dict={2: (0, 0), 3: (0, 1), 4: (0, 2)}),

’emb_dict_top’: {},

’emb_dict_mid’: {},

’emb_dict_bot’: {(0, 0): (0, 0)},

’clutch_dict’: {(1, 0): (0, 2)},

’clutch_dict_lower’: {(0, 1): (0, 2), (0, 0): (0, 1)},

’clutch_dict_long’: {(0, 0): (0, 3)}}

sage: leg_dict

{4: (0, 2), 2: (0, 1), 3: (0, 0)}

sage: L

LevelStratum(sig_list=[Signature((0, 0, -2))],res_cond=[[(0, 2)]],leg_dict

={2: (0, 0), 3: (0, 1), 4: (0, 2)})

As this illustrates, splitting_info_at_level actually returns a tuple consisting
of a splitting dictionary, a dictionary leg_dict of legs and a LevelStratum. The
LevelStratum is the standardised level in the sense of Remark 3.8 and will in general
differ from the one returned by level(l) of the EmbeddedLevelGraph associated
to the enhanced profile. Similarly, leg_dict should be used instead of dmp of
level(l).

The splitting dictionary uses keywords to encode the relevant data for performing
a clutch. More precisely, for an enhanced profile and a level l, we obtain a dict

containing information about the graphs and strata:

X: the enveloping GeneralisedStratum;
top: an EmbeddedLevelGraph inside the top component of the top BIC of the

three-level graph around the level l;
bottom: an EmbeddedLevelGraph inside the bot component of the bottom

BIC of the three-level graph around the level l;
middle: the LevelStratum corresponding to the middle level of the three-level

graph around the level l;

as well as dictionaries describing the clutching. Note that the “removed” edges are
now marked points of the strata, so the dicts are all in terms of stratum points (cf.
Section 4.1). More precisely:

clutch_dict: a dict mapping points of top stratum to points of middle

stratum;
clutch_dict_lower: a dict mapping points of middle stratum to points of

bottom stratum;
clutch_dict_long: a dict mapping points of top stratum to points of bottom

stratum.

Finally, there are three emb_dicts, relating the marked points of X to the marked
points in top, middle and bottom.

Using these, we can simply replace top, middle or bottom by degenerations
(inside these strata) and use the information stored in the clutching dictionary to
“safely” clutch these together.
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Figure 9. From left to right: the “double v”-graph, 11; the
“v”-graph, 23; their intersection (11, 23) all in the boundary of
ΩM3(2, 1, 1). Note that we omit the prongs whenever they are 1.

Example 8.2. Consider the following situation in the boundary of ΩM3(2, 1, 1):
We consider the intersection G of the asymmetric “double v”-graph and a “v”-graph
depicted in Figure 9. Inspecting bics, we find that these are numbered 11 and 23

(cf. Remark 5.2). Consequently, G has profile (11, 23).

sage: X=Stratum((2,1,1))

sage: G=X.lookup_graph((11, 23))

sage: X.lookup_graph((11,23)).explain()

LevelGraph embedded into stratum Stratum: (2, 1, 1)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

* A vertex (number 2) of genus 1

On level 1:

* A vertex (number 1) of genus 0

On level 2:

* A vertex (number 3) of genus 0

The marked points are on levels 1 and 2.

More precisely, we have:

* Marked point (0, 1) of order 1 on vertex 1 on level 1

* Marked point (0, 0) of order 2 on vertex 3 on level 2

* Marked point (0, 2) of order 1 on vertex 3 on level 2

Finally, we have 4 edges. More precisely:

* 2 edges between vertex 0 (on level 0) and vertex 1 (on level 1) with

prongs 1 and 1.

* one edge between vertex 1 (on level 1) and vertex 3 (on level 2) with

prong 2.

* one edge between vertex 2 (on level 0) and vertex 3 (on level 2) with

prong 1.

However, comparing the top level of G to the top of the top BIC, 11, we find that
the components have been switched:

sage: G.level(0)

LevelStratum(sig_list=[Signature((0, 0)), Signature((0,))],res_cond=[],

leg_dict={1: (0, 0), 2: (0, 1), 7: (1, 0)})

sage: X.bics[11].top
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LevelStratum(sig_list=[Signature((0,)), Signature((0, 0))],res_cond=[],

leg_dict={1: (0, 0), 2: (1, 0), 3: (1, 1)})

The top-level degenerations of 11 are given by top_to_bic (cf. Section 5.3). However,
to successfully degenerate via clutching, we have to use the bics inside top of BIC
11. This stratum is part of the information given by splitting_info_at_level:

sage: X.DG.top_to_bic(11)

{0: 16, 1: 12, 2: 12, 3: 31}

sage: d, leg_dict, L = X.splitting_info_at_level(((11,23),0), 0)

sage: L

LevelStratum(sig_list=[Signature((0,)), Signature((0, 0))],res_cond=[],

leg_dict={1: (0, 0), 2: (1, 0), 3: (1, 1)})

Note that it corresponds to X.bics[11].top, not G.level(0)!
To insert a BIC into the top level, we replace the appropriate entry of the

clutching dictionary and feed this to clutch (using Python’s ** operator):

sage: d

{’X’: GeneralisedStratum(sig_list=[Signature((2, 1, 1))],res_cond=[]),

’top’: EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1, 2], [7]],[],{1: 0, 2:

0, 7: 0},[0, 0],True),dmp={7: (0, 0), 2: (1, 0), 1: (1, 1)},dlevels={0:

0}),

’bottom’: EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[3, 4, 5, 6], [8, 9, 10,

11]],[(4, 10)],{3: 1, 4: 1, 5: -2, 6: -2, 8: 2, 9: 1, 10: -3, 11:

-2},[-1, -2],True),dmp={3: (0, 1), 8: (0, 0), 9: (0, 2), 11: (0, 3), 6:

(0, 4), 5: (0, 5)},dlevels={-1: -1, -2: -2}),

’clutch_dict’: {(1, 1): (0, 5), (1, 0): (0, 4), (0, 0): (0, 3)},

’emb_dict_top’: {},

’emb_dict_bot’: {(0, 0): (0, 0), (0, 1): (0, 1), (0, 2): (0, 2)}}

sage: d[’top’]=L.bics[1]

sage: H=clutch(**d)

Note that using G.level(0).bics[1] would result in an error here, as swapping of
the components invalidates the gluing data.

In accordance with top_to_bic, we find that the profile of H is in fact given by
(12, 11, 23). However, this profile is not reducible:

sage: H.is_isomorphic(X.lookup_graph((12,11,23), 0))

False

sage: H.is_isomorphic(X.lookup_graph((12,11,23), 1))

True

Indeed, we obtain the other component by clutching in instead the other BIC of L
that is mapped to 12 by top_to_bic:

sage: d[’top’]=L.bics[2]

sage: HH=clutch(**d)

sage: HH.is_isomorphic(X.lookup_graph((12,11,23),0))

True

Continuing with this graph, we see that we run into a similar problem when trying to
degenerate level 1: the reference level around level 1 is the middle level of the three-
level graph around this level. We find it using three_level_profile_for_level

(indeed, the profile is irreducible and we need the “non-standard” component):



diffstrata – A SAGE PACKAGE 71

sage: X.three_level_profile_for_level(((12,11,23),0),1)

((12, 11), 1)

sage: X.lookup_graph((12,11),1).level(1)

LevelStratum(sig_list=[Signature((0,)), Signature((0, 0, -2))],res_cond

=[[(1, 2)]],leg_dict={1: (0, 0), 3: (1, 0), 4: (1, 1), 5: (1, 2)})

Now, it turns out that this reference level is in fact the level 1 of HH but not of the
reference graph associated to the enhanced profile ((12, 11, 23), 0) (the fixed
representative of the isomorphism class of graphs):

sage: HH.level(1)

LevelStratum(sig_list=[Signature((0,)), Signature((0, 0, -2))],res_cond

=[[(1, 2)]],leg_dict={1: (0, 0), 3: (1, 0), 4: (1, 1), 5: (1, 2)})

sage: X.lookup_graph((12,11,23),0).level(1)

LevelStratum(sig_list=[Signature((0, 0, -2)), Signature((0,))],res_cond

=[[(0, 2)]],leg_dict={2: (0, 0), 3: (0, 1), 4: (0, 2), 5: (1, 0)})

Again, the components have been switched. However, splitting_info_at_level
gives the reference level (the middle level of three_level_profile_for_level)
and this is the one we should use for clutching:

sage: d, leg_dict, L = X.splitting_info_at_level(((12,11,23),0), 1)

sage: L

LevelStratum(sig_list=[Signature((0,)), Signature((0, 0, -2))],res_cond

=[[(1, 2)]],leg_dict={1: (0, 0), 3: (1, 0), 4: (1, 1), 5: (1, 2)})

In particular, this agrees with middle_to_bic:

sage: X.DG.middle_to_bic(((12,11),1))

{0: 16, 1: 31}

sage: d

{’X’: GeneralisedStratum(sig_list=[Signature((2, 1, 1))],res_cond=[]),

’top’: EmbeddedLevelGraph(LG=LevelGraph([1],[[1]],[],{1: 0},[0],True),dmp

={1: (0, 0)},dlevels={0: 0}),

’bottom’: EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[6, 7, 8, 9], [10, 11,

12, 13]],[(7, 12)],{6: 1, 7: 1, 8: -2, 9: -2, 10: 2, 11: 1, 12: -3, 13:

-2},[-2, -3],True),dmp={6: (0, 1), 10: (0, 0), 11: (0, 2), 13: (0, 3),

9: (0, 4), 8: (0, 5)},dlevels={-2: -2, -3: -3}),

’middle’: LevelStratum(sig_list=[Signature((0,)), Signature((0, 0, -2))],

res_cond=[[(1, 2)]],leg_dict={1: (0, 0), 3: (1, 0), 4: (1, 1), 5: (1, 2)

}),

’emb_dict_top’: {},

’emb_dict_mid’: {},

’emb_dict_bot’: {(0, 0): (0, 0), (0, 1): (0, 1), (0, 2): (0, 2)},

’clutch_dict’: {(0, 0): (1, 2)},

’clutch_dict_lower’: {(1, 1): (0, 5), (1, 0): (0, 4), (0, 0): (0, 3)},

’clutch_dict_long’: {}}

sage: d[’middle’] = L.bics[0]

sage: HHH=clutch(**d)

sage: HHH.is_isomorphic(X.lookup_graph((12,16,11,23)))

True

sage: d[’middle’] = L.bics[1]

sage: HHH=clutch(**d)

sage: HHH.is_isomorphic(X.lookup_graph((12,31,11,23)))
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True

sage: HHH.is_isomorphic(X.lookup_graph((12,16,11,23)))

False

Note that in the above example, the top strata differed in an obvious manner and
clutching immediately raised an error. However, more subtle renumberings of BICs
can occur:

sage: X.lookup_graph((15,33)).level(0)

LevelStratum(sig_list=[Signature((0, 2))],res_cond=[],leg_dict={1: (0, 0), 2

: (0, 1)})

sage: X.bics[15].top

LevelStratum(sig_list=[Signature((2, 0))],res_cond=[],leg_dict={1: (0, 0), 2

: (0, 1)})

sage: X.lookup_graph((15,33)).level(0).bics == X.bics[15].top.bics

False

sage: X.lookup_graph((15,33)).level(0).bics

[EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3, 4]],[(1, 4)],{1: 0, 2:

2, 3: 0, 4: -2},[0, -1],True),dmp={2: (0, 1), 3: (0, 0)},dlevels={0: 0,

-1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2, 3], [4, 5, 6]],[(2, 5), (3,

6)],{1: 0, 2: 0, 3: 0, 4: 2, 5: -2, 6: -2},[0, -1],True),dmp={1: (0, 0)

, 4: (0, 1)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1, 2], [3, 4]],[(2, 4)],{1: 0, 2:

0, 3: 2, 4: -2},[0, -1],True),dmp={1: (0, 0), 3: (0, 1)},dlevels={0: 0,

-1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([2, 0],[[1], [2, 3, 4]],[(1, 4)],{1: 2, 2:

2, 3: 0, 4: -4},[0, -1],True),dmp={2: (0, 1), 3: (0, 0)},dlevels={0: 0,

-1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5, 6]],[(1, 5), (2,

6)],{1: 0, 2: 0, 3: 2, 4: 0, 5: -2, 6: -2},[0, -1],True),dmp={3: (0, 1)

, 4: (0, 0)},dlevels={0: 0, -1: -1})]

sage: X.bics[15].top.bics

[EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2, 3], [4, 5, 6]],[(2, 5), (3,

6)],{1: 0, 2: 0, 3: 0, 4: 2, 5: -2, 6: -2},[0, -1],True),dmp={1: (0, 1)

, 4: (0, 0)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3, 4]],[(1, 4)],{1: 0, 2:

2, 3: 0, 4: -2},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0: 0,

-1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5, 6]],[(1, 5), (2,

6)],{1: 0, 2: 0, 3: 2, 4: 0, 5: -2, 6: -2},[0, -1],True),dmp={3: (0, 0)

, 4: (0, 1)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([2, 0],[[1], [2, 3, 4]],[(1, 4)],{1: 2, 2:

2, 3: 0, 4: -4},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0: 0,

-1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1, 2], [3, 4]],[(2, 4)],{1: 0, 2:

0, 3: 2, 4: -2},[0, -1],True),dmp={1: (0, 1), 3: (0, 0)},dlevels={0: 0,

-1: -1})]

In this case, the graphs clutch without error and the mistake is much harder to
detect!

sage: d, leg_dict, L = X.splitting_info_at_level(((15,33),0), 0)

sage: d
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{’X’: GeneralisedStratum(sig_list=[Signature((2, 1, 1))],res_cond=[]),

’top’: EmbeddedLevelGraph(LG=LevelGraph([2],[[1, 2]],[],{1: 0, 2: 2},[0],

True),dmp={1: (0, 1), 2: (0, 0)},dlevels={0: 0}),

’bottom’: EmbeddedLevelGraph(LG=LevelGraph([0, 0],[[3, 4, 5, 6], [7, 8,

9]],[(5, 8)],{3: 1, 4: 1, 5: 0, 6: -4, 7: 2, 8: -2, 9: -2},[-1, -2],

True),dmp={3: (0, 1), 4: (0, 2), 7: (0, 0), 9: (0, 4), 6: (0, 3)},

dlevels={-1: -1, -2: -2}),

’clutch_dict’: {(0, 0): (0, 3), (0, 1): (0, 4)},

’emb_dict_top’: {},

’emb_dict_bot’: {(0, 0): (0, 0), (0, 1): (0, 1), (0, 2): (0, 2)}}

sage: L

LevelStratum(sig_list=[Signature((2, 0))],res_cond=[],leg_dict={1: (0, 0), 2

: (0, 1)})

sage: X.DG.top_to_bic(15)

{0: 32, 1: 12, 2: 31, 3: 26, 4: 31}

sage: d[’top’] = X.lookup_graph((15,33)).level(0).bics[0]

sage: clutch(**d).is_isomorphic(X.lookup_graph((32,15,33)))

False

sage: d[’top’] = L.bics[0]

sage: clutch(**d).is_isomorphic(X.lookup_graph((32,15,33)))

True

8.2. Pullback of Classes on a Level. Since for our goals it is only necessary to
pull back the classes ξ and L from a level, we restrict this discussion to the case of
codimension-one classes. There are thus two cases to distinguish. Let G be a graph
with enhanced profile ep and L be the standardised level stratum at level l of G.
Then a codimension-one class in L is either

• a ψ-class on L or
• a BIC in L.

In the first case, the pullback will consist of ψ-classes on the graph G, in the second
case, the pullback class will be a one-level degeneration of G. The pullback of ξ from
level l is accomplished by xi_at_level.

Remark 8.3. The method xi_at_level(i,ep) corresponds to the class ξ
[i]
Γ where

Γ is the level graph associated to the enhanced profile ep, see [CMZ20, Prop. 4.7]

for details. As the class ξ
[i]
Γ is an element of CH(DΓ), care must be taken when

multiplying, cf. Example 7.2.

For example, for any Stratum X, multiplying any graph with ξ yields an equivalent
class to pulling back ξ from top level. We can check this for one-dimensional graphs
by evaluating:

sage: all((X.xi*X.taut_from_graph(*ep)).evaluate() == X.xi_at_level(0, ep).

evaluate() for ep in X.enhanced_profiles_of_length(X.dim()-1))

True

Remark 8.4. Note that it is essential for L to be the standardised level in the sense
of Remark 3.8 and obtained via splitting_info_at_level (not G.level(l)!), to
obtain the correct class.
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Using splitting_info_at_level, the pullback of a ψ-class is straight-forward,
as we have access to L.smooth_LG.dmp and leg_dict to find the correct leg number
on G.

Pulling back the class of a BIC is a slightly more involved, as we need to determine
the enhanced profile of the one-level degeneration of G:

Algorithm 8.5 (Gluing in a BIC).

Step 1: Determine the new profile. This is given by the degeneration graph via
X.DG.top_to_bic, X.DG.bot_to_bic or X.DG.middle_to_bic, depending
on the location of L.

Step 2: Determine the graph. For this, we replace L by the BIC in the
splitting dictionary as illustrated in Example 8.2 and use clutch to build
the EmbeddedLevelGraph in X.

Step 3: We find the enhanced profile by locating the isomorphism class of the
clutched graph inside the new profile.

Moreover, we need to weigh the pulled back class with the contribution from
comparison of multiplicities in the level projections as given in [CMZ20, Prop. 4.7].
The correction factor is the product of the edge contribution and the automorphism
contribution. The edge contribution is the quotient of the ell of the BIC of X
that extended the profile and the ell of the BIC of L that was inserted. The
automorphism factor is the quotient of the number of automorphisms of the glued
graph and the product of the number of automorphisms of G and the BIC of L.

Leg choice. As the class of ξ is always implemented via Sauvaget’s relation, it
requires a choice of leg. By default, the one giving the shortest expression is chosen
(i.e. the one appearing on bottom level for the fewest BICs in L). Using the optional
argument leg, we may specify a leg of G that is to be used. xi_at_level will raise
a ValueError if the leg is not found on level l.

Empty Profile. We may apply xi_at_level to the empty profile ((), 0) and
obtain ξ on X. Note, however, that while xi_with_leg requires a stratum point
(cf. Section 4.1), the optional leg argument of xi_at_level requires a leg of
X.smooth_LG:

sage: X=Stratum((2,-2))

sage: X.smooth_LG

EmbeddedLevelGraph(LG=LevelGraph([1],[[1, 2]],[],{1: 2, 2: -2},[0],True),dmp

={1: (0, 0), 2: (0, 1)},dlevels={0: 0})

sage: X.xi == X.xi_at_level(0, ((),0))

True

sage: X.xi_with_leg((0,0)) == X.xi_at_level(0, ((),0), leg=1)

True

sage: X.xi_with_leg((0,1)) == X.xi_at_level(0, ((),0), leg=2)

True

8.3. Splitting Graphs. Let G be the EmbeddedLevelGraph associated to the en-
hanced profile enh_profile, written as (p, i) inside the GeneralisedStratum X.
To construct the clutching dictionaries used above, we must, given a level l, realise
the subgraph of G above level l inside the top level of the BIC p[l-1]. Denote by
L the standardised level l of G.
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Once this has been accomplished, the splitting essentially reduces to the case of
a BIC (if l is 0, i.e. top level, or len(p), i.e. bottom level) or that of a three-level
graph split around the middle level.

The method splitting_info_at_level performs this distinction and serves as
a wrapper for the low-level splitting functions, returning all the information needed
for clutching.

Extracting subgraphs. The extraction of the subgraph is accomplished by the method
sub_graph_from_level and yields a “true” subgraph, i.e. the names of the vertices
and legs are the same as in G.

To get the embedding into the appropriate level, we have to fix an undegeneration
to the appropriate BIC via explicit_leg_maps, cf. Section 5.4. Note that the
marked points of L correspond to the marked points of X above (resp. below) level
l on G and to the top (resp. bottom) legs of the edges that cross level l.

Using sub_graph_from_level, it suffices to retrieve the splitting dictionary of
the appropriate BIC or three-level graph. The splitting dictionary of the level
graph G is then obtained by replacing the appropriate strata by the subgraphs given
by sub_graph_from_level.

Splitting BICs. Splitting BICs is implemented, for a graph with exactly two levels,
in the method split of EmbeddedLevelGraph.

For a BIC, splitting happens in several steps:

Algorithm 8.6 (Splitting a BIC).

Step 1: Extract top and bot (via level).
Step 2: Construct emb_top and emb_bot by combining dmp with the leg_dicts

of top and bot.
Step 3: Save the gluing information from the cut edges. Because this is a

BIC, all edges are cut in this process.

This yields the splitting dictionary.

Splitting three-level graphs. A three-level graph is determined by its enhanced profile.
Consequently, while the splitting of BICs is a method of EmbeddedLevelGraph,
the corresponding method for three-level graphs, doublesplit, is a method of
GeneralisedStratum.

This is important, because when splitting around a level, everything should be
embedded into top and bot of the two BICs surrounding the level, the only strata
we can control. In particular, we need to split into top and bot of the BICs p[0]

and p[1] and not into level(0) and level(2) of the three-level graph, as these
could differ by a non-trivial automorphism! See Example 8.2.

We therefore have to work with explicit_leg_maps to fix undegeneration maps
to p[0] and p[1]. This gives a map from points in the three-level graphs to points
in the BIC and we can compose this with the embedding of top and bot to construct
the embedding maps for the splitting dictionary.

As this is a three-level graph, again all edges are cut in this process. In contrast
to the BIC case, we need to distinguish edges from top to middle, middle to bottom
and top to bottom (long edges) here.

All this is stored in the splitting dictionary and returned by doublesplit.
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8.4. Clutching. The clutch method of the stratatautring module takes a split-
ting dictionary and produces from it an EmbeddedLevelGraph.

Note that the case clutching two graphs (e.g. degenerating top or bottom
level) and clutching three graphs (e.g. degenerating an “interior” level) must be
distinguished; one cannot perform clutch twice or recursively, as the intermediate
graph is not embedded into the same stratum.

Note that clutching is performed on graphs, so the top, middle and bottom
components are converted to their respective smooth_LG if one of them is stratum.
The clutch is then performed in several steps:

Algorithm 8.7 (Clutching).

Step 1: Unite the vertices, renumbering the levels appropriately.
Step 2: Unite the legs, renumbering appropriately. Here we have to keep track

of the renumbering for the new dmp and to apply the clutching information.
We also insert the renumbered (old) edges and use the clutching dictionaries
to store the legs that are to be identified.

Step 3: We create the new edges from the information gathered in Step 2.
Step 4: We use this data to create an EmbeddedLevelGraph that we return.

Using Python’s ** operator, we can feed a splitting dictionary directly into
clutch:

sage: X=GeneralisedStratum([Signature((1,1))])

sage: assert clutch(**X.bics[1].split()).is_isomorphic(X.bics[1])

sage: assert all(clutch(**B.split()).is_isomorphic(B) for B in X.bics)

Of course, because of the renumbering, we cannot assume the graphs to be the same
after splitting and clutching. They are, however, isomorphic. The same works for
three-level graphs and doublesplit, also for a more complicated stratum:

sage: X=GeneralisedStratum([Signature((1,1))])

sage: assert all(X.lookup_graph(*ep).is_isomorphic(clutch(**X.doublesplit(ep

))) for ep in X.enhanced_profiles_of_length(2))

sage: X=GeneralisedStratum([Signature((2,2,-2))])

sage: assert all(X.lookup_graph(*ep).is_isomorphic(clutch(**X.doublesplit(ep

))) for ep in X.enhanced_profiles_of_length(2))

In particular, there are three-level graphs with long edges in both these strata.

9. Caching

The boundary strata grow in size very quickly. Even for holomorphic strata in
genus 3, class calculations would not be possible without extensive caching.

The downside of this is that diffstrata has quite an extensive memory footprint;
there is surely still room for much optimisation.

9.1. Graphs. Working with explicit LevelGraphs is painfully slow. The main
achievement of Section 5.3 was to associate to each EmbeddedLevelGraph an en-
hanced profile, i.e. a tuple (of tuples) of integers for each isomorphism class.
Ideally, we always refer to a graph by its enhanced profile.

Remark 9.1. Note that it is important to use tuples and not lists for (enhanced)
profiles, as tuples are immutable and may thus be used as arguments of cached
functions and as keys of dictionaries.
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However, for certain degeneration questions as well as level extraction, we do
need concrete representations of the graphs as well as explicit isomorphisms and
leg maps. For this, we store, for each enhanced profile, a reference graph. More
precisely, for a GeneralisedStratum X and a profile p, X.lookup(p) will, on first
call, generate all graphs in the profile p (cf. Section 5.3) and stores this list in the
dictionary X._lookup with key p. On subsequent calls, this dictionary is used, so
that the clutching is only done once and the same EmbeddedLevelGraph is returned
on every lookup. Moreover, for profiles of length 1, the entries of bics are used:

sage: G=X.bics[0]

sage: G is X.lookup_graph((0,),0)

True

sage: H=X.lookup_graph((1,0),0)

sage: H is X.lookup_graph((1,0),0)

True

Moreover, each EmbeddedLevelGraph G has a list G._levels that is filled with
the extracted levels on first call of G.level (and these are subsequently reused).
Therefore, also the individual levels of the graph associated to an enhanced pro-
file will not be regenerated. Also, other intrinsic values, such as the number of
automorphisms, are stored on first computation and then retrieved.

Finally, AdditiveGenerators are considered immutable and are even hashable,
i.e. using them, e.g., as keys in dictionaries works:

sage: a=X.additive_generator(((0,),0))

sage: {a : 1}

{AdditiveGenerator(X=GeneralisedStratum(sig_list=[Signature((2,))],res_cond

=[]),enh_profile=((0,), 0),leg_dict={}): 1}

By contrast, ELGTautClasses are mutable (their psi_lists can and will be changed,
for example by reduce) and therefore may not be used as keys.

This allows any method whose arguments consist only of enhanced profiles
and AdditiveGenerators to be cached (using sage’s @cached_method decora-
tor). This is a key reason for splitting all methods in Section 7 into operations
involving only these objects (instead of working only with ELGTautClasses of
EmbeddedLevelGraphs).

Also, note that AdditiveGenerators should always be created and used via
X.additive_generator as this stores them in the _AGs dictionary of X and allows
them to be reused (instead of being created newly on each call):

sage: a=X.additive_generator(((0,),0))

sage: a is X.additive_generator(((0,),0))

True

sage: a is AdditiveGenerator(X, ((0,),0))

False

This allows computations in strata of genus 3 and 4 in feasible time. However,
the memory footprint is considerable: already in genus 3, the larger strata use about
20GB, while in genus 4 already more than a TB is required.

9.2. Files and Values. As described in Section 6.3, diffstrata uses the pack-
age admcycles to evaluate top-degree ELGTautClasses. As the computations of
admcycles are also very involved, we cache every use and, in fact, (attempt to)
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write any computed value into a local file that is automatically (attempted to be)
reused.

More precisely, given the signature sig of a stratum (note that admcycles works
only with connected strata without residue conditions, cf. Section 6.3) and a ψ-
polynomial psis (as a dict mapping points of the stratum to exponents), the
method adm_evaluate uses adm_key to compute a key consisting of the signature
and psis transformed into a tuple. To avoid needless recomputations, the signature
is sorted and psis renumbered accordingly:

sage: from admcycles.diffstrata.levelstratum import adm_key

sage: adm_key((2,-2), {1: 2, 2: 1})

((-2, 2), ((1, 1), (2, 2)))

Next, we check if the cache dictionary exists and if not, we attempt to load it from
the file adm_evals.sobj (see below for details). If the key exists in the cache, we
return its value, otherwise we use admcycles to compute the value, store it in the
cache and write this back into the file.

Similarly, whenever we evaluate a top-power of ξ, we save this to file, as the
Euler characteristic can be computed purely from the degeneration graph and this
information (cf. Section 10.1).

More precisely, for a GeneralisedStratum X, an enhanced profile and a level l,

the method X.top_xi_at_level computes the evaluation of the top-power of ξ
[l]
Γ

on the graph Γ associated to the enhanced profile, i.e. X.xi_at_level_pow as in
Example 7.2. These numbers are stored in a cache dictionary that is synchronised
with the file top_xis.sobj as described above.

The ξ-cache uses LevelStratum’s method dict_key to compute a key, again
with the aim of performing as few evaluations as necessary: the list of components
is sorted, as is the signature of each component; then the residue conditions are
renumbered appropriately and also sorted. Finally, everything is converted to a
nested tuple.

Example 9.2. We illustrate the dict_keys in the stratum ΩM2(1, 1). For the
V-graph, the top stratum is disconnected and produces:

sage: print(VT)

Product of Strata:

Signature((0,))

Signature((0,))

with residue conditions:

dimension: 3

leg dictionary: {1: (0, 0), 2: (1, 0)}

leg orbits: [[(1, 0), (0, 0)]]

sage: VT.dict_key()

(((0,), (0,)), ())

The bottom stratum has residue conditions:

sage: print(VB)

Stratum: Signature((1, 1, -2, -2))

with residue conditions: [(0, 3)] [(0, 2)]

dimension: 0

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)}



diffstrata – A SAGE PACKAGE 79

leg orbits: [[(0, 0)], [(0, 1)], [(0, 3), (0, 2)]]

sage: VB.dict_key()

(((-2, -2, 1, 1),), (((0, 0),), ((0, 1),)))

By contrast, the bottom level of the banana graph produces:

sage: print(BB)

Stratum: Signature((1, 1, -2, -2))

with residue conditions: [(0, 2), (0, 3)]

dimension: 1

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)}

leg orbits: [[(0, 0)], [(0, 1)], [(0, 3), (0, 2)]]

sage: BB.dict_key()

(((-2, -2, 1, 1),), (((0, 0), (0, 1)),))

Importing and Exporting Values. As described above, any value computed with
adm_evaluate is cached and synchronised with the file adm_evals.sobj (actually
the global variable FILENAME, which is set to adm_evals.sobj by default). This
is accomplished by the method load_adm_evals.

The diffstrata method import_adm_evals takes a filename as an argument and
attempts to update the cache dictionary from load_adm_evals with the dictionary
read from this file. The result is written immediately to FILENAME.

Similarly, the ξ-cache is synchronised with XI_FILENAME, which is top_xis.sobj
by default, the loading is handled by load_xis and these can be imported using
import_top_xis.

For file handling, sage’s methods save and load are used, i.e. the files are stored
in the current working directory. Moreover, admcycles versions after v1.1 include
the modules adm_eval_cache and xi_cache that automatically initialise the cache
with a large number of values for low-genus strata.

Example 9.3. Assume we have a computed only the top ξ of the minimal stratum
in genus 3, our ξ-cache would look like this and we may export it:

sage: my_xi

{(((4,),), ()): 305/580608}

sage: save(my_xi, ’my_xi.sobj’)

We may import this anywhere (and check):

sage: import_top_xis(’my_xi.sobj’)

sage: load_xis()

{(((4,),), ()): 305/580608}

Timing this calculation confirms that the cached value is being used:

sage: X=Stratum((4,))

sage: %time X.top_xi_at_level(((),0), 0)

CPU times: user 14.9 ms, sys: 970 µs, total: 15.9 ms

Wall time: 15.5 ms

305/580608
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Printing Values. As the generation of keys for strata and ψ-polynomials described
above hinder the readability of the content of the cache, diffstrata includes the
methods print_top_xis and print_adm_evals to print these values in a more
human-readable format.

Example 9.4. Continuing Example 9.3 from above, assume we are importing a
second file and want to confirm that our previous value was not deleted:

sage: import_top_xis(’my_other_xi.sobj’)

sage: print_top_xis()

Stratum | Residue Conditions | xi^dim

----------------------------------------------------------------

(-2, -2, 1, 1) | [[(0, 0)], [(0, 1)]] | 1

(4,) | () | 305/580608

We can also pass the dict to be printed as an argument, e.g. to inspect a file before
loading:

sage: print_top_xis(load(’my_xi.sobj’))

Stratum | Residue Conditions | xi^dim

----------------------------------------------------------------

(4,) | () | 305/580608

sage: print_top_xis(load(’my_other_xi.sobj’))

Stratum | Residue Conditions | xi^dim

----------------------------------------------------------------

(-2, -2, 1, 1) | [[(0, 0)], [(0, 1)]] | 1

Additionally, one may want to filter the content of the cache:

sage: xi_cache=load_xis()

sage: val_one = {k : v for k, v in xi_cache.items() if v == 1}

sage: print_top_xis(val_one)

Stratum | Residue Conditions | xi^dim

----------------------------------------------------------------

(-2, -2, 1, 1) | [[(0, 0)], [(0, 1)]] | 1

To facilitate this, the method list_top_xis picks apart the key of the ξ-cache:

sage: for sigs, res_conds, value in list_top_xis():

....: print(’%s %s %s’ % (sigs, res_conds, value))

....:

((-2, -2, 1, 1),) (((0, 0),), ((0, 1),)) 1

((4,),) () 305/580608

10. Tests and Computations

We use this section to briefly illustrate how the described methods of diffstrata
may be used to implement some of the key results and crosschecks of formulas in
[CMZ20]

10.1. Euler Characteristics. We illustrate the methods described above to im-
plement [CMZ20, Thm. 1.3] for computing the Euler characteristics of strata.
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Recall that the (orbifold) Euler characteristic of the moduli space ΩMg,n(µ) is the
dimension-weighted sum over all level graphs Γ ∈ LGL(B) without horizontal nodes

χ(B) = (−1)d
d∑

L=0

∑
Γ∈LGL(B)

`ΓN
>
Γ

∫
DΓ

L∏
i=0

(ξ
[i]
Γ )d

[i]
Γ

of the product of the top power of the of the first Chern class ξ
[i]
Γ of the tautological

bundle at each level, where d
[i]
Γ is the dimension of the projectivized moduli space

at level i and where d = dim(B) = N − 1. The equivalence of the above formula
and the one stated in [CMZ20, Eq. (2)] follows from [CMZ20, Lemma 9.12].

We may implement this using diffstrata for a stratum X as follows:

Algorithm 10.1 (Euler Characteristic).

Step 1: Loop over L from 0 to X.dim().
Step 2: Loop over ep in X.enhanced_profiles_of_length(L).
Step 3: Writing the profile ep=(p, enh), the number lΓ is the product over

X.bics[p[i]].ell for all i and N>Γ is X.bics[p[0]].top.dim() + 1.

Step 4: Calculate the product using top_xi_at_level (this uses d
[i]
Γ and

returns a number). It’s also cached, cf. Section 9.
Step 5: Sum all these numbers together.

Example 10.2. The above algorithm is implemented by euler_characteristic.
We run this with an empty cache:

sage: print_adm_evals()

Stratum | Psis | eval

----------------------------------------------------------------

sage: print_top_xis()

Stratum | Residue Conditions | xi^dim

----------------------------------------------------------------

sage: X=Stratum((4,))

sage: %time X.euler_characteristic()

CPU times: user 7.31 s, sys: 108 ms, total: 7.41 s

Wall time: 7.43 s

-55/504

Re-inspecting the cache, we see that it has been filled:

sage: print_top_xis()

Stratum | Residue Conditions | xi^dim

----------------------------------------------------------------

(-4, -2, 4) | [(0, 0), (0, 1)] | 1

(-4, 0, 2) | [(0, 0)] | 1

(-4, 1, 1) | [(0, 0)] | 1

(-4, 4) | [(0, 0)] | -15/8

(-3, -3, 4) | [(0, 0), (0, 1)] | 1

(-2, -2, -2, 4) | [(0, 0), (0, 1), (0, 2)] | -4

(-2, -2, -2, 4) | [[(0, 0), (0, 2)], [(0, 1)]] | 1

(-2, -2, 0, 2) | [(0, 0), (0, 1)] | -2

(-2, -2, 1, 1) | [[(0, 0)], [(0, 1)]] | 1

(-2, -2, 1, 1) | [(0, 0), (0, 1)] | -1

(-2, -2, 2) | [(0, 0), (0, 1)] | 1

(-2, -2, 4) | [[(0, 0)], [(0, 1)]] | -11/12
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(-2, -2, 4) | [(0, 0), (0, 1)] | 13/8

(-2, 0, 0) | [(0, 0)] | 1

(-2, 0, 0, 0) | [(0, 0)] | -1

(-2, 0, 2) | [(0, 0)] | 1/8

(-2, 1, 1) | [(0, 0)] | 0

(-2, 2) | [(0, 0)] | -1/8

(-2, 4) | [(0, 0)] | -23/1152

(0,) | () | 1/24

[(0,), (-2, 0, 0)] | [(1, 0)] | -1/24

[(0,), (0,)] | () | -1/576

[(0,), (0, 0)] | () | 0

(0, 0) | () | 0

(0, 0, 0) | () | 0

(0, 2) | () | 0

(1, 1) | () | 0

(2,) | () | -1/640

(4,) | () | 305/580608

sage: print_adm_evals()

Stratum | Psis | eval

----------------------------------------------------------------

(0,) | {1: 1} | 1/24

(-2, 2) | {1: 1} | 1/8

(-2, 0, 0, 0) | {1: 1} | 1

(-2, -2, -2, 4) | {1: 1} | 1

(-2, -2, 1, 1) | {1: 1} | 1

(-4, 4) | {1: 1} | 5/8

(-2, -2, 0, 2) | {1: 1} | 1

(0, 0) | {1: 1, 2: 1} | 1/24

(-2, -2, 4) | {1: 1, 2: 1} | 11/12

(-2, 0, 2) | {1: 1, 2: 1} | 1/4

(-2, 1, 1) | {1: 1, 2: 1} | 1/6

(0, 0, 0) | {1: 1, 2: 1, 3: 1} | 1/12

(-2, 4) | {1: 1, 2: 2} | 73/1152

(0, 0, 0) | {1: 1, 2: 2} | 1/12

(1, 1) | {1: 1, 2: 3} | 1/720

(-2, -2, 4) | {1: 1, 3: 1} | 11/12

(0, 0) | {1: 2} | 1/24

(-2, -2, 4) | {1: 2} | 19/24

(-2, 0, 2) | {1: 2} | 1/8

(-2, 1, 1) | {1: 2} | 1/24

(-2, 4) | {1: 2, 2: 1} | 97/1152

(1, 1) | {1: 2, 2: 2} | 1/720

(2,) | {1: 3} | 1/1920

(0, 0, 0) | {1: 3} | 1/24

(-2, 4) | {1: 3} | 43/1152

(0, 2) | {1: 4} | 11/1920

(1, 1) | {1: 4} | 1/720

(4,) | {1: 5} | 13/580608

(-4, 4) | {2: 1} | 5/8

(-2, 2) | {2: 1} | 1/8

(-2, 0, 0, 0) | {2: 1} | 1

(-2, 1, 1) | {2: 1, 3: 1} | 1/6

(-2, 0, 2) | {2: 2} | 1/4
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(-2, 1, 1) | {2: 2} | 1/6

(-2, 4) | {2: 3} | 19/1152

(-2, -2, 0, 2) | {3: 1} | 1

(-2, -2, 1, 1) | {3: 1} | 1

(-2, -2, 4) | {3: 2} | 7/24

(-2, -2, -2, 4) | {4: 1} | 1

Of course this affects any future calculations:

sage: %time X.euler_characteristic()

CPU times: user 2.52 ms, sys: 5.39 ms, total: 7.91 ms

Wall time: 22.3 ms

-55/504

In fact, the cache was already used in the first calculation, as all levels appear
already in the two and three-level graphs (see Remark 3.8).

Example 10.3. Note that calling euler_characteristic is simply a frontend for
calling the method euler_char_immediate_evaluation. Calling this directly, we
may use the quiet=False option to give extensive output:

sage: X=Stratum((2,))

sage: X.euler_char_immediate_evaluation(quiet=False)

Generating enhanced profiles of length 0...

Building all graphs in () (1/1)...

Going through 1 profiles of length 0...

1 / 1, ((), 0): Calculating xi at level 0 (cache) -1/640 Done.

Generating enhanced profiles of length 1...

Building all graphs in (0,) (1/2)...

Building all graphs in (1,) (2/2)...

Going through 2 profiles of length 1...

1 / 2, ((0,), 0): Calculating xi at level 0 (cache) 1/24 level 1 (cache)

-1/8 Done.

2 / 2, ((1,), 0): Calculating xi at level 0 (cache) 0 Product 0. Done.

Generating enhanced profiles of length 2...

Building all graphs in (0, 1) (1/1)...

Going through 1 profiles of length 2...

1 / 1, ((0, 1), 0): Calculating xi at level 0 (cache) 1/24 level 1 (cache) 1

level 2 (cache) 1 Done.

Generating enhanced profiles of length 3...

Going through 0 profiles of length 3...

-1/40

Example 10.4. Alternatively, we can calculate the Chern character of the loga-
rithmic cotangent bundle using [CMZ20, Thm. 1.2] and use Newton’s identity to
calculate the Chern polynomial. Of course, this is a longer calculation and there
is less caching (top_xi_at_level is not called), but it may be used to check the
consistency of the formulas:

sage: X=Stratum((2,))

sage: X.top_chern_class().evaluate()

1/40

sage: X.euler_char()

-1/40
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Note that euler_char is simply a frontend for various methods computing the
Chern polynomial. More details may be found in the docstrings of the various
methods.

10.2. Crosschecks. The module tests includes some more cross-checks and ex-
ample computations using diffstrata. For example, leg_tests tests on each

one-dimensional graph Γ of a stratum if the evaluation of the ξ
[i]
Γ at that level is the

same (for every leg!) as the product of Γ with ξ. Note that these expressions can
be evaluated and the numbers compared.

The method commutativity_check runs an extensive commutativity check on a
stratum, i.e. multiplying products of BICs in various orders to give top-level classes
and check that these evaluate to the same number, testing the normal bundle and
intersection formulas along the way.

Finally, the class BananaSuite tests the strata ΩM1(k, 1,−k − 1) (cf. [CMZ20,
§10.3]) implementing the D-notation introduced there and including a method to
test [CMZ20, Prop. 10.2].

Example 10.5. We illustrate the tests on some small strata:

sage: leg_test((4,))

Graph ((3, 6, 7, 2), 0): xi evaluated: 1/48 (dim of Level 0: 1)

level: 0, leg: 1, xi ev: 1/48

Graph ((3, 6, 7, 2), 1): xi evaluated: 1/24 (dim of Level 0: 1)

level: 0, leg: 1, xi ev: 1/24

Graph ((3, 6, 5, 2), 0): xi evaluated: 1/48 (dim of Level 0: 1)

level: 0, leg: 1, xi ev: 1/48

Graph ((3, 6, 5, 4), 0): xi evaluated: 1/48 (dim of Level 0: 1)

level: 0, leg: 1, xi ev: 1/48

sage: commutativity_check((2,))

Starting IPs

(0, 0, 0)

0 0

Starting IPs

(0, 0, 1)

0 0

Starting IPs

(0, 1, 0)

0 1

Starting IPs

(0, 1, 1)

0 1

Starting IPs

(1, 0, 0)

1 0

Starting IPs

(1, 0, 1)

1 0

Starting IPs

(1, 1, 0)

1 1

Starting IPs

(1, 1, 1)

1 1



REFERENCES 85

sage: B=BananaSuite(2)

sage: B.check()

D(1,1)^2 = -1, RHS = -1

D(1,2)^2 = -1, RHS = -1

D(5,1)^2 = -3/2, RHS = -3/2

True
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[MUW17] M. Möller, M. Ulirsch, and A. Werner. “Realizability of tropical canon-
ical divisors”. In: (2017). arXiv: arXiv:1710.0640. to appear in: J.
Eur. Math. Soc.

[SageMath] The Sage Developers. SageMath, the Sage Mathematics Software Sys-
tem (Version 9.0). https://www.sagemath.org. 2020.

[Sau18] A. Sauvaget. “Volumes and Siegel–Veech constants of H(2g − 2) and
Hodge integrals”. In: Geom. Funct. Anal. 28.6 (2018), pp. 1756–1779.

[Sau19] A. Sauvaget. “Cohomology classes of strata of differentials”. In: Geom.
Topol. 23.3 (2019), pp. 1085–1171.

[Sch18] J. Schmitt. “Dimension theory of the moduli space of twisted k-
differentials”. In: Doc. Math. 23 (2018), pp. 871–894.

E-mail address: costanti@math.uni-bonn.de

http://arxiv.org/abs/1910.13492
http://arxiv.org/abs/2004.08676
http://arxiv.org/abs/1901.01785
http://arxiv.org/abs/2020.xxxx
http://arxiv.org/abs/2002.01709
http://arxiv.org/abs/1909.11981
http://arxiv.org/abs/arXiv: 1710.0640


86 REFERENCES

Institut für Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Ger-
many

E-mail address: zachhuber@math.uni-frankfurt.de

Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 6–8,
60325 Frankfurt am Main, Germany

E-mail address: moeller@math.uni-frankfurt.de


	1. Introduction
	2. Basic Interface
	3. Generalised Strata
	4. Level Graphs and Embeddings
	5. Generating all Level Graphs
	6. Additive Generators, Tautological Classes and Evaluation
	7. Normal Bundles, Pullback and Multiplication
	8. Clutching, Splitting and Gluing
	9. Caching
	10. Tests and Computations
	References

