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Abstract

These few pages are (yet incomplete) notes for a lecture series given in the University of Bonn in
the Winter Semester 2023-2024. As such, some parts are still missing, and mistakes are likely to
form a dense subset of the text. Please feel free to send me any comments, suggestions, or found
mistakes.

The aim, throughout these pages, is to provide the student with an elementary and self-
contained introduction to the modern mathematical study of fluid dynamics. No knowledge of
physics or PDEs is required to understand any of the explanations, although mastery of (reason-
ably) basic functional analysis is assumed.

However, despite the introductory level of these notes, we should point out that they cover
some topics which are currently the focus of very active research, and some of the results presented
(and proved) are relatively recent.
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Chapter 1

Introduction to Non-Linear PDEs

We start these notes by presenting the main themes and specific issues of non-linear PDEs by
an example that is particularly relevant in hydrodynamics: Burgers equation. We will start by
shortly explaining the model before exploring the issues that are linked with it’s resolution.

1.1 PDEs and ODEs: What Differences?

It is hardly necessary to justify the importance of differential equations: these are at the heart
of classical physics, and are involved in numerous non-physical phenomena, such as economics,
population dynamics, genetics, etc. These equations link the time evolution of a quantity to its
value through a relation of the form

(1.1) y′ = f(y), where f : X −→ X and X is Banach.

and a fairly complete theory of these equations has been in existence for the better part of two
centuries. They are sometimes called Ordinary Differential Equations, or ODEs, in reference to
the fact that they do not involve partial derivatives. Does that mean that Partial Differential
Equations, or PDEs, should be considered extraordinary? It is up to the reader to decide, and it
is the purpose of this chapter to help him understand what are the essential differences between
ODEs and PDEs. Before we start, let us list and comment some of the main features of ODEs.

Cauchy-Lipschitz theory. Under very general conditions, any ODE (1.1) equipped with an
initial value y(0) = y0 has a unique maximal solution y :]T−, T+[−→ X. This is a general
theory of ODEs.

Non-linear ODEs. When the ODE is non-linear, solutions may be non-global: −∞ < T−
and/or T+ < +∞. For example, in the ODE y′ = y2, the solution is given by

y(t) =
1

1
y0

− t
,

and exists up to time T = 1/y0.

Blow-up. If T± is finite, then the solution must eventually exit any compact subset of X in its
lifespan. When X has finite dimension, this means that∥∥y(t)∥∥

X
−→+∞ as t→ T±.

What about PDEs? Firstly, it should be said that there is no general theory of PDEs. Very
few theorems are “universal”1, in that most results or methods apply to a specific class of PDEs.

1The Cauchy-Kowaleski theorem is a notable exception.
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On the one hand, this means that the analysis of these equations is an extremely vast field. And
secondly, it means that it is also very much example driven: intuition is built on the knowledge
of many examples.

Consequently, in the rest of this chapter, we will present a specific PDE, Burgers equation,
which has the advantage of allowing many explicit computations, while providing precious insight
on the behavior of non-linear PDEs.

1.2 Informal Derivation of Burgers Equation

We consider the motion of a set of particles on the real line R, which we will describe continuously
by a density function u(t, x) ≥ 0. In that way, the number of particles N(t) in an interval I ⊂ R
at a time t ∈ R is exactly

N(t) =

∫
I
u(t, x) dx.

Now, we make the assumption that the particles move to the right (in the direction of increasing
x ∈ R) according to some kind of self-encouragement law: the more particles there are at a given
place, the faster will their motion be. More precisely, we assume that the average velocity v(t, x)
of particles at a point x ∈ R and a time t ∈ R is given by the law

v(t, x) =
1

2
u(t, x).

With these assumptions, we wonder whether we will be able to derive a PDE law for u(t, x). In
most cases in mechanics, the derivation of a differential equation law is the result of a conservation
equation. Here, we will attempt to count the number of particles N(t) that are in a given interval
I = [a, b] ⊂ R. This number evolves according to

d

dt
N(t) =

d

dt

∫
I
u(t, x) dx =

∫
I
∂tu(t, x) dx.

On the other hand, change of the total number N(t) is due to particles entering or leaving by the
edges, a or b. For example, at a given time, the flux ϕa(t) of particles entering I through a will
be

ϕa(t) = v(t, a)× u(t, a) =
1

2
u(t, a)2,

because ϕa is the product of the number of particles at x = a by the speed of these particles.
Similarly, the flux ϕb(t) of particles entering by b is ϕb(t) = −1

2u(t, b)
2, where the opposite sign

accounts for the fact that v(t, b) is the speed of particles leaving the interval. Therefore, the total
number of particles in I evolves according to

d

dt
N(t) = ϕa(t) + ϕb(t),

or in other words ∫
I
∂tu(t, x) dx+

1

2

(
u(t, b)2 − u(t, a)2

)
= 0.

By recognizing an integral in the difference above, we find that∫
I

(
∂tu(t, x) +

1

2
∂x
(
u(t, x)2

) )
dx = 0,

and since that must be true at all times and for all intervals I ⊂ R, we deduce the Burgers
equation:

(1.2) ∂tu+
1

2
∂x(u

2) = 0.
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Remark 1. As is usual in the Analysis of PDEs, we have omitted the dependencies on (t, x)
when writing (1.2), and will continue to do so in the rest of these lecture notes. The reason for
this is twofold. First and foremost, it is a matter of mercy for the reader (and the author) to not
have to repeat needlessly and endlessly the arguments (t, x), except perhaps in cases rare where
it provides some clarification. Secondly, and this is equally important, we will often work with
Lp spaces or spaces of distributions. Therefore, the notation u = u(t, x) may refer to a function,
a class of function defined up to a measure zero set, or even a bounded linear form defined on a
Banach space of functions. Or all three at the same time! And there usually is no ambiguity in
doing so...

Let us introduce one last notation: when f(t, x) is a function of both space and time, we will
note f(t) the restriction x 7→ f(t, x) at a fixed t ∈ R, whenever it makes sense to do so.

Remark 2. Burgers equation (1.2) is a toy model for ideal incompressible fluids. This means
that it is a simple equation that mirrors the behavior of more complicated ones that are actually
used in fluid dynamics. In particular, if u is rather interpreted as a (vector) momentum density,
and if we take into account pressure forces, then we may obtain the Euler equations, which play
a key part in this course.

Remark 3. Also note that the self-driving assumption is at the basis of the non-linear character
of the equation: because u is both the particle density and the fluid velocity, the rightwards flux
at a point a is a non-linear function of the solution ϕa = u(a)2. If the particle velocity was a fixed
function, say V (t, x), then the flux would have been ϕ(a) = V (a)u(a), thus giving a linear PDE.
Generally speaking, this kind of self-driving, or self-reference, is the source of non-linear behavior.

1.3 Solving Burgers Equation: Classical Solutions

In the previous paragraph, we have derived an evolution equation for u(t, x). An evolution
equation is the PDE equivalent of a differential equation: it describes the time dynamics of a
phenomenon with respect to its space dynamics. In good conditions, evolution equations can be
used to compute solutions from a given initial datum. For example, imagine that the solution u
of (1.2) is known at time t. Then, in a perfect world, we should have (in physicist language)

u(t+ dt) = u(t) +
1

2
∂x
(
u(t)2

)
dt.

Of course, things are never so simple. As an illustration of what can go wrong, imagine that
u(t) is a C1 function (and not C2). Then, from the naive equation above, we would expect that
u(t + dt) is C0 and not C1, so that the solution instantaneously loses regularity! While this is
a rather pessimistic evaluation of the situation in the case of Burgers (we will solve the equation
below), this is actually a real problem: unlike ODEs, it is not at all obvious that a PDE has a
sensible solution stemming from any given initial datum (even on a short time interval). A good
illustration of this fact is the reverse heat equation

∂tu+∆u = 0,

whose solutions are given by Fourier transform (in the space variable only)

û(t, ξ) = et|ξ|
2
û(0, ξ).

The formula above shows that if u(0) is not C∞, then the solution at any time t > 0 cannot be
even a locally integrable function. In fact, because of the growing exponential in the equation
above, it is not obvious at all that u(t) can even be defined as a tempered distribution!

The first step in the study of a PDE is therefore to make sure that solutions exist and are
unique for a given initial datum. As in the case of ODEs, this is called the Cauchy problem, or

5



the initial value problem. Let’s look at this for Burgers equation: for a given bounded u0 ∈ C∞,
we want to find a u such that

(1.3)

{
∂tu+ 1

2∂x(u
2) = 0

u(0, x) = u0(x).

The key idea is the notion of characteristic: a characteristic is a curve y(t) such that the quantity
u(t, y(t)) is independent of time. Consider a smooth function y(t), a smooth solution u, and define
g(t) := u(t, y(t)). Then,

g′(t) = ∂tu(t, y(t)) + y′(t)∂xu(t, y(t)),

so that y is a characteristic as soon as it solves the differential equation y′ = u(t, y), in which case
we have g(t) = g(0) = u0(y(0)). We therefore consider y to be a solution of the ODE problem{

y′(t) = u
(
t, y(t)

)
y(0) = x,

so that u(t, y(t)) = u0(x) for any x ∈ R. Because y′(t) = g(t) = u0(x), we may express y(t) as a
function of the data: we have y(t) = ϕt(x) where

ϕt(x) = x+ tu0(x),

and expressing u(t, x) as a function of (t, x) is a matter of inverting ϕt. We have an expression of
the solution as

(1.4) u(t, x) = u0(ϕ
−1
t (x)).

Of course, for all this to work, ϕt must be invertible. Recall that a C1 function R−→R is
invertible with C1 continuous inverse if and only if it is (strictly) monotonous. Therefore, ϕt will
be invertible with a C1 inverse if and only if the derivative ∂xϕt never cancels. Because

∂xϕt(x) = 1 + t∂xu0(x),

this will always be true for small enough times, provided that the derivative ∂xu0 is bounded.
However, unless u0 is nondecreasing, this happens first at time (consider only nonnegative times)

T ∗ =
1

−min ∂xu0
.

Therefore, just as in the case of non-linear ODEs, we have shown that the Cauchy problem (1.3)
can be uniquely solved by a smooth solution, but only on a given time interval. At time T ∗, the
solution ceases to be smooth (or even continuous), and our analysis breaks down. This type of
result is known as a local well-posedness result (as opposed to the case when solutions are global).
As we have explained, proving (local) well-posedness is already non-trivial in the case of most
PDEs.

The situation of Burgers equation is quite similar to what we may already see in the case of
non-linear ODEs. For example, the differential equation y′ = y2 with initial datum y0 ̸= 0 has
solution

y(t) =
1

1
y0

− t
,

which blows-up at time T ∗ = 1/y0. In both cases, non-linear equations may produce finite time
blow-up, and the lifespan of solutions depends on how large the initial datum is.
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1.4 Introducing Weak Solutions

In the case of non-linear ODEs, finite time-blow-up is characterized by the norm of the solution
becoming infinite. While this seems to make sense in our example, we also see profound differences:
if T ∗ < +∞, then the solution (1.4) satisfies

∥u(t)∥C1 −→+∞ as t→ T ∗,

but the form (1.4) of the solution also shows that it remains bounded at all times

∥u(t)∥L∞ = ∥u0∥L∞ .

This remark makes us of course wonder whether it is possible to extend the smooth solution u
beyond T ∗ into a solution that will remain bounded, although it cannot be continuous. In order
to make sense of this, the derivatives in the PDE must be understood in the sense of distributions.
Let us explain.

If u : R+×R−→R is a (smooth) solution of the Cauchy problem (1.3), then for any compactly
supported function ϕ ∈ C∞(R+ × R), we have2∫

R+

∫ (
∂tu+

1

2
∂x(u

2)
)
ϕ dx dt = 0.

By integrating by parts, we see that this is equivalent to

(1.5)
∫
u0(x)ϕ(0, x) dx+

∫
R+

∫ (
u∂tϕ++

1

2
u2∂xϕ

)
dx dt = 0.

The reverse is equally true: if (1.5) holds for all compactly supported ϕ ∈ C∞(R+ × R), then
u must be a solution of Burgers equation with initial datum u0. However, (1.5) has a notable
advantage: it makes sense for any bounded function u ∈ L∞(R+ × R).

We therefore say that a bounded function u ∈ L∞(R+ × R) is a weak solution of Burgers
equation with initial datum u0 ∈ L∞(R) if (1.5) holds for all compactly supported ϕ ∈ C∞(R+×
R).

Remark 4. In accordance with the french training of the author, we will use the Schwarz notation
D(Ω) for the space of C∞ and compactly supported functions on an open set Ω ⊂ Rn, for n ≥ 1.
The reader may find other notation in the literature, such as C∞

c (Ω). Consequently, we note
D′(Ω) the space of distributions on Ω, which is the (topological) dual of D(Ω). This space is also
sometimes noted C−∞(Ω), although rarely in works relating to the analysis of PDEs.

Remark 5. In order for the integral in (1.5) to make sense, it is crucial that the product u∂xu
be expressed as a total derivative 1

2∂x(u
2). This reflects the fact that 1

2∂x(u
2) makes sense as

a distribution (it is the derivative of a L∞ function), but u∂xu does not, as the product of two
distributions is not well-defined.

Remark 6. We make one last remark: there is a slight difference between the weak form of
Burgers equation (1.5) and what we would have by simply using distribution theory: this is due
to the presence of the initial datum, which forces us to take test functions3 in C∞(R+×R) instead

2When a domain is not given, integrals should be understood to bear on R, or on Rd when we work in several
space dimensions.

3Test functions are the ϕ functions that are involved in the weak form of a PDE, or a distributional equality. In
general, if Ω ⊂ Rd is a product of open and closed sets, we note D(Ω) the space of C∞ functions that are supported
in compact subsets of Ω.
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of test functions defined on an open4 set D(R∗
+ × R). This problem can be ignored by extending

u to a all times, setting u(t) = 0 for t < 0, and noting that (1.5) is equivalent to

∂tu+
1

2
∂x(u

2) = δ0(t)⊗ u0(x) in D′(R× R),

where δ0(t) is the Dirac delta in time and the tensor product δ0(t)⊗ u0(x) is defined by

⟨δ0(t)⊗ u0(x), ϕ(t, x)⟩ =
∫
ϕ(0, x)u0(x) dx,

for all ϕ ∈ D(R× R).

Now that we have a notion of solution that makes sense for bounded functions, the question
is whether weak solutions exist and are globally defined (that is for all times). Just like local
well-posedness, the construction of global weak solutions is also quite a challenge for most PDEs.
While proving that there is a global weak solution of Burgers equation for any bounded u0 ∈ L∞

goes far beyond the scope of this introduction chapter, we may provide a simple example.

We consider the propagation of a shock front in Burgers equation: assume that u(t, x) is given
by

u(t, x) =

{
a if x < f(t),

b if x ≥ f(t),

where real a ̸= b and the singularity propagates at a given speed, so f(t) = ct with c ∈ R.
Let us find out on what condition u is a solution of Burgers equation. Consider a test function
ϕ ∈ D(R× R) and compute

I1 + I2 :=

∫∫
u∂ϕdx dt+

1

2

∫∫
u2∂xϕ dx dt.

The second integral I2 has value

I2 =
1

2
a2
∫ ∫ ct

−∞
∂xϕ dx dt+

∫ ∫ +∞

ct
∂xϕ dx dt =

1

2
a2
∫
ϕ(t, ct) dt− 1

2
b2
∫
ϕ(t, ct) dt

=
1

2
(a2 − b2)

∫
ϕ(t, ct) dt.

On the other hand, the integral I1 can be computed similarly: by Fubini’s theorem,

I1 = a

∫∫
1x<ct∂tϕ(t, x) dx dt+ b

∫∫
1x>ct∂tϕ(t, x)) dx dt

=

∫ ∫ +∞

x/c
∂tϕ(t, x) dt dx+ b

∫ x/c

−∞
∂tϕ(t, x) dtdx

= (b− a)

∫
ϕ(x/c, x) dx = c(b− a)

∫
ϕ(x, cx) dx.

Therefore, we see that u is a weak solution of the Burgers equation if and only if the shock
propagates at a speed of

(1.6) c =
1

2

a2 − b2

a− b
=

1

2
(a+ b).

This condition is a particular case of the Rankine-Hugoniot condition, which bear on jump discon-
tinuities in conservation laws, of which Burgers equation is an example. Note that, as expected,
the weak solution u we have constructed has a L∞ norm that is constant in time.

4We note R∗ = R \ {0} and R∗
+ = R+ \ {0}.
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Remark 7. Of course, the computations above may be understood (and directly done) in the
language of distributions:

∂tu+
1

2
∂x(u

2) = c(a− b)δf(t) +
1

2
(b2 − a2)δf(t).

In the above, δz(x) = δ0(x− z) notes the Dirac delta distribution at a point z ∈ R.

Remark 8. When a solution is sufficiently regular so that all the derivatives in a PDE can be
computed explicitly, it is called a classical solution. For example, if a weak solution of the Burgers
equation u lies in C1(R+×R), then it is in fact a classical solution. A strong solution is usually the
product of a local (or global) well-posedness result, although the terminology varies from author
to author.

1.5 Uniqueness Issues and the Well-Posedness Problem

Now that we have explained the notion of weak solutions, which may extend a classical solution
beyond the finite time of blow-up, we present its main flaw: while weak solutions may globally
solve a Cauchy problem, they are in general not unique.

We give an example based on propagating shock fronts. Consider the bounded function given

ua(t, x) =


a if 0 < x < 1

2at

−a if − 1
2at < x < 0

0 elswhere,
for a > 0.

Then all the discontinuities in u propagate at speeds that fulfills the Rankine-Hugoniot condition
(1.6), so that u is a weak solution of Burgers equation, and is associated to the initial datum
u0 = 0. Of course, u = 0 is also a weak solution of the Cauchy problem... Here, we have an
example of an infinity of different weak solutions that all agree at time t = 0. The lesson is that
weak is usually too weak to get uniqueness.

Of course, u = 0 is the only classical solution of Burgers equation with initial datum u0 = 0.
But the problem is that, for generic initial data, the unique classical solution only lasts for so
long. Once it becomes discontinuous (it blows-up), it can be extended into a weak solution, but
this extension is usually not unique: there may be infinitely many different extensions.

In general, the type of questions we will ask when studying a PDE are the following:

Local Well-Posedness: can we prove existence and uniqueness of (strong) solutions on a finite
time interval [0, T ∗[? How does the lifespan of strong solutions depend on the initial data?
Can we have T ∗ = +∞?

Blow-Up: is T ∗ finite? Is it possible to construct blow-up solutions? What happens at the time
of blow-up? Which norms tend to infinity?

Global Weak Solutions: do global weak solutions exist? Can they be unique?

Qualitative Properties: given that solutions are rarely explicit, is it possible to determine their
qualitative behavior?

Remark 9. Burgers equation is a part of a more general class of problems, scalar conservation
laws, which have been intensively studied. In fact, there is a way to select a weak solution (called
the entropy solution) in order to obtain a uniqueness theorem for L∞ solutions. See Chapter 11
of [15] (pp. 609-658) for an introduction to these problems.
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Chapter 2

Incompressible Euler Equations

In this chapter, we introduce one of the most basic models in fluid dynamics, the incompressible
Euler equations. Once we have shortly presented the underlying physics of the system, we will
turn to our main goal: showing the existence and uniqueness of solutions for the Cauchy problem.

2.1 Introduction: Derivation of the System

Consider a fluid occupying the whole Euclidean space Rd, with d ≥ 2. We make the following
physical assumptions:

• the fluid is governed by Newtonian mechanics,

• the fluid is ideal, and therefore has no viscosity (it is inviscid),

• the fluid has a constant density.

All of the above are very reasonable hypotheses to make when studying, say, the flow of water
on short enough times.1 Just as before, we will seek to write a PDE model that describes the
dynamics of the fluid. Let us introduce the following notation:

• u(t, x) ∈ Rd is the (vector) velocity of the fluid particles at a point x ∈ Rd and a time t ∈ R.
We work in d ≥ 2 dimensions of space;2

• π(t, x) ∈ R is the scalar pressure field in the fluid; ρ > 0 is the constant density (and does
not depend on time or space).

Just as in the case of Burgers equation, we resort to conservation laws to derive the fluid
equations. As this is a modelling step, our computations are formal. Let Ω ⊂ Rd be an fixed
arbitrary domain. We start by writing a conservation of mass equation: the variation of mass
inside Ω is due to the flux of mass through the boundary ∂Ω, in other words

d

dt

∫
Ω
ρ dx = −

∮
∂Ω
ρu · ndσ,

where n is the outward normal unit vector on the boundary ∂Ω and σ is the Euclidean surface
measure. Integrating by parts provides∫

Ω

(
∂tρ+ div(ρu)

)
dx = 0,

1We should also add that the inviscid assumption is accurate for flows that are far enough from an interface,
such as the edge of a container.

2In practice, d = 2 or d = 3, but keeping a general value for d helps to understand the role of the dimension in
the proofs. Most of the time, d appears in Sobolev embeddings.
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and since ρ is assumed to be constant, we get the conservation of mass equation:

(2.1) div(u) = 0.

Remark 10. It may be puzzling at first that we only consider fluids on at least two dimensions
of space d ≥ 2. Would a fluid in a thin pipe not be modeled by a one-dimensional equation?
However, the mass equation (2.1) above explains why: in one dimension it reduces to ∂xu = 0,
so that u must be a function of time only. One dimension fluids with constant mass are not very
interesting... Of course, the situation is very different for compressible fluids, but that is a very
different topic!

Now, we write a conservation of momentum equation, that is Newton’s second law applied to
the volume Ω. However, Ω is not an isolated mechanical system, so momentum flows in and out
of Ω as the fluid enters and leaves Ω, and we have to take this into account in addition to the
pressure forces applied on Ω. We have:

d

dt

∫
Ω
ρudx︸ ︷︷ ︸

variation of momentum

= −
∮
∂Ω
πndσ︸ ︷︷ ︸

pressure forces

−
∮
∂Ω
ρu(u · n)dσ︸ ︷︷ ︸

momentum flux

.

We integrate by parts inside the surface integrals. For example, the momentum flux integral reads

−
∮
∂Ω
ρu(u · n)dσ = −

∑
j

∮
∂Ω
ρujej(u · n)dσ =

∑
j

∫
Ω
div(ρuju)ej dx,

and the same can be done inside the pressure integral. In the above, (ej) is the canonical basis of
Rd. Before writing the momentum equation, let us introduce a convenient notation: if Akj(t, x) is
a field of d×dmatrices, we define the divergence of A to be the vector field div(A) =

∑
k ∂k(Akj)ej .

By using this notation, we have:

(2.2) ∂t(ρu) + div(ρu⊗ u) +∇π = 0.

In the equation above, the tensor product u ⊗ u denotes the matrix whose coefficients are given
by [u⊗ u]ij = ujuj .

Equations (2.1) and (2.2) form a system of d+1 equations for the d+1 unknowns (u1, ..., ud, π),
and are called the Euler system, or the Euler equations. Most of the time, we will ignore the
constant density, which does not affect any of the computations. This is equivalent to working in
a set of units where ρ = 1, so that the Euler equations read

(2.3)

{
∂tu+ div(u⊗ u) +∇π = 0

div(u) = 0.

Before moving on, we must notice the proximity of the Euler system with Burgers equation.
By using equation (2.1), we may rewrite the divergence in (2.3) as

div(u⊗ u) =
∑
k,j

∂k(ukuj)ej =
∑
k,j

(
∂kukujej + uk∂kujej

)
= div(u)u+ (u · ∇)u = (u · ∇)u,

and the Euler system becomes

(2.4)

{
∂tu+ (u · ∇)u+∇π = 0

div(u) = 0.

11



Imagine for an instant that u(t, x) = u1(t, x1)e1 is a solution that depends only on the first space
variable and colinear to e1. Then the momentum equation above simplifies and we obtain instead

∂tu1 + u1∂1u1 + ∂1π = 0,

which is the Burgers equation with an added pressure term. Of course, this situation can never
really happen: the divergence equation (2.1) would force u to be constant. But the proximity of
the two PDEs is nevertheless striking, while the conservation of mass implies that there should
also be profound differences. As we will see, this is the case.

Remark 11. We must make one remark on the operator (u · ∇) introduced above. While the
notation may seem artificial at first3, it is not only convenient but carries deep meaning. For
example, if f : Rd−→Rd is a vector field with

∂tf + (u · ∇)f = 0,

then we see that all the components of f solve the same transport equation:

∂tfj + u · ∇fj = 0.

In particular, the function f is constant along all the characteristics associated to the vector field
u. If ϕt(x) is the flow of u defined by ∂tϕt = u(t, ϕt) with ϕ0 = Id, then computations identical
to those in the previous chapter show that f(t, ϕt(x)) = f(0, x). Although we will not use this
fact in the current chapter, it will be absolutely crucial for a more advanced investigation of the
Euler equations later on.

2.2 Computing the Pressure and Leray Projection

We continue to explore the Euler equations at a formal level with a few remarks about the pressure
function. As we have explained above, the pressure π is, just as the velocity u, an unknown of
system (2.4) in its own right, and must be determined in any resolution of the equations. However,
as the astute reader may have noticed, it is not a dynamic unknown: while there is an evolution
equation for u (an equation giving ∂tu as a function of u and its derivatives), it is not the case for
π. The practical consequence of this is that, at any time t ∈ R, the pressure π(t) can be expressed
as a function of u(t). This is the goal of this section.

The starting point is that the velocity field u is divergence-free div(u) = 0. It is therefore
tempting to take the divergence of the momentum equation:

div(∂tu) + div
(
(u · ∇)u

)
+ div(∇π) = 0.

On the one hand, div(∂tu) = 0 by the Schwarz theorem, while div(∇π) = ∆π. On the other
hand, the remaining term is

div
(
(u · ∇)u

)
=
∑
k,j

∂j
(
uk∂kuj

)
What we have left is an elliptic equation whose solution is the pressure related to a quantity that
depends only on u, namely

−∆π =
∑
j,k

∂j
(
uk∂kuj

)
3Just as many notations do in vector calculus. As much as possible, we will refrain from using the “nabla”

operator ∇ in a too confusing way, and avoid as much as possible the notations ∇× (for the curl), ∇· (for the
divergence), ∇2 (for the Laplacian), etc.
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Before solving the equation above, we attract the reader’s attention to the fact that sums like
the one above will be omnipresent in our computations, and will therefore weigh on the clarity of
the text. For that reason, it is usual to omit the summation symbol, making it implicit whenever
there is a repeated index (this practice is due to Einstein, and bears his name4). For example,
in the sum above, the indices j, k = 1, ..., d are repeated, to the elliptic equation above can be
abridged as

(2.5) −∆π = ∂j
(
uk∂kuj

)
.

There are many equivalent ways to solve this elliptic equation. One of them is to use an
elementary solution of the Laplace operator: a function E(x) whose Laplacian is a Dirac delta
−∆E = δ0, and we will use this approach later on. For the moment, we solve equation (2.5) by a
Fourier transform method. If f(t, x) is a smooth integrable function, we note f̂(t, ξ) the Fourier
transform with respect to space:

f̂(t, ξ) =

∫
f(t, x)e−ix·ξ dx.

The Fourier transform is a linear operation with respect to f . This prompts us to consider it as
an operator F , so that f̂(t, ξ) = Ff(t, ξ). By taking the Fourier transform of both sides in (2.5),
we obtain

π̂(t, ξ) =
1

|ξ|2
F
[
∂j(uk∂kuj)

]
(t, ξ).

The pressure π can therefore be obtained by taking the reverse Fourier transform of the equation
immediately above. It is in this way that we should understand the inversion of the Laplace
operator: we have (−∆)−1f := F−1

[
|ξ|−2f̂(ξ)

]
. Therefore, the pressure force reads

∇π = ∇(−∆)−1 div
(
(u · ∇)u

)
.

By plugging this in the Euler system, we obtain an evolution equation which involves only the
velocity field:

(2.6) ∂tu+
(
Id +∇(−∆)−1 div

)(
(u · ∇)u

)
= 0.

Of course, all the computations in the ection have been entirely formal, but will be rigor-
ously justified in the sequel. For now, we will be content with summarizing our motivational
explanations in a definition.

Definition 12 (Leray projector). We define the Leray projection operator P = Id+∇(−∆)−1 div
in the following way. For any vector field f ∈ L2(Rd;Rd), we define Pf by its Fourier transform:

P̂f(ξ) := f̂(ξ)− ξξj
|ξ|2

f̂j(ξ),

where, in the last summand, there is an implicit summation on the repeated index j = 1, ..., d.

Proposition 13. The Leray projection is a bounded operator P : L2−→L2.

Proof. We have to prove that P : L2−→L2 is a bounded operator. Consider f ∈ L2. Note that
the coefficients

σjk(ξ) = δjk −
ξjξk
|ξ|2

are all bounded functions on Rd \ {0}. Therefore, we can use Plancherel’s identity to show that

∥Pf∥L2 = C(d)∥P̂f∥L2 = C(d)∥σ.f̂∥L2 ≤ C(d)∥σ∥L∞∥f̂∥L2 = C(d)∥f∥L2 .

4Strictly speaking, the Einstein summation convention bears on repeated indices, one of which is covariant and
the other which is contravariant. While this distinction is useful in Riemannian geometry, our Euclidean setting
makes it completely superfluous: all indices will be noted as subscripts.
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Remark 14. The operator P is a Fourier multiplier, an operator that is defined by multiplication
of a function in the Fourier variable. The (matrix valued) multiplier function σ(ξ) is called the
symbol of P. Fourier multipliers are a special class of pseudo-differential operators. Conversely,
classical differential operators with constant coefficients are a special class of Fourier multipliers,
those whose symbols are polynomial functions of ξ.

In general, Fourier multipliers are non-local. This means that the image under P of a (smooth)
function supported in a given compact set K ⊂ Rd will not, in general, be supported inside that
same set (or even have compact support). This is due to the fact that Fourier multipliers are in
fact convolution operators. If T is a Fourier multiplier of symbol m(ξ), then

Tf = F−1
[
mf̂

]
= F−1[m] ∗ f.

It is possible to show that the only Fourier multipliers that do not exhibit a non-local behavior
necessarily are differential operators with constant coefficients (see [14], paragraph 5.11.3).

The non-local behavior of the Euler equations is very strongly linked to the constant density
assumption. As an illustration of this, imagine a fluid lying inside a finite tube with a mechanical
pressure applied on one end, the other end being open. The fluid cannot move under the pressure
unless some fluid immediately leaves the tube by the other end, otherwise a zone with a higher
density would be created inside the tube! This thought experiment shows that acting on the fluid
at one place has instantaneous consequences throughout the whole fluid. In other words, there is a
non-local phenomenon. This effect is of course linked to the fact that the speed of sound is higher
in fluids that have low compressibility, such as water: in a (mathematically ideal) incompressible
fluid, the speed of sound is infinite.

Remark 15. The Leray projection operator is an explicit way of writing the Helmholtz decom-
position of a vector field: any vector field f ∈ L2(Rd;Rd) is the sum of a divergence-free vector
field (in the sense of distributions) and the gradient of a function,

f = g +∇h with div(g) = 0.

The field g is given by Pf ∈ L2, while h is given by ∇h = −∇(−∆)−1 div(f). Of course, the
difficult part here is to show that h is a well defined object. We will not expand further here,
referring the reader to [9], Lemma 1.1, Chapter 3. For the time being, note that P is the L2-
orthogonal projection on the closed subspace

(2.7) L2
σ :=

{
u ∈ L2(Rd;Rd), div(u) = 0

}
.

2.3 Energy Balance and Time-Space Norms

This paragraph revolves around the conservation of kinetic energy in an ideal fluid and its nat-
ural consequence, an adapted functional framework for the mathematical analysis of the Euler
equations. As we have explained while deriving the equations, the only force acting on the fluid
is the pressure force −∇π. It should therefore be possible to write an energy conservation law
in the fluid. Here again, the computations stay at the formal level, as this is still a motivational
paragraph.

Assume that u is a smooth solutions of the Euler equations that decays sufficiently fast at
infinity, associated to the pressure function π. We start by considering the kinetic energy, which
is distributed according to the density ec = 1

2 |u|
2. The variation of the total kinetic energy in the

fluid is given by
d

dt

∫
1

2
|u|2 dx =

∫
∂tu · udx.
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We may use the momentum equation to rewrite the time derivative. We obtain

d

dt

∫
1

2
|u|2 dx = −

∫
∇π · udx−

∫
(u · ∇)u · udx.

On the one hand, integration by parts shows that

−
∫

∇π · udx =

∫
π div(u) dx = 0.

On the other hand, we may also perform an integration by parts in the second integral. We have:

−
∫
(u · ∇)u · udx = −

∫
uk∂kujuj dx

=

∫
uj∂k(ukuj) dx

=

∫
ujuk∂kuj dx =

∫
(u · ∇)u · udx.

(2.8)

Because this integral is equal to its opposite, it must be zero. We deduce that the total kinetic
energy is independent of time. In other words,

(2.9) ∀t ∈ R,
∫

|u(t, x)|2 dx =

∫
|u(0, x)|2 dx.

Remark 16. The fact that kinetic energy never dissipates in a fluid with no viscosity means that
the system may sustain perpetual motion. For example, a vortex solving the Euler equations never
stops spinning. Set d = 2 and use polar coordinates (r, θ) and the associated basis (er, eθ), defined
by er := (cos(θ), sin(θ)) and eθ = (− sin(θ), cos(θ)). Then, for any even function ϕ ∈ C∞(R), the
vector field

u = ϕ(r)eθ

is a time independent solution of the Euler equations (2.4) associated to some pressure π. We let
the reader check this: it is a matter of showing that the curl of (u ·∇)u is zero, so that it must be
equal to the gradient of some function. This computation becomes impossible as soon as there is
energy dissipation through viscosity.

We may rephrase the energy conservation law (2.9) in terms of L2 norms. Although this is a
completely trivial rewriting, it is a conceptually crucial step. We have

sup
t∈R+

∥u(t)∥L2 = ∥u0∥L2 .

In other words, the solution defines a function of time t 7−→ L2(Rd) that is bounded. It lies in
the space L∞(R+;L

2(Rd)). This remarks motivates the following definition.

Definition 17. Consider an interval I ⊂ R and p, q ∈ [1,+∞]. We define LpI(L
q) := Lp(I;Lq(Rd))

to be the set of measurable functions f : I × Rd−→R such that

∥f∥Lp
I (L

q) :=

(∫
I
∥f(t)∥pLq dt

)1/p

< +∞

wirh an obvious modification if p = +∞. Note that, if the norm above is finite, the function
t 7−→ ∥f(t)∥Lq is well-defined and finite for almost every t ∈ I by the Fubini-Tonelli theorem.

For the sake of simplicity, we will use the following shorthand:
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• For spaces of functions defined on the whole Euclidean space, we will omit the dependency
on Rd. For example, we write Lp(Rd) = Lp.

• We will note Lp(R+;L
q) = Lp(Lq), and it will always be assumed that we work with

nonnegative times.

• When I = [0, T [, we note Lp(I;Lq) = LpT (L
q).

Remark 18. Note that Definition 17 can be trivially extended to Sobolev type spaces, such as
Lp(HN ). We will also work with spaces of continuous functions defined on a time interval and
with values in a Banach space X, such as C0(L2).

The reader is reminded that the Sobolev space HN is the space of all functions f ∈ L2 such
that ∇kf ∈ L2 for all 0 ≤ k ≤ N (the derivative is taken in the sense of distributions). The space
HN is a Banach space when associated to the norm

∥f∥HN = ∥f∥L2 + ∥∇Nf∥L2 .

It can easily be proved that HM ⊂ HN whenever N ≤M (use the Fourier transform). Therefore,
the HN norm is equivalent to

∥f∥HN ≈
N∑
k=0

∥∇kf∥L2 .

We refer to the excellent book [5] for a cristal clear introduction to HN spaces, starting with the
simpler one dimensional case.

2.4 Existence and Uniqueness of Solutions

In this paragraph, we prove the main theorem of this chapter: local well-posedness of the Euler
equations. We will first state the Theorem, and then turn to the different steps of the proof.
As this is an introduction to mathematical hydrodynamics, the result we present is highly non-
optimal: this is due to the fact that we try to use methods that are as elementary as possible,
leaving more sophisticated tools for later.

Theorem 19 (Ebin-Marsden 1970 [13]). Consider d ≥ 2 and N > d+ 1. For any initial datum
u0 ∈ HN such that div(u0) = 0, there is a time T > 0 such that the Euler equations (2.4) have a
solution u in the space L∞

T (HN ) ∩W 1,∞
T (H2), which is associated to a pressure π ∈ L∞

T (L2).
On the other hand, any solution v ∈ L∞

T (HN ) ∩W 1,∞
T (H2) associated to some pressure π ∈

C0
T (S ′) with the same initial datum must be equal to u. In other words, the solution to the initial

value problem is unique in that space.

Remark 20. If X is a Banach space, the space W 1,∞(X) is the space of R+−→X functions that
are Lipschitz: f ∈W 1,∞(X) if and only if

∀t1, t2 ∈ R+, ∥f(t2)− f(t1)∥X ≤ K|t2 − t1|

for some constant K. It can be shown (the proof is not that hard) that a function f : R−→R
is Lipschitz if and only if its (distributional) derivative is bounded f ′ ∈ L∞, hence the notation
W 1,∞ (as WN,p is the Sobolev space of functions f with ∇kf ∈ Lp for all 0 ≤ k ≤ N).

The proof of Theorem 19 is made of three steps. The first one is, essentially a formal compu-
tation: given a very regular initial datum, we try to find out how long the solutions is expected
to keep HN regularity. The second step is the actual construction of solutions, which involves
approximating system (2.4) by a simple ODE. Finally, we have to prove that the solution we have
constructed is the only one solving the Cauchy problem.
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Before proving the theorem, let us point out that the original proof of Ebin and Marsden is
based on flow map techniques: estimates that are centered on the particle trajectories in the fluid.
The proof we present here is rather based on energy estimates (a.k.a. L2-type estimates), and is
very close to that of T. Kato [21], although with a few simplifications.

Also, we should say something about the improvements that could be made to Theorem 19.
To start with, our assumptions require initial data in HN with N ≥ d+ 2. The proof of Kato in
[21] shows that this condition can be relaxed to N > 1+ d/2. Next, it is possible to relax further
the assumptions on the initial data by using different spaces containing HN (for example the
fractional Sobolev space H1+d/2+ϵ). The best result today (that we know of) is due to Pak and
Park [25] who prove existence and uniqueness for u0 belonging to the Besov space B1

∞,1, which is
a space that is somewhat in between Lipschitz and C1-Hölder functions: C1,ϵ ⊂ B1

∞,1 ⊂ W 1,∞.
In two dimensions d = 2, this can even be further improved to include initial data u0 that are
log-Lipschitz. We refer to the classical article of Yudovich [26], or to the recent preprint [12] for
ideas on how this could work.

2.4.1 A Priori Estimates

As the reader will probably have deduced from all the pages above, understanding a PDE problem
passes through a lot of formal computations before one can actually dive into rigorous mathemat-
ical proof, especially when trying to prove well-posedness. This is due to the very nature of these
results: the main point is finding the right function space X such that any initial datum u0 ∈ X
will give a (possibly unique) solution in a space u ∈ Y . But how are we to guess what X and Y
can be, especially as we do not yet know a solution exists?

The choice of the spaces X and Y is certainly not arbitrary, it depends entirely on the PDE
and its properties. For example, the energy conservation laws (2.9) above suggest that if the initial
datum is u0 ∈ L2, then the solution of the Euler system is in u ∈ L∞(L2), in turn suggesting as
a possible choice X = L2 and Y = L∞(L2).

In fact, the energy spaces X = L2 and Y = L∞(L2) are far too weak for our purposes: because
we will use compact embeddings (such as the Rellich-Kondrachov theorem), working in spaces of
functions with higher regularity, HN in this instance, is a must. The question is whether it is
possible to pick Y to be such a space. In other words, if u0 is regular enough, can we show that
the solution will retain some regularity?

Therefore, the first step of our analysis is rather formal: we consider a regular solution u of
the Euler equations, associated to a smooth integrable (and divergence-free) initial datum u0,
and wonder whether it is possible to show that ∥u(t)∥HN is finite, at least on some time interval.
Because these computations are done before we have even showed the existence of a solution, they
are called a priori estimates. We fix a multi-index α ∈ Nd with length |α| = N , and study the
quantity ∥∂αu∥L2 . We have5

d

dt

∫
1

2
|∂αu|2 dx =

∫
∂αu · ∂t∂αudx

= −
∫
∂α
(
uk∂ku

)
· ∂αudx−

∫
∂α∇π · ∂αudx.

First of all, note that the function ∂αu is a divergence-free vector field div(∂αu) = 0 by the
Schwarz theorem. Therefore, integrating by parts inside the second integral shows that

−
∫
∂α∇π · ∂αudx =

∫
∂απ div(∂αu) dx = 0.

5If α = (α1, ..., αd) ∈ Nd is a multi-index, the α-th derivative is defined by ∂α = ∂α1
1 ∂α2

2 · · · ∂αd
d . We define

|α| = α1 + · · ·+ αd to be the length of the multi-index.
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In order to study the variation of ∥∂αu∥L2 , we therefore only have the first integral to contend
with. Here, we expand the derivative by using an “improved binomial formula”. If we set(

α
γ

)
:=

α!

(α− γ)! γ!
, where α! := α1! · · ·αd!

γ! := γ1! · · · γd!,

then we have6 ∫
∂α
(
uk∂ku

)
· ∂αudx =

∑
|γ|≤|α|

(
α
γ

)∫
∂γuk∂

α−γ∂ku · ∂αudx

:=
∑

|γ|≤|α|

(
α
γ

)
Iγ .

(2.10)

The sum above bears on all multi-indices γ ∈ Nd of length |γ| ≤ |α| = N . Now, our goal will be
to bound the integrals Iγ by using only the quantity E(t) = ∥u∥HN . If we can manage this, we
will have obtained a differential inequality of the form E′(t) ≤ F

(
E(t)

)
, on which Grönwall-type

techniques will work. There are three cases.

First case: γ = 0. At a first glance, this is the most worrisome situation. We want to bound
I0 by using only ∥u∥HN , but the integral involves a (N + 1)-th derivative ∂α∂ku. However, we
are saved by an integration by parts trick: the integral of a function of the form (v · ∇)f · f is
always zero if div(v) = 0, because it is a total derivative v · ∇(12 |f |

2). In other words, thanks to
the divergence-free condition div(u) = 0,

I0 =

∫
uk∂k∂

αu · ∂αudx = −
∫
∂αu · ∂k

(
uk∂

αu
)
dx

= −
∫
∂αu · uk∂k∂αudx = 0.

The integral I0 is zero, and we are left with integrals which involve less than N derivatives on
every term.

Second case: 1 ≤ |γ| < N − d
2 . Here, the essential tool to bound Iγ is a Sobolev embedding.

As a reminder, we state and prove the following lemma.

Lemma 21. Consider an integer k > d
2 . Then we have a continuous inclusion Hk ⊂ L∞. More

precisely, if f ∈ Hk, then f ∈ L∞ and ∥f∥L∞ ≤ C(k, d)∥f∥Hk .

Proof. The proof is simple and relies on the Fourier transform. By using the Plancherel identity,
notice that

∥f∥2Hk =

∫ (
|f |2 + |∇kf |2

)
dx = C(d)

∫ (
1 + |ξ|2k

)
|f̂(ξ)|2dξ.

Therefore, the function (1 + |ξ|)k|f̂(ξ)| is L2. Secondly, the Fourier transform of any L1 function
is bounded, and any function whose Fourier transform is L1 must be a bounded function. By
writing this for f , we have

∥f∥L∞ ≤ C(d)∥f̂∥L1 = C(d)

∫
1(

1 + |ξ|
)k (1 + |ξ|

)k|f̂(ξ)|dξ,
6While this multi-index formulation may seem intimidating, we will not use it that much: the main point is

that it is possible to distribute derivatives inside a product by a Leibnitz-type rule, with given coefficients that
depend only on the order of the derivatives. In other words, the exact form of (2.10) is not important, the main
point is that such a formula exists.
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so that the Cauchy-Schwarz inequality provides

∥f∥L∞ ≤ C(d)

(∫
dξ(

1 + |ξ|
)2k
)1/2(∫ (

1 + |ξ|
)2k|f̂(ξ)|2dξ)1/2

≤ C(d)∥f∥Hk .

All the integrals above are finite because we have assumed k > d/2. This ends the proof of the
lemma.

Let us make use of this Sobolev embedding. By a simple Cauchy-Schwarz inequality, we may
bound the integral Iγ by

|Iγ | ≤ ∥∂αu∥L2∥∂γuk∥L∞∥∂α−γ∂ku∥L2

≤ ∥u∥HN ∥∇|γ|u∥L∞∥∇N−|γ|+1u∥L2 .

Then Lemma 21 provides ∥∇|γ|u∥L∞ ≤ C(d,N)∥∇|γ|u∥Hk ≤ ∥u∥Hk+|γ| for all k > d/2. And
because we have assumed that |γ| < N − d

2 , we may chose k so that k+ |γ| ≤ N . Finally, we have
the bound

(2.11) |Iγ | ≤ C(d,N)∥u∥3HN .

Third case: N − d
2 ≤ |γ| ≤ N . This last case is very similar to the previous one. We start

by using Hölder’s inequality to obtain

|Iγ | ≤ ∥∂αu∥L2∥∂γuk∥L2∥∂α−γ∂ku∥L∞

≤ ∥u∥2HN ∥∇N−|γ|+1u∥L∞ .

Using again the Sobolev embedding of Lemma 21, we may bound the L∞ norm above by

∥∇N−|γ|+1u∥L∞ ≤ C(d,N)∥∇N−|γ|+1u∥Hk ≤ C(d,N)∥u∥HN+k+1−|γ| ,

and this inequality holds for any k > d/2. In order for us to bound this above by using the HN

norm only, we require that k + 1− |γ| ≤ 0, or, by our current assumption on |γ|,

1 + k ≤ N − d

2
.

This inequality is fulfilled as soon as N > d+ 1, which is exactly the assumption of Theorem 19.
With this hypothesis, we have ∥u∥HN+k+1−|γ| ≤ ∥u∥HN , so that Iγ also satisfies inequality (2.11).
Overall, we have proven that

d

dt
∥∂αu∥2L2 ≤ C(d,N)∥u∥3HN .

By adding this tho the energy conservation law (2.9) and simplifying a ∥u∥HN factor, we deduce
that

d

dt
∥u∥HN ≤ C(d,N)∥u∥2HN .

This is a differential inequality solved by ∥u∥HN . As we have explained above, the goal is to
use Grönwall-type methods in order to obtain “natural” bounds on the solution: assuming that
the initial datum is in a given space u0 ∈ X (here X = HN ), we want to show that the solution
naturally lies in a space u ∈ Y (where Y is to be determined). In other words, we want to find
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a space Y such that ∥u∥Y ≤ ∥u0∥X . Let us integrate the inequality above in order to obtain an
expression involving the initial datum u0. We have

∥u(t)∥HN ≤ ∥u0∥HN + C(d,N)

∫ t

0
∥u(s)∥2HNds.

Our goal is to find an upper bound which involves only the norm of the initial datum. The main
obstacle is the time integral in the righthand side. However, this integral will be very small for
small times, so that it should be possible to bound explicitly ∥u∥HN by the initial datum on a
short time interval. With this in mind, we define

T = sup

{
t ≥ 0, C(d,N)

∫ t

0
∥u(s)∥HNds ≤ ∥u0∥HN

}
,

so that on the interval [0, T ], we have the desired estimate ∥u(t)∥HN ≤ 2∥u0∥HN . We may rephrase
this inequality as ∥u∥L∞

T (HN ) ≤ C(d,N)∥u0∥HN . Of course, this is not entirely satisfying: while
we have bounded the solution only by the initial datum, we have done so on a time interval...
which is defined in terms of the solution! (and not the initial datum) To correct this, we try to
estimate the time T by a function of ∥u0∥HN . Notice that, for all t ∈ [0, T ], we must have

C(d,N)

∫ t

0
∥u(s)∥2HNds ≤ 4C(d,N)t∥u0∥2HN .

Therefore, any time such that 2C(d,N)t∥u0∥HN ≤ ∥u0∥HN must be lower than T , hence the lower
bound

(2.12) T ≥ C(d,N)

∥u0∥HN

.

Let us summarize: we have shown that for N > 2 + d/2, it is possible to bound the solution
by using the initial datum only:

∥u∥L∞
T (HN ) ≤ 2∥u0∥HN ,

where the time T can also be bounded from below by a function of ∥u0∥HN . As we will see,
the space L∞

T (HN ) has much better properties that the energy space L∞(L2), in particular with
regards to compact embeddings.

2.4.2 Construction of a Solution

In this paragraph, we show the existence of a solution u to the Cauchy problem with initial datum
u0. The idea is to see u as a limit of approximate solutions: functions un which solve a sequence
of approximate equations, that is systems which look very much alike to the Euler equations, but
that essentially behave as solutions of an ODE.

STEP 1: approximate system. We start by defining an approximation operator: for any
n ≥ 1, we define a Fourier multiplier An by the formula

∀f ∈ L2, Ânf(ξ) = 1|ξ|≤nf̂(ξ).

Note that the operator An is the L2-orthogonal projections on functions that are spectrally sup-
ported in the ball {|ξ| ≤ n}. In particular, for any f ∈ L2, the function Anf is smooth (analytic
in fact), while we have the property

(2.13) Anf −→
n→+∞

f in L2.
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With the help of the approximation operator An, we may write the following approximate Cauchy
problem:

(2.14)

{
∂tun +AnP

(
(un · ∇)un

)
= 0

un(0) = Anu0.

STEP 2: approximate solution. We start by showing that the approximate system (2.14)
has has a solution. The idea here is to consider (2.14) as an ODE problem and to apply the
Cauchy-Lipschitz theorem. We therefore need to show that the map

f 7−→ −AnP
(
(f · ∇)f

)
is locally Lipschitz in a well-chosen Banach space Xn. We choose Xn = An(L

2) to be the space
of all L2 functions whose Fourier transform is supported n the ball B(0, n), in other words,

Xn =
{
f ∈ L2, supp(f̂) ⊂ B(0, n)

}
,

which we equip with the ∥ . ∥L2 norm. Note that Xn functions are C∞ (analytic in fact). We
have, for any f, g ∈ Xn, by the Plancherel identity,∥∥AnP((f · ∇)g

)∥∥2
L2 = C(d)

∫
|ξ|≤n

|ξ|2
∣∣σ(ξ)∣∣2 ∣∣∣f̂ · ∇g(ξ)

∣∣∣2 dξ,
where σ(ξ) is the symbol of the operator P and is a homogeneous function of degree zero. Because
this integral is defined on frequencies |ξ| ≤ n, we may write∥∥AnP((f · ∇)g

)∥∥2
L2 ≤ C(d)n2∥(f · ∇)g∥L2

≤ C(d)n2∥f∥L2∥∇g∥L∞

≤ C(d)n2∥f∥L2

∫
|ξ|
∣∣ĝ(ξ)∣∣dξ.

Hölder’s inequality applied to the integral above (which is supported on |ξ| ≤ n) yields∥∥AnP((f · ∇)g
)∥∥2
L2 ≤ C(d)n3+d/2∥f∥L2∥g∥L2 .

As a consequence, we see that∥∥AnP((f · ∇)f
)
−AnP

(
(g · ∇)g

)∥∥
L2 ≤ ∥f∥L2∥f − g∥L2 + ∥g∥L2∥f − g∥L2 ,

so that the map is indeed locally Lipschitz in the space Xn. By use of the Cauchy-Lipschitz
theorem, we see that problem 2.14 has a unique maximal solution un ∈ C1([−T ∗

n , Tn[;Xn) for
some T ∗

n , Tn > 0.

STEP 3: approximate solution lifespan. We have constructed a family of approximate
solutions (un) whose (forward) lifespan Tn may depend on the approximation index n ≥ 1. Let
us show that this is not the case and that Tn = +∞. By taking the product of the ODE in (2.14)
by un and integrating with respect to space, we obtain

1

2

d

dt

∫
|un|2 dx+

∫
un ·AnP

(
(un · ∇)un

)
dx = 0.

Now, we notice that, for any given time t ∈ [0, Tn[, the function un(t) is both divergence free
(because un(0) is and div(∂tun) = 0) and has its Fourier transform supported in the ball |ξ| ≤ n.
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Therefore, AnPun = un. By using the fact that the symbol σ(ξ) is a symmetric matrix (recall
from Remark 15 that P is an orthogonal projection), we have that∫

un ·AnP
(
(un · ∇)un

)
dx =

∫
ûn(ξ) · 1|ξ|≤nσ(ξ). ̂un · ∇un(ξ)dξ

=

∫
1|ξ|≤nσ(ξ).ûn(ξ) · ̂un · ∇un(ξ)dξ

=

∫
un · (un · ∇)un dx,

and this integral is zero, by the computations (2.8) in which we established the conservation of
energy.7 In summary, we have shown that the ODE solutions remains on the surface of a sphere
of the space Xn,

(2.15) ∥un(t)∥Xn = ∥Anu0∥Xn ,

and so it cannot blow-up in finite time, thanks to the following lemma.

Lemma 22. Consider a Banach space X and a locally Lipschitz map F : X −→X. For y0 ∈ X,
let y :]T−, T+[−→X be the unique maximal solution of the ODE y′ = F (y) with initial datum
y(0) = y0. Then either T+ = +∞ or

lim
t→T+

∥y(t)∥X = +∞.

Proof. Assume on the contrary that T+ < +∞ and that the solution y remains bounded as
t→ T+. Then, the family

(
y(t)

)
t<T+

satisfies a Cauchy criterion:

∀T− < s < t < T+,
∥∥y(t)− y(s)∥X ≤ |t− s| sup

]s,T+[

∥∥F (y(τ))∥∥
X
.

The supremum in the equation above is finite because y is bounded on a neighborhood of T+ and
F is continuous. We deduce that y(t) has a limit y+ ∈ X as t → T+. But if z is the maximal
solution of the ODE with datum z(T+) = y+, then z allows to extend continuously y beyond T+.
Because the extension is continuous and satisfies the integral formulation of the ODE, it must
also be C1, and so is a solution of the ODE that contradicts the maximality of y.

From the above, we deduce that the lifespan of the approximate solutions is infinite Tn = +∞.
In particular, it does not depend on n.

STEP 4: construction of a weak limit. All this shows that we have a family of approx-
imate solutions un ∈ C1(R+;Xn). Now, we want to make the approximation parameter tend to
infinity n→ +∞ and hope to recover, in the limit, a solution of the Euler equations. On the one
hand, the computations immediately above show that the sequence (un) lies within a fixed ball
of the space L∞(L2), as

∥un∥L∞(L2) = ∥Anu0∥L2 ≤ ∥u0∥L2 ,

this upper bound being independent on n. This uniform bound already allows us to find a limit
to the sequence (un). Because the space L∞(L2) has a separable predual (L1(L2))′ = L∞(L2),
the Banach-Alaoglu theorem (Theorem 3.16 and Corollary 3.30 in [5], see also Theorem 75 in the
appendix below) provides an extraction ϕ : N → N and a weak limit u ∈ L∞(L2) such that8

uϕ(n)
∗
⇀u in L∞(L2).

7If this feels a bit uncomfortable, the reader may check that integrals of this type are always zero if un is
a Schwartz function un ∈ S. Then, remark that functions whose Fourier transform is C∞ and are compactly
supported in the ball B(0, n) are Schwartz and form a dense subset of Xn.

8It is quite possible that the reader is unfamiliar or newly acquainted with the notions of weak or weak-
(∗) convergence. An explanatory appendix (Appendix A) dedicated to the presentation of these ideas through
examples is located at the end of these notes.
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However, it is not obvious at all that u is a solution of the Euler problem. For that, we would have
to be able to let n → +∞ in the approximate problem (2.14) and recover the Euler equations.
The issue is the non-linear term: because the convergence above is weak, it is not a given that
AnP(un · ∇un) converge to P(u · ∇u). We need to show that the sequence (un), or an extraction
thereof, converges in a stronger topology.

STEP 5: high order estimates. Recall N ≥ d + 2 from the statement of Theorem 19 we
are trying to prove, and fix a multi-index |α| = N . Then, by taking the α-th space derivative of
the Approximate equation (2.14), we obtain, after integrating by parts,

1

2

d

dt

∫
|∂αun|2 dx+

∫
∂αun · ∂αAnP

(
(un · ∇)un

)
dx = 0.

Once again, the function ∂αun is both divergence-free and has its Fourier transform supported in
a ball |ξ| ≤ n, so that AnP∂αun = un. This means that the approximate solution satisfies

1

2

d

dt

∫
|∂αun|2 dx+

∫
∂αun · ∂α(un · ∇)un dx = 0,

which is exactly the form of the trilinear integral (2.10) we had bound in order to find a priori
estimates! By repeating mutatis mutandi the computations of Subsection 2.4.1, we find that

(2.16) ∥un(t)∥HN ≤ ∥Anu0∥HN + C(d,N)

∫ t

0
∥un(s)∥2HNds

so that the approximate solutions un fulfill the bound

∥un(t)∥HN ≤ 2∥Anu0∥HN ≤ 2∥u0∥HN

as long as the time t is smaller than

t ≤ T :=
C(d,N)

∥u0∥HN

≤ C(d,N)

∥Anu0∥HN

.

We have shown that the sequence (un) entirely lies within a ball (of radius 2∥u0∥HN ) of the space
L∞
T (HN ).

Remark 23. The paragraph above is absolutely typical in the study of non-linear PDEs. One
first starts by looking for formal a priori estimates, knowing that they will usually transfer to
the approximate solutions without too much difficulty. Although the construction of a solution is
quite technical, involving tools of functional analysis, the real core of the work usually lies within
the a priori estimates.

STEP 6: strong compactness. In order to prove strong compactness properties on the
sequence (un), we will use the Ascoli theorem9. Because many different versions of this result
exist, we state one that will be useful in our context and give a short proof.

Theorem 24. Consider a compact metric space (K, d) and a compact interval I ⊂ R. Let (fn)
be a sequence of functions in C0(I;K) that is uniformly equicontinuous: for all ϵ > 0, we may fix
a δ > 0 such that

(2.17) ∀t, s ∈ I, ∀n ≥ 1, |t− s| ≤ δ ⇒ d
(
fn(t), fn(s)

)
≤ ϵ.

Then, there exists an extraction ϕ : N → N such that the sequence (fϕ(n)) converges in the space
C0(I;K).

9This result is also known as the Arzelà-Ascoli theorem. It seems Ascoli has given a sufficient condition for
compactness while Arzelà found a necessary one. The theorem has been further improved by many authors, and
we will actually be using a variant of it in our proof.
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Proof. Let us start by constructing a candidate accumulation point of the sequence (fn). Consider
a countable set of points T := {tk, k ≥ 1} which is dense in I. Because K is compact, we can
fix, for any k ≥ 1, an extraction ϕk : N → N such that the sequence

(
fϕk(n)(tk)

)
n

is convergent:

fϕk(n)(tk) −→
n→+∞

gk in K.

By diagonal extraction, we construct a composite extraction ϕ : N → N such that, for every k ≥ 1,

(2.18) fϕ(n)(tk) −→
n→+∞

gk in K.

Now, let us define a function g : T −→K by setting g(tk) = gk. We will show that g is continuous
(for the topology of T induced by the absolute value). Consider ϵ > 0. By assumption, we may
fix a δ > 0 such that the equicontinuity implication (2.17) holds. Consequently, for any k, ℓ ≥ 1
such that |tk− tℓ| ≤ δ and any n ≥ 1, we have d(fn(tk), fn(tℓ)) ≤ ϵ. By taking the limit n→ +∞
in this inequality, we see that

(2.19) d
(
fn(tk), fn(tℓ)

)
−→

n→+∞
d
(
g(tk), g(tℓ)

)
≤ ϵ,

and this proves that g is continuous. The density of T in I means that g has a unique continuous
extension to I, which we still note g.

In order to finish the proof, we have to show that the sequence (fϕ(n)) does indeed converge
to g in the space C0(I,K). Consider once again a ϵ > 0 and a δ > 0 such that (2.17) holds, and
(2.19) shows that the same equicontinuity inequality also is true for g. In addition, applying the
Borel-Lebesgue property to the density of T and the compactness of I allows us to fix a rank k0
such, for any t ∈ I, there is a tk lying in the finite set T0 := {tk, 1 ≤ k ≤ k0} with |t − tk| ≤ δ.
For any t ∈ I, we may fix such a tk and write

d
(
fϕ(n)(t), g(t)

)
≤ d
(
fϕ(n)(t), fϕ(n)(tk)

)
+ d
(
fϕ(n)(tk), g(tk)

)
+ d
(
g(tk), g(t)

)
≤ 2ϵ+ d

(
fϕ(n)(tk), g(tk)

)
.

Thanks to (2.18), we know that the distance in the upper bound converges to zero as n → +∞,
and the finiteness of T0 means that this convergence is uniform with respect to k. There exists a
rank M ≥ 1 that is independent of k such that d

(
fϕ(n)(tk), g(tk)

)
≤ ϵ for all tk ∈ T0. This ends

the proof of uniform convergence.

Our aim is now to apply this theorem to the sequence of approximate solutions (un), which is
bounded in the space L∞

T (HN ). For this, we must show that it possesses a equicontinuity property
with respect to time and has its values in a compact set. In order to obtain equicontinuity in the
time variable, we will seek an estimate on the time derivative ∂tun. We have:

∥∂tun∥H2 =
∥∥AnP((un · ∇)un)

∥∥
H2 .

Now, two remarks are in order. Firstly, for any vector field f ∈ Hk with k ≥ 0, we have, by the
Plancherel identity,

∥AnPf∥2Hk ≈
∑
|α|≤k

∥∂αAnPf∥2L2

≈
∑
|α|≤k

∫
|ξ|≤n

|ξ|2|α|
∣∣m(ξ).f̂(ξ)

∣∣2dξ
≤ C(d)

∑
|α|≤k

∥∂αf∥2L2 ≤ C(d)∥f∥2Hk ,
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so that the Leray projection operator is bounded on Hk. In particular, we have

∥∂tun∥H2 ≤ C(d)
∥∥(un · ∇)un

∥∥
H2 .

Secondly, we note that the functions (un · ∇)un are uniformly bounded in L∞
T (H2). This comes

from the following estimate: if j, k ∈ {1, ..., d} are two indices, then the Sobolev embedding of
Lemma 21 shows that∥∥∂j∂k(un · ∇un)∥∥L2 ≤ ∥∂j∂kun∥L2∥∇un∥L∞ + ∥∂jun∥L∞∥∂k∇un∥L2 + ∥∂kun∥L∞∥∂j∇un∥L2

+ ∥un∥L∞∥∂j∂k∇un∥L2

≤ C∥un∥H3

(
∥un∥L∞ + ∥∇un∥L∞

)
≤ C(d)∥un∥2HN ,

since the regularity exponent is larger than N > 2+d/2 ≥ 3. Putting these two remarks together,
we obtain a bound on the time derivative which is uniform with respect to the approximation
parameter:

∥∂tun∥L∞
T (H2) ≤ C(d)∥un∥2L∞

T (HN ) ≤ C(d)∥u0∥2HN .

In particular, the sequence (un) is bounded in the space W 1,∞
T (H2). Now, by invoking the Rellich-

Kondrachov (Theorem 3.16 in [5], see also Theorem 63 in Appendix A below), we know that the
space H2 is compactly embedded in the space H1

loc, which is the space of locally H1 functions10

associated to the metric

(2.20) d(f, g) :=
∞∑
k=0

1

2k
min

{
1,
∥∥(f − g)χk

∥∥
H1

}
,

where χk(x) = χ(x/k) and χ is a smooth, nonnegative and compactly supported function that
has value χ = 1 on the unit ball B(0, 1) ⊂ Rd. This makes it possible to invoke our variant of
Ascoli’s theorem, as a Lipschitz condition is stronger than equicontinuity and as a bounded part
of H2 is a compact subset of H1

loc. Theorem 24 therefore provides an extraction ϕ : N → N such
that we have convergence

(2.21) uϕ(n)−→u in C0
T (H

1
loc).

In addition, applying the Banach-Steinhaus theorem (a.k.a. the uniform boundedness princi-
ple, Theorem 2.2 in [5]) also shows that the limit u lies in all the spaces in which we had uniform
bounds: u ∈ L∞

T (HN ) ∩W 1,∞
T (H2).

STEP 7: taking the limit. Now, we wish to take the limit n → +∞ in the approximate
system. We already have a family of approximate solutions (uϕ(n)) that converges strongly (2.21)
to a function u ∈ L∞(HN ). These functions solve the approximate system

∂tuϕ(n) +Aϕ(n)P
(
(uϕ(n) · ∇)uϕ(n)

)
= 0

On the one hand, convergence of the time derivative in the sense of distributions is straightforward.
Let ψ ∈ D(]0, T [×Rd) be a smooth and compactly supported function. We may fix a compact set
K ⊂ Rd such that supp(ψ) ⊂]0, T [×K. Therefore,

〈
∂tuϕ(n), ψ

〉
= −

∫ T

0

∫
uϕ(n) · ∂tψ dx dt

−→−
∫ T

0

∫
u · ∂tψ dx dt = ⟨∂tu, ψ⟩ .

10The local aspect of the convergence is optimal: imagine a nonzero function f ∈ H2(R) and a sequence
fn(x) = f(x− n). Then the sequence (fn) converges locally to zero, but does not do so in H1 norm.
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In other words, we have shown that

∂tuϕ(n)−→ ∂tu in D′(]0, T [;Rd).

On the other hand, we take care of the product (un · ∇)un in the following way: for any compact
subset K ⊂ Rd, we have∥∥(uϕ(n)·∇)uϕ(n)−(u·∇)u

∥∥
L2(K)

≤ ∥uϕ(n)−u∥L2(K)∥∇uϕ(n)∥L∞(K)+∥u∥L∞(K)∥∇uϕ(n)−∇u∥L2(K),

and the uniform bound (2.16) with the Sobolev embedding of Lemma 21 then provide∥∥(uϕ(n) · ∇)uϕ(n) − (u · ∇)u
∥∥
L2(K)

≤ C(d,N)∥uϕ(n) − u∥L2(K)∥u0∥HN

+ C(d,N)∥u∥L∞(K)∥∇uϕ(n) −∇u∥L2(K)

−→ 0 as n→ +∞.

This shows that the bilinear convective term (uϕ(n) · ∇)uϕ(n) converges to (u · ∇)u in the L2
loc

topology. Unfortunately, the local aspect of this convergence creates a few problems, due to the
fact that the operators Aϕ(n) and P are precisely non-local. For example, the Leray projection
operator P is not bounded (not to mention ill-defined) on the space L2

loc. We circumvent this
problem by resorting to weak convergence. Since the functions (un · ∇)un are uniformly bounded
in the Banach space L∞

T (L2), whose predual is the separable space L1
T (L

2), we may invoke the
Banach-Alaoglu theorem (Theorem 75 in Appendix A) to show the sequence has an accumulation
point g ∈ L∞

T (L2) for the weak-(∗) convergence. This means that, up to an (omitted) extraction,
the convergence

〈
(uϕ(n) · ∇)uϕ(n), ψ

〉
L∞
T (L2)×L1

T (L2)
=

∫ T

0

∫
(uϕ(n) · ∇)uϕ(n) · ψ dx dt

−→
∫ T

0

∫
g · ψ dx dt =

〈
g, ψ

〉
L∞
T (L2)×L1

T (L2)

holds for any function ψ ∈ L1
T (L

2). In particular, for compactly supported ψ, the L2
loc convergence

of the sequence shows that g = (u · ∇)u. We deduce the weak-(∗) convergence

(2.22) (uϕ(n) · ∇)uϕ(n)
∗
⇀(u · ∇)u in L∞

T (L2).

Loosely stated, the advantage of this weak-(∗) convergence over the L2
loc one is that it is, in some

sense, “less local”, that is not limited to compact sets. Let us exploit this for our problem. We fix
again a function ψ ∈ L1

T (L
2) and write〈

Aϕ(n)P
(
(uϕ(n) · ∇)uϕ(n)

)
, ψ
〉
=
〈(
(uϕ(n) · ∇)uϕ(n)

)
, Aϕ(n)Pψ

〉
=
〈(
(uϕ(n) · ∇)uϕ(n)

)
− (u · ∇)u,Pψ

〉
+
〈(
(uϕ(n) · ∇)uϕ(n)

)
,
(
Aϕ(n) − Id

)
Pψ
〉
+
〈(
(u · ∇)u,Pψ

〉
Now, the function Pψ belongs to L1

T (L
2), as the operator P is bounded L2−→L2. The weak-(∗)

convergence (2.22) then shows that the first of the three brackets in the righthand side above
converges to zero. In addition, equation (2.13) shows that Aϕ(n)Pψ converges to Pψ strongly in
L1
T (L

2). This follows from the fact that

∥∥(Aϕ(n) − Id
)
Pψ
∥∥
L1
T (L2)

=

∫ T

0

∥∥(Aϕ(n) − Id
)
Pψ(t)

∥∥
L2 dt,

and that the quantities
∥∥(Aϕ(n) − Id

)
Pψ(t)

∥∥
L2 converge to zero for almost every time, by (2.13),

so dominated convergence provides the convergence to zero of the whole L1
T (L

2) norm. We deduce
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convergence of the second bracket:∣∣〈((uϕ(n) · ∇)uϕ(n)
)
,
(
Aϕ(n) − Id

)
Pψ
〉∣∣ ≤ ∥∥(uϕ(n) · ∇)uϕ(n)

∥∥
L∞
T (L2)

∥∥(Aϕ(n) − Id
)
Pψ
∥∥
L1
T (L2)

≤ ∥u0∥2HN

∥∥(Aϕ(n) − Id
)
Pψ
∥∥
L1
T (L2)

−→ 0.

Overall, we have proven that

Aϕ(n)P
(
(uϕ(n) · ∇)uϕ(n)

) ∗
⇀P

(
(u · ∇)u

)
in L∞

T (L2).

We deduce that the limit u must fulfill the Euler equations with Leray projection in the sense of
distributions:

(2.23) ∂tu+ P
(
(u · ∇)u

)
= 0 in D′(]0, T [×Rd).

Note that this implies that the solution is divergence-free div(u) = 0, provided that the initial
datum also is div(u0) = 0, as we have ∂t div(u) = 0.

STEP 8: the pressure. In Step 7, we have proved that the function u ∈ L∞
T (HN ) is a

solution to the projected problem, this is equation (2.23). However, in order to prove that u is a
solution of the Euler equations, we must show the existence of a pressure function π with

∂tu+ (u · ∇)u+∇π = 0.

Recall the expression of the Leray projection operator: P = Id +∇(−∆)−1 div. In other words,
we must find a function π such that

(2.24) ∇π = ∇(−∆)−1 div
(
(u · ∇)u

)
.

Here, we recall a simple computation from the introduction, which relies on the divergence-free
property of the solution. We have

∂j∂k(ujuk) = ∂j
(
uk∂kuj + uj∂kuk

)
= div

(
(u · ∇)u

)
.

Therefore, we want to define the function π by the identity

(2.25) π := (−∆)−1∂j∂k(ujuk).

Of course, it is not the only choice possible: adding any function f(t) of time only would also yield
a pressure fulfilling equation (2.24). Let us show that our definition (2.25) is correct. For that,
we must understand it in the sense of Fourier multipliers: we rigorously define π by the identity

π̂(ξ) := −ξjξk
|ξ|2

ûjuk(ξ).

Because of the Sobolev embedding of Lemma 21, we know that HN ⊂ L∞, so that the Fourier
Plancherel identity gives

∥π∥L2 ≤ C(d)∥u⊗ u∥L2 ≤ C(d)∥u∥L∞∥u∥L2 ≤ C(d)∥u∥2HN ,

and we see that π is well-defined as an element of the space L∞
T (L2).

STEP 9: initial datum. The last step to prove that u is a solution of the initial value
problem is to check that it is associated to the correct initial datum. Recall from (2.21) that the
approximate solutions can be shown to converge uniformly with respect to time:

uϕ(n)−→u in C0
T (H

1
loc).

In particular, convergence also happens at the initial time t = 0, where we have

uϕ(n)(0) = Aϕ(n)u0−→u0 in L2,

and so, by uniqueness of the limit, we deduce that u(0) = u0, and that u is indeed a solution of
the initial value problem for the Euler equations. This ends the proof of existence.
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2.4.3 Uniqueness of Solutions

In this paragraph, we show that the solution we have constructed is the only possible solution
of the initial value problem on the time interval [0, T [. This relies on a stability estimate: we
consider to initial data u0,1, u0,2 ∈ HN associated to two solutions u1, u2 ∈ L∞

T (HN )∩W 1,∞
T (H2)

associated to pressures π1, π2 ∈ C0
T (S ′), on some common time interval T > 0, and we show that

the solutions u1 and u2 cannot be to far apart if the initial data are close enough. In other words,
we want to show that the initial datum to solution map is continuous, which implies uniqueness
of the solution.

We define the difference function δu := u2−u1, and define δu0 in the same way. The difference
function solves a PDE involving u1 and u2, namely

∂t(δu) + (u2 · ∇)u2 − (u1 · ∇)u1 +∇(π2 − π1) = 0,

and div(δu) = 0. By letting the difference function δu appear in the equation above, we obtain{
∂t(δu) + (u2 · ∇)δu+ (δu · ∇)u1 +∇(δπ) = 0

div(δu) = 0,

where we have of course set δπ = π2 − π1. Now the temptation is very great to multiply the first
equation by δu and integrate, just as we did when we were estimating the evolution of the kinetic
energy, or the HN norms. If we did that, we would get, after integrating with respect to time

(2.26)
∫ t

0

∫
δu · ∂t(δu) dxds+

∫ t

0

∫
(u2 · ∇)δu · δudxds+

∫ t

0

∫
(δu · ∇)u1 · δudxds

+

∫ t

0

∫
∇(δπ) · δudxds = 0.

However, before using such an equation, we have to be very careful as to whether all the integrals
are properly defined. While this was no problem when we were doing a priori estimates, which we
then applied to the very regular approximate solutions, the functions u1 and u2 cannot be assumed
to possess all the required regularity. Here, formal computations will not do. For example, it is
not at all clear that the pressure functions π1 and π2 have enough regularity for the last integral
to exist: while we have constructed a solution with a L∞

T (L2) pressure11, nothing indicates that
π1 and π2 share that regularity.

Let us start by noticing that, thanks to the assumptions on the solutions u1, u2 ∈ L∞
T (HN )∩

W 1,∞
T (H2), the first three integrals in (2.26) are well-defined. On top of that, concerning the first

integral, but we also see that the equation∫ t

0

∫
δu · ∂t(δu) dxds =

∫ t

0

∫
1

2
∂t|δu|2 dxds =

1

2

∫
|δu(t)|2 dx− 1

2

∫
|δu0|2 dx

must hold for all times t ∈ [0, T [. Indeed, it does for regular functions, and all elements of this
equation are well-defined and continuous functions of u in the W 1,1

T (H2) topology, which agree
on a dense subset of that space.12

On the other hand, the pressure integral is not obviously well-defined, as we are yet unsure as
to the regularity of δπ. This is because, in Theorem 19, we want to focus on the regularity of the

11The pressure is in fact much better than that: it can be proven that it is in fact in L∞
T (HN+1), but that would

take us too far for the time being.
12Because δu ∈ W 1,∞

T (H2), it would be quite tempting to invoke a density argument in that space. However, as
my students have wisely attracted my attention to this point, the spaces of regular functions in the time variable,
such as C1

T (H
2), are not dense in W 1,∞

T (H2). Remember that the space W 1,∞[0,T ] is not separable: it is isometric
to L∞[0, T ].

28



velocity field and emphasize the fact the the regularity of the pressure is secondary. But doing so
comes at a cost: we now must make sure that the pressure cannot be too singular. This is the
purpose of the following proposition.

Proposition 25. Consider a solution u ∈ L∞
T (HN )∩W 1,∞

T (H2) of the Euler equations associated
to the pressure π ∈ C0

T (S ′). Then there is a function of time f ∈ C0([0, T [;Rd) such that we have
π − f(t) ∈ L∞(L2) and

π = f(t) + (−∆)−1∂j∂k(ujuk).

Proof. In order to study the pressure, we take the divergence of the first equation in the Euler
system: as we have done before, we obtain an elliptic equation (2.5) solved by the pressure:

−∆π = ∂j(uk∂kuj) = ∂k∂k(ujuk).

By assumption, we know that the pressure π is at all times a tempered distribution. In terms of
Fourier transform, this means that the pressure satisfies the equality

|ξ|2π̂(ξ) = −ξjξkûjuk(ξ).

so that we must have
π̂(ξ) = −ξjξk

|ξ|2
ûjuk(ξ) := π̂0(ξ) for ξ ̸= 0.

In other words, the equation above holds in the sense of distributions away from ξ = 0, that is
in D′(]0, T [×Rd \ {0}). This implies that the Fourier transforms π̂(t) and π̂0(t) must agree up
to the addition of a distribution supported at ξ = 0. Such a distribution is necessarily a linear
combination of the Dirac delta δ0 and its derivatives (see for example Proposition 2.4.1 in [19]),
and so is the Fourier transform of a polynomial function Q(t) ∈ R[X]. In summary, we have
shown that, for all times t ∈ [0, T [,

(2.27) π(t) = Q(t) + (−∆)−1∂j∂k
(
uj(t)uk(t)

)
,

and plugging this in the equation gives

∂tu+ P div(u⊗ u) +∇Q = 0.

Now, remember that u ∈W 1,∞
T (H2). Consequently, we must also have, for all times t ∈ [0, T [,

∇Q(t) = −∂tu− P div(u⊗ u) ∈ L∞
T (L2) ∈ L2 ∩ R[X].

But since the only polynomial function in L2 is zero, this implies that Q(t) is of degree at most
zero: it is a constant polynomial. We may conclude by noting that (2.27) gives the desired
conclusion: π = Q(t)+π0, the continuity of Q as a function of time following from that of π0 and
π.

Remark 26. The proof of Proposition 25 can probably be simplified in the setting of L∞
T (HN )∩

W 1,∞
T (H2) solutions. However, we felt it was important to include it, as it is generalizable to

other settings where the regularity of the pressure field is hard to ascertain. We refer to [10] for
a discussion of this.

A consequence of Proposition 25 is that the pressure integral is well-defined (as a distribution
bracket) and equal to zero: the equation∫ t

0

∫
∇(δπ) · δudxds = −

∫ t

0

∫
δπ div(δu) dxds = 0

holds for all regular functions δu, and all parts of the equation are continuous maps of δu with
respect to the L∞

T (H1) topology. By density, it is true because δu = u2 − u1 ∈ L∞
T (H2).
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We may justify in the same way the integration by parts that takes care of the second integral
in (2.26). The identity∫ t

0

∫
(u2 · ∇)δu · δudxds = −

∫ t

0

∫
(u2 · ∇)δu · δudxds = 0

holds for δu ∈ L∞
T (H2) because both members of the first equation are continuous maps of δu in

the L2
T (H

1) topology.

Putting everything together, we obtain the following:∫
|δu|2 dx =

∫
|δu0|2 dx+

∫ t

0

∫
(δu · ∇)u1 · δudxds,

and Hölder’s inequality gives

∥δu∥2L2 ≤ ∥δu0∥L2 +

∫ t

0
∥δu∥L2∥∇u1∥L∞ ,

so that an application of Grönwall’s lemma and the Sobolev embedding of Lemma 21 yields the
stability estimate we were seeking:

(2.28) ∥δu∥L∞
T (L2) ≤ ∥δu0∥L2 exp

(
T∥u1∥L∞

T (HN )

)
.

In particular, if u0,1 = u0,2, then we must have u1 = u2 almost everywhere on [0, T [×Rd. This
ends the proof of the local well-posedness of the Euler equations, Theorem 19.

Remark 27. The L2 stability inequality (2.28) is essentially optimal: the takeaway is that if the
solutions are not Lipschitz (or possibly log-Lipschitz, or something of the kind), there is no hope
to prove uniqueness of solutions. This should be compared with ODEs of the type y′ = f(y),
where uniqueness of solutions fail when the function f is not Lipschitz (or generally does not
fulfill the Osgood condition). The comparison is not gratuitous: particle trajectories ϕt in an
ideal fluid satisfy an ODE ∂tϕt = u(t, ϕt) involving the solution. If the velocity field u is not
locally Lipschitz, then the particle flow will not be uniquely defined.

2.5 Blow-Up Criterion and Possible Breakdown of Regularity

In the previous section, we have shown that any initial datum u0 ∈ HN can be associated to a
unique local solution u ∈ L∞

loc([0, TN [;H
N ), whose lifespan is at least

(2.29) TN ≥ C(d,N)

∥u0∥HN

.

This type of lower bound for the lifespan is consistent with the quadratic nature of the Euler
equations: ∂tu is equal to the function P div(u⊗ u), which is quadratic with respect to u. As an
illustration, look at the ODE y′ = y2, which can be solved explicitly for any initial datum y0 ∈ R,
and which gives solutions that blow-up at time T ∗ = 1/y0.

While this is reassuring, several questions remain. Firstly, while this lower bound for the
lifespan is consistent with the quadratic nature of the equation, we have not proven that HN

solutions do indeed blow-up. In other words, we do not know if the lifespan is finite TN < +∞,
so that

∥u(t)∥HN −→+∞ as t→ TN .

In fact, this is a very hard question. While it is solved in two dimensions d = 2 (solutions do not
blow-up), the answer is still missing in three dimensions d = 3.
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Another question that naturally rises from inequality (2.29) is that of the nature of the blow-
up. Assume that u0 ∈ HN for some high value of N . So far, we have to keep in mind that the
lifespan of the solution u ∈ L∞

loc([0, TN [;H
N ) may depend on N . In other words, the solution may

loose HN regularity at time TN while retaining some lower regularity, say HM , up to some time
TM . The solutions would then progressively loose regularity. Sciences

Of course, this is only one of two possible outcomes. Another possibility is that at time TN the
solution abruptly looses all its regularity, and becomes discontinuous. In that case, the lifespan
of the HN solution would be the same as the one of the HM solution and TN = TM . Given that
this is precisely the way solutions blow-up in the case of Burgers equation, this scenario might
seem the most likely.

The goal of this section is to find out what precisely happens at the blow-up time. For this,
we will introduce the notion of fractional regularity and use it to prove an important interpolation
inequality.

Remark 28. The reader may be wondering whether a strong solution that blows-up transforms
into a (non-unique) global weak solution, which would presumably lie in the energy space C0(L2).
This interesting question turns out to be challenging in the extreme.

2.5.1 Fractional Sobolev Spaces and Interpolation Inequalities

As we have hinted in the introduction to this section, fractional regularity is a concept that may
be of some importance in the study of non-linear PDEs. For example, if it turns out a solution of
a non-linear PDE looses regularity as time goes by, we would expect this process to be continuous.
The solution might be initially H2, and then at time T be H1. But what about an intermediate
time 0 < t < T? Would the solution be H3/2 at some point? How should we make sense of this
space?13

There are many other very good reasons to introduce fractional regularity spaces, most of
which are not covered in these notes: trace theory, achieving optimal results, finding scale-critical
spaces, interpolation theory, etc. For the time being, we focus on interpolation inequalities. Let
us start by defining fractional Sobolev spaces.

Definition 29. Consider s ∈ R. We define Hs to be the space of all f ∈ S ′ such that f̂ is locally
integrable and

∥f∥Hs :=

(∫ ∣∣∣(1 + |ξ|2)s/2f̂(ξ)
∣∣∣2 dξ)1/2

< +∞.

The space Hs is Banach. Moreover, if s ∈ N, the Fourier-Plancherel identity shows that this
definition of Hs coincides with the usual one, expressed in terms of the L2 norms of f and ∇sf .

One of the very great advantages of the space Hs is that it is particularly well-suited for
handling Fourier multipliers. For example, consider the operator (Id − ∆)s/2 which is of order
s ∈ R and is defined by its Fourier transform. Then we have

∥f∥Hs =
∥∥(Id−∆)s/2f

∥∥
L2

for any f ∈ Hs. Likewise, the Leray projection operator is a bounded operator P : Hs−→Hs for
all s ∈ R.

We now turn to the main reason why we introduce fractional spaces: interpolation inequalities.
13While we will see that this does not happen in the case of the Euler equations, this possibility is by no means

completely theoretical, and explicit examples of such phenomena exist.
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Proposition 30. Consider two exponents s1 < s2 and θ ∈ [0, 1]. We set s = θs1 + (1 − θ)s2.
Then, for any function f ∈ Hs1 ∩Hs2, we have the inequality

∥f∥Hs ≤ ∥f∥θHs1∥f∥1−θHs2 .

Remark 31. Such an inequality is called an interpolation inequality. The reader is already
familiar with one such result, Hölder’s inequality: consider p < q and θ ∈ [0, 1] and define r by

1

r
:=

θ

p
+

1− θ

q
,

Then we have ∥f∥Lr ≤ ∥f∥θLp∥f∥1−θLq for all f ∈Mp ∩ Lq. In particular, Lr ⊂ Lp ∩ Lq.

Proof. The proof is very straightforward. For convenience, we define the japanese bracket

∀ξ ∈ Rd, ⟨ξ⟩ :=
(
1 + |ξ|2

)1/2
.

Then,

∥f∥2Hs =

∫
⟨ξ⟩2s

∣∣∣f̂(ξ)∣∣∣2 dξ
=

∫
⟨ξ⟩2θs1

∣∣∣f̂(ξ)∣∣∣2θ ⟨ξ⟩2(1−θ)s2 ∣∣∣f̂(ξ)∣∣∣2(1−θ) dξ,
and applying Hölder’s inequality with exponents p = 1

θ and p′ = 1
1−θ , we have

∥f∥2Hs ≤
(∫

⟨ξ⟩2s1
∣∣∣f̂(ξ)∣∣∣2 dξ)θ (∫ ⟨ξ⟩2s2

∣∣∣f̂(ξ)∣∣∣2 dξ)1−θ

=
(
∥f∥θHs1∥f∥1−θHs2

)2
.

Sobolev embeddings may also be written with fractional Sobolev spaces. For example, the
following lemma is proved exactly in the same way as Lemma 21.

Lemma 32. Consider s > d/2. Then we have a continuous inclusion Hs ⊂ L∞. More precisely,
if f ∈ Hs, then f ∈ L∞ and ∥f∥L∞ ≤ C(s, d)∥f∥Hs.

Remark 33. The Sobolev embedding Hs ⊂ L∞ is not true in the critical case where s = d/2. For
example, the reader can check that the function log |x| lies within H1(R2). Instead, the critical
Sobolev space Hd/2 is a part of the space BMO of functions of Bounded Mean Oscillations, but
that is a whole different topic.

2.5.2 A Closer Look at the A Priori Estimates

In this paragraph, we use the interpolation inequalities from just above to revisit the a priori
estimates. Recall that, for a multi-index α ∈ Nd with |α| = N , we had

1

2

d

dt

∫
|∂αu|2 dx = −

∑
γ≤α

(
α
γ

)∫
∂αu · ∂γuk∂k∂α−γudx

:= −
∑
γ≤α

(
α
γ

)
Iγ .

We had shown through integration by parts that the integral for γ was I0 = 0. For the others,
we had distinguished between two cases, according to whether it was possible or not to bound
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∂γuk in L∞ by using Sobolev embeddings. Consider a σ > d/2 whose precise value we will fix
later, and which is not necessarily an integer, so that we have Hσ ⊂ L∞ by Lemma 32. Assume
in addition that N > d+ 1, as in Theorem 19.

First case: if k := |γ| ≤ N − σ, then we may write, thanks to Lemma 32,

|Iγ | ≤ ∥∇Nu∥L2∥∇ku∥L∞∥∇N−k+1u∥L2

≤ C(d,N, σ)∥u∥HN ∥u∥Hσ+k∥u∥HN+1−k .

By assumption on 1 ≤ k ≤ N − σ, all the regularity exponents appearing in the inequality above
are smaller than N . When we were working on the a priori estimates the first time, we had simply
bounded all the norms above by the HN norm, which is grossly non-optimal. This time, we will
instead use the interpolation inequality of Proposition 30 to have better inequalities. Consider
θ, θ′ ∈ [0, 1] such that

σ + k = (σ + 1)θ +N(1− θ)

N + 1− k = (σ + 1)θ′ +N(1− θ′),

or in other words
θ =

N − σ − k

N − σ − 1
and θ′ =

k − 1

N − σ − 1
.

In particular, note that θ + θ′ = 1. Then Proposition 30 gives

|Iγ | ≤ C(d,N, σ)∥u∥HN ∥u∥θHσ+1∥u∥1−θHN ∥u∥θ′Hσ+1∥u∥1−θ
′

HN

≤ C(d,N, σ)∥u∥Hσ+1∥u∥2HN .

Second case: we may perform exactly the same operation when k > N − σ. The Sobolev
embedding Hσ ⊂ L∞ once again yields

|Iγ | ≤ ∥∇Nu∥L2∥∇ku∥L2∥∇N−k+1u∥L∞

≤ C(d,N, σ)∥u∥HN ∥u∥Hk∥u∥Hσ+N−k+1 .

By remembering that N > d + 1, we see that the exponent σ + N − k + 1 ≤ 2σ + 1 may be
chosen smaller than N provided that σ is chosen sufficiently close to d/2. We resort again to the
interpolation inequalities of Proposition 30, but this time with θ, θ′ ∈ [0, 1] chosen to that

k = (σ + 1)θ +N(1− θ)

σ +N + 1− k = (σ + 1)θ′ +N(1− θ′),

or in other words,

θ =
N − k

N − σ − 1
and θ′ =

k − σ − 1

N − σ − 1
,

so that, again, we have θ + θ′ = 1. This implies that we have

|Iγ | ≤ C(d,N)∥u∥Hσ+1∥u∥2HN ,

which is exactly the inequality we had obtained in the first case.

By summing with the energy conservation law (2.9) and over all multi-indices |α| = N , we
have shown that (for regular solutions), we must have the following differential inequality,

d

dt

(
∥u∥2HN

)
≤ C(d,N)∥u∥Hσ+1∥u∥2HN ,

so that an application of Grönwall’s lemma gives

(2.30) ∥u(t)∥HN ≤ ∥u0∥HN exp

(
C(d,N)

∫ t

0
∥u(s)∥Hσ+1ds

)
.
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2.5.3 Discussion of the Blow-Up

In the previous paragraph, we have (formally) derived an inequality (2.30) which allows us to
bound the L∞

t (HN ) norm of the solution by using the L1
t (H

σ+1) one. Assuming that the formal
inequality (2.30) holds for any solution (we have not proven that it does), we may further our
understanding of the blow-up. We had wondered what would happen to a maximal solution
u ∈ L∞

loc([0, TN [;H
N ) at the blow-up time TN . Does it experience loss of regularity and degenerate

to a HM solution with M < N , or is all the regularity lost at once, as was the case with Burgers
equation? From inequality (2.30), we see that, in fact, as long as the solution keeps a Hσ+1

regularity, then it must stay as regular as the initial datum. A different way to say this is that a
blow-up of the Euler equations happens (if it does happen at all) at all regularity levels at once.

As a consequence (this will be fully justifies in a moment), the lifespan of a solution u ∈
L∞([0, T [;HN ) may be bounded from below by

(2.31) TN ≥ C(d,N0)

∥u0∥HN0

,

regardless of how high N ≫ N0 is, provided that we have N0 > d + 1. It would seem that,
ultimately, the regularity of the initial datum plays only a minor role in the solution lifespan. For
comparison, recall that the lifespan of a solution of the Burgers equation was T ∗ = −1/min ∂xu0,
and did not depend on how smooth u0 is.

Next, we note that inequality (2.31) actually gives the rate at which the norm of the solution
blows-up near its lifespan. If T ∗ is the finite lifespan of the solution u, given a time 0 ≤ T ∗−t < T ∗,
we may consider the Euler problem with initial datum u1,0 := u(T ∗ − t), which has a solution u1
on a maximal interval [0, T1[ with

T1 ≥
C(d)

∥u1,0∥HN0

=
C(d)

∥u(t− T ∗)∥HN0

.

This new solution u1 must coincide with u on their common lifespan, by uniqueness of HN0

solutions. Therefore, its lifespan must be precisely T1 = t. We deduce a blow-up rate inequality,

(2.32)
∥∥u(t)∥∥

HN0
≥ C(d)

T ∗ − t
.

Note that this inequality is consistent with (2.30), which states that the HN0 norm cannot blow
up unless the integral inside the exponential is infinite. This will surely happen at the blow-up
time if inequality (2.32) holds.

Finally, we mention that (2.30) should be understood as a way to describe the blow-up of the
maximal solution. If the solution u ∈ L∞

T (HN ) has a finite lifespan T ∗ < +∞, then the integral
in the exponential must be infinite:∫ T ∗

0
∥u(t)∥Hσ+1 dt = +∞.

If it were not, then it would be possible to (uniquely) extend the solution beyond T ∗. In other
words, the infinity of the integral above is a blow-up criterion. The actual argument is more
complicated than its ODE analogue we saw in (22), but the main ideas are there. Overall, we
have the following result, which we do not prove (time is lacking). The interested reader will find
the general arguments for such results in Section 7.1.6 of [2] for example.

Theorem 34. Consider N > d + 1 and any σ > d/2, an initial datum u0 ∈ HN and u ∈
L∞
loc([0, T

∗[;HN )∩W 1,∞([0, T ∗[;H2) the unique maximal solution of the Euler problem associated
to u0. Then the lifespan T ∗ is finite if and only if∫ T ∗

0
∥u(t)∥Hσ+1 dt = +∞.
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It is noteworthy that Theorem 34 is not optimal. The Hσ+1 condition therein can be replaced
by the more general criterion ∫ T ∗

0
∥curl (u)∥L∞ dt = +∞,

which is due to Beale-Kato and Majda (1984), and sometimes referred to as the BKM criterion
for blow-up. We refer to [3] for the detail of their argument.
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Chapter 3

Surface Quasi-Geostrophic Equations

In this chapter, we study a the existence and uniqueness of solutions for a different fluid problem,
which will require the introduction of some additional mathematical methods. We will be focusing
on the Surface Quasi-Geostrophic equation (SQG for short), which takes the following form:

(3.1)

{
∂tθ + u · ∇θ = 0

u = ∇⊥(−∆)−β/2θ.

In the above, the operator ∇⊥ is defined on scalar fields by the relation ∇⊥f = (−∂2f, ∂1f).
The unknown θ is a scalar field, and will be considered on times t ∈ R and the space domain
x ∈ R2. These equations are mainly used in geophysical sciences to describe the dynamics of
Earth’s atmosphere, and hence create weather forecasts. While we do not have the time to present
a derivation of these equations (and instead refer to [18] pp. 18–29 for more explanations), we
should still say that the unknown θ represents a potential temperature, that is the temperature the
atmospheric gas would naturally have at a reference pressure level. This potential temperature is of
course closely related to the actual temperature of the atmosphere, but its expression also involves
the pressure and some thermodynamic compressibility coefficient. The vector field u(t, x) ∈ R2 is
the velocity of the atmospheric fluid.

The operator (−∆)−β/2 appearing in the equation is a fractional Laplace operator, or fractional
Laplacian. It is defined in terms of Fourier transforms by the relation

∀f ∈ S, ̂(−∆)−β/2f(ξ) = |ξ|−β f̂(ξ).

The presence of such an operator in a physical equation is due to the fact that equation (3.1) is
a two dimensional model for what is really a three dimensional model. Such fractional operators
frequently occur in trace problems, when one is trying to restrict the solution of a PDE defined
on a half 3D space {x3 > 0} to a 2D problem set on the plane {x3 = 0}. A precise example of
this type of behavior is given by the Dirichlet to Neumann map.1 The exponent β ∈]0, 2[ is linked
to precise properties of the atmosphere.2

Finally, we should point out that SQG equations are part of a large family of PDEs, active
scalar equations, that have attracted a lot of attention in the past years. The results of this
chapter are (relatively) recent, and have been proved in [7].

1The Dirichlet to Neumann map on R2 × {0} is precisely the fractional Laplace operator (−∆)1/2.
2The author of [18], pp. 27–28, convincingly argues that the full range of exponents β ̸= 2 is relevant to

geophysics, as these are linked Brunt-Väisälä frequencies that are altitude dependent (e.g. in an atmosphere where
the potential temperature does not exactly have an exponential dependency on the altitude).
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3.1 Transport Equations and SQG

We start by introducing the main difficulties of the SQG equation by a few comments on transport
equations, which are the PDE analogue of ODEs. Consider a smooth vector field u(t, x) ∈ Rd
which we will assume to have no divergence div(u) = 0. For example, u can be thought as the
velocity field of a fluid with constant density. The transport equation associated to u is the PDE

∂tf + u · ∇f = 0

equipped with the initial datum f(0) = f0. Just as in the case of Burgers equation, a fruitful
approach is to use the notion of characteristic curve: a curve y(t) ∈ Rd such that the quantity
f(t, y(t)) is independent of time. Let us find those curves. Consider a smooth function y(t) and
set g(t) = f(t, y(t)). Then, we have

g′(t) = ∂tf
(
t, y(t)

)
+ y′(t) · ∇f

(
t, y(t)

)
,

so that y(t) is a characteristic curve as soon as is solves the ODE problem y = u(t, y). With that
in mind, we choose y to be the solution of the Cauchy problem{

y′(t) = u
(
t, y(t)

)
y(0) = x

In other words, y(t) = ϕt(x) is the flow of the ODE y′ = u(t, y). We deduce that

f(t, ϕt(x)) = g(t) = g(0) = f0(x).

This provides an expression of the solution in terms of the inverse flow map of the ODE y′ = u(t, y),
namely

f(t, x) = f0
(
ϕ−1
t (x)

)
.

While this expression is only explicit when we can compute the inverse flow map ϕt, it nevertheless
shows that the transport equation is well-posed: it has exactly one solution stemming from a given
initial datum. In addition, having an expression of some sorts of the solution also provides some
information. In particular, the solution cannot be more regular than the flow ϕt or the initial
datum is. For example, if ϕt is Ck but not Ck+1, then the solution at a given time f(t) is Ck but
cannot be Ck+1.

Now, we turn to the SQG equation and try to understand what this means about the regularity
of solutions. Note that the velocity field u as defined in (3.1) has zero divergence, as div(∇⊥) = 0.
Continuity properties of the operator ∇⊥(−∆) are described in the following proposition.

Proposition 35. Consider β ≤ 1 and s ∈ R. Then the Fourier multiplier ∇⊥(−∆)−β/2 defines
a continuous map in the Hs−→Hs+β−1 topology.

Proof. Consider θ ∈ L1∩Hs. By the Plancherel identity, we must prove that the Fourier function

ĝ(ξ) = ⟨ξ⟩s+β−1 iξ
⊥

|ξ|β
θ̂(ξ)

is L2. We simply note that the symbol m(ξ) := iξ⊥/|ξ|β is bounded around the origin ξ = 0 and
is homogeneous of degree 1− β. Therefore,

∥θ∥2Hs+β−1 =

∫
⟨ξ⟩2(s+β−1)|ξ|2(1−β)

∣∣θ̂(ξ)∣∣2 dξ ≤ C(d)

∫
⟨ξ⟩2s

∣∣θ̂(ξ)∣∣2 dξ = C∥θ∥2Hs .
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In order to illustrate the difficulty of our problem, we will assume that β ∈]0, 1[, so that the
operator ∇⊥(−∆)−β/2 is of positive order 1− β > 0. Consider a solution associated to the initial
datum θ0 ∈ Hk, and let ϕt be the flow map associated to the velocity field u = ∇⊥(−∆)−β/2θ.
Then, because θ is a solution of a transport equation, it must satisfy

θ(t, x) = θ0
(
ϕ−1
t (x)

)
.

Our problems start here: because we have assumed the initial datum to have regularity Hk, this
formula shows that we cannot expect the solution θ(t) to have more regularity than Hk at any
given time t ∈ R. But if θ(t) ∈ Hk, then the velocity field has at best regularity

u(t) = ∇⊥(−∆)−β/2θ(t) ∈ Hk+β−1 ̸⊂ Hk.

And if u is onlyHk+β−1, then the flow cannot more thanHk+β−1, and in turn, θ is at bestHk+β−1.
By repeating the argument ad infinitum, we see that the velocity field cannot be expected to
possess any finite regularity Hs for any s ∈ R, so that the solution might instantly collapse. The
situation seems hopeless!

The observant reader will have noticed that we already have invoked such an argument to
explain why Burgers equation ought to be ill-posed. But what had saved us was that Burgers
equation possessed a helpful structure, linked to characteristic curves, which allowed it to be solved
despite the initial pessimistic evaluation. In the case of SQG, we are trying to make the point
that the transport equation structure (a.k.a. characteristic curves) cannot help study solutions.
A new structure, more advanced than the simple use of characteristics, is needed to study the
SQG equations.

We conclude this paragraph by a general lemma showing that the operator A = ∇⊥(−∆)−β/2

is well-defined in the functional framework we will use.

Lemma 36. Consider 0 < β < 2 and ϵ > 0. Then the operator A : H2−β+ϵ−→L∞ is well-defined
and bounded.

Proof. Consider f ∈ H2−β+ϵ. Since ∥Af∥L∞ is bounded by the L1 norm of the Fourier transform
Âf , we have

∥Af∥L∞ ≤ C

∫
|ξ|1−2β|f̂(ξ)|dξ = C

∫
|ξ|1−2β

⟨ξ⟩2−β+ϵ
⟨ξ⟩2−β+ϵ|f̂(ξ)|dξ.

Applying the Cauchy-Schwarz inequality to the above provides

∥Af∥L∞ ≤ C

(∫
|ξ|2−2β

⟨ξ⟩4−2β+2ϵ
dξ

)1/2

∥f∥H2−β+ϵ .

On the one hand, the function |ξ|2−2β is integrable on a neighborhood of ξ = 0 because β < 2.
On the other hand, the function |ξ|2−2β⟨ξ⟩−4+2β−ϵ = O

(
|ξ|−2−2ϵ

)
is integrable on |ξ| ≥ 1. We

deduce that the integral in the parenthesis is finite, and this proves the lemma.

3.2 The Commutator Structure

The saving grace of the SQG equation is a hidden commutator structure that was first uncovered
by F. Marchand in 2008 [24]. Consider a smooth solution of the SQG equation. By writing
explicitly the value of the velocity field, we obtain the non-linear PDE

(3.2) ∂tθ +∇⊥(−∆)−β/2θ · ∇θ = 0.
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Now, we focus on finding an L2 estimate. Of course, this can by using the transport structure of
the PDE: multiplying and integrating by parts as in the energy estimates for the Euler equations
yields ∥θ(t)∥L2 = ∥θ0∥L2. But we will proceed in another way. For this, it is convenient to define
the operators

(3.3) (A1, A2) :=
(
−∂2(−∆)−β/2, ∂1(−∆)−β/2

)
= ∇⊥(−∆)−β/2,

which are bounded in the Hs−→Hs+β−1 topology. The operators A1 and A2 are formally skew-
symmetric, as a consequence of Plancherel’s identity: set im(ξ) = iξ⊥/|ξ|β ∈ iR so that, for any
f, g ∈ S and j ∈ {1, 2}, we have∫

fAjg dx = C

∫
f̂(ξ)imj(ξ)ĝ(ξ) dξ

= −C
∫
imj(ξ)f̂(ξ)ĝ(ξ) dξ

= −
∫
Ajfg dx.

This is only a generalization of the usual integration by parts, by using Fourier multipliers with
pure imaginary symbols. As a consequence, when we multiply the equation (3.2) by θ and inte-
grate, we have (with an implicit summation on the repeated index j = 1, 2)

1

2

d

dt

∫
|θ| dx = −

∫
θ.∂jθ.Ajθ dx

=

∫
Aj(∂jθ.θ).θ dx

=
1

2

∫
θ.
(
Aj(∂jθ.θ)− ∂jθ.Ajθ

)
dx.

By introducing the multiplication operator ∂jθ : f 7−→ ∂jθ.f , we see that the difference in the
equation above takes the form of a commutator of operators

1

2

d

dt

∫
|θ| dx =

1

2

∫
θ.
[
Aj , ∂jθ

]
θ dx.

Therefore, estimating the L2 norm of the solution can be done by finding a L2 estimate for a
commutator of operators. While this may seem to be a convoluted route to find a basic estimate,
we will see that this general commutator structure, put to use in high order estimates, is the key
to well-posedness for SQG.

3.3 A Commutator Estimate

This paragraph focuses on finding L2 bounds for commutators of the form [A, g]f , where A is
the Fourier multiplier from (3.3) and g is a given function. The general philosophy of such com-
mutators is as follows. Naively, the operator [A, g] ought to be of order 1 − β. However, is is
possible to show that, provided g is regular enough, it is possible to “absorb” one derivative in
g, and show that the operator is in fact of order −β. In a way, this is “trading” the regular-
ity of g for a lower order. There is an immense number of such commutator estimates in the
mathematical literature using techniques that range from simple Fourier transform manipulations
(as below) or mean value inequalities, to highly technical methods based on maximal functions,
Littlewood-Paley inequalities or paradifferential calculus (the Kato-Ponce estimates for example,
or the different commutator lemmas in Section 2.10 of [2]).
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Proposition 37 (Proposition 2.1 in [7]). Consider β ∈ R and the operator A = ∇⊥(−∆)−β/2.
For any ϵ > 0 the bound∥∥[A, g]f∥∥

L2 ≤ C(β)∥f∥L2

∥∥∥ ̂(−∆)(1−β)/2g
∥∥∥
L1

+ C(β)∥(−∆)−β/2f∥L2

∥∥∥ ̂(−∆)1/2g
∥∥∥
L1
.

holds as long as all the norms above make sense (and are finite).

Remark 38. Usually, this inequality is stated in the following way: assuming that β ∈ R, the
commutator [A, g]f satisfies the bound∥∥[A, g]f∥∥

L2 ≤ C(β, ϵ)
(
∥f∥L2∥g∥Ḣ2−β+ϵ + ∥f∥Ḣ−β∥g∥Ḣ2+ϵ

)
.

In the above, the space Ḣs is the homogeneous Sobolev space of distributions f ∈ S ′ such that
the Fourier transform f̂ belongs to the space L2

loc(Rd \ {0}) and3 the integral

∥f∥2
Ḣs :=

∫
|ξ|2s|f̂(ξ)|2dξ

finite. Note that in general ∥ . ∥Ḣs does not define a norm but only a semi-norm, as some nonzero
functions may have a zero norm. For example, the constant function f = 1 has Fourier trans-
form f̂ = δ0, which belongs to L2

loc(Rd \ {0}), and cancels the norm ∥f∥Ḣs . This means that
homogeneous Sobolev spaces are very tricky to deal with!

Proof. We start by writing the Fourier transform of the commutator [A, g]f . Since function
products translate as convolution products, we have

F
(
[A, g]f

)
(ξ) =

∫ (
|ξ|−βξ − |ξ − η|−β(ξ − β)

)
f̂(ξ − η)ĝ(η)dη.

We will estimate the rational function in this integral by a mean value inequality. By setting

B(τ) = τξ + (1− τ)(ξ − η) for τ ∈ [0, 1],

so that B(0) = ξ − η and B(1) = ξ, we see that

|ξ|−βξ − |ξ − η|−β(ξ − β) = |B(1)|−βB(1)− |B(0)|−βB(0)

=

∫ 1

0

d

dτ

(
|B(τ)|−βB(τ)

)
dτ

=

∫ 1

0

(
η|B(τ)|−β − β|B(τ)|−β−2(B(τ) · η)B(τ)

)
dτ.

(3.4)

Now, let us first consider the case where β ≤ 0. A triangular inequality applied to (3.4)
provides the inequality∣∣∣|ξ|−βξ − |ξ − η|−β(ξ − β)

∣∣∣ ≤ (1 + |β|)|η|
∫ 1

0
|B(τ)|−βdτ

≤ (1 + |β|)|η|max
{
|ξ|−β, |ξ − η|−β

}
,

which we may directly apply to the commutator and obtain a Fourier transform bound.∣∣F([A, g]f)(ξ)∣∣ ≤ C(β)|ξ|−β
∫

|η|
∣∣ĝ(η)∣∣ ∣∣f̂(ξ − η)

∣∣dη + C(β)

∫
|η|
∣∣ĝ(η)∣∣ |ξ − η|−β

∣∣f̂(ξ − η)
∣∣dη

3This means that f̂ is square-integrable on every compact subset of Rd \{0}, without assuming anything on the
behavior of f̂ near ξ = 0.
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Moreover, we make use of the fact that the norms | . |1 and | . |∞ are equivalent in finite dimension
to write the basic inequality

|ξ|−β ≤
(
|ξ − η|+ |η|

)−β
≤
(
2max

{
|ξ − η|, |η|

})−β
≤ 2|β|

(
|ξ − η|−β + |η|−β

)
,

from which we deduce that∣∣F([A, g]f)(ξ)∣∣ ≤ C(β)

∫
|η|1−β

∣∣ĝ(η)∣∣∣∣f̂(ξ − η)
∣∣dη + C(β)

∫
|η|
∣∣ĝ(η)∣∣|ξ − η|−β

∣∣f̂(ξ − η)
∣∣dη.

Applying the Hausdorff-Young convolution inequality along with the Plancherel identity to the
above provides an L2 bound on the commutator, namely∥∥F([A, g]f)(ξ)∥∥

L2 ≤ C(β)∥f∥L2

∥∥∥ ̂(−∆)(1−β)/2g
∥∥∥
L1

+ C(β)
∥∥(−∆)−β/2f

∥∥
L2

∥∥∥ ̂(−∆)1/2g
∥∥∥
L1
,

which is the inequality we were seeking.

We now take care of the case where β > 0. By invoking Fubini’s theorem and equation (3.4),
we may write the Fourier transform of the convolution as a double integral on (τ, η).

F
(
[A, g]f

)
(ξ) =

∫ 1

0

∫
η|B(τ)|−β ĝ(η)f̂(ξ − η) dη dτ

− β

∫ t

0

∫
|B(τ)|−β−2(B(τ) · η)B(τ)ĝ(η)f̂(ξ − η) dη dτ.

In particular, we have a common upper bound for both a)of the above integrals:

∣∣F([A, g]f)(ξ)∣∣ ≤ C(β)

∫ 1

0

∫
|B(τ)|−β|η|

∣∣ĝ(η)∣∣∣∣f̂(ξ − η)
∣∣ dη dτ.

Because we are in the case where β > 0, the function x 7→ |x|−β is convex. Using this on B(τ),
which we reformulate as a convex combination of η and ξ − η, we obtain

|B(τ)|−β =
∣∣∣τξ + (1− τ)(ξ − η)

∣∣∣−β
=
∣∣∣ξ − η + τη

∣∣∣−β
= (1 + τ)−β

∣∣∣∣ 1

1 + τ
(ξ − η) +

τ

1 + τ
η

∣∣∣∣−β
≤ (1 + τ)−β−1|ξ − η|−β + τ(1 + τ)−β−1|η|−β.

Plugging this in the integral inequality yields the bound

∣∣F([A, g]f)(ξ)∣∣ ≤ C(β)

(∫ 1

0
(1 + τ)−β−1dτ

)∫
|η|
∣∣ĝ(η)∣∣|ξ − η|−β

∣∣f̂(ξ − η)
∣∣dη

+ C(β)

(∫ 1

0
τ(1 + τ)−1−βdτ

)∫
|η|1−β

∣∣ĝ(η)∣∣∣∣f̂(ξ − η)
∣∣dη

Both τ -integrals are simply continuous functions of β > 0. We may therefore apply the Hausdorff-
Young convolution inequality in order to obtain an inequality identical to (3.3), albeit with dif-
ferent constants. As it holds whatever the value of β, we have finished the proof.
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3.4 Local Well-Posedness of SQG

In this long paragraph, we will do the same work we did for the Euler equations, and show the
existence and uniqueness of local regular solutions for the SQG system. Once again, the result we
present is not optimal, and we will shortly comment on how it has been improved in subsequent
studies.

Theorem 39 (Chae, P. Constantin, Córdoba, Gandeco, Wu, 2012, [7]). Consider an exponent
β ∈]0, 2[ and an integer k ≥ 4. Then, for any initial datum θ0 ∈ Hk, there exists a time T > 0
such that the SQG system has a unique local solution θ ∈ L∞

T (Hk) associated to the initial datum
θ0. Moreover, the time T can be taken such that

T ≥ C(β, k)

∥θ0∥Hk

.

The fact that Theorem 39 is (relatively) recent, and yet can be included is this (hopefully)
accessible introduction to fluid dynamics shows that not all modern research in PDEs is about
using the most sophisticated tools from functional or harmonic analysis. A very large part of the
work lies in understanding the structure of a PDE, in our case the apparition of a commutator:
Theorem 39 is very impressive because one would not have guessed at first glance that SQG is
well-posed, yet, as we will see it is strikingly elementary.

However, the elementary aspect of the theorem means that it is not optimal (we will come back
to this point). This can already seen from the assumption on the initial datum, which is required
to be at least H4. However, a more natural regularity hypotheses on θ0 should be dependent on
the value of β, for example θ0 ∈ Hs with s > 3− β.

It turns out that such improvements have been made in [22] and [20]. But the fact that the
regularity exponents used in these papers are non-integral, unlike k ≥ 4 in Theorem 39, makes it
necessary to resort to much more advanced tools. The reason for that is quite simple: it is much
easier to estimate the Hk norm of a product of functions fg (with the Leibnitz rule) than it is
to estimate its Hs norm. And this boils down to the fact that there is no fractional Leibniz rule
(although there are analogous product decompositions).

As a final remark, the fact that Theorem 39 belongs to the landscape of modern research
means that there still might be improvements within the reach of mathematicians, For example,
by improving the condition on the initial datum.

3.4.1 A Priori Estimates

As for the Euler equations, and this is the norm in PDEs, the first step of the proof is to make
sure, through formal computations, that a Hk initial data will “naturally” yield Hk solutions, at
least for some time.

Consider a smooth and sufficiently integrable solution θ of the SQG equation associated with
a smooth and sufficiently integrable initial datum θ0. Our goal is to bound the norm ∥θ(t)∥Hk by
a function of ∥θ0∥Hk , on some time interval [0, T [. Just as with the Euler equations, we will use
energy estimates. Let α ∈ N2 be a multi-index of length |α| = k. Then applying ∂α to the first
equation in (3.1), multiplying by ∂αθ and integrating gives

(3.5)
1

2

d

dt

∫
|∂αθ|2 dx+

∫
∂αθ.∂α div

(
Aθ.θ

)
dx = 0.

Recall that, because Aθ is divergence-free, we have the identity div(Aθ.f) = Aθ · ∇f . By using
the “improved” binomial formula, as in (2.10), when we were looking for a priori estimates for
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Euler’s equation, we obtain, in the same way∫
∂αθ.∂α div

(
Aθ.θ

)
dx =

∑
|γ|≤k

(
α
γ

)∫
∂αθ.∂γ∇θ · ∂α−γAθ dx

=
∑
|γ|≤k

(
α
γ

)
Iγ .

We distinguish between four cases when trying to evaluate the integrals Iγ .

First case. We start by looking at the case where 2 ≤ |γ| ≤ k − 1. Then, we have, by using
the embeddings of Lemma 32, H1+ϵ ⊂ L∞ for any ϵ > 0, and

|Iγ | ≤ ∥∇kθ∥L2∥∇|γ|+1θ∥L2∥∇k−|γ|Aθ∥L∞

≤ C(ϵ)∥θ∥2Hk∥∇k−|γ|Aθ∥H1+ϵ .

Recall that the operator A is of degree 1− β < 1, so that, by choosing ϵ satisfying 1− β + ϵ < 1,
we have

|Iγ | ≤ C(β)∥θ∥2Hk∥θ∥Hk−2−|γ|−β+ϵ ≤ C(d)∥θ∥3Hk .

Second case. We now study the case where |γ| = 1. The computations are quite similar: by
letting the L∞ norm fall on ∂γ∇θ in stead, we have

|Iγ | ≤ ∥∇αθ∥L2∥∇2θ∥L∞∥∇k−1Aθ∥L2

≤ C(ϵ)∥θ∥2Hk∥θ∥H3+ϵ

≤ C(ϵ)∥θ∥3Hk .

Because k is an integer, we see that we must take k ≥ 4 for the last inequality to hold.

Third case. We look at the case where γ = α. Here, we use the fact that the vector field
u = Aθ is divergence-free, since it is the gradient-orthogonal of a scalar field and div(∇⊥) = 0.
This implies that a simple integration by parts shows that the integral Iα is zero:

Iα =

∫
∂αθ.div(Aθ.∂αθ) dx

= −
∫

∇∂αθ ·Aθ.∂αθ dx

= −
∫

div(∂αθ.Aθ).∂αθ dx

= −Iα = 0.

Fourth case. Finally, we study the case where γ = 0. This is the hardest case, because the
quantity ∥∂αAθ∥L2 cannot be bounded in terms of the Hk norm of θ, at least when β < 1, so the
operator A is of positive order 1 − β > 0. It is at this point that we resort to the commutator
structure of the SQG equation. By recalling that Aj is formally skew-symmetric, we have

I0 =

∫
∂αθ.∂jθ.∂

αAjθ dx

= −
∫
Aj
(
∂jθ.∂

αθ
)
.∂αθ dx

=
1

2

∫
∂αθ.

[
∂jθ,Aj

]
∂αθ dx.
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We apply our commutator estimate Proposition 37 to the above. We obtain the inequality

|I0| ≤ C(β)∥∂α∥L2

∑
j

(
∥∂αθ∥L2

∥∥ ̂(−∆)(1−β)/2∂jθ
∥∥
L1 +

∥∥(−∆)−β/2∂αθ
∥∥
L2

∥∥ ̂(−∆)1/2∂jθ
∥∥
L1

)

≤ C(β)∥θ∥Hk

∑
j

[
∥θ∥Hk

∫
|ξ|2−β|θ̂(ξ)|dξ

+

(∫ ∣∣|ξ|k−β θ̂(ξ)∣∣2dξ)1/2(∫
|ξ|2
∣∣θ̂(ξ)∣∣dξ)].

We have to check that all the integrals above can be bounded by ∥θ∥Hk . First of all, note that
the functions |ξ|2−β , |ξ|k−β and |ξ|2 are all bounded on the unit ball |ξ| ≤ 1, as β > 0 and k ≥ 4
by assumption. We deduce that

(3.6)
(∫ ∣∣|ξ|k−β θ̂(ξ)∣∣2dξ)1/2

≤ ∥θ∥Hk

and that, for any ϵ > 0,∫
|ξ|2−β|θ̂(ξ)|dξ +

∫
|ξ|2|θ̂(ξ)|dξ ≤

∫
⟨ξ⟩2|θ̂(ξ)|dξ

≤
∫
⟨ξ⟩3+ϵ|θ̂(ξ)| dξ

⟨ξ⟩1+ϵ

≤ C(ϵ)∥θ∥H3+ϵ .

Bu choosing ϵ so that 1 + ϵ ≤ 4, the norm above can be bounded by ∥θ∥H4 (once again, we see
the necessity of taking k ≥ 4). Overall, we have obtained the inequality

|I0| ≤ C(β)∥θ∥3Hk .

We have just bounded the norms ∥∂αθ∥L2 by ∥θ∥3
Hk , and in doing so, we have used the fact

that |α| = k ≥ 4. This was crucial in bounding the commutator, otherwise the factor |ξ|k−β
appearing in (3.6) would not be bounded on the unit ball |ξ| ≤ 4. However, this means that we
have not yet bounded the full Hk norm:

∥θ∥Hk ≈ ∥θ∥L2 +
∑
|α|=k

∥∂αθ∥L2 .

We still are missing an estimate for the norm ∥θ∥L2 . Thankfully, it is easy to obtain, since the
velocity field u = Aθ is divergence-free div(u) = 0. We can use integration by parts to write

1

2

d

dt

∫
|θ|2 dx = −

∫
θ div(θ.Aθ) dx

=

∫
∇θ ·Aθ.θ dx

=

∫
θ div(θ.Aθ) dx = 0.

In other words, the L2 norm of the unknown is conserved: ∥θ(t)∥L2 = ∥θ0∥L2 .

Putting everything together, we have proven that the solution θ solves a differential inequality
of the same form as the one we had for the Euler equation.

d

dt

(
∥θ∥2Hk

)
≤ C(β)∥θ∥3Hk .
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By exactly reproducing computations we performed with the Euler equation, it is possible to
obtain bounds on ∥θ∥Hk on a finite time interval. In order to accommodate the reader, we remind
the main lines of the argument. First of all, by integrating the differential inequality above, we
have

∥θ(t)∥Hk ≤ ∥θ0∥Hk + C(β)

∫ t

0
∥θ(s)∥2Hk ds.

We then define a time T > 0 by setting

T = sup

{
t ≥ 0, C(β)

∫ t

0
∥θ(s)∥2Hk ds ≤ ∥θ0∥Hk

}
.

On the time interval, we have the inequality ∥θ(t)∥Hk ≤ 2∥θ0∥Hk , from which it follows that T
must be at least T ≥ C(β)/∥θ0∥Hk . This completes the quest for L∞

T (Hk) a priori bounds.

3.4.2 Construction of a Solution

As was the case for the Euler equations, we will construct a solution of the SQG system (3.1) by
taking a limit of solutions of a, better behaved, approximate system. As we will see, the proof is
quite comparable to the one for the Euler equations. Once again, we take the Fourier projection
operator Pn defined by

∀f ∈ L2, P̂nf(ξ) = 1|ξ|≤nf̂(ξ)

and study the approximate system

(3.7) ∂tθn + Pn div(θn.Aθn) = 0

to which we associate the initial datum θn(0) = Pnθ0.

STEP 1: approximate solutions. As in the case of the Euler equations, we wish to apply
the Cauchy-Lipschitz theorem to show the existence of solutions for the approximate system (3.7).
We define the Banach space

Xn :=
{
f ∈ L2, supp(f̂) ⊂ B(0, n)

}
,

which is the subspace of L2 on which Pn is an orthogonal projection. All functions of Xn are C∞

smooth, and we have, for any f ∈ Xn,

∥f∥L∞ ≤ C∥f∥H1+ϵ ≤ Cn1+ϵ∥f∥L2 .

We have to check that the map θ 7→ Pn div(θ.Aθ) is locally Lipschitz over Xn. Let us fix two
functions f, g ∈ Xn. We see that∥∥Pn div(f.Af)− div(g.Ag)

∥∥
L2 ≤ n∥f.Af − g.Ag∥L2

≤ n∥f − g∥L2∥Af∥L∞ + ∥g∥L∞∥A(f − g)∥L2 .
(3.8)

Because f and g are both elements of Xn, and because A is a Fourier multiplier, we have

∥Af∥L∞ ≤ C∥Af∥H1+ϵ ≤ Cn2−β+ϵ∥f∥L2 ,

and likewise for Ag. This means that inequality (3.8) becomes∥∥Pn div(f.Af)− div(g.Ag)
∥∥
L2 ≤ Cn2−β+ϵ∥f − g∥L2

(
∥f∥L2 + ∥g∥L2

)
,

which proved that the map we were considering is locally Lipschitz in Xn. The Cauchy-Lipschitz
theorem therefore shows the existence of a (unique) maximal solution θn ∈ C0([0, Tn[;Xn) asso-
ciated to the initial datum Pnθ0.
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STEP 2: approximate solutions are global. The lifespan Tn of the approximate solutions
is infinite Tn = +∞. For this, we show that the ODE solution θn remains bounded in the space
Xn. By multiplying the equation (3.7) by θn and integrating, we get

1

2

d

dt

∫
|θn|2 dx = −

∫
θn.Pn div(θn.Aθn) dx.

Because Pn : L2−→Xn is an orthogonal projection, the Pn is not needed in the expression above.
Now, recall that the vector field un = Aθn is divergence free div(Aθn) = 0. This means that we
can use integration by parts to show that the righthand side integral is equal to its opposite, and
is therefore zero:

−
∫
θn.div(θn.Aθn) dx = −

∫
θn.∇θn ·Aθn dx

=

∫
div(θn.Aθn).θn dx = 0.

We deduce that the L2 norms of the approximate solutions are preserved, so that they remain
bounded in Xn. As in the case of the Euler equations, this implies that the solutions are global
Tn = +∞. by Lemma 22.

STEP 3: compactness of the Approximate Solutions. First of all, we should note that
the a priori estimates we have proved above also hold for the approximate solutions. Indeed,
applying the derivative ∂α to (3.7), multiplying by ∂αθn and integrating gives

1

2

d

dt

∫
|∂αθn|2 dx+

∫
∂αθn.∂

αPn div(Aθ.θ) dx = 0.

Because θn ∈ Xn, we also have ∂αθn ∈ Xn, and so the Fourier projection Pn can be omitted in
the formula above, thus reducing it to equation (3.5). By performing exactly the same steps as
in the a priori estimates, we see that we must have

sup
[0,Tn]

∥θn∥Hk ≤ 2∥Pnθ0∥Hk ≤ 2∥θ0∥Hk ,

where the times Tn fulfill the inequality

Tn ≥ C(k)

∥Anθ0∥Hk

≥ C(k)

∥θ0∥Hk

:= T.

We deduce that the sequence (θn) is bounded in the space L∞
T (Hk). By using the Rellich-

Kondrachov theorem, this should provide compactness with respect to the space variable. But
to use Ascoli’s theorem (Theorem 24), we also need uniform equicontinuity with respect to the
time variable. This we find by looking at the time derivative ∂tθn. Because θn is a solution of the
approximate system, we have

∥∂tθn∥H2 =
∥∥Pn div(θn.Aθn)∥∥H2

≤ ∥θn.Aθn∥H3 .

We are seeking H3 bounds on the product θn.Aθn. Because the Sobolev norm is given by ∥f∥H3 ≈
∥f∥L2 + ∥∇3f∥L3 , this means that we have two quantities to estimate. On the one hand, thanks
to Lemma 36, we have

∥θn.Aθn∥L2 ≤ ∥θn∥L2∥Aθn∥L∞ ≤ C∥θn∥2H3 .

46



On the other hand, we look at the third order derivative ∥∇3(θn.Aθn)∥L2 . By using an improved
binomial formula, the Sobolev embeddings from Lemma 32 and Lemma 36, we write

∥∇3(θnAθn)∥L2 ≤ ∥θn∥L∞∥∇3Aθn∥L2 + 3∥∇θn∥L∞∥∇2Aθn∥L2 + 3∥∇2θn∥L2∥∇Aθn∥L∞

+ ∥Aθn∥L∞∥∇3θn∥L2

≤ C∥θn∥2H3 .

From Proposition 35, we know that the sequence (Aθn) is bounded in the space L∞
T (Hk−1) ⊂

L∞
T (H3). Therefore,

|∂tθn∥H2 ≤ ∥θn.Aθn∥H3 ≤ C∥θn∥H3∥Aθn∥H3

≤ C∥θn∥2H4 ≤ C∥θ0∥2Hk .

This means that the sequence (θn) is additionally bounded in the space W 1,∞
T (H2). Applying

the Rellich-Kondrachov and Ascoli theorems, we obtain strong convergence of the approximate
solutions

(3.9) θn−→ θ in C0
T (H

1
loc).

Let us now focus on the convergence of the velocity fields un = Aθn. We cannot immediately
deduce the convergence Aθn → Aθ from the convergence (3.9) above, which is local (i.e. in
the space H1

loc), whereas the operator A is non-local. Instead, we will resort to a weak type of
convergence: note that thanks to the bounds in Lemma 36 the sequence (vn) is bounded in the
space L∞

T (L∞) (in fact, it is bounded in L∞
T (W 1,∞) but it will not be useful). In particular, the

Banach-Alaoglu theorem provides the weak-(∗) convergence of an extraction (which we omit)

Aθn
∗
⇀v in L∞

T (L∞),

for some function v ∈ L∞
T (L∞). Let us prove that we do indeed have v = Aθ. We fix a test

function ϕ(t, ξ) ∈ D([0, T [×Rd) and we see that iξ⊥|ξ|−βϕ̂(t, ξ) ∈ L2
T (L

2). Furthermore, since we
have the weak convergence θ̂ ⇀∗ θ̂ in L∞

T (L2), we find that∫ T

0

∫
Âθn(t, ξ) · ϕ̂ dξ dt =

∫ T

0

∫
θ̂n(t, ξ)

iξ⊥

|ξ|β
· ϕ(t, ξ)dξ dt

−→
∫ T

0

∫
θ̂(t, ξ)

iξ⊥

|ξ|β
· ϕ(t, ξ)dξ dt

=

∫ T

0

∫
Âθ · ϕ̂ dξ dt.

The weak convergence Aθn⇀v in L∞
T (L∞) implies that we must in fact have v = Aθ.

STEP 4: the limit is a solution. We know that the approximate solutions (θn) solve the
systems {

∂tθn + Pn div(θn.Aθn) = 0

θn(0) = Pnθ0,

and we wish to let n → +∞ to show that the function θ is a solution of the SQG equations.
Firstly, if ϕ ∈ D(]0, T [×Rd), it is immediate that

⟨∂tθn, ϕ⟩ = −
∫ T

0

∫
θn∂tϕ dx dt

−→ −
∫ T

0

∫
θ∂tϕ dx dt = ⟨∂tθ, ϕ⟩,

so that we have the convergence ∂tθn −→ ∂tθ in the sense of distributions D′(]0, T [×Rd). Next,
we look at the convergence of the product term θn.Aθn.
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Chapter 4

The Navier-Stokes Equations

The Navier-Stokes (NS for short) equations bear a formal resemblance to the Euler equations.
They are identical up to the addition of a term representing the effect of viscosity:

(4.1)

{
∂tu+ (u · ∇)u+∇π = ν∆u

div(u) = 0.

In the above, ν > 0 is the viscosity coefficient. For example, honey is a highly viscous fluid
for which the NS equations are a much superior model than the Euler equations: the inviscid
approximation simply is not reasonable on any time scale.

In this chapter, we will consider only the the case of Newtonian fluids: the viscosity ν > 0
will be taken constant. In fact, as the precise value of ν has no mathematical relevance for the
material in this chapter, we will even assume that ν = 1 to simplify computations.

Because of the proximity of the Navier-Stokes and Euler equations, many of techniques we
used above will also be useful in this chapter. For instance, we will resort to the Leray projection
operator P = Id + ∇(−∆)−1 div in order to eliminate the pressure from the equations, which
become

∂tu−∆u = −P
(
(u · ∇)u

)
.

However, there is a fundamental difference between the Navier-Stokes and Euler systems. When
there is no viscosity, we have seen that the solution has no reason to be more regular than the
initial datum: initial regularity is propagated by the evolution. Here, things will be much different,
as NS is basically a heat equation with an added non-linear non-local term, and just as in the case
of the heat equation, we should expect solutions to have better regularity than the initial datum.

The Navier-Stokes equations are famous for being the object of one of the millennium problems
of the Clay institute, with a million US dollar prize attached to it. The question is the following:
given an initial datum u0 ∈ S, is it possible to prove or disprove the existence (and uniqueness)
of a global in time, finite energy, smooth solution for the 3D Navier-Stokes equations? (the 2D
problem is, as we will see, much easier) Although considerable progress has been made since the
problem was first studied, some 90 years ago [23], it still resists the efforts of mathematicians.
While we cannot give here a complete panorama of a near century of research, we will cover some
recent results in this chapter.

Warning! Before we move on, a word of caution is in order. For time constraints, this
chapter will have a number of somewhat formal computations. We try to tell the reader whenever
this happens. However, upgrading the arguments we present to actual proofs should not be too
difficult, given the background the first two chapters has set.

Remark 40. It should be noted that many fluids do not have a constant viscosity coefficient: in
general ν∆u can be replaced by a nonlinear expression. A typical example is the p-Laplacian ∆p
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defined by
ν∆pu := ν div(|Du|p−2Du),

where Du = 1
2(∇u + t∇u) is the deformation tensor of the fluid. A non-linear viscosity adds

considerable mathematical difficulties in the analysis, which goes far beyond the scope of these
lectures.

4.1 Energy Estimates and Weak Leray Solutions

As we have said above, the added viscosity has a regularizing effect on the solutions. This can
already be seen through a simple energy estimate: to evaluate the evolution of the kinetic energy
in the fluid, we take the scalar product of the first equation in (4.1) and integrate with respect to
space. We obtain (assuming the solution u is nice enough)

1

2

d

dt

∫
|u|2 dx+

∫
(u · ∇)u · udx+

∫
∇π · udx =

∫
∆u · udx.

In the above, the second and third integrals are zero. For the second one, integration by parts
shows that it is equal to its opposite (and so it is zero), while integration by parts in the pressure
integral and the divergence condition div(u) = 0 gives the cancellation. Furthermore, by using
the fact that the Laplace operator can be written as a composition of a gradient and a divergence
∆ = div(∇), we may also integrate by parts in the last integral to obtain

1

2

d

dt

∫
|u|2 dx+

∫
|∇u|2 dx = 0,

or, after integration on a time interval [0, T ],

(4.2)
1

2
∥u(T )∥2L2 +

∫ T

0

∫
|∇u|2 dx dt = 1

2
∥u0∥2L2 .

This already provides an important lesson about the Navier-Stokes equations: the kinetic energy
decreases with time, and whatever energy is lost by the fluid is transformed into heat by viscosity
effect. The space-time integral above is simply the total amount of energy lost through the process
of viscosity. In particular, the dynamics of a viscous fluid are irreversible: once time has passed,
it is impossible to revert to the initial state, as the lost energy would have to be regained.

Mathematically speaking, the energy balance equation (4.2) also shows that the natural space
for solutions to be in is

u ∈ L∞(L2) and ∇u ∈ L2(L2).

In particular, this implies that for any finite T > 0, the solution is naturally L2
T (H

1), although
∥u∥L2

T (H1) may depend on T . This is a stark contrast with the Euler equations, where the energy
estimates had only given an L∞(L2) bound which was insufficient to construct solutions. Here,
solutions are naturally L2

loc(H
1), which will give enough compactness to construct weak solutions.

Another difference is that (4.2) allows to bound the order one L2
T (H

1) norm of u through the
order zero norm ∥u0∥L2 on the initial datum. This is a feature of viscosity, which naturally places
the solution in a higher regularity space than the initial datum.

With these remarks in mind, we turn our attention to weak solutions. Before examining their
existence, we define the notion of weak Leray solution.

Definition 41. Consider a divergence-free vector field u0 ∈ L2. We say that u ∈ L2
loc(L

2) is
a weak Leray solution of the Navier-Stokes (4.1) equations related to the initial datum u0 if the
following conditions are satisfied:
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(i) we have u ∈ L∞(L2) and ∇u ∈ L2(L2) ;

(ii) the divergence equation is solved in the sense of distributions div(u) = 0 in D′(R×
+Rd) ;

(iii) the first equation of (4.1) is solved in the following sense: for any vector field ϕ ∈ D(R+×Rd)
such that div(ϕ) = 0, we have

(4.3)
∫ +∞

0

∫ {
∂tϕ · u+∇ϕ : u⊗ u+∆ϕ · u

}
dx dt =

∫
ϕ(0, x)u0(x) dx;

(iv) u satisfies an energy inequality: for (almost) every T > 0,

1

2
∥u(T )∥2L2 +

∫ T

0

∫
|∇u|2 dx dt ≤ 1

2
∥u0∥2L2 .

Moreover, we say that u satisfies the strong energy inequality if we also have, for all t1 < t2,

1

2
∥u(t2)∥2L2 +

∫ t2

t1

∫
|∇u|2 dx dt ≤ 1

2
∥u(t2)∥2L2 .

The notion of strong energy inequality will be useful later on.

The reader should note that the pressure is not involved at all in the definition above. This
fact deserves a few remarks. First of all, if ϕ ∈ D(Rd) is a vector field with div(ϕ) = 0, then
integration by parts gives, for any π ∈ D′(Rd),

⟨∇π, ϕ⟩ = −⟨π,div(ϕ)⟩ = 0.

This is why π does not appear in the weak formulation (4.3). Conversely, if f ∈ S ′ is a distribution
such that

div(ϕ) = 0 ⇒ ⟨f, ϕ⟩ = 0

for all ϕ ∈ D, then it is possible to find a g ∈ S ′ such that f = ∇g.

Remark 42. While this remark is psychologically reassuring (in that it always seems possible
to reconstruct the pressure from the solution) it hides the fact that a bit more work is actually
needed to do just that. Formally, the property above shows, at every time t ≥ 0, the existence of
a pressure π(t) ∈ S ′ such that

∂tu(t) + (u·)u(t) +∇π(t) = ∆u(t).

However, π has no reason a priori to define a distribution in time and space D′(R∗
+×Rd), because

nothing is known about its time regularity. The reader should keep in mind that functions of
the form 1/|t| do not define distributions.. In practice, this issue is very secondary to the study
of the Navier-Stokes equations: a pressure solving (4.1) can always be constructed from a Leray
solution by means of Fourier multipliers

π = (−∆)−1∂j∂k(ujuk).

We refer to the classical textbook [17], Chapters 5 and 11, where the space T ′ of spatially tempered
distributions is introduced to address this issue. We will not mention it further and be content to
forget about the pressure in what follows.

Another important point concerns the regularity of Leray solutions. The reader may have
noticed that points (i) and (iv) are not necessary to define a notion of weak solution for NS.
However, they are included in the definition for the main reason that weak solutions that are not
Leray solutions have a very pathological behavior, as shown by the following theorem.
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Theorem 43 (Buckmaster, Vicol, [6] 2019). Let d = 3 and consider the NS equations on the
periodic setting T3 = (R/Z)3. There exists β > 0 such that for any T > 0 and any nonnegative
continuous function e : [0, T ] −→ R+ there exists

(i) an divergence-free initial datum u0 ∈ L2(T3),

(ii) a weak solution u ∈ C0
T

(
Hβ(T3)

)
of NS associated to u0,

such that ∥e(t)∥L2 = e(t) for all t ∈ [0, T ].

In particular, weak solutions of NS are not in general unique. This theorem means that it is
perfectly possible to start with an initial datum u0 = 0 and “create” energy out of nowhere if the
solution is not assumed to be Leray. The proof of this result relies on a method called convex
integration, which has been applied to a wide family of PDEs to show that weak solutions can be
too weak to get uniqueness.

On the other hand, the extra assumptions that make a weak solution a Leray solution are not
costly: for any divergence-free u0 ∈ L2, Leray solutions always exist.

Theorem 44 (Leray, [23], 1934). Let d ∈ {2, 3} and u0 ∈ L2 be a divergence-free initial datum.
Then there exists an associated weak Leray solution. Furthermore, u satisfies the strong energy
inequality.

The proof of existence of weak Leray solutions is not difficult. It is very similar to what we have
already done: definition of an approximate system through Fourier projection, Cauchy-Lipschitz
theorem, compactness, etc. We therefore skip it and refer to [17] (the original article of Leray1

[23] is in French).

Remark 45. The theorem of Leray is stated for dimensions d = 2 or d = 3, but it also holds
when d = 4. In the rest of this chapter, we will limit our attention to d ∈ {2, 3}.

4.2 Uniqueness of Solutions

In this section, we examine the uniqueness of solutions by means of formal computations. However,
all the energy estimates and integration by parts necessary for these to be fully justified is not too
difficult, although tedious. It is mainly a matter of using the appropriate test functions in (4.3).

To establish uniqueness of solutions, we seek a stability estimate. Consider therefore u0,1 and
u0,2 two L2 divergence-free initial date and u1, u2 two associated weak Leray solutions. We note
δu = u2 − u1 and δu0 = u0,2 − u0,1. By forming the difference of the equations solved by u2 and
u1, we see that {

∂t(δu) + (u2 · ∇)δu+ (δu · ∇)u1 +∇(δπ) = ∆(δu)

div(δu) = 0.

In the above, δπ = π2 − π1 is the formal difference of pressures which does not in reality appear
in the definition of Leray solutions, and is not involved in the computations. By taking the scalar
product of the first equation by δu and integrating, we obtain

(4.4)
1

2

d

dt

∫
|δu|2 +

∫ t

0

∫
|∇δu|2 = −

∫
(δu · ∇)u1 · δu.

The goal is to estimate the righthand side integral in order to obtain a differential inequality and
apply Grönwall’s lemma. We will need the following refined Sobolev embeddings.

1It is worth noting that Leray’s work in hydrodynamics predates the war. When he was captures by the Nazis,
and wishing to avoid working for the development of weapons, he claimed being a topologist, which he actually
ended up becoming. The notion of sheaf is due to him.
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Proposition 46 (see Theorem.66 in [2]). Consider 0 ≤ s < d/2 and p ∈ [2,+∞[ such that

s

d
+

1

p
=

1

2
.

Then we have a continuous embedding Hs ⊂ Lp.

Remark 47. In this proposition, it is important to notice that it is impossible to take p = +∞
(or equivalently s = d/2). We have already noted that the space Hd/2 is not included in L∞.
Rather, we have the weaker embedding in the space of functions of bounded mean oscillations
Hd/2 ⊂ BMO.

4.2.1 Uniqueness of Leray Solutions in 2D

In this paragraph, we use these Sobolev embeddings to prove uniqueness of 2D Leray solutions.
By using Proposition 46, we see that H1/2(R2) ⊂ L4(R2) so that Hölder’s inequality provides∣∣∣∣∫ (δu · ∇)u1 · δudx

∣∣∣∣ ≤ ∥∇u1∥L2∥δu∥2L4

≤ C∥∇u1∥L2∥δu∥2H1/2 .

In order to estimate the H1/2 norm, we make use of the interpolation inequality from Proposition
30, which provides ∥f∥H1/2 ≤ ∥f∥1/2

L2 ∥f∥
1/2
H1 . We see that∣∣∣∣∫ (δu · ∇)u1 · δudx

∣∣∣∣ ≤ C∥∇u1∥L2∥δu∥L2∥δu∥H1

≤ C∥∇u1∥L2∥δu∥L2

(
∥δu∥L2 + ∥∇δu∥L2

)
.

Here, we introduce a trick that is very often used in such estimates. Remember that our goal is to
find a differential inequality in order to apply Grönwall’s lemma. Since the lefthand side of (4.4)
contains a derivative of ∥δu∥2L2 , it follows that we should be looking for a righthand side bound
involving only ∥δu∥2L2 , whereas inequality immediately above also involves ∥∇δu∥L2 . The way
we solve this problem is by taking advantage of the fact that the lefthand side of (4.4) contains
a ∥δu∥2L2 term (from viscosity effects), and we will use it to “absorb” the gradient terms. More
precisely, note that because (x− y)2 = x2 + y2 − 2xy ≥ 0, we have the inequality

ab =
√
ϵa+

1√
ϵ
b ≤ 1

2
ϵa2 +

1

2ϵ
b2.

Therefore, we may write, for any ϵ > 0,∣∣∣∣∫ (δu · ∇)u1 · δudx
∣∣∣∣ ≤ C∥∇u1∥L2∥δu∥2L2 + Cϵ∥∇δu∥2L2 +

C

ϵ
∥∇u1∥2L2∥δu∥2L2 .

We choose for ϵ the value ϵ = 1
2C . By plugging the resulting inequality in (4.4), and subtracting

(“absorbing”) both terms by 1
2∥∇δu∥

2
L2 , we finally obtain

1

2

d

dt
∥δu∥2L2 ≤ C

(
∥∇u1∥L2 + ∥∇u1∥2L2

)
∥δu∥2L2 ,

so that a direct application of Grönwall’s inequality gives

∥δu(T )∥2L2 ≤ ∥δu0∥2L2 exp
(
C∥∇u1∥L1

T (L2) + ∥∇u1∥2L2
T (L2)

)
,
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and a final application of the energy inequality for u1 (see point (iv) in Definition 41) gives the
stability estimate

∥δu(T )∥2L2 ≤ ∥δu0∥2L2 exp
(
C
√
T∥u0,1∥L2 + ∥u0,1∥L2

)
,

and therefore uniqueness. These are the main arguments that enter the proof of the following
theorem.

Theorem 48. Consider the 2D Navier-Stokes equations d = 2. For any divergence-free u0 ∈
L2(R2), there exists a unique weak Leray solution associated to u0.

The proof of this result is essentially contained in the computations above. Of course, every-
thing we have written has been quite formal, so that a rigorous proof would have to make use of
the weak formulation (4.3) by choosing ϕ = δu and making sure all the brackets are well-defined
and all the integration by parts are justified.

4.2.2 The Case of Three Dimensions

Uniqueness of 3D Leray solutions is still unknown when d = 3, although the past years have seen
spectacular results.

Theorem 49 (Albritton, Brué, Colombo, [1], 2022). There exists a T > 0 and a finite energy
force f ∈ L1

T (L
2) such that the problem{(

∂t −∆
)
u+ (u · ∇)u+∇π = f

div(u) = 0

has two distinct Leray solutions with the initial datum u0 = 0.

Though this does not bode well for the uniqueness of Leray solutions, we should point out
that the force term f is highly irregular, and that it it a crucial element of the proof. This means
that this theorem, although very impressive, still does not give a method to show non-uniqueness
of weak Leray solutions.

Let us come back to the question of uniqueness of Leray solutions. Trying to use the same
method as in 2D to prove uniqueness cannot work, because the Sobolev embedding H1/2(R2) ⊂
L4(R2) fails in 3D. Instead, we prove a conditional uniqueness result: we will see that a 3D Leray
solution that has some additional regularity is unique.

Theorem 50. Consider u0 ∈ L2(R3) a divergence-free function and u an associated Leray solu-
tion. Moreover, assume that u ∈ L4

loc(H
1). Then u is the only Leray solution with initial datum

u0.

Remark 51. Note that the solution in the theorem is more regular with respect to the time
variable, but there is no added regularity with respect to space.

The (formal) proof of this result relies on computations similar to what we did in the 2D case:
we begin by writing equation (4.4) and estimate the integral in the righthand side. By using
Hölder’s inequality, we obtain∣∣∣∣∫ (δu · ∇)u1 · δudx

∣∣∣∣ ≤ ∥∇u∥L2∥δu∥2L4 .

Now, by assumption, the quantity ∥∇u1∥L2 is L4
loc with respect to time. This meas that, if we

wish to close the stability estimates, we should try to bound ∥δu∥2L2 in L4/3
loc . We begin by using

Proposition 46 to write the Sobolev embedding H3/4 ⊂ L4, as

1

2
=

1

4
+

3/5

3
.
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We follow up with an interpolation inequality (see Proposition 30). By using the convex combi-
nation 3

4 = 0× 1
4 + 1× 3

4 , we see that

∥δu∥L4 ≤ C∥δu∥H3/4 ≤ C∥δu∥1/4
L2 ∥δu∥

3/4
H1 .

By plugging this in (4.4), we get

1

2

d

dt

∫
|δu|2 dx+

∫
|∇δu|2 dx ≤ C∥∇u1∥L2∥δu∥1/2

L2 ∥δu∥
3/2
H1 .

Just as in the 2D case, we will seek to absorb a part of the product in the upper bound in the
second integral in the lefthand side. Here, we will Young’s inequality, which implies that for
1
p +

1
q = 1 with 1 < p, q < +∞, we have xy ≤ xp + yq, and so

∀a, b ∈ R+, ab = ϵ1/pa
1

ϵ1/p
b ≤ ϵap +

1

ϵq/p
bq.

Young’s inequality can easily be proved by means of a convexity inequality. By using q = 4 and
p = 3/4, we deduce

1

2

d

dt

∫
|δu|2 dx+

∫
|∇δu|2 dx ≤ ϵ∥δu∥1H1 + C(ϵ)∥∇u1∥4L2∥δu∥2L2

≤ (C(ϵ)∥∇u1∥L2 + ϵ) ∥δu∥2L2 + ϵ∥∇δu∥2L2.

If we choose ϵ = 1
2 , then we may subtract both terms in the inequality above by 1

2∥∇δu∥
2
L2 , and

then use Grönwall’s inequality to finally get a stability estimate:

(4.5) ∥δu∥2L2 ≤ ∥δu0∥2L2 exp

(
C(ϵ)t+

∫ t

0
∥∇u1∥4L2

)
.

This shows that Leray solutions are indeed unique when they have additional L4
loc(H

1) regularity.

Remark 52. Note how the final estimate above only depends on ∥∇u1∥L2 . Theorem 50 is called
a weak-strong uniqueness result. In other words, if a Leray solution u1 is “strong” L4

loc(H
1), then

any other “weak” Leray solution with the same initial datum must be equal to u1. In general,
weak-strong uniqueness results are a bit tricky to prove rigorously, because they are concerned
with irregular solutions. Here, our computations were essentially formal, and would have to be
fully justified to recover the full statement of Theorem 50.

4.3 Existence of a Strong Unique Solution in 3D

Now that we have found a condition under which solutions are unique, we would like to show
that it is non-empty: that there indeed are solutions that have that kind of regularity. This is the
purpose of the Fujita-Kato theorem.

Theorem 53 (Fujita, T. Kato, [16], 1964). Consider u0 ∈ H1/2(R3) a divergence free vector field.
There exists a T > 0 and a weak Leray solution u such that u ∈ L4

T (H
1). Moreover, there exists

an absolute constant η > 0 such that if ∥u0∥H1/2 ≤ η, then T can be chosen infinite T = +∞.

Notice how this result is very different from what we have obtained so far from Euler or SQG.
This is due to the fact that the Navier-Stokes are essentially parabolic, as we will see in the next
paragraph.
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4.3.1 Using a Fixed-Point Theorem

The main idea to prove the Fujita-Kato theorem is the use of a fixed point method. While in
the two previous chapters we had essentially used orthogonal projection operators to construct
approximate solutions, this is no longer possible: the space L4(H1) is not Hilbert, so there is no
notion of orthogonal projection.2 This is why a fixed point method is more appropriate. To define
the fixed point operator, we use the heat equation structure: write the NS equations as

(∂t −∆)u = −P
(
(u · ∇)u

)
,

so that Duhamel’s formula gives an expression of the solution as a function of itself:

u(t) = et∆u0︸ ︷︷ ︸
:=a

−
∫ t

0
e(t−t

′)∆P
(
(u · ∇)u

)
(t′)dt′︸ ︷︷ ︸

:=B(u,u)

.

In the above, et∆ refers to the heat operator semi-group: the function et∆f is the solution of
the homogeneous heat equation with initial datum f , and has Fourier transform e−t|ξ|

2
f̂(ξ). In

order to apply the fixed point theorem, we will be looking for a Banach space X and a closed ball
BX(0, R) such that the map

Ψ :
BX(0, R) −→ BX(0, R)
: u 7−→ a+B(u, u)

is a contraction. In particular, we will need three key ingredients:

1. Show that the bilinear map B : X ×X −→ X is continuous ;

2. Show that BX(0, R) is stable under Ψ ;

3. Show that Ψ is indeed a contraction.

We will prove the first of these by exploring basic properties of the heat equation. We therefore
assume for now that B is bounded as a bilinear operator, so that it has a finite norm ∥B∥. Now,
for uinBX(0, R), the inequalities

∥Ψ(u)∥X ≤ ∥a∥X + ∥B∥∥u∥2X
≤ ∥a∥X +R2∥B∥

show that Ψ stabilizes the ball under the sufficient condition that ∥a∥X ≤ 1
2R and R ≤ 1

2∥B∥ .
Such a radius will certainly exists as soon as the condition

(4.6) ∥a∥X <
1

4∥B∥
:= η

holds. Finally, it is easy to see that Ψ is a contraction under the above condition: let u, v ∈
BX(0, R), so that

∥Ψ(u)−Ψ(v)∥X ≤ ∥B∥
(
∥u∥X + ∥v∥X

)
∥u− v∥X

≤ 2R∥B∥∥u− v∥X .

Thanks to (4.6) the radius R can be chosen so that 2R∥B∥ < 1, and the map Ψ is indeed a
contraction.

2In general, projections in non-Hilbert Banach spaces may suffer from terrible pathologies. For example, it can
be proved that any Banach space that is not (quasi-isometrically) isomorphic to a Hilbert space contains a closed
subspace on which there is no continuous projection.
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In conclusion, we see that if ∥et∆u0∥X is small enough, then the fixed point theorem applies
and provides a solution u ∈ X. Keeping in mind that we should choose X = L4

T (H
1) (or a related

space) to prove the Fujita-Kato theorem, there are two ways to realize this condition. The first
way is to take u0 small enough in an appropriate space so that the condition ∥et∆u0∥ ≤ η will
hold independently of T , and this provides global solutions. And the other way is to notice that
we expect to have ∥et∆u0∥L4

T (H1) −→ 0 as T → 0+, so that choosing T small enough will also
realize the condition.

4.3.2 Introduction to Homogeneous Spaces

Before moving on to the bulk of the proof of the Fujita-Kato theorem, we will introduce a new
tool: homogeneous Sobolev spaces. These spaces address some of the limitations of the usual
Sobolev spaces. For example, whenever one wishes to perform a Hk estimate on a function, there
are two bounds to compute:

∥f∥Hk ≈ ∥f∥L2 + ∥∇kf∥L2 .

The first quantity is the L2 norm of f and the second quantity is the L2 norm of ∇kf . However,
this double estimation introduces needless technical difficulties in the proofs. Notice for example
how in (4.5) only the norm ∥∇u1∥L2 appeared in the estimate, and how we in fact had no need
to assume that u1 ∈ L4(H1), but that the simpler condition ∇u1 ∈ L4(L2) was enough.

However, homogeneous spaces are not simply born out of a desire so have simpler computa-
tions. They also possess a property which the spaces Hk lack: scaling.3

Definition 54. Let X ⊂ S ′ be a Banach space of distributions. We say that X scales as α ∈ R
if the relation ∥∥f(λx)∥∥

X
= λα∥f∥X

holds for every f ∈ X and λ > 0.

Example 55. The space L2(Rd) scales as −d/2. A change of variables provides
∥∥f(λx)∥∥

L2 =

λ−d/2∥f∥L2 .

Example 56. For the same reasons, the norm ∥∇kf∥L2 scales as k−d/2, although it is not (yet)
associated to a Banach space.

Example 57. On the other hand, the Sobolev space Hk has no scaling properties if k ≥ 1 is an
integer, as ∥∥f(λx)∥∥

Hk ≈ λ−d/2∥f∥L2 + λk−d/2∥∇kf∥L2 .

However, the relation above gives an interesting insight on the meaning of scaling properties.
Note how the L2 norm λd/2∥f∥L2 dominates the expression when λ≪ 1, whereas λk−d/2∥∇kf∥L2

dominates when λ ≫ 1. This means that when “zooming out” (λ ≪ 1), ∥f∥L2 dictates the large
scale behavior of the function such as decay at infinity, and when “zooming in” (λ≫ 1) ∥∇kf∥L2

dictates the small scale behavior of the function (i.e. regularity). In a function space that has a
scaling property, the large scale and small scale behavior are closely linked.

There are two main reasons why this notion of scaling is extremely important in analysis (and
in particular in the analysis of PDEs).

1. The first reason is that the scaling of a function space is intimately related to its embed-
ding properties. Assume that X and Y are two function spaces such that the continuous

3I am deeply indebted to Lorenzo Pompili for his insight and long explanations on scaling while I was preparing
this lecture.
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embedding X ⊂ Y holds, and further assume that X and Y scale as α and β respectively.
Then, for any f ∈ X;∥∥f(λx)∥∥

Y
= λβ∥f∥Y ≤ Cλβ∥f∥X = Cλβ−α

∥∥f(λx)∥∥
X
.

Consequently, for the embedding to hold, we must have α = β. Two function embedded
spaces that have a scaling property must share the same scaling! For example, this means
that Lp ̸⊂ Lq whenever p ̸= q.

2. The second reason for which scaling is so important is that the Navier-Stokes equations (and
many other PDEs) have a natural scaling. For any function f(t, x), we denote fλ(t, x) :=
λf(λαtλβx). Now, if a function u(t, x) is a solution of the NS equations, the function uλ
also is a solution at the condition that

∂tuλ + P
(
(uλ · ∇)uλ

)
−∆uλ = λα(∂u)λ + λ1+β

(
P
(
(u · ∇)u

))
λ
− λ2β(∆u)λ = 0,

(the operator P does not change the scaling, as its symbol is a homogeneous function of
degree zero). In particular, if α = 2 and β = 1, then uλ(t, x) = λu(λ2t, λx) is a solution
of the NS equations. In general, it is better to work function spaces X whose scaling is
compatible with the Navier-Stokes equations, so that ∥uλ∥X = ∥u∥X .

For these reasons, we will try to replace the Sobolev spaces Hk by spaces that have scaling
properties.

Definition 58. Consider s < d/2. The space Ḣs(Rd) is the set of distributions f ∈ S ′ such that
f̂ ∈ L1

loc(Rd) and

∥f∥Ḣs :=

(∫
|ξ|2s

∣∣f̂(ξ)∣∣dξ)1/2

< +∞.

The space Ḣs(Rd) is called the homogeneous Sobolev space of order s. By contrast, the space Hs

is sometimes referred to as the non-homogeneous Sobolev space of order s.

We will list a few of the properties of the homogeneous Sobolev space. First of all, these
spaces are complete, and even have a hilbertian structure. We encourage the reader to prove this
on himself, as it is not too difficult.

Proposition 59 (Proposition 1.34 in [2]). Let s < d/2. The space Ḣs is a Hilbert space.

The space Ḣs also has nice scaling properties: a quick glance at the Fourier transform shows
that

∥∥f(λx)∥∥
Ḣs = λs−d/2∥f∥Ḣs . This means that the homogeneous Sobolev space Ḣs and the

Lebesgue space Lp share the same scaling when

(4.7)
s

d
+

1

p
=

1

2
.

The reader should remember that this is precisely the relation used to insure the sharp Sobolev
embeddings of Proposition 46. In fact, these embeddings still hold for the homogeneous case.

Proposition 60 (Proposition 1.38 in [2]). Let s < d/2 and p ∈ [2,+∞[ such that (4.7) holds.
Then we have the continuous embedding Ḣs ⊂ Lp.

Interpolation inequalities also hold for homogeneous Sobolev spaces. The proof is very much
the same as that of the interpolation inequalities for non-homogeneous spaces.

Proposition 61. Consider s1 < s2 < d/2 and a function f ∈ Ḣs1 ∩ Ḣs2. Then for any θ ∈ [0, 1]
and s = θs1 + (1− θ)s2, we have f ∈ Ḣs and the inequality

∥f∥Ḣs ≤ ∥f∥θ
Ḣs1

∥f∥1−θ
Ḣs2

holds.
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Finally, to conclude this paragraph, we must warn the reader that homogeneous Sobolev spaces
can be extremely tricky to deal with, and sometimes have counter-intuituve properties (as we have
already hinted in the previous chapters).

To start with, the condition that f̂ ∈ L1
loc(Rd) is essential. Consider for example the space

Ḣ1(R3). Then the Fourier-Plancherel identity shows that ∥f∥Ḣ1 = ∥∇f∥L2 . Consider the function
f = 1, whose Fourier transform f̂ = δ0 the Dirac delta, then formally ∥1∥Ḣ1 = ∥∇1∥L2 = 0. The
local integrability condition excludes functions that might cancel the homogeneous norm.

Next, we should point out that the condition s < d/2 is all important. In fact, the space of
f ∈ S ′ such that f̂ ∈ L1

loc and ∥f∥Ḣs < +∞ is not complete when s ≥ d/2 (see Proposition 1.34 in
[2]). The reader may wonder whether it is possible to complete that space and still recover a space
of distributions, but the answer is that it essentially is not: the completion (which always exists)
is naturally a subspace of the quotient of tempered distributions modulo polynomials S ′/R[X].

The topic of homogeneous Sobolev spaces when s ≥ d/2 is rather technical, and has few
applications in PDEs. The interested reader can find more in [4], [11]. However, the main
takeaway is that homogeneous spaces should be dealt with very cautiously.

4.3.3 Proof of the Fujita-Kato Theorem

What is left to do is to show that the bilinear operator B : X×X −→ X is bounded for some choice
of X. Because we already have a uniqueness result for Leray solutions with ∇u ∈ L4

T (L
2), we

will choose X = L4
T (Ḣ

1), which is a space that is invariant under the scaling of the Navier-Stokes
equations. Most of our estimates will rely on the following heat kernel lemma.

Lemma 62. Consider a biven force f and v a solution of the heat equation{
(∂t −∆)v = f

v(0) = v0.

Then, for all p ∈ [2,+∞] and s ∈ R such that s+ 2/p < d/2, we have the inequality

∥v∥Lp
T (Ḣs+d/p) ≤ ∥v0∥Ḣs + C∥f∥

L2
T ( ˙Hs−1)

.

Proof. Take the Fourier transform of the heat equation:

∂v̂(t, ξ) + |ξ|2v̂(t, ξ) = f̂(t, ξ).

By multiplying by |ξ|2s and integrating with respect to the Fourier variable, using the Cauchy-
Schwarz inequality and Young’s inequality, we obtain, for every ϵ > 0,

1

2

d

dt

∫
|ξ|2s

∣∣v̂(t, ξ)∣∣2dξ + ∫ |ξ|2s+2
∣∣v̂(t, ξ)∣∣2dξ = ∫ |ξ|2sf̂(t, ξ) · v̂(t, ξ)dξ

≤
(∫

|ξ|2s−2
∣∣f̂(t,x i)∣∣2dξ)1/2(∫

|ξ|2s+2
∣∣v̂(t, ξ)∣∣2dξ)1/2

≤ ϵ∥v∥2
Ḣs+1 +

1

ϵ
∥f∥2

Ḣs−1 .

By absorbing the factor of ϵ in the lefthand side, we find a differential inequality

1

2

d

dt
∥v∥2

Ḣs + ∥v∥2
Ḣs+1 ≤ C∥f∥2

Ḣs−1 .

Integrating this relation, or instead using Grönwall’s inequality gives the conclusion of the lemma
in the case where p = 2 or p = +∞,

∥v∥L2
T (Ḣs+1) ≤ C∥f∥L2

T (Ḣs−1) ≤ ∥v0∥Ḣs + ∥f∥L2
T (Ḣs−1)

∥v∥L∞
T (Ḣs) ≤ ∥v0∥Ḣs + ∥f∥L2

T (Ḣs−1).
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In order to conclude, we use an interpolation inequality. Thanks to the convex combination
s+ 2

p = (1− 2
p)s+

2
p(s+ 1), we write...

[WORK IN PROGRESS]
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Appendix A

Survival Kit on Weak Convergence

A.1 Introduction: Strong Compactness

This short section covers a few notions on weak convergence. The goal is not to provide a thorough
presentation of the topic, but merely to give intuition on this notion through a few statements
and examples. Most of the proofs will be ignored, and we refer instead to the standard textbook
[5], which covers more than what is needed to follow these notes.

As the student will probably have understood from the proofs in these notes, compactness is
one of the main tools used to construct solutions of PDEs, and finding compactness properties of a
family (fn) (say of approximate solutions) is the principle challenge of a proof. Said compactness
is usually obtained through uniform bounds: assume there is a Banach space X such that

∥fn∥X ≤ R

for some constant R > 0. Then, if the ball B(0, R) ⊂ X can be compactly embedded in a Banach
(or metric) function space Y , one may extract a limit in Y . There is an extraction ϕ : N−→N
and a f ∈ Y such that

fϕ(n)−→ f in Y.

For example, take X = H1. Then, the Rellich-Kondrachov theorem states that the embedding
H1 ⊂ L2

loc is compact.

Theorem 63 (Rellich-Kondrachov (Theorem 3.16 in [5])). The embedding H1 ⊂ L2
loc is compact.

In other words, any bounded subset A ⊂ H1 is a relatively compact subset of L2
loc.

In the above, the space L2
loc is the space of locally L2 functions on Rd. A measurable function

f : Rd−→R is locally L2 if the function 1Kf is L2 for any compact subset K ⊂ Rd. Note that
the space L2 is not a Banach space. Instead, its topology is defined by a metric:

d(f, g) :=

∞∑
k=1

1

2k
min

{
1, ∥f − g∥L2(Bk)

}
,

where Bk = B(0, k) are balls of increasing radius k ≥ 1 whose union cover the whole space
Rd =

⋃
k Bk. A sequence of functions (fn) converges in L2

loc to f ∈ L2
loc if and only if the

convergence
1Kfn−→1Kf in L2

holds for all compact subset K ⊂ Rd. Examples of L2
loc functions include (say of d = 1) ex,

polynomials, xϵ−1/2, etc.
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Example 64. Consider the sequence of functions fn(x) = exp(−(x − n)2) defined on the real
line. It is bounded in H1

loc, and converges locally to zero in L2
loc: for any compact interval I ⊂ R,

exp(−(x− n)2)−→ 0 in L2(I).

However, note that (fn) does not converge to zero in L2(R), because it is of constant norm
∥fn∥L2 = C > 0.

A.2 Presenting Weak Convergence

We continue to explore the question of extracting a converging sequence from a bounded sequence
(fn) in a Banach space X. Assume again that X is compactly embedded in a (metric) vector
space Y , so that we have convergence of an extraction

fϕ(n)−→ f in Y.

Several questions emerge. Firstly, what can be said about the limit f? Obviously, it is an element
of Y , but since Y is a larger space than X, we could hope for more. Especially as the sequence
(fn) remains bounded in X, it seems intuitive that the limit f somehow should also be an element
of X. This is generally true.

Let us see how this works on an example. We look again at the situation from the previous
section: let (fn) be a bounded sequence of functions in H1. We know that an extraction converges
in L2

loc,

(A.1) fϕ(n)−→ f in L2
loc.

In particular, for any smooth and compactly supported ψ ∈ D, we have∫
fϕ(n)(x)ψ(x) dx−→

∫
f(x)ψ(x) dx.

This implies that the limit f satisfies an inequality of the form

sup
∥ψ∥H−1≤1

∣∣∣∣∫ f(x)ψ(x) dx

∣∣∣∣ ≤ lim
n

∥fn∥H1 < +∞,

where in the above H−1 is the dual space of H1 (see the remark immediately below). Since D is
a dense subspace of H−1, this means that f must be an element of H1.

Remark 65. The Sobolev space H1 is a Hilbert space, so the reader may be surprised to see
that the dual space H−1 = (H1)′ is considered to be a different space than H1. This is a subtle
but important point. The space H1 is a Hilbert space for the scalar product

⟨f, g⟩H1 :=

∫ (
fg +∇f · ∇g

)
dx.

The Riesz representation theorem implies that any bounded linear map T ∈ (H1)′ can be repre-
sented by a function g ∈ H1 through the formula T (f) = ⟨g, f⟩H1 . However, the bounded linear
map T also defines a distribution h ∈ D′ through the relation

(A.2) ∀ψ ∈ D, T (ψ) := ⟨h, ψ⟩D′×D.

If h were a locally integrable function, the bracket above would be equal to T (ψ) =
∫
hψ. The

issue is that h and g are not equal as distributions, since they are not defined by the same formula.
In fact, while g is a H1 function, the distribution T is in general the derivative of a L2 function.
The set of distributions T such that the map (A.2) is bounded on H1 is called H−1. Both H−1

and H1 are isometric to the dual space H1 (and so to each other), but they are not identical as
spaces of distributions!
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We continue with this example. We have proven that the L2
loc limit f still is a H1 function.

This is more than the simple L2
loc convergence (A.1) gives by itself, and follows from the fact

that (fn) is a bounded sequence of H1. The next natural question is then whether the sequence
converges to f in some stronger topology than L2

loc. Again, the answer is yes.

Definition 66. Consider H a Hilbert space and (fn) a sequence of elements of H. We say that
(fn) converges weakly in H to an element f ∈ H if

∀g ∈ H, ⟨fn, g⟩H −→⟨f, g⟩H .

This is noted fn⇀g (in H).

This convergence is called weak, whereas convergence in the norm topology of H is strong.
To provide intuition, let us give a couple of examples.

Example 67. Consider again the sequence fn(x) = exp(−(x−n)2). Then fn⇀ 0 inH1. However,
the sequence (fn) does not converge strongly in H1.

Example 68. Consider the sequence fn(x) = exp(inx) ∈ L2(T), where T = R/2πZ. Then it
follows from the Riemann-Lebesgue theorem that fn⇀ 0 in L2(T). Again, the sequence (fn) does
not converge strongly in L2(T).

The weak topology of H is the coarsest topology of H such that all linear maps T ∈ H ′ are
continuous. The main interest of the weak topology of a Hilbert space H is that is turns H into
a locally compact topological space.

Theorem 69. Let H be a (not necessarily separable) Hilbert space and (fn) a bounded sequence
of elements of H. Then there exists a f ∈ H and an extraction ϕ : N−→N such that

fϕ(n)⇀f in H.

Moreover, the norm of the weak limit is bounded by

∥f∥H ≤ lim
n

∥fn∥H .

Remark 70. The main issue with the notion of weak convergence is that it is poorly suited to
non-linear problems: the function product (f, g) 7→ fg is usually not continuous for the weak
topology. For example, we have seen that e±inx⇀ 0 in L2(T). However, einxe−inx = 1 does not
tend to zero.

A.3 Weak and Weak-(∗) Convergence

In the analysis of PDEs, it is very frequent to have to deal with Banach spaces that are not
Hilbert. In that case, it is convenient to also define a notion of weak convergence.

Definition 71. Consider a sequence (fn) of elements of a Banach space X and let f ∈ X. We
say that fn converges weakly to f in X and note

fn⇀f in X

if for any bounded linear map g ∈ X ′, we have

⟨g, fn⟩X′×X −→⟨g, f⟩X′×X .
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The weak topology of X, sometimes noted σ(X,X ′), is the coarsest topology on X such that
all bounded linear maps are continuous. If X = H is a Hilbert space, then weak convergence
as defined immediately above is identical to the notion of weak convergence from the previous
paragraph.

The weak topology in Banach spaces possesses very nice properties. For instance, a lower semi-
continuous convex function on X (for the norm topology) is also lower semi-continuous for the
weak topology. This fact plays an important role in the optimization theory of convex functionals.
However, it suffers from a fatal flaw: the weak topology is not, for general Banach spaces, locally
compact. The typical example of this bad behavior is L1(Rd).

Example 72. Consider the sequence of functions fn(x) = 1[0,1](x − n), which is bounded in
L1(R). Let ϕ : N−→N be an extraction. Then (fϕ(n)) does not converge for the weak topology.
To see this, let g ∈ L∞(R) (recall that (L1)′ = L∞) be defined by

g(x) =

{
1 if x ∈ [ϕ(k), ϕ(k) + 1[ when k is even
−1 if x ∈ [ϕ(k), ϕ(k) + 1[ when k is odd.

Then the brackets
⟨g, fϕ(n)⟩L∞×L1 =

∫
g(x)fϕ(n)(x) dx = (−1)n

never converge. Consequently, no extraction of the sequence (fn) converges weakly in L1. Note
that the sequence converges to zero in the weak topology of L2. In other words, the sequence (fn)
has a natural limit f = 0, which is an element of L1, but the weak topology of L1 is too strong
for the sequence to converge to that limit.

Example 73. Let χ ≥ 0 be a smooth function on R that is supported in [−1, 1] such that
∫
χ = 1.

We define the sequence (fn) by
fn(x) = nχ(nx).

Then, for any continuous function ϕ ∈ C0(R), we have the convergence

(A.3)
∫
fn(x)ϕ(x) dx−→ϕ(0).

Here the situation is different. The natural limit of the sequence (fn) is the Dirac delta δ0, which
is not an element of L1. In a sense, L1 is not “complete” for the weak convergence. This is another
example of bounded sequence which does not have a weak accumulation point in L1 for the weak
convergence.

These two examples show the need for another type of convergence. This will be supplied by
the notion of weak-(∗) convergence.

Definition 74. Let X be a Banach space that is the (topological) dual a Banach space Y , so that
X = Y ′ (we say that Y is the predual of X). We say that a sequence of elements (fn) of X
converges weakly-(∗) to f ∈ X and note

fn
∗
⇀f in X

if for any g ∈ Y we have
⟨fn, g⟩X×Y −→⟨f, g⟩X×Y .

The weak-(∗) topology is sometimes noted σ(X,Y ), and is the topology of bounded linear
maps (elements of Y ′ = X) associated to pointwise convergence. Once again, if X = H is
a Hilbert space, there is no difference with the notion of weak convergence from the previous
paragraph.

The main attribute of the weak-(∗) topology is that it turns X into a locally compact space
(this is the Banach-Alaoglu-Bourbaki theorem, see Theorem 3.16 in [5]). Moreover, if the predual
space Y is separable, then X is sequentially compact for the weak-(∗) convergence.
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Theorem 75 (Banach-Alaoglu, Corollary 3.30 in [5]). Consider X a Banach space which has a
separable predual Y . Then any bounded sequence (fn) of elements of X has an accumulation point
for the weak-(∗) convergence: there is an extraction ϕ : N−→N and a f ∈ X such that

fϕ(n)
∗
⇀f in X.

Moreover, the limit satisfies
∥f∥X ≤ lim

n
∥fn∥X .

Example 76. The space X = L∞(R) has predual L1(R), which is a separable Banach space. In
particular, any bounded sequence of L∞(R) functions has a weak-(∗) accumulation point. For
example, the sequence (fn) from Example 72 converges weakly-(∗) to f = 0.

Example 77. Let us look again at the sequence from Example 73, which is bounded in L1(R).
The issue is that the space L1(R) is not the dual of any Banach space (this is a consequence of the
Krein-Millman and Banach-Alaoglu-Bourbaki theorems), so that the weak-(∗) topology cannot
be defined on L1(R). A way to overcome this issue is to embed L1(R) into the larger space M(R)
of finite measures, which is a Banach space for the total mass norm

∀µ ∈ M(R), ∥µ∥M :=

∫
d|µ|(x).

In particular, L1(R) can be seen as the (closed) subspace of M(R) of finite measures which are
absolutely continuous with respect to the Lebesgue measure. The space M(R) is the dual of the
space C0(R) of continuous functions f that have limit f(x)−→ 0 at x → ±∞. Note that the
space C0(R) is separable, so that any bounded sequence of finite measures should have a weak
accumulation point for the weak-(∗) convergence. In the case of the sequence (fn) from Example
73, the convergence (A.3) shows that

fn
∗
⇀δ0 in M(R).

Example 78. In the case of Lebesgue spaces Lp(R) for 1 < p < +∞, things are much more
easier. Indeed, these spaces are reflexive, which means that they can be canonically1 identified
with their bi-dual (Lp)′′ = Lp. For reflexive Banach spaces, the weak and weak-(∗) topologies are
the same. Unfortunately, the spaces M(R) and L∞(R) are not reflexive, which makes the notion
of weak-(∗) topology indispensable.

Finally, as a conclusion to this discussion on weak convergence, we emphasize that the sep-
arability assumption for the predual in the Banach-Alaoglu Theorem 75 is absolutely necessary.
Otherwise the the weak-(∗) topology is locally compact, but not sequentially locally compact. In
order to stress this point, we give another series of examples.

Example 79. Consider the space Y = ℓ∞(N) of bounded sequences, which is not separable, and
note X = ℓ∞(N)′ its dual2. We define a sequence of bounded linear maps Tn : ℓ∞(N)−→R by
setting

∀u ∈ ℓ∞(N), Tn(u) := u(n).

Then, the sequence (Tn) converges to T ∈ ℓ∞(N)′ weakly-(∗) if and only if the limit

Tn(u) = u(n)−→T (u)

1The adjective canonically means that the canonical embedding Lp −→(Lp)′′ is onto. There are non-reflexive
Banach spaces X that are isomorphic to their bi-dual X ′′, but such that the canonical embedding is not onto.

2The dual space ℓ∞(N) is a very complicated and-non explicit Banach space. It contains the space ℓ1(N) of
summable sequences, by the canonical embedding, but the construction of elements T ∈ ℓ∞(N)′ which are not in
ℓ1(N) requires the axiom of choice. It can be shown that ℓ∞(N)′ is the space of finite measures on the Stone-Cech
compactification βN of the natural numbers.
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holds for all u ∈ ℓ∞(N). In other words, the convergence happens if and only if any bounded
sequence (u(n)) has a limit at n→ +∞, which is absurd. This shows that the sequence (Tn) does
not have an accumulation point for the weak-(∗) convergence, although the weak-(∗) topology
σ
(
ℓ∞(N)′, ℓ∞(N)

)
is (topologically) locally compact.

Example 80. We consider the sequence (Tn) from the previous example, but from a different
point of view. Let cℓ(N) be the space of sequences u that are convergent: for any u ∈ cℓ(N), the
limit limn u(n) exists. The space cℓ(N), equipped with the uniform norm ∥ . ∥∞ is a separable
Banach space, and the linear maps Tn : cℓ(N)−→R are bounded. The sequence (Tn) converges
weakly-(∗), and the limit T is given by

∀u ∈ cℓ(N), T (u) := lim
n
u(n).

Example 81. Finally, we look at the space ℓ1(N) of summable sequences. It is the dual of
the space c0(N) of sequences u which converge to zero u(n)−→ 0 (equipped with the uniform
norm). Since the space c0(N) is separable, ℓ1(N) is locally sequentially compact for the weak-(∗)
convergence. This is in sharp contrast with the space L1(R), although both spaces are Lebesgue
spaces of integrable functions: the first one for functions N−→R with the counting measure, and
the second one for functions R−→R with the Lebesgue measure.

A.4 Summary

Let us summarize the different ideas and types of convergence we have discussed so far.

• In a Hilbert space: any bounded sequence has a weak accumulation point. The weak
topology is very nice. If only all spaces were Hilbert spaces.

• The weak convergence has nice properties, but the weak topology is usually not locally
compact. This creates issues in spaces like L1(R).

• Weak-(∗) convergence: the topology is locally compact, and even locally sequentially
compact if the predual is separable. The typical spaces in which weak-(∗) convergence is
used are L∞(R) and M(R). Bad things happen when the predual is not separable.

• For reflexive spaces the weak and weak-(∗) convergences are the same. For example, in
Lp(R) when 1 < p < +∞. Outside of Hilbert spaces, this is the most agreeable case.
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