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Abstract. In the first part we extend the construction of the smooth normal-
crossing divisors compactification of projectivized strata of abelian differentials

given by Bainbridge, Chen, Gendron, Grushevsky and Möller to the case of k-

differentials. Since the generalized construction is closely related to the original
one, we mainly survey their results and justify the details that need to be

adapted in the more general context.

In the second part we show that the flat area provides a canonical hermitian
metric on the tautological bundle over the projectivized strata of finite area k-

differentials whose curvature form represents the first Chern class. This result

is useful in order to apply Chern-Weyl theory tools. It has already been used
as an assumption in the work of Sauvaget for abelian differentials and will

be used in a forthcoming paper of Chen, Möller and Sauvaget for quadratic

differentials.
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1. Introduction

A natural invariant of a flat surface (X,ω) is the flat area vol(X,ω), the area
taken with respect to the form |ω|. As such, it defines a hermitian metric h on
the tautological line bundle O(−1) over the projectivized strata PΩMg(µ). This
metric does not extend smoothly over the boundary, as the area of a flat surface
tends to ∞ when X acquires an infinite flat cylinder, i.e. when ω acquires a simple
pole. In Chern-Weyl theory applications, it suffices to show that the curvature
form of the metric connection associated to the metric h represents the first Chern
class of O(−1) on a suitable compactification. This has been used as assumption
by Sauvaget in [Sau18] for Masur-Veech volumes of the minimal strata of abelian
differentials. While a workaround for this has been given in [CMSZ19], the compu-
tation of the volume of individual spin components in loc. cit. is still based on that
assumption. Moreover, the paper [CMS19] extends this line of thought to quadratic
differentials. There, too, the volume of the canonical double cover (see Section 2)
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provides a natural hermitian metric. Even for principal strata, where the Hodge
bundle provides a smooth compactification, we do not see an easy route to prove
the claim in the title, see the subtleties explained below. This paper consequently
makes full use of the smooth compactification of strata of abelian differentials con-
structed in [BCGGM3]. Yet another application is a growth justification in the
recent computation of the volume of moduli spaces of flat surfaces (in the sense of
Veech ([Vee93]) by Sauvaget [Sau20]).

Given the applications in mind, the first part of this paper is a survey about
the construction of the smooth compactification and the formal justification of the
tempting claim that the construction extends to k-differentials, if the notions are
appropriately adapted in the same way as [BCGGM2] adapts [BCGGM1].

The compactification. Let µ = (m1, . . . ,mn) be a type of a meromorphic k-
differential, i.e. mi are integers such that

∑
mi = k(2g − 2). We summarize the

properties of our compactification PΞkMg,n(µ) of the moduli space of k-differentials,
the n points being labeled throughout. The construction starts with the space
Ωk+Mg,n(µ) parameterizing k-differentials q plus the choice of a k-th root ω of the

pullback of q to the canonical k-cover. The forgetful map makes Ωk+Mg,n(µ) →
ΩkMg,n(µ) into an unramified cover of degree k.

Theorem 1.1. There exists a complex orbifold ΞkMg,n(µ), the moduli space of
multi-scale k-differentials, with the following properties.

i) The space Ωk+Mg,n(µ) is dense in ΞkMg,n(µ)

ii) The boundary D = ΞkMg,n(µ) r Ωk+Mg,n(µ) is a normal crossing divisor.

iii) The rescaling action of C∗ on Ωk+Mg,n extends to ΞkMg,n(µ) and the re-

sulting projectivization PΞkMg,n(µ) is a compactification of PΩkMg,n(µ).

iv) Via the canonical cover construction, the space ΞkMg,n(µ) is embedded as

suborbifold in the compactification ΞMĝ,{n̂}(µ̂) of the corresponding stratum
of abelian differentials with partially labeled points.

Here we only prove that ΞkMg,n(µ) is a ’moduli space’ in a very weak form,
namely by exhibiting what its complex points correspond to, the multi-scale k-
differentials introduced below. We leave it to the interested reader to adapt the
functor from [BCGGM3] to the context of k-differentials.

Besides the normal crossing boundary, the most relevant property for us is the
existence of a convenient coordinate system, given by perturbed period coordinates.
To introduce this, we first have to explain how to parameterize boundary points of
ΞkMg,n(µ).

Let Γ = (V,H,E, g) be a stable graph, where g is the genus assignment. A level
graph is a stable graph together with a weak total order on the set of vertices. We
usually specify the order using a level function, usually normalized to take values
in 0,−1, . . . ,−L, with zero the top level. An enhanced level graph is a level graph
together with an enhancement κ:H → Z on the half-edges that specifies the number
of prongs of the differential at the corresponding marked point, see Section 2.

Each of the levels of Γ thus specifies a moduli space of k-differentials, the type
being given by the enhancement. A collection of these differentials is called twisted
differential and we call a twisted differential compatible with Γ if it moreover satisfies
the global k-residue-condition (GRC) from [BCGGM2]. A multi-scale k-differential
is a twisted differential compatible with Γ up to projectivization of the lower levels,
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but together with the choice of an equivalence class of prong-matchings. The details
are given in Section 3 using the notion of level rotation torus. Leaving them aside,
we can now describe the coordinates.

Proposition 1.2. In a neighborhood U ⊂ ΞkMg,n(µ) of every point in the boundary
stratum corresponding to an enhanced level graph Γ with L + 1 levels there is an
orbifold chart given by the perturbed period map

PPer:U → Ch × CL+1 ×
L∏
i=0

CdimEgrc
(−i)−1

,

where Egrc
(−i) is some eigenspace in homology constrained by the GRC and where the

corresponding coordinates are obtained by integrating perturbations of the twisted
differential against these homology classes.

In this proposition, the first set of coordinates in Ch measure the opening of hor-
izontal nodes and the second set in CL measures the rescaling of the differentials on
each level. Neither of them is a period, in fact they are exponentials, respectively
roots, of periods. The statement about integration is intentionally vague, since we
are not exactly integrating the (roots of) k-differentials parameterized by U , but
its sum with a modification differential, as constructed in Section 3. Moreover,
the path of integration is not between the zeros of those differentials but between
neighboring points, thus the name ’perturbed’. Technically important is that these
perturbations go to zero faster than the rescaling of the k-differential. The map
PPer depends on many choices, however they are irrelevant for many local compu-
tations.

Boundary divisors. To a first approximation the boundary divisors, i.e. the
irreducible components of the boundary ΞkMg,n(µ) r Ωk+Mg,n(µ), are given by
graphs with one level and a single horizontal edge, and by graphs with two levels
and no horizontal edge. However, in the setting of k-differentials the level graph
does not specify the boundary divisor uniquely. In Section 2 we recall the notion
of canonical k-cover, which is unique for k-differentials on smooth curves, but not
in the stable case. An example for two different covers that give rise to different
components of the boundary is given by [BCGGM2, Figure 2]. In fact, the residue
conditions are different in the two cases. Consequently, as second approximation

the choice of a cyclic k-cover π: Γ̂→ Γ compatible with the canonical covers of the
components (see Section 2) characterizes boundary components.

For a full description of the boundary, and also of its orbifold structure, we need
the notion of prong-matchings and the definition of several groups associated with
enhanced level graphs. A prong-matching at an edge e is a cyclic-order preserving
bijection of the κe in- resp. outgoing prongs (separatrices) at the two ends of the
node corresponding to e, see Section 3. To describe various group actions on prong-

matchings, we view Γ̂ as a graph with L level passages, the first from level 0 to
level −1, the second from level −1 to level −2 etc. The unit vector ei in the level
rotation group RΓ̂

∼= ZL acts on the set of prong-matchings by shifting each edge
crossing the i-th level passage by one counterclockwise turn. The relevance of this
action stems from the level-wise rotation action by (C∗)L on the level components
of a twisted differential. Of particular importance is the subgroup TwΓ̂ of RΓ̂ that
fixes all prongs, the twist group.
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Proposition 1.3. There is a bijection between the set of covers π: Γ̂ → Γ of en-
hanced level graphs Γ of type (g, n, k, µ) and the boundary strata DΓ̂ of the com-

pactification ΞkMg,n(µ). Each DΓ̂ is commensurable to the product of the level-wise

projectivised moduli space of twisted differentials on Γ̂.

We will not address the subtle question of connectivity of those DΓ̂. The details
of the construction of a space that admits a finite covering to both DΓ̂ and the
product level-wise projectivised moduli spaces is given in [CMZ20, Section 4.2].
There, the construction is given for Abelian differentials, but it can verbatim be
applied for k-differentials, too.

The metric. We now return to our primary goal. The statement is about flat

surfaces of finite area, so we suppose from now on that mi > −k. If π: X̂ → X
denotes the canonical covering associated with (X, q) ∈ ΩkMg,n(µ) such that π∗q =
ωk, then the definition

h(X, q) = areaX̂(ω) =
i

2

∫
X̂

ω ∧ ω (1)

provides the tautological bundle O(−1) on PΩkMg,n(µ) with a hermitian metric.

The moduli space PΩkMg,n(µ) has, besides the nice compactification ΞkMg,n(µ)
discussed above, a highly singular compactification, the incidence variety compacti-

fication PΩkMg,n(µ) that has been studied in [BCGGM1] and [BCGGM2]. It is the
closure of PΩkMg,n(µ) inside the projectivized bundle of k-fold stable differentials
twisted by the polar part of µ. This projectivized bundle provides an extension of
the tautological bundle O(−1), whose restriction to the incidence variety compact-
ification we denote by the same symbol.

There is a natural forgetful map ϕ:PΞkMg,n(µ) → PΩkMg,n(µ), which is an
isomorphism restricted to PΩkMg,n(µ). The pullback of O(−1) thus provides an

extension of the tautological bundle on PΞkMg,n(µ) that we still denote by the same
symbol. It is this bundle whose Chern classes are relevant ([Sau18], [CMSZ19])
for computation of Masur-Veech volumes and Siegel-Veech constants. Our main
theorem is:

Theorem 1.4. The curvature form i
2π [Fh] of the metric h is a closed current on

PΞkMg,n(µ) that represents the first Chern class c1(O(−1)). More generally, the
d-th wedge power of the curvature form represents c1(O(−1))d for any d ≥ 1.

In an earlier version of the paper we had claimed that the metric h is good
in the sense of Mumford. This is not true at boundary points where there are
both horizontal and vertical edges, as explained in Section 4. We thank Duc-Manh
Nguyen for bringing this to our attention.

More precisely, in the case of only horizontal nodes the metric diverges as we
approach the boundary. However in perturbed period coordinates coordinates the
local calculation is essentially the calculation of Mumford for the special case of
elliptic curves (times the number of horizontal nodes).

In the absence of horizontal nodes, the metric smoothly extends. This fits with
the intuition that the area of the lower level surfaces goes to zero. In the presence of
both horizontal and vertical edges we estimate directly the growth of the curvature
form to justify Theorem 1.4.

This behavior should be contrasted with the one of the flat area metric on the
full Hodge bundle PΩMg for the principal stratum of abelian differentials. This
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compactification is smooth and also has a nice (plumbing) coordinate system. How-
ever consider a stable curve (X,ω) with two components, joined by two nodes and
a differential that is zero on one component, while non-zero on the other. Arbitrar-
ily small neighborhoods contain differentials supported on both components with
non-zero residue at the nodes, and thus with infinite volume. As a conclusion,
vol: ΩMg → R∪ {∞} is not continuous and we thus avoid this space entirely here.

Acknowledgements. We are very grateful to the Mathematisches Forschungsin-
stitut Oberwolfach for providing a stimulating atmosphere and would like to thank
Matt Bainbridge, Dawei Chen, Quentin Gendron, Sam Grushevsky, Duc-Manh
Nguyen and Adrien Sauvaget for inspiring discussions.

2. Period coordinates and canonical covers of k-differentials

In this section we summarize well-known results about period coordinates, but
also recall the period coordinates along the boundary strata of the incidence variety
compactification from [BCGGM2]. We start by recalling properties of the canonical
k-cover.

Let X be a Riemann surface and let q be a meromorphic k-differential of type µ.

This datum defines (see e.g. [BCGGM2, Section 2.1]) a k-fold cover π: X̂ → X such
that π∗q = ωk is the k-power of an abelian differential. This differential is of type

µ̂ :=
(
m̂1, . . . , m̂1︸ ︷︷ ︸

gcd(k,m1)

, m̂2, . . . , m̂2︸ ︷︷ ︸
gcd(k,m2)

, . . . , m̂n, . . . , m̂n︸ ︷︷ ︸
gcd(k,mn)

)
,

where m̂i := k+mi
gcd(k,mi)

− 1. We let ĝ = g(X̂) and n̂ =
∑
i gcd(k,mi). Note that X̂

is disconnected, if q is a d-th power of a k/d-differential for some d > 1.
We fix once and for all a k-th root of unity ζ. The Deck group of π contains

a unique element τ such that τ∗ω = ζω. We fix this automorphism as well. We
denote by p = (p1, . . . , pn) the tuple of marked points in X. Similarly, we denote

by p̂ the tuple of preimages of marked points in X̂. The labeling is not canonical,
even if we suppose that τ(zi) = zi+1 within a set of preimages of a fixed point. We

thus consider X̂ as partially labelled, two labelings being equivalent if they differ
by the renaming the labels within a fiber of π.

For the analogous statements about coverings in the stable case we first need to
define twisted k-differentials and further preparation. An enhanced level graph for
k-differentials is a level graph together with an enhancement map κ : H → Z on
the half-edges, satisfying the following properties:

i) If h and h′ are paired to an edge, then κ(h) + κ(h′) = 0.
ii) At a leg h ∈ H r E with order mi, we impose that κ(h) = mi + k.

iii) At each vertex v ∈ V (Γ)

k(2g(v)− 2) =
∑
h`v

(κ(h)− k) .

This completes the definition of twisted k-differentials and those compatible with
a level graph Γ given in the introduction. The global residue condition uses the fact

that also a twisted differential (X, q) defines canonical cyclic coverings π: X̂ → X
such that π∗q = ωk is the k-power of an abelian differential. Here however the edge
identification are in general not uniquely determined by the requirement of a cyclic
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cover. Most of the local statement in the sequel depend on the specification of an

identification that we record as a covering of graphs π: Γ̂→ Γ.

We denote by Wk(Γ̂) the moduli space of twisted k-differential compatible with Γ̂,
suppressing the dependence on the initial type µ. By the definition of the global
residue condition and the main theorem of [BCGGM2], all these differentials are
smoothable to some k-differential on a smooth curve. Most relevant for us is the sub-
variety Wk

na(Γ̂) parametrizing twisted k-differentials smoothable to a k-differential

that is not a k-th power of an abelian differential. Points in Wk
na(Γ̂) are usually

denoted by (X,q), or even more often by (X,ω), where q = (qi)i∈L(Γ) is a collection
of k-differentials on the levels of X, or alternatively ω = (ωi)i∈L(Γ̂) is a collection

of one-forms on the cover X̂ of X induced by Γ̂→ Γ.
Next we define the subspaces of homology that we use for period coordinates.

We fix some reference smooth surface Σ of genus g with n marked points that we
partition as P ∪Z according to the poles of order ≤ k among µ and the ’zeros’, i.e.

with order > k. We let Σ̂ be a model for the canonical covering surface, which is of

genus ĝ, and which comes with a map π: Σ̂→ Σ. We let P̂ and Ẑ be the preimages
of P and Z. They now correspond indeed to the zeros and poles of the type µ̂.

P̂ , Ẑ Σ̂ Λ̂◦ ⊃ Λ̂

P,Z Σ Λ◦ ⊃ Λ

π π π

If X is a stable curve and π a covering as above, we may find a multicurve Λ̂ in Σ̂

mapping under π to the multicurve Λ in Σ, such that X̂ and X are obtained by

pinching Σ̂ and Σ along Λ̂ and Λ respectively.
Recall ([BCGGM2, Section 2]) that the moduli space ΩkMg,n(µ) (and thus also

Ωk+Mg,n(µ)) is locally modelled on the ω-periods of the eigenspace

E(Σ̂ r P̂ , Ẑ) = H1(Σ̂ r P̂ , Ẑ,C)τ=ζ .

Similarly, we can describe local coordinates for the components of a twisted dif-
ferential on a stable curve X with enhanced level graph Γ (not yet imposing full
compatibility, i.e. the GRC). Let Λ◦ be an open thickening of Λ. We let Λ± be
the upper and lower boundaries of Λ◦. The level structure on Γ organizes Σ r Λ
into levels Σ(i) and we denote the adjacent poles, zeros and boundaries Λ± with
the subscript (i). All the notation apply with a hat to the corresponding objects
on the k-cover. The level-i component of the twisted differential is thus modelled
on

E(i) = H1(Σ̂(i) \ {P̂(i) ∪ Λ̂◦(i)}, Λ̂
+
(i) ∪ Ẑ(i),C)τ=ζ . (2)

We can now restate the main dimension estimate in the proof of [BCGGM2, The-
orem 6.2].

Proposition 2.1. Twisted differentials compatible with an enhanced level graph

are locally modelled on the ω(−i)-periods of
∏L
i=0E

grc
(−i), where Egrc

(i) ⊆ E(i) is the

subspace at level i ∈ L(Γ) cut out by the global residue condition. The dimensions
of these subspaces

L∑
i=0

dimCE
grc
(−i) = dimC ΩkMg,n − h
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add up to the total dimension of the moduli space of k-differentials of type µ minus
the number of horizontal edges h.

3. Construction of ΞkMg,n(µ)

In this section we recall the main technical tools from [BCGGM3], construct the
compactification and eventually prove Theorem 1.1. The definitions in Section 3.1–
Section 3.4 are direct adaptation of the abelian case by working on the canonical
k-covers. Avoiding the discussion of Teichmüller spaces means omission of that
aspect but also a simplification of notations. In the remaining sections we have to
ensure at some places that constructions can be performed τ -equivariantly.

3.1. Degeneration, undegeneration. We describe here two types of maps be-
tween level graphs Γ that encode the degeneration of curves, together with the

compatible maps between the coverings graphs Γ̂ that form part of the degenera-
tion datum. In fact, it is easier to first describe the inverse process of undegener-
ation that encodes all the k-differentials in a neighborhood of a given degenerate
k-differentials.

Let π: Γ̂ → Γ by a cyclic k-covering of enhanced level graphs with L + 1 nor-
malized levels. For any subset I ⊂ {−1, . . . ,−L}, to be memorized as the the level
passages that remain, we define the vertical undegeneration δI as the following con-
traction of certain vertical edges. An edge e is contracted by δI if and only if the
levels e−, e− + 1, . . . , e+ − 1 all belong the the complement of I. Here the symbol

e− denotes both the point in X̂ at the bottom end of the edge e and its level. The
meaning should be clear from the context. Similarly, e+ refers to the top end. This
edge contraction is performed simultaneously on the domain and range of π and

induces a cyclic k-covering δI(Γ̂) → δI(Γ) that we abbreviate as δI(π). We write
δI(j) for the image of the j-th level under δI .

Moreover, we define for any subset E0 ⊂ Ehor of the horizontal edges of Γ the
horizontal undegeneration δE0

to be the edge contraction that contracts precisely
the edges in E0 in Γ. Contracting simultaneously also on the π-preimages of E0 in

Γ̂, we obtain a new cyclic k-covering δE0
(π) : δE0

(Γ̂)→ δE0
(Γ).

A general undegeneration is a pair δ = (δI , δE0
), defined by composing a hori-

zontal and a vertical undegeneration in either order. A degeneration is the inverse

of an undegeneration. We write Γ̂′  Γ̂ for a general degeneration of level graphs
and δver and δhor for the two constituents of an undegeneration δ.

3.2. Prong-matchings as extra structure on twisted differentials. We start
with the definition of prong-matchings and the welded surfaces constructed from
these. Given a differential ω on X that has been put in standard from zκdz/z if
κ ≥ 0 or (zκ + r)dz/z if κ ≤ −2, the prongs are the |κ| tangent vectors e2πij/|κ| ∂

∂z

for κ > 0 and −e2πij/|κ| ∂
∂z for j = 0, . . . , |κ − 1|. At simple poles, prongs are not

defined.
We now get back to a twisted differential (X̂,ω, Γ̂). Define a local prong-matching

σe at the vertical edge e of Γ̂ to be a cyclic order-reversing bijection between the
prongs at the upper and lower end of e. A global prong-matching is a collection
σ = (σe)e∈E(Γ̂) of local prong-matchings that is equivariant with respect to the

action of τ permuting the edges and multiplying the local coordinates z by ζ.
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A global prong-matching σ on X̂ gives an almost-smooth surface X̂σ, i.e. a

smooth surface except for nodes corresponding to the horizontal nodes of X̂, con-

structed by the following procedure of welding. Take the partial normalization of X̂
separating branches at vertical nodes and perform the real oriented blowup of each
pair of preimages. Then identify the boundary circles isometrically so as to iden-
tify boundary points that are paired by the prong-matching. More details of the
construction can be found in Section 4 of [BCGGM3], see also [ACG11]. (We only
use subscripts σ to denote weldings here and suppress the overline used in loc. cit.
to avoid double decorations.) Horizontal nodes remain untouched in the welding
procedure.

On almost-smooth surfaces any good arc γ, i.e. any arc transversal to the seams
created by welding, has a well-defined turning number, that we denote by ρ(γ).

Adding the information of prong-matching to points in Wk(Γ̂) will give us a
finite covering space. We will next construct this covering in detail for the subset

Wk
na(Γ̂) of twisted differentials admitting a non-abelian smoothing, since we will be

exclusively concerned with that space.

We define the set Wk
pm(Γ̂) to be tuples (X,ω, σ) consisting of a point (X,ω) ∈

Wk
na(Γ̂) together with a prong-matching σ. There is an obvious notion of parallel

transport of prong-matchings that allows to lift inclusions of contractible open sets

U → Wk
na(Γ̂) uniquely to maps U → Wk

pm(Γ̂). Requiring that these lifts are

holomorphic local homeomorphism provides Wk
pm(Γ̂) with a complex structure so

that Wk
pm(Γ̂)→Wk

na(Γ̂) is a covering map.

3.3. The level rotation torus. Our compactification combines the geometry of
moduli spaces of k-differentials of lower complexity and aspects of a toroidal com-
pactification. The torus action for the latter is given by the level rotation torus
that we now define.

In the introduction we defined the twist group to be the (full rank) subgroup TwΓ̂

of the level rotation group RΓ̂
∼= ZL that fixes all prongs. The (reduced) level

rotation torus TΓ̂ is the quotient

TΓ̂ = CL/TwΓ̂ .

(Here reduced refers to the fact that TΓ̂ does not rotate the top level. We will
introduce this action separately for projectivization and usually drop the adjective
’reduced’.) The level rotation torus can also be characterized ([BCGGM3, Propo-
sition 5.4]) as the connected component of the identity of the subtorus{

((ri, ρe))i,e ∈ (C∗)L × (C∗)E(Γ̂) | re− . . . re+−1 = ρκee for all e ∈ E(Γ̂)
}
. (3)

This characterization makes the reason for introducing TΓ̂ apparent, as there is a

natural action of the level rotation torus on Wk
pm(Γ̂) given by

TΓ̂ ×Wk
pm(Γ̂) → Wk

pm(Γ̂)

(ri, ρe) ∗ (X̂, (ω(i)), (σe)) =

(
X̂, (ri . . . r−1ω(i)), (ρe ∗ σe)

)
(4)

where ρe ∗σe is the prong-matching σe post-composed with the rotation by arg(ρe)
(if the full Dehn twist around e corresponds to angle 2π, equivalently by the rotation
by κ arg(ρe) for the angle in the flat metric). We alert the reader that this action
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uses the ’triangular’ basis, where the i-th component of TΓ̂ rotates the i-th level
and all level below it by the amount ri.

The toric variety associated with the level rotation torus will not be smooth in
general. To obtain orbifold charts we define first the simple twist group Tws

Γ̂
⊆ TwΓ̂

as the twist group elements generated by rotations of one level at a time, i.e.

Tws
Γ̂

= ⊕Li=1Twδ−i(Γ̂) .

We can now define the (reduced) simple level rotation torus as

Ts
Γ̂

= CL/Tws
Γ̂
. (5)

In order to describe the action of these tori we will need the integers

`i = lcme∈E(δi(Γ̂))ke , and me,i = `i/κe (6)

for i = −1, . . . ,−L and e ∈ E(Γ̂). Now Proposition 5.4 in loc. cit. moreover shows
that there is an identification Ts

Γ̂
∼= (C∗)L such that the projection Ts

Γ̂
→ TΓ̂ is

given in coordinates by

(si) 7→ (ri, ρe) =
(
s`ii ,

e+−1∏
i=e−

s
`i/κe
i

)
(7)

The composition of this parametrizations (7) of TΓ̂ by Ts
Γ̂

with the action (4)

gives an action of s = (si) ∈ Ts
Γ̂

on welded surfaces and we denote the image of X̂σ

under the action of s by X̂s·σ.

3.4. The compactification as topological space. We start with the definition

of ΞkMg,n(µ) as a set. For each k-cyclic covering π : Γ̂→ Γ we define the boundary

stratum ΩkBΓ̂ = Wk
pm(Γ̂)/TΓ̂ and we define the set

ΞkMg,n(µ) =
∐

π:Γ̂→Γ

ΩkBΓ̂ . (8)

This union includes Ωk+Mg,n for π being the trivial covering of a point to a point.

Points of ΞkMg,n(µ) are called multi-scale k-differentials, i.e. the preceding def-
inition completes the specification of the equivalence relation stated in the in-

troduction. Points of ΞkMg,n(µ) are thus given by a tuple (X,p, Γ̂,ω, σ) where
ω = (ω(−i))

L
i=0 is a tuple indexed according to the levels. We often write just (X,ω)

or (X,ω, Γ̂). The equivalence classes are given by the orbits of the action (4) on
(ω, σ).

We now provide this space with a topology by exhibiting all converging se-
quences. The basic idea is the conformal topology onMg where sequences converge
if there is an exhaustion of the complement of nodes and punctures and conformal
maps of the exhaustion to neighboring surfaces, see (b) below. For multiscale dif-
ferentials we require moreover the convergences of the differentials as in (c) after a
rescaling, where the magnitude of rescaling is compatible with the level structure,
see (a) and (c). Since the conformal topology only requires the comparison maps to
be diffeomorphisms near the nodes, which can twist arbitrarily, we need to add (d)

to avoid constructing a non-Hausdorff space. In the sequel we write X̂σn for (X̂n)σn
in a sequence of welded surfaces.
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We say that a sequence (X̂n,ωn, Γ̂n) converges to (X̂,ω, Γ̂), if there exist rep-
resentatives of all the equivalence classes (that we denote by the same letters), a
sequence εn → 0 and a sequence sn = (sn,i)

−1
i=−L ∈ (C∗)L of tuples such that:

(a) For sufficiently large n there is an undegeneration δn = (δver
n , δhor

n ) with

δver
n (Γ̂n) = Γ.

(b) For sufficiently large n there is an almost-diffeomorphism gn: X̂sn·σ → X̂σn

that is conformal on the εn-thick part of (X̂, p̂) and that respects the
marked points, up to relabeling in π-fibers.

(c) The restriction of
∏−1
j=i s

`j
n,j · g∗n(ωn) to the εn-thick part of the level i sub-

surface of (X̂, p̂) converges uniformly to ω(i).

(d) For any i, j ∈ L(Γ̂) with i > j, and any subsequence along which δver
n (i) =

δver
n (j), we have

lim
n→∞

i−1∏
k=j

|sn,k|−`k = 0 .

(e) The almost-diffeomorphism gn are nearly turning-number preserving, i.e.

for every good arc γ in X̂σ, the difference ρ(gn ◦ Fsn ◦ γ) − ρ(Fsn ◦ γ) of
turning numbers converges to zero, where Fsn is the fractional Dehn twist

around the edge e by the angle
∏i
j=1 s

`j/κe
n,j .

This topology is exactly the topology of the compactification of the moduli spaces
ΩMg(µ̂) in [BCGGM3] restricted to the subspace of k-cyclic covers. Note that

the inclusion of Γ̂ into the datum of a multi-scale k-differential implies that even
boundary points have canonically determined k-covers. We may thus view

ΞkMg,n(µ) ⊂ ΞMĝ,{n̂}(µ̂) (9)

with the subspace topology, where {n̂} indicates that we have taken partial label-
ings, the quotient by the action of the group permuting the labels within the group
of gcd(k,mj) labels points of type m̂j for all j = 1, . . . , n.

Proposition 3.1. The moduli space ΞkMg,n(µ) is a Hausdorff topological space

and its projectivization PΞkMg,n(µ) is a compact Hausdorff space.

Proof. This follows from the definition of the subspace topology, the fact that being
a k-cover is a closed condition and [BCGGM2, Theorem 9.4 and Proposition 14.2].
Alternatively, those proofs can be adapted directly to the current situation without
Teichmüller markings. �

3.5. Model differentials and modification differentials. In order to provide
ΞkMg,n(µ) with a complex structure we use a local model space that automatically
has a complex structure (as a finite cover of a product of spaces of non-zero k-
differentials). The degeneration of differentials on lower components is emulated in
the model space by vanishing of auxiliary parameters ti.

The action (4) of the simple level rotation torus Ts
Γ̂

makes Wk
pm(Γ̂) into a prin-

cipal (C∗)L-bundle over the ’simple’ version of the boundary stratum ΩkBs
Γ̂

=

Wk
pm(Γ̂)/Ts

Γ̂
and we define the (compactified) simple model domain Wk

pm(Γ̂)s to be

the associated CL-bundle over ΩkBs
Γ̂
. The construction directly implies:
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Proposition 3.2. The compactified simple model domain Wk
pm(Γ̂)s is smooth with

normal crossing boundary divisor. If ti is a coordinate on CL, then the boundary

divisor Di = {ti = 0} corresponds to model differentials compatible with δi(Γ̂) and
its degenerations.

The space Wk
na(Γ̂), being just a GRC-subspace in a product of moduli spaces,

obviously comes with a universal family of curves and k-differentials that we can

pull back to Wk
pm(Γ̂). Since the level rotation torus only acts on differentials and

prong-matchings, not on the curve, the universal curve descends to a family of

curves f : X̂ → Wk
pm(Γ̂)s. Over small enough open sets W ⊂ Wk

pm(Γ̂)s (even at
the boundary!) we can fix a scale of the Ts

Γ̂
-orbits and work with a collection

η = (η(i))
L
i=0 of families of differentials, not identically zero on any component

of any fiber. From now on with stick to the convention that η denotes (families
of) model differentials (that come with degeneration parameters ti) whereas ω de-
notes (families of) multi-scale differentials (that may become zero on components of
special fibers). We alert the reader of the inevitable notation problem that for triv-

ial families (i.e. just a single surface X̂) multi-scale-k-differentials are equivalence
classes of prong-matched twisted differentials, thus both denoted by ω, and model-
differentials are the same objects, albeit denoted by η. It is only in degenerating
families that the difference becomes apparent.

Note that the boundary of the compactified simple model domain comes with a
natural stratification given by the subset of {−1, . . . ,−L} of the ti that are zero.

Modification differentials will be used for plumbing and also for perturbed pe-

riod coordinates on charts of Wk
pm(Γ̂)s. In the sequel we check that the setup of

[BCGGM3, Section 11] works in the k-equivariant setup. We define

t ∗ η =
(
tdie · η(i)

)
i∈L(Γ̂)

=
(
t
`−1

−1 . . . t
`i
i · η(i)

)
i∈L(Γ̂)

, (10)

for t = (t−1, . . . , t−L) ∈ (C∗)L.

Definition 3.3. A equivariant family of modifying differentials over W equipped
with the universal differential t ∗ η is a family of meromorphic differentials ξ =

(ξ(i))
−L
i=0 on f : X̂ →W , such that

(i) the equivariance τ∗ξ = ζ · ξ holds,
(ii) the differentials ξ(i) are holomorphic, except for possible simple poles along

both horizontal and vertical nodal sections, and except for marked poles,
(iii) the component ξ(−L) vanishes identically and moreover ξ(i) is divisible by

tdi−1e for each i = −1, . . . ,−L+ 1, and
(iv) the sum t ∗ η + ξ has opposite residues at every node.

Proposition 3.4. The universal family f : X̂ → W equipped with the universal
differential t ∗ η admits an equivariant family of modifying differentials.

Proof. The proof of [BCGGM3, Proposition 11.3] works in the situation where the

edges of Γ̂ are images of the pinched multicurve Λ via a family of markings Σ→ X̂
by a reference surface Σ. Choosing W contractible, we may assume that we have
such a marking here as well.

The proof in loc. cit. starts by taking the subspace V = 〈λ ∈ Λ〉Q and the

subspace VP spanned by the loops around the marked poles inside H1(X̂ r P̂ ,Q).
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We define VN = V + VP . The proof proceeds by searching for a complementary

subspace VC (i.e. with VN ∩VC = 0) such that the projection p(V ′) to H1(X̂,Q) is
a Lagrangian subspace, where V ′ = VN + VC . The proof then constructs ξ = (ξ(i))
for each w ∈ W from assignments ρi : Vi → C determined by the periods of the
fiber ηw on subspaces Vi of V + VP generated by multicurves associated to edges
whose lower level is below i. Relevant here is that those ξ satisfy all properties of
Definition 3.3 except possibly the equivariance in (i). Moreover, ξ depends uniquely
on an extension ρ′i of ρi, that we may chose to be zero on VC .

If we can find a subspace VC which is τ -invariant, then the extended residue
assignment ρ′i is τ -equivariant (with τ acting by multiplication by ζ on the range)
and thus ξ satisfies (i). To find such a VC , we enlarge VC and thus V ′ = VC + VN
step by step, staying τ -invariant at each step, until p(V ′) is a Lagrangian subspace.
If at some step V ′ is τ -invariant, but p(V ′) is strictly contained in a Lagrangian
subspace, we may find an element γ that pairs trivially with p(V ′). But then τ i(γ)
also pairs trivially with p(V ′) for all i and we add to VC the span of all τ i(γ). �

3.6. The perturbed period map. Periods give local coordinates on Wk
na(Γ̂) and

thus on Wk
pm(Γ̂). Together with the tuple of degeneration parameters t and de-

prived of one coordinate per level to fix the scale of projectivization they give local

coordinates of Wk
pm(Γ̂)s. We introduce some perturbation of these coordinates here

and show that this still gives local coordinates. The reason for this procedure is
that the perturbed period coordinates can still be used after plumbing, see Sec-
tion 3.7. Together with horizontal plumbing parameters it will provide coordinates
on an orbifold chart of ΞkMg,n(µ). Except for the use of appropriate eigenspaces
this is exactly [BCGGM3, Section 11].

Near the marked point e+ corresponding to the upper end (say on level i = i(e+))

of each of the vertical nodes, choose an auxiliary section s+
e : W → X̂ such that∫ s+e (w)

e+
η(i) = const , (11)

where the constant is sufficiently small, depending on W , and constrained by the
plumbing construction later. Near each zero marked zj of η (say on level i = i(zj))

choose an auxiliary section sj : W → X̂ that coincides with the barycenter of

the zeros of η(i) + t−1
die · ξ(i) that result from the deformation of zj . We let γij

for i = 0, . . . ,−L and j = 1, . . . ,dimEgrc
(i) be a basis of the subspaces Egrc

(i) of

homology. Since the contribution of each level to the twisted differentials compatible
with a level graph is positive-dimensional (by the rescaling of the differential), the
definition of periods coordinates along the boundary in Proposition 2.1 implies that
for each i there exists some j such that

∫
γi,j

η(i) 6= 0. We use this to fix the scale of

the projectivization and assume that the periods for j = 1 are normalized on each
level, i.e.

∫
γi,1

η(i) = 1.

The i-th level component of the perturbed period map is now given by

PPeri:

 W → CdimEgrc
(i)
−1+δi,0 ,

[(X̂,η, t)] 7→
(∫

γi,j
η(i) + t−1

die · ξ(i)
)dimEgrc

(i)

j=2−δi,0
,

(12)

where δi,0 is Kronecker’s delta and where the integrals are to be interpreted starting
and ending at the nearby points determined by the sections s+

e and sj rather than
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the true zeros of η. The reason for this technical step is that those nearby points
are still present after the surfaces has been plumbed (’Step 2’ below).

Proposition 3.5. The perturbed period map

PPerMD:W → CL ×
−L∏
i=0

CdimEgrc
(i)
−1+δi,0 , [(X̂,η, t)] 7→

(
t ;

−L∐
i=0

PPeri(X̂,η, t)
)

is open and locally injective on a neighborhood of the most degenerate boundary

stratum WΛ = ∩Li=1Di in the compactified model domain Wk
pm(Γ̂)s.

We will write (t,w) = PPerMD(X̂,η, t).

Proof. As in [BCGGM3, Proposition 11.6] it suffices to show that the derivative is
surjective, by dimension comparison. For the tangent directions to the boundary
this follows from Proposition 2.1 (and the fact that we have projectivized the lower
levels). For the transverse direction this follows since the ti are the local coordinates
of the CL-bundles used to construct the compactifications. �

The reader should keep in mind, that in the model domain with its equisingular
family of curves horizontal nodes are untouched. They enter in Proposition 1.2 only
after plumbing horizontal nodes, see below.

3.7. The complex structure and the proof of Theorem 1.1. The outline of
the proof of Theorem 1.1 consists of the following steps.

1) Construct locally covers Us → U for small open sets U ⊂ ΞkMg,n(µ) that
will be used as orbifold charts.

2) Perform a plumbing construction on the pullback of the universal family

f : X̂ → Wk
pm(Γ̂)s to small open sets W and via the second projection to

W×∆h
ε obtain a family Y →W×∆h

ε together with a family of differentials.
3) Use the moduli properties of the strata of ΞkMg,n(µ) to obtain moduli

maps ΩPl : W ×∆h
ε → Us for appropriately chosen target set U , defined

stratum by stratum.
4) Show that ΩPl is a homeomorphism near a central point P × (0, . . . , 0) ∈

W ×∆h
ε and thus provide charts there.

The charts constructed in this way depend on many choices, in the construction
of the modification differential and the parameters for plumbing. However, the
induced complex structures fit together and that’s all we need since ΞkMg,n(µ)
already exists as a topological space. We provide the details for Step 1) and Step 2),
since there the τ -equivariance needs to be respected and since we need this in the
next section. The technical Step 3) and Step 4) proceed exactly as in [BCGGM3].

Step 1. In order to provide ΞkMg,n(µ) with a complex structure we consider the

neighborhood U of a point (X,ω, Γ̂) that we may assume to be at the boundary,

say for level graph Γ̂. (The following description assumes that (X,ω) has no auto-
morphisms. In general we should start from an orbifold chart, and add the extra
orbifold structure described below.) The compactified simple model domain is a
K = TwΓ̂/Tws

Γ̂
-cover of the (in general) singular space that we would get by com-

pactifying the TΓ̂-quotient of Wk
pm(Γ̂). Consequently, we have to pass locally near
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(X,ω, Γ̂) to a K-cover of U . We define this cover Us as follows. Define the auxiliary

simple boundary stratum to be ΩkBs
Γ̂

= Wk
pm(Γ̂)/Ts

Γ̂
. As a set

Us =
{

(X ′,ω′, Γ̂′) ∈
⋃

Γ̂′ Γ̂

ΩkBs
Γ̂′

: ϕ((X ′,ω′, Γ̂′)) ∈ U
}
,

where ϕ is induced by the quotient maps ΩkBs
Γ̂′
→ ΩkBΓ̂′ . We provide Us with

a topology where convergence is formally given exactly by the same conditions as
for ΞkMg,n(µ) in Section 3.4, but where now the ’existence of representatives of
the equivalence classes’ is up to the torus Ts

Γ̂
rather than the quotient torus TΓ̂.

Step 2. To start the plumbing construction we first define the plumbing fixture for

each vertical edge e ∈ E(Γ̂) to be the degenerating family of annuli

Ve =
{

(w, t, u, v) ∈W ×∆2
δ : uv =

e+−1∏
i=e−

t
me,i
i

}
, (13)

that only depends on the t-part of the perturbed period coordinates (t,w) of W .
We equip Ve with the family of differentials

Ωe =

(
tde+e · uκe−1 − r′e

u

)
du =

(
−tde−e · v−κe−1 +

r′e
v

)
dv , (14)

where we recall that tdie = t`ii . . . t
`1
1 and where r′e = r′e(w, t) are the residues of

the universal family over model domain. Inside the plumbing fixture we define the
gluing annuliA±e by δ/R < |u|< δ and δ/R < |v|< δ respectively. The sizes δ, R and
the size of the neighborhood W will be determined in terms of the geometry of the
universal family, to ensure for example that plumbing annuli are not overlapping.

Suppose we only have vertical nodes. The plumbing construction proceeds bot-
tom up. Near each of the nodes of bottom level we put the family of differentials
η(−L) in standard form (v−κe−1 + re

v )dv so that after rescaling with tde−e it can
be glued to Ωe for r′e = tde−ere. That such a normal form exists in families is the
content of [BCGGM3, Theorem 3.3]. The functions r′e determine the modification
differential ξ(−L+2) as the proof of Proposition 3.4 shows, see [BCGGM3, Corol-

lary 11.4]. We will thus put tde+eη(−L) + ξ(−L+1) in standard form near e+ using
the normal form on the deformation of an annulus ([BCGGM1, Theorem 4.5] or
[BCGGM3, Theorem 12.2]) and this glues with the form (14) on the upper end of
the annulus. Iterating the procedure allows to plumb the collection of families of
one-forms

t ∗ η + ξ =
(
tdie · η(i) + ξ(i)

)−L
i=0

(15)

on the equisingular family of curves X → W to a family of one-forms ω on a
degenerating family of curves Y →W .

In the preceding construction we have neglected so far that the choice of the
normal form is unique only up multiplication by a κe-th root of unity. The prong-
matching that is part of the datum of the universal family over the model domain
determines this choice. Many more details, using reference sections to make the
construction rigorous, are given in [BCGGM3, Section 12].

The whole construction can obviously performed τ -equivariantly, since the mod-
ification differential is τ -equivariant and since the sizes of the neighborhoods and
plumbing annuli are determined by the rates of degeneration of t ∗ η + ξ, i.e. by
τ -equivariant data.
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Finally, we investigate horizontal nodes of Γ̂, that come in τ -orbits of length k and

that we thus label as e
(a)
1 , . . . , e

(a)
h for 0 ≤ a < k. We parameterize the plumbing by

additional plumbing parameters x = (x1, . . . , xh) ∈ ∆h
ε and define the (horizontal)

plumbing fixture to be

Wj =
{

(w, t,x, u, v) ∈W ×∆h
ε ×∆2

δ : uv = xj
}
, (16)

independently of the upper label a of e
(a)
j , equipped with the family of holomorphic

one-forms

Ωj = −r′ej (w, t)du/u = r′ej (w, t)dv/v , (17)

where ±r′ej (w, t) is the residue of t ∗ η + ξ at the j-th horizontal node. Here the

gluing happens along annuli B±j by δ/R < |u|< δ and δ/R < |v|< δ.

Step 3. The existence of moduli maps on each stratum of the simple model domain
to ΞkMg,n(µ) is immediate from the construction of ΞkMg,n(µ) as union of strata

ΩkBΓ̂ = Wk
pm(Γ̂)/TΓ̂ and the property of Wk

pm(Γ̂) as moduli space of k-differentials.
We let U be the range of the union of these maps. The map factors through Us

since both this space and the simple model domain are defined as Ts
Γ̂
-equivalence

classes. [BCGGM3, Section 12.5] provides more details.

Step 4. To show that the resulting map ΩPl:W×∆h → Us is continuous we have to
invoke the definition of the topology on Us to show that the images of a converging
sequence converges. This entails exhibiting the almost-diffeomorphisms gn with the
properties (a)–(e). These gn are construct level by level, bottom up, using conformal
identifications of flat surfaces with the same periods ([BCGGM3, Theorem 2.7]), a
C1-quasi-conformal extension of these maps across the plumbing cylinder and the
equivalence of the conformal and C1-quasi-conformal topology on strata of abelian
differential ([BCGGM3, Section 2]).

To show that ΩPl is a homeomorphism we need to show that this map is open
and locally injective. Openness amounts to showing that for any converging se-

quence in Us, say converging to (X,ω, Γ̂), we can eventually undo the plumbing

construction and find ΩPl-preimages in the model domain Wk
pm(Γ̂)s. These preim-

ages are again found level by level, the scales ti of the model differentials being
determined by the scales si in the definition of convergence in Us. Local injectivity
amounts to checking uniqueness of the previous unplumbing steps using perturbed
period coordinates. See [BCGGM3, Section 12.5-12.7] for details on these steps.

The action of C∗ on the k-th root ω defines an action on the space Ωk+Mg,n that is

equivariant via λ 7→ λk with a C∗-action on ΩkMg,n. The quotients of both actions

is the same space PΞkMg,n(µ). We encourage the reader to revisit all the steps to
check that the first action extends equivariantly to all auxiliary spaces, multiplying
simultaneously all forms at all levels. The resulting quotient of ΞkMg,n(µ) by C∗
is the compactification PΞkMg,n(µ) claimed in iii) of Theorem 1.1.

The proof of Proposition 1.2 is contained in these statements, since Proposi-
tion 3.5 together with the disc coordinates xj used in (16) gives local coordinates
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on Wk
pm(Γ̂)s ×∆h. Consequently, the perturbed period coordinates are given by

PPer: Us
ΩPl−1

−−−−→W ×∆h −→ Ch × CL+1 ×
−L∏
i=0

CdimEgrc
(i)
−1

[X̂,ω]
ΩPl−1

7−−−−→ [(X̂,η, t,x)] 7→
(
x ; t ;

−L∐
i=0

PPeri(X̂,η, t)
) (18)

on open orbifold charts Us of ΞkMg,n(µ), using the inverse of the homeomorphism
ΩPl constructed in Step 3 and 4.

4. The area form is good enough

Here we prove our main Theorem 1.4. We place ourselves in the setting of the

theorem and recall that now mi > −k and thus the sets P and P̂ as defined in
Section 2 are empty. The first step is to determine where the metric tends to
infinity and then to give a convenient expression of the metric. Arguing inductively
on k, we may also suppose that we are dealing with primitive k-differentials, i.e.
that the canonical k-cover is connected.

We start with the definition of the corresponding hermitian form. For a sym-

plectic basis α1, . . . , αĝ, β1, . . . , βĝ of the absolute homology H1(Σ̂,Z) and for ω, η ∈
H1(X̂,C) we define hermitian form

〈ω, η〉 =
i

2

ĝ∑
i=1

(ω(αi) η(βi)− ω(βi) η(αi)) (19)

with the abbreviations ω(αi) =
∫
αi
ω etc. By Riemann’s bilinear relations we can

rewrite the metric defined in (1) using the hermitian form as

h(X, q) = 〈ω, ω〉 =
i

2

∑
i

(aibi − biai) ,

where we introduce another abbreviation ai = ω(αi) and bi = ω(βi), to be used
if ω is the only one-form that appears. We recall from (10) the notation tdie for the
product of the appropriate tj-power of the levels above i.

Lemma 4.1. The metric h extends to a smooth metric across boundary points with
only vertical edges.

Proof. A neighborhood of the point (X̂,ω) is also a neighborhood U of that point in
the model domain. There, ω is interpreted as a collection ωi of non-zero differential

forms on the subsurface X̂(i) on the i-th level. The neighborhood of (X̂,ω) consists
of the stable differentials obtained via the plumbing construction applied to the

differential forms (
∏−1
j=i t

`j
j )η(i) + ξ(i) on the universal family over model domain

restricted to the small neighborhood. Here t = (ti)
−1
i=−L is the collection of ’opening-

up’ parameters in the polydisc and the positive integers `j are determined by the
enhanced level graph Γ via (6). The central fiber of this family agrees with ω
by construction. From the modification differentials ξ = (ξ(i)) we mainly have to

retain that they tend to zero faster than t`i , see Definition 3.3 iii).

Consider the fiber X̂(i),u over u ∈ U of the level-i subsurface over the model

domain. Let E+
(i) be the edges connecting that surface to higher levels and E−(i) the
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edges connecting that surface to lower levels. Consider the subsurface where for
each e ∈ E+

(i) the interior of the plumbing annuli A−e (and thus the pole) has been

removed. The η(i)-area of this subsurface is bounded for u ∈ U , since the areas of

the plumbing cylinders Ve for e ∈ E−(i) tend to the area of a disc with metric zmdz

with m ≥ 0. Consequently, for any sequence (X̂n, ωn) of surfaces plumbed from

(X̂n,ηn) using the parameters tn with the property ti → 0 for all i = −1, . . . ,−L
and with (X̂n,ηn)→ (X̂,ω) in the model domain, we get

areaΩPl(X̂n,ηn,tn)(ωn) =

−L∑
i=0

areaX̂n((
∏−1
j=i t

`j
j,n) ηi,n + ξi,n) → areaX̂(ω0) , (20)

which is finite and non-zero. The smooth dependence on the parameters is obvious.
�

Now suppose we work in a neighborhood U of a general boundary point with

notations (x ; t ;
∐−L
i=0 PPeri) for the perturbed period coordinates as in Proposi-

tion 1.2 and in detail in (18). More precisely, we group the vector x of coordinates
for opening the horizontal nodes as x = (x(i),j), where (i) denotes the level that
contains the node an where j = 1, . . . , n(i) labels these nodes.

Proposition 4.2. On the neighborhood U the metric h has the form

h(X, q) =

L∑
i=0

h(i), h(i) = |tdie|2
(
c(i) −

∑
j

d(i),j log(|x(i),j |2)
)
, (21)

where c(i) and d(i),j are smooth functions of the coordinates PPeri and tj that are
bounded above and away from zero.

Proof. The total space of the line bundle O(−1) defined in the introduction as the
ϕ-pullback of O(−1) from the incidence variety compactification, is nothing but
the total space of the projection ΞkMg,n(µ) → PΞkMg,n(µ). Our goal is thus to

find an expression for the area of a point in ΞkMg,n(µ) near a boundary point

(X̂,ω, Γ̂) ∈ ∂PΞkMg,n(µ).
For notational simplicity we consider first the case that X has only one hori-

zontal node that we moreover suppose to be non-separating. Consequently,

X̂ has k nodes. We pick a convenient basis of H1(Σ̂,Z) on a smooth model Σ̂ (con-

nected by our standing primitivity assumption) that is pinched to X̂. The k pinched

curves αi ∈ Σ̂ are linearly independent and form a τ -orbit in homology. Next, we
take the symplectic dual curves βi with the intersection pairing 〈αi, βj〉 = δij . Note

that βi is well-defined in a neighborhood of (X̂,ω, Γ̂) (only) up to adding an integer

multiple of αi. We arbitrarily complement these elements by αi, βi ∈ H1(Σ̂,Z) for
i = k + 1, . . . , ĝ to a symplectic basis.

In the current case the multi-scale differential case ω = (ω0) = (η0) consists of a
single one-form. Recall from Step 2 in Section 3.7 that points in a neighborhood of

(X̂,ω, Γ̂) are obtained from surfaces (X̂ ′, η′) ∈ ΩMĝ−k,n̂+2k(µ̂, (−1)2k) that admit
an action by 〈τ〉 ∼= Z/k, by gluing in k times each of the plumbing fixtures W in a
τ -equivariant way, parameterized by a coordinate x = (x) ∈ ∆ as in Step 2 above.
By Proposition 1.2 and explicitly (18) the coordinates near the boundary point
are x and the periods in the ζk-eigenspace of η′. We denote by ω′ the differential
obtained from η′ after the plumbing construction. Notice that ω′ is a holomorphic
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differential on the plumbed surfaces having all plumbing parameters xi different
from zero. Our aim is to rewrite the area form, which is defined using ω′ periods
in the interior, in terms of the perturbed period coordinates, i.e. x and η′ periods,
which give charts near the boundary. We abbreviate ai = ω′(αi) and bi = ω′(βi).

Next we decompose βj = βXj +β◦j into the ’eXterior’ part βXj outside the plumb-
ing fixture and the part β◦j between the two seams of the plumbing fixture, as in
Figure 1.

B+
1

B−
1

β1

α1

β◦
1

B+
2

B−
2

β2

α2

β◦
2 W2

W1

Figure 1. Decomposing the βi into exterior and interior of the
plumbing fixture

The separation happens at fixed sections (of the universal family over the stra-

tum ΩMg−kh,n̂+2kh(µ̂, (−1)2kh)) in the neighborhood of (X̂ ′, η′) in the plumbing
annuli Bj , say at the points u = δ0 and v = δ0. Equation (17) simplifies in the
one-level case to Ωj = rjdv/v where rj = ζja1/2πi = aj/2πi. We compute

bj =

∫
βj

ω′ =

∫
βXj

η′ +

∫ x/δ0

δ0

Ωj =

∫
βXj

η′ + rj(log x− 2 log δ0) ,

which is well-defined in C + rjZ because of the ambiguity of βj . By definition of
the area form and since ω′ and η′ agree outside the plumbing fixture,

h(X, q) =
i

2

k∑
j=1

(ajbj − bjaj) +
i

2

ĝ∑
j=k+1

(ajbj − bjaj)

= C +
i

2

ĝ∑
j=k+1

(ajbj − bjaj)−
k

4π
· |a1|2log(|x|2)

(22)

is independent of the ambiguity of bj . Here C is some function that stems from
the integration in the thick part and that is independent of x. We may now let

c(0) = C + i
2

∑ĝ
j=k+1(ajbj − bjaj) and d(0),1 = k

4π · π|a1|2. Both functions are

smooth and bounded away from zero near (X̂,ω, Γ̂), in fact they correspond to the
volume of the region outside the handles and the residue at the handle respectively.

For a general X that has only horizontal nodes we arrive at a similar
formula. We decompose the plumbed surface of the canonical covering into the
thick part and the plumbing fixtures Wj , for j = 1, . . . , n(0). Since the flat area
is additive, we can write it as a sum of the contribution of the flat area of the
thick part and the flat area of the Wj , as we did in the previous case. The area of
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the thick part is clearly a smooth function of the period coordinates and bounded
away from zero. For each node j of X, we get k-plumbing fixtures Wj,l. Since the
residues rj,l of the associated simple pole differential are τ -conjugates for each fixed
j, they all have the same modulus that we denote by |rj |. From the computation
in the plumbing fixtures as in the previous case we see that the flat area is given by

h(X, q) = c(0) −
k

4π

n(0)∑
j=1

|rj |2log(|xj |2) (23)

which is of the shape we claimed.
In the general case of X having of horizontal and vertical nodes, we apply

the previous procedure for each level. More precisely, recall that the plumbing
construction decomposes the surface along the vertical edges into various levels
(and the plumbing cylinders between the levels). For each level, we decompose
the plumbed surface as the union of the horizontal plumbing fixtures, the vertical
plumbing fixtures and the thick part. For the lowest level, the differential form is
scaled with tdLe and the individual contribution of that level is as on the right hand
side of (23), the total sum restricted to a basis of the homology of that level as
explained in (2). This justifies the contribution for h(L). The area of the vertical
plumbing fixtures scales with the upper end, so it does not contribute to c(L).

For a higher level i, we have the same structure, i.e. a contribution as on the right
hand side of (23) scaled with tdie, except that now the flat area has to be calculated
with respect to tdieηi + ξi. This is relevant only when justifying that the constants
c(i) (the area of the thick part of that level) and d(i),j (the ratio of the residue over
the period used to fix the projective scale at that level) are bounded away from zero.
This clearly holds at t = 0 where there is no modification differential. It continues
to hold in a neighborhood since the modification differential ξi scales with tdi+1e,
so after taking out a factor of tdie we are still left with a smooth function. The area
of the vertical plumbing fixtures connecting level i to the level i − 1 contributes
only in making the functions c(i) a little bit bigger. �

Before proceeding to the proof of Theorem 1.4 we recall as an aside and for
comparison the definition of a good metric in the sense of [Mum77] on a smooth
r-dimensional variety (or orbifold) X.

Suppose that X is the compactification of X with a normal crossing boundary
divisor ∂X = X \ X. Let L be a line bundle on X. A metric h on L|X is good,
if for each point p ∈ ∂X there is a neighborhood ∆r with coordinates such that

∂X = {
∏k
i=1 xi = 0} and such that the function hs = h(s, s) for a local generating

section s of L has the following properties:

(i) There exist C > 0 and n ∈ N such that |hs|< C
(∑k

i=1 log|xi|
)2n

and

|h−1
s |< C

(∑k
i=1 log|xi|

)2n

.

(ii) the connection one-form ∂ log h and the curvature two-form ∂∂ log h have
Poincaré growth.

Here a p-form η is said to have Poincaré growth on ∆r if for any choice of sections vi
of TX(∆r) there is C such that

|η(v1, . . . , vp)|2≤ C

p∏
i=1

ωP (vi, vi)
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holds for ωP the product of the Poincaré metrics |dxi|2/x2
i log|xi|2 in the coordi-

nates xi for i ≤ k and the euclidean metric in the other coordinates.
Mumford shows ([Mum77, Theorem 1.4]) that for a good metric h the curvature

form i
2π [Fh] defines a closed (1, 1)-current that represents the first Chern class of L.

This estimate boils down to the observation that the ’Poincaré’ integral

1

2πi

∫
∆ε

dxdx̄

|x|2(log|x|2)2
= −

∫ ε

0

ds

s(log(s))2
=

1

log ε
<∞. (24)

of the Poincaré metric on the (punctured) disc ∆ε is finite and goes to zero as
ε→ 0.

The metric h is indeed good if there is only one level, i.e. if the graph has no
vertical edges, as one can deduce from the estimates in the propositions below.
However the metric h fails to be good if there are several levels and horizontal nodes
on lower level. Consider the simplest such case of a graph with two levels, one
vertex at each level and two edges, one edge joining the levels and a horizontal edge
on lower level. Simplifying the situation by assuming that the bounded functions
c(i) and d(i) are 1, the metric is then given by

h(X, q) = 1 + |t1|2(1− log(|x|2) .

We observe that this metric is not good in the sense of Mumford near the point
(t1, x) = (0, 0), neither considering the natural boundary {x = 0} (Case 1) con-
sisting of the complement of the locus where the metric smoothly extends, nor if
we try to incorporate the problematic t1-direction into the boundary and try the
boundary {x = 0} ∪ {t1 = 0} (Case 2).

Suppose the metric were good and we are in Case 2. Then we would have a
constant C such that ∣∣∣∂ log h

( ∂

∂t1

)∣∣∣2 ≤ C

|t1|2(log(|t1|2))2

on the neighborhood U of (t1, x) = (0, 0), which is equivalent to the inequality of
the square roots

|t1|(1− log(|x|2)

1 + |t1|2(1− log(|x|2))
≤ C1/2

|t1|(log(|t1|2))
(25)

Choosing a sequence tending to (0, 0) with 1 − log(|x|2) = |t1|−2 we get a contra-
diction. In Case 1 we arrive at equation (25) without the denominator of the right
and side and the same special sequence yields a contradiction.

Instead of aiming for a bound as in the definition of good, integrability statements
are sufficient. In fact the coefficients of

∂ log(h) =
|t1|2(1− log(|x|2)

h

dt1
t1
− |t1|

2

h

dx

x

and

∂∂ log h =
|t1|2(1− log|x|2)

h2

dt̄1
t̄1

dt1
t1
− |t1|

4

h2

dx̄

x̄

dx

x
− |t1|

2

h2

dt̄1
t̄1

dx

x
− |t1|

2

h2

dx̄

x̄

dt1
t1

are locally integrable, and thus define currents. To see that the current Fh =
[∂∂ log h] given by the curvature form is closed, we have to show that we can apply
the derivative (in the sense of currents) inside the brackets, on the differential
form, where it gives zero. This requires an application of Stokes’ theorem, and
thus an integral over the boundary Tδ of a shrinking tubular neighborhood around
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the locus where the metric is not smooth, i.e. around x = 0. To see that this
current represents the first chern class c1(O(−1)), we compare with the curvature
form of a smooth metric. To see that the difference is zero in cohomology, the
term [d∂ log(h)] appears and we’d like to invoke say that this is d[∂ log(h)], i.e. a
coboundary of a current. This is gives a second application of Stokes’ theorem,
justified by another integration over Tδ. To justify that we can pass to wedge
powers is a third application of Stokes’ theorem. This integrals are estimated in
the general case in the following proofs, see in particular (41) and also (40) for an
additional case that appears when more levels are present.

The Proof of Theorem 1.4 is now contained in the following two propositions.

Proposition 4.3. The differential forms Ω = ∂ log h and Fh = ∂∂ log h, and more
generally the forms F dh and Ω ∧ F dh have coefficients in L1

loc.
In particular F dh defines a current of type (d, d) for any d ∈ N.

Proposition 4.4. The current [∂∂ log h] is closed and 1
2πi times the curvature

(1, 1)-form Fh = ∂∂ log h represents the first Chern class c1(O(−1)) in cohomology.

More generally, the wedge powers ∧d
(

1
2πiFh

)
represent the class of c1(O(−1))d

in cohomology.

We first calculate the differential forms explicitly. First ∂ log(h) = 1
h

∑L
i=0 ∂h(i)

where

∂h(i) =

i∑
k=1

`kh(i)
dtk
tk

+|tdie|2
(
∂c(i)−

n(i)∑
j=1

d(i),j

dx(i),j

x(i),j
+log(|x(i),j |2) ∂d(i),j

)
(26)

where we note that ∂c(i) and ∂d(i),j involves only the differentials of the coordinates
in PPeri. For the computation of Fh we need

∂∂h(i) =

i∑
k1,k2=1

`k1`k2h(i)
dt̄k1
t̄k1

dtk2
tk2
−
n(i)∑
j=1

i∑
k=1

`kd(i),j |tdie|2
dx̄(i),j

x̄(i),j

dtk
tk

−
n(i)∑
j=1

i∑
k=1

`kd(i),j |tdie|2
dt̄k
t̄k

dx(i),j

x(i),j

+

i∑
k=1

`k|tdie|2
(
∂c(i) −

n(i)∑
j=1

log(|x(i),j |2)∂d(i),j

)
∧ dtk
tk

+

i∑
k=1

`k

n(i)∑
j=1

|tdie|2
dt̄k
t̄k
∧
(
∂c(i) −

n(i)∑
j=1

log(|x(i),j |2)∂d(i),j

)

−
n(i)∑
j=1

|tdie|2
(
∂d(i),j ∧

dx(i),j

x(i),j
+
dx̄(i),j

x̄(i),j
∧ ∂d(i),j

)

+ |tdie|2
(
∂∂c(i) −

n(i)∑
j=1

(log(|x(i),j |2)∂∂d(i),j

)

(27)
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Finally,

Fh = ∂∂ log h =
∂∂h

h
− ∂h

h
∧ ∂h
h

=

L∑
i=0

∂∂h(i)

h
−

L∑
i1=0

L∑
i2=0

∂h(i1)

h
∧
∂h(i2)

h

(28)

The main information to retain from these formulas is that ∂ log(h) and ∂∂ log(h)
consists of linear combinations of the building blocks

h(i)

h

dtk
tk
,
|tdie|2

h

dx(i),j

x(i),j
, ∂c(i), ∂d(i),j (29)

with smooth functions as coefficients, resp. of two-fold wedge products of type (1, 1)
of these building blocks and the version with a bar everywhere together with the
building blocks

h(i)

h

dt̄k1
t̄k1

dtk2
tk2

,
|tdie|2

h

dx̄(i),j

x̄(i),j

dtk
tk
,
|tdie|2

h

dt̄k
t̄k

dx(i),j

x(i),j
, ∂∂c(i) and ∂∂d(i),j .

(30)
for k, k1, k2 ≥ i.

We fix some more notation. We may assume that our neighborhood U is the
product of the polydiscs

Dt = {t : t(i) ∈ ∆ε} and Dx = {x : x(i),j ∈ ∆ε} . (31)

in the corresponding variables times a ball B corresponding to all the variables

in PPeri for i = 0, . . . ,−L. We use the change x(i),j = s(i),je
√
−1ϑ(i),j to polar

coordinates throughout.

Proof of Proposition 4.3. We examine each term in ∂ log h. For dtk-terms we use
h ≥ c(0) and that |tdie|2/tk is a polynomial expression in the ti and t̄i. The logarith-
mic contribution in h(i) is unbounded, but after bounding the contribution from the
t-variables, estimating c(i) and d(i),j from above and change to polar coordinates
we are left with∫

B×Dx×Dt

h(i)

htk
dvol ≤ C1

∫
Dx

c(i) − 2d(i),j

n(i)∑
j=1

log(|x(i),j |)
∏
j

|dx(i),j |2

≤ C2

∫
· · ·
∫
{s(i),j≤ε}

(
1−

n(i)∑
j=1

log s(i),j

) n(i)∏
j=1

s(i),jds(i),j <∞ .

(32)

For the dx(i),j-coefficients we use h ≥ c(0) and we are left with a polynomial expres-

sion in the ti and t̄i and the finite integral
∫

∆ε

1
x(i),j
|dx(i),j |2. The same arguments

apply verbatim to the coefficients of ∂ log h.
Next, we examine the coefficients 1

h∂∂h(i), which can be treated by the previous
arguments. For dt̄k1dtk2 note that t̄k1tk2 divides h(i) for kj ≥ i and for the mixed
terms like dx̄(i),jdtk2 the combination of that divisibility argument and the inte-
grability in (32) suffices. The remaining terms are bounded, since the logarithmic
terms are governed by h in the denominator.

Finally we examine the terms that may arise from as an arbitrary wedge product
of 1

h∂∂h(i), of 1
h∂h(i) or of 1

h∂h(i). We note that we can use the denominator
h ≥ h(i) so that each dx(i),j appears with coefficient 1/x(i),j log(|x(i),j |) and dx̄(i),j



THE AREA IS A GOOD ENOUGH METRIC 23

appears with coefficient 1/x̄(i),j log(|x(i),j |), and so that each log(|x(i),j |2)-prefactor
has h(i) as denominator. Consequently, the integrals that appear involve bounded
functions of x(i),j , polynomials in the ti and t̄i, the integral of 1/x(i),j log(|x(i),j |)
and the Poincaré integral (24), all of which are finite.

For those differential forms that are globally well-defined, independent of the
local scale of the metric being, in L1

loc is sufficient to define a current. �

Proof of Proposition 4.4. We identify the local statements needed to prove the
claims and justify them simultaneously. To see that [Fh] = [∂∂ log h] defines a
closed current we need to justify the first step in the chain

d[∂∂ log h] = [d(∂∂ log h)] = 0 (33)

of cohomology classes of currents. By definition we have to justify that∫
D×B

dFh ∧ ξ = −
∫
D×B

Fh ∧ dξ (34)

for any smooth r-form ζ, where r = dimR PΞkMg,n(µ) − 3. By Stokes’ theorem
amounts to justify that for all (i, j) the limit

lim
δ→0

∫
T

(i),j
δ

Fh ∧ ξ = 0 . (35)

where

T
(i),j
δ = B×

{
|x(i),j |= δ ; t(k′) ∈ ∆ε for all k′ ; x(i′),j′ ∈ ∆ε for all (i′, j′) 6= (i, j)

}
is the boundary of a tubular neighborhood inside B ×Dt ×Dx around the divisor
x(i),j = 0 with tube radius δ. Note that we do not need to consider the boundary
of a tubular neighborhood around ti = 0, since the metric extends smoothly across
these loci by Lemma 4.1.

For the second statement let h∗ be a smooth metric on O(−1). Then certainly
1

2πi times the curvature F ∗h = ∂∂ log h∗ represents the first Chern class of O(−1).
To justify the equality of cohomology classes of currents

[∂∂ log h∗]− [∂∂ log h] = [d(∂ log h∗ − ∂ log h)] = d[∂ log h∗ − ∂ log h] = 0

we have to justify the interchange of the derivative and passing to the current in the
second equality sign. Then the last equality follows from Proposition 4.3, showing
that the expression is a coboundary in the sense of currents, since log h∗ − log h =
log(h∗/h) is independent of the scale of h and thus globally well-defined.

Writing Ω∗ = ∂ log h∗ and Ω = ∂ log h, we have to justify that for any smooth
dimR PΞkMg,n(µ)− 2-form and for all (i, j)

lim
δ→0

∫
T

(i),j
δ

(Ω∗ − Ω) ∧ ξ = 0 , which follows from lim
δ→0

∫
T

(i),j
δ

Ω ∧ ξ = 0 (36)

and from the smoothness of Ω∗.
For the generalization to wedge powers we use Fh = dΩ and F ∗h = dΩ∗ and want

to argue that there is an equality of cohomology classes of currents

[F dh ]− [(F ∗h )d] = d
[
(Ω− Ω∗) ∧

∑
i+j=n−1

F ih(F ∗h )j
]
.
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With this equation at hand we use that the argument of the differential operator
on the right hand side defines a current by Proposition 4.3, so that [F dh ] and [(F ∗h )d]
are cohomologous and ( 1

2π )d[(F ∗h )d] is known to represent c1(O(−1))d.
To justify this equation we need to argue that for all (i, j), for all d and for all

smooth dimR PΞkMg,n(µ)− 2d− 1-forms ξ the hypothesis

lim
δ→0

∫
T

(i),j
δ

Ω ∧ Fnh ∧ ξ = 0 (37)

for the interchange of derivative and passage to the current holds.
To justify these three equations (35), (36) and (37) we fix the tubular neighbor-

hood T
(i),j
δ around one of the boundary divisors and analyze the forms that may

appear from the wedge products in (35), in (36) or in (37). These are wedge prod-
ucts of the building blocks in (29) and (30) and the differentials of the coordinates
themselves.

Our strategy is to apply Fubini’s theorem for the different variables, discuss
the contributions of the building blocks and identify which estimates of the other
building blocks are sufficient to ensure that the integration of the variable under
consideration provides a finite result, independent of δ, and going to zero for the
variables x(i),j and x̄(i),j .

We start with the terms contributing to dx(i′),j′dx̄(i′),j′ for (i′, j′) 6= (i, j). The
building blocks involving these differential forms give coefficients that are either
smooth or they are smooth multiples of

|tdi′e|2

hx(i′),j′
or

|tdi′e|2

hx̄(i′),j′
or

|tdi′e|4

h2|x(i′),j′ |2
. (38)

We will make two types of estimates from them, ’in isolation’ or ’in combination
with t-variables’. When considered in isolation, we will make sure in these displayed
cases that the coefficients of the other building blocks will have no other contribution
involving the variable x(i′),j′ . Then we can integrate these variables and obtain a
finite result independently of δ: In the last case we use the estimate h ≥ h(i′), that
implies

tdi′e|4

h2
≤ 1

(c(i′) − d(i′),j′ log(|x(i′),j′ |2)2

and the finiteness of the Poincaré integral. In the first two cases we do not rely
on the presence of the |tdi′e|2/h prefactor, the bound h ≥ c(0) is sufficient. If the
dx(i′),j′dx̄(i′),j′ building blocks appears with smooth coefficients we will make sure

that the other building blocks give at most as powers log(|x(i′),j′ |2) and obtain a
finite integral with the same argument that as in the last line of (32).

Next we analyze the building blocks involving dtk and dt̄k. These are smooth
(possibly also stemming from derivatives of c(i) or d(i),j) or involve

hi′

htk
or

hi′

ht̄k
, (|i′|≥ |k|) . (39)

We focus on the level k. If there are no horizontal nodes on that level we use that
hk = |tdke|2 and h ≥ c(0) to cancel the denominator and obtain a finite integral.
This also works in the smooth case. Suppose there is a horizontal node at this
level, say corresponding to x(k),j′ with (k, j′) being different from the distinguished
pair (i, j). For this variable, we cannot treat the prefactors from (38) in isolation,
but have to estimate jointly (’in combination’) with that of dtk and dt̄k. In the
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first two cases we can use |tdi′e|2 to cancel the tk and t̄k in the denominator. The

integral is now finite. The last case is the crucial one, combined with
h(i′)
h

dtk
tk

and

its complex conjugate. (Combinations of the building blocks in (30) are treated
with the same estimates.) Now we estimate h ≥ h(i′) and |tdi′e|2≤ |ti′ |2 to use
part of the numerator from (30) to take care of the ti′ -denominators. Passing to

polar coordinates tk = re
√
−1θ and x(k),j′ = se

√
−1ϑ it now suffices to observe that

(keeping the second and third term of the binomial expansion on the passage from
the first to the second line, using the substitution u = r(1 − log(s2))1/2 and then
v = 1− log(s))∫

∆2
ε

|tdi′e|2

h2|x(k),j′ |2
|dx(k),j′ |2|dti′ |2≤ C1

∫ ε

0

∫ ε

0

r3drds

s(1 + r2(1− log(s2)))
2 (40)

≤ C2

∫ ε

0

∫ ε

0

rdrds

s(1− log(s2))(2 + r2(1− log(s2)))

= C2

∫ ε

0

ds

s(1− 2 log(s))2

∫ ε(1−log(s2))1/2

0

udu

2 + u2

=
C2

2

∫ ε

0

log(2 + ε2(1− 2 log(s))) ds

s(1− log(s2))2
≤ C3

∫ ε

0

− log(1− log(s))ds

s(1− log(s))2

= C3

∫ ∞
e1−ε

log(v)dv

v2
< ∞

where the constant C1 appears from estimating c(i′) and d(i′),j and from the angular
integration. If there is more than one horizontal node at this level k = i′ = 1, we
treat the remaining ones ’in isolation’ as stated in the previous paragraph.

The same argument works for the other levels, except that we have to treat the
case k = i specifically. We may focus on the variable x(i),j and ti, treating the
other variables x(i′),j (with their conjugates) ’in isolation’. Obviously the differ-

ential forms involving dx(i),jdx̄(i),j = s(i),jds(i),jdθ(i),j restricts to zero on T
(i),j
δ .

Consequently at most one of the building blocks involving dx(i),j or dx̄(i),j may

appear. We use again polar coordinates ti = re
√
−1θ and x(i),j = δe

√
−1ϑ. The

crucial case is the estimate∫
∂∆

x(i),j
δ

∫
∆
ti
ε

h2
(i)

h2

|tdie|2

h

dti
ti

dt̄i
t̄i

dx(i),j

x(i),j
≤ C

∫ ε

0

rdr

1 + r2(1− log(δ))

=
C

(1− log(δ))

∫ ε(1−log(δ))1/2

0

udu

(1 + u2)

=
C

(1− log(δ))
· 1

2
·
(

log(1 + ε2(1− log(δ)))
)

(41)

where we used h ≥ C̃(1 + |ti|2(1− log(|x(i),j |))) with h2
(i) ≤ h

2 and |tdie|2≤ |ti|2 in

the first inequality, where we substituted u = r(1− log(s2))1/2, and where again the
constant C appears from estimating c(i) and d(i),j and from the angular integration.
This expression tends to zero as δ → 0, as requested.

Finally we integrate the variables from PPeri that appear in the c(i) and d(i),j

which gives bounds independently of δ, since these are smooth differential forms. �
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The moduli space of multi-scale differentials. (2019). arXiv: 1910.

13492.
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