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0 Introduction

The spaces studied in this article are all related to the symmetric products
SP"(Y)=Y"/¥, of a space Y. The symmetric group %, acts on the cartesian
product Y" by permuting coordinates, and a point in SP"(Y) will be written
multiplicatively {y,,...,y,>=y;...y,. If a basepoint * in Y is given, one has
inclusions SP"(Y)— SP"*1(Y) identifying y, ...y, with y, ...y, *. The union over
all these spaces is the infinite symmetric product SP*(Y). By the fundamental
result about infinite symmetric products, obtained in [DT], for Y connected
and of the homotopy type of a CW-complex SP*(Y) is a product of Eilenberg-
MacLane-spaces,

(1) SP=(Y)=[] K(H/(Y; Z),i).

i>0

In Part I we study the truncated symmetric product TP"(Y); this is the quotient
of SP"(Y) by the relation y?=* =1 for all yeY. The union of all the TP"(Y)
is the infinite truncated product TP®(Y), the topological vector space over IF,
generated by the points of Y modulo the subspace generated by*. For Y con-
nected it is also a product of Eilenberg-MacLane-spaces,

(2) TP>(Y)=[] K(H(Y;Z/2Z),)).

i>0

The mod(2) homology of TP"(Y) was determined in [LM] as a functor of the
mod(2) homology of Y. Furthermore, there are inclusions H,(TP*(Y); IE)
- H, (TP"*'(Y);IE,) whose image we describe using a bigrading of the homology
of the limit TP®(Y). The rational or mod(p) homology for p>2 is more compli-
cated, see 4.1 below.
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In Part II we study the configuration spaces C"(Y), the subspace of SP"(Y)
consisting of all {y,, ..., y,> with y;+y; when i+j. Recently, as in [Seg, MD,
A-J], there has been renewed interest in these spaces and more particularly
the associated deleted symmetric products

C*(X)={{xy, ..., x| x; % x; for i j} = SP(X).

Somewhat before that [C-T1, C-T2, C-T3], there were numerous applications
indicated, as well as the work of D. Anderson and P. Trauber reported on
in those references which gave ample evidence, already of the importance of
these spaces. For some particular manifolds the homology of these configuration
spaces was computed in [A, B-C, C, V].

To amalgamate these spaces one introduces labels for the y; in some other
space, e.g. a sphere S*; a point y with label s is cancelled from a configuration
if y=* or s=o0eS". The result is an infinite dimensional space C(Y; S*). When
Yis a compact manifold of dimension m, a basic result in [MD, B1], identifies
C(Y; S*) as the space of sections in a S -bundle over Y. Furthermore, it stably
splits into a bouquet of filtration quotients D,(Y; S¥)=C,(Y; S4)/C,-,(Y; S"),
[B2, CT1], and its homology is the homology of a product of loop spaces
of spheres [BCT],

(3) C(Y’ SL:sVDk(Y; SL)s

(4) H,(C(Y;8");F)= () ®%« H, (Q"1S" "1 TF),
0

where B, is the g™ IF-Betti number of Y. (Here char(IF)=2 or char(IF)+2 and
dim(Y)+ L=~1mod(2).)

Our point of view in Part I is that C"(Y)=TP"(Y)— TP"~*(Y). In Part Il
the configuration space occurs as the base of an mL-dimensional vector bundle
whose Thom space is D,(Y; S¥). Thus the quotients TP"(Y) of SP*(Y), and the
subspaces C"(Y) of SP"(Y) are homologically dual to each other.

Theorem 3.1 Let IF be a field, then
(@) H2"~"(DP*(M*"— ); F)= H,(TP*(M)/TP*~ ' (M); IF).
(b) H*"*~"(DP*(M?"); F) = H,(TP*(M)/ TP*~*(M); IF).
Theorem 3.2 Suppose M?"*! is a compact, oriented, closed manifold. Then we
have
(a) HEZ"*Vk=r(CKM — x); F)= T 2, (M; F)=H,(TP*(Y), TP*~ ' (Y); Z/p).
(b) HE"* Vk="(CH(M; IF)= H,(TP*(M)/TP*~*(M); IF).
(The T subscript appearing in the homology here denotes the fact that the
coefficients are twisted by the — action of Z/2= %/, on the field IF.)

Part I continues with the main computational result, a spectral sequence
to compute the bigraded groups 7 %, ,.(Y)=H, (TP*(Y), TP* ' (Y); Z/p)
which taken together form a bigraded ring.

Theorem 4.1 There is a spectral sequence with E*-term

2 Gux’ (Y3 F
E*,*,=Tor e ( )(IF,]F)
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converging to 7 %, ,.(2Y; FF).

Here IF is @, or IF=IF, with p>2.

We then apply this to the case Y=M,, a closed, connected, oriented surface
of genus g. Completing the results of [BC] is the following result which combines
5.12 and 5.13 in the body of the text

Theorem. Let p>g, and suppose T/ is a closed Riemann surface of genus g.
Let f have bidegree (2, 1), P! bidegree (2p‘+1,2p"), the h; have bidegree (2.2),
1<j<2g, and BPY have bidegree (2p‘ +2,2p'), then the bigraded algebra

Vew 2W,®T[fhy, ...y, ..., BPY,J@E[...P1...]
satisfies H**P~J(€*(T?), IE) = V.

Here W, is a complicated algebra determined as the homology of a certain
complex described more precisely in § 5, while I'[] denotes the divided power
algebra on the stated generators and E() is the exterior algebra on the given
generators.

There is an interesting relation between alternating products AP"(Y)=Y"/</,
(where &7, is the alternating group), symmetric products, and truncated products.

Lemma 7.1 Let X be a simplicial complex, then for all odd primes, p, there
is a split exact sequence

0—H, (TP"(X)/TP""*(X);F,") > H, (AP"(X);[E) - H,(SP"(X); F,)) > 0

where ]FI,i denotes the field IE, with Z/2-action t(a)= +a.

Part II continues the methods of [BCT]. Among the results we mention a short
proof of the main result of [BCT].

Corollary 8.4 [B-C-T] (i) If F=Z/2Z or m is odd, then H, C*(M) depends
only on H, M and m. Furthermore there is an isomorphism of vector spaces for
h> >0 and 0 <q<mk given by

H,C*(M)=H,, ,, C(M, S?")

m  B(q)
EHq+2nk l—l HQm—qsmeZn)'

=0

(i) if F=Z/2Z or m is even, then H (C*(M); IF(—1)) depends only on H, M
and m. Furthermore there is an isomorphism of vector spaces for n> >0 and
0<g<mk given by

H(C*M);IF(— 1) = Hy 204 16 C(M, 82" 1)

m

~ - +2n+1

=Horonenw| [T [T Q"708™02" >
=0 B(q)

_Next we discuss certain product decompositions of mapping spaces of surfaces
Into spheres. These decompositions in turn give information about the configura-
tion space of unordered k-tuples of points in the given surface.
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Theorem 8.5 If n> 1, there exist principal Q*>S*" fibrations
Q2§ Y, ,, - (S22
and a principal Q* S3-fibration
Q2S5 Y, , - (Sh)%
such that

(1) there is a homotopy equivalence map3(M,, $3)—— (Q2S°)*¢x Y, , and

(2) there is a homotopy equivalence after inverting 6

map, (M, $")—(QS*" 15 x Y, ,,

forn>1,
(3) there is a fibration for n>1

Yg,Zn - map* (Mga SZ”) - (QS“"* 1)2g
which has a section after inverting 2.

As a convenience for the reader we point out that there are several distinct
notations used for these spaces, both in the existing literature and in this paper:
namely

(1) C*(Y)=F(Y,n), and
(2) C'(Y)=F(Y, n)/%,=B(Y,n)=TP"(Y)—TP""*(Y).

Part I: Truncated symmetric products
1 Preliminaries

[M2] studied the homology and geometry of symmetric products using tech-
niques — and largely reproducing results which had been anticipated by Steenrod
[St2]. The homology results in [M2] are complete in that closed formulae
are given for H, (SP*(X); IE) for any locally finite CW-complex X.

The key new ingredient in [M 2] was an explicit way of obtaining a combina-
torial cell decomposition for [ | SP*(ZY) if an appropriate CW-decomposition
was given for SP®(Y). k ’

>'Y was regarded as the identification space I x Y/{Ox Y=1X Y=1Ix x =%}
and the suspension coordinate was used to attempt to put an ordering on the
unordered n-tuple {(t;,y,),-..,(ts, ¥»)p- Precisely, we can partially order the
points by assuming t; <t,<...<t,. (Note there that {0, <...5t,<1}=0"
is just the ordinary n-simplex.) Where t;=t; , , i.e. on the i""-face of " we observed
that the resulting point could be identified with

<(tl’y1)’ "'5(t1‘—1’yi—1)a(tis yi'yi+1)a ”"(tn’ yn)>

where y;-y;,, is the unordered pair <{y;, y;11>€SP*(Y)=SP*(Y). Extending
this idea the geometric bar construction was defined and explored in [M1].
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For any associative H-space Y with unit *, set

By=]_IO'kX Yk
k

with the compactly generated topology, where we make identifications of 3
kinds motivated by the geometry of SP* (X).

i) On the face o*={t,,...,t;=t; 4, ... L}, or when y;, , = * we identify
i 1 i 1 k i+1
(tla""tmyl’---ayn) Wlth (tl"'-’fi-*l’""tn’yls--"yi—layi.Vi+lsyi+1’---9yn)'

(i) If £, =0 then set (ty, ...; Ly Vi eos V) ~(t2s coostys Vo ooos V)
(@) If t,=18€t (15 evsbys Vs oo V) ~(Eiseeosbtum1sViseoes Yno1)-

If + is an NDR, define Ey=]]¢* x Y¥/relations of type (i), (i) only. One sees
easily that Ey is contractible, and there is a principal quasi-fibering

Y- Ey—> By.

Hence By is a model for the classifying space of Y. Moreover, in the case
Y=SP>(X) then by the remarks preceeding the construction we see that

By=SP>(ZX).

Thus, one can relate the homology of the SP*(2X) to a specific construction
on pieces of @ H,(SP"(X)), creating an inductive situation which was relatively
easy to analyze. An interesting extension of these ideas occurs in [Mc].

Recall that Cartan determined the cohomology of the Eilenberg-MacLane
spaces K (m,n) for m any finitely generated abelian group as follows. Let <7, (p)
be the subset of the mod(p) Steenrod algebra spanned by monomials in the
mod(p) Bockstein f and the P’ having excess <n. (For p=2 we do not need
the Bockstein as it is identified with Sq'.) Then

H*(K(Z/p; n); ) = S(,(p) (1)),

where 1, is the fundamental class in H"(K(Z/p; n); IF)=IF,, and S(W) is the
symmetric algebra generated by W. More exactly S(W) is the tensor product
of the polynomial algebra on the even dimensional generators of W and the
exterior algebra on the odd dimensional generators.

For K(Z, n) let %,(p)=<Z,(p)/W where W is the subspace spanned by those
monomials with rightmost term equal to . Then 4,(p) acts on the fundamental
class ie H"(K(Z, n); I,) and

H*(K(Z; n); I,)=S(#,(p) (1,))-

The explicit structure of H*(SP® (X); IF,) is now given by bigrading the results
of Cartan above. When X is a locally finite CW-complex:

H*(SP®(X); E)=]] Su.[.., P'(@),...]
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where P'=p% P'1p*2 Pz . P runs over all admissible monomials in the
mod(p) Steenrod algebra .o (p) of excess <n, while the a; run over a selected
basis for H"(X ; IE,). The second degree of P is p".

In the particular case where X =S' we obtain that H*(SP* (S Y, Z)=E[e,],
and indeed, SP"(S})~ S for all n>1. When X =52, we have H*(SP*(S?); Z)
=Z[e,], where e, has dimension 2 and second degree 1. As a consequence

(1.1) H*(SP"(S*); Z)=Z[e,)/(e5™").
Indeed, it is a standard result that SP"(S%)~CP". Finally we have
(1.2) H*(SP*(S%;E)=E[es, ..., PY(es), ... ]®IE, [P (e3), ..., BPY(es),...]

where PY=PpPr'"'pPr'"* P! runs over the admissible monomials of excess 2
in the Steenrod p-powers. Note that both P and fPY have second degree
p'. Then a basis for H*(SP"(S®);IF,) is given by all those monomials in the
generators above for which the second degree is <n.

2 The functors TP"(Y)

In this section we assume all spaces are based locally finite CW-complexes.
Definition 2.1 TP*(Y)=SP*(Y)/(y*= *,yeY).

TP>(Y) is a topological group — the free abelian group generated by the
points of Y (with  as identity) subject to y2=x for yeY. TP*(Y) has been
studied in [D-T], it is the free topological IF,-vector space generated by the
points of ¥ modulo the subspace generated by the base point. There is a natural
projection SP®(Y) - TP (Y) and we set

TP"(Y)=im(SP*(Y)) = TP*(Y).
Additionally, if f: Y— Z is a based map then the induced map
TP(f): TP*(Y)—>TP*(Z)
is defined by
TP(f)(<yl9 :yn>):<f())1), af(yn)>

Together these two operations define the TP-functor on based spaces and based,
continuous maps. .

Properties

(2.2) TP>(Y) is a homotopy functor, ie. if Y~Z then TP*(Y)~TP*(Z), and
TP"(Y) is a (based) homotopy functor for each n. Indeed, if

H: Y->Z

is a based homotopy from f to g, then TP(H,) defines a homotopy from TP(f)
to TP(g) and TP(H,) preserves the TP"() functors.
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(23) If f: Y>Z is a based map then TP(f): TP*(Y)— TP*(Z) is a group
homomorphism, and consequently is a principal fibering over its image with
fiber =kernel = TP(f ~!)(*). Hence the functor TP takes cofiberings to (princi-
pal) fiberings. In particular

TP* (Y, v Y,)=TP®(Y,) x TP*(Y,).

Additionally, if S"~ 11, Y, » Yue"=Y gives Y from Y, by adjoining a based
cell, then TP*(Y) is the total space of the principal fibering

TP*(Y)=TP*(Y}) X gpu(sn-1, TP®(cS" ") > TP*(S")
where TP®(cS"™!) is the (contractible) total space of the fibering
TP®(S""')— TP®(cS"~')—> TP*(S".

Here ¢ Y denotes the reduced cone on Y.

(2.4) More generally, TP® (X2 Y)= Brp.(y, Where B, is the topological bar con-
struction of [M1, St1] discussed in § 1.

(2.5) From (2.3) m,(TP*(Y)) is a homology theory for Y. Note that TP*(S°)
=Z/2, so by (2.3), TP*(S')=Bz,=RP®, and more generally TP*(S")
=K(Z/2, n). Thus we have the Dold-Thom theorem for TP,

Theorem 2.6 If Y is a based, locally finite CW-complex, then
TP*(Y)~] [ K(H(Y;Z/2),i).

Corollary 2.7 TP(f),: 1 (TP*(Y))— n,(TP*(Z)) is just the map induced in Z/2
homology,

St Ho(Y,Z/2) - H (Z; Z)2).
(2.8) The points of TP"(Y)— TP"'(Y) have the form {x,,...,X,», X;%X;% *,

if i=j. The points of TP*~!(Y) embed into TP"(Y) by adding one #, i.e. regarding
them as {(x,, ..., x,_;,*>. Let

Sing"(Y)={<yy, ..., Yoy €SP"(Y)|y;=y;, for some i+ }.
Then TP"(Y)/TP" 2(Y)=SP"(Y)/Sing"(Y). Similarly we have that
TP"(Y)/TP"™ '(Y)=SP"(Y— )/{Sing"(Y— *) U SP"~ ! (Y)}.

Theorem 2.9 H_(TP"(Y); Z/2)=(X) H,(TP'(Y), TP"'(Y); Z/2) for Y a locally
finite based CW-complex. rsn
Proof. Let

D,: TP"(Y)— TP=(TP""'(Y))
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be defined by the formula

(210) Dn(<y1""9yn>)=n<y1"“a.9i,"',yn>'

i=1

D, is continuous, and, by checking on points we have the following commutative
diagram

TP~ 1(Y) —Immi, TPYY)

(2.11) id %Dy D

TP"~1(Y) x TP®(TP"~2(Y)) —2— TP®(TP"~'(Y))

where j= o(i; x TP(i,_)). Now, pass to homology with Z/2-coefficients, i.e. apply
the TP -functor, and use the retraction

r: TP®(TP®(Z)) = TP®(Z), r({Wy, ..., WD) =Wy Wy...W,.

(2.9) now follows directly (or one can apply [D, Lemma (2)] to 2.11). [

Remark 2.12 The groups H,(TP"(Y), TP"~*(Y); Z/p) p an odd prime, are more
complex. Of course, a class aeH,(TP"(Y), TP""'(Y); Z/p) which comes from
the group H, (TP"(Y); Z/p) must, sooner or later, be in the image of the d-map
from

H, (TP"*'(Y), TP"*"~ 1(Y); Z/p)
for some r. Nevertheless, there is an associative pairing

H, (TP"(Y), TP"~'(Y);Z/p) @ H,.(TP'(Y), TP"~ '(Y); Z/p)
—H, 1 (TP"*"(Y), TP"*"" 1 (Y); Z/p)

making the groups
T P n(V;Z[p) =D H,(TP"(Y), TP"~(Y); Z/p)
*,n

into a commutative, bigraded ring with unit. Note that 72, ,.(Y;Z/p) is a
homotopy invariant of the space Y.

Example 2.13 S'=2XS°, consequently TP®(S')=Brp« (o= Bz,. But then
TP"(S')=(Bg,2),= 0" X (Z/2)"/identifications.

These identifications collapse ¢" to its i'"-face if the i"-coordinate in (Z/2)" is
1, or if we are on the i**-face directly. Thus, there is a single n-cell in TP"(S').
6" x(T)", and it is a straightforward induction to show that TP"(S')~RP" for
all n.
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In particular, H,(TP"(S'), TP"~'(S"); Z/p)= Zjp x=n . and we have
* 0 otherwise

g%*'(SI;Z/P)=E(91,1)® r'(b,,,)

where E(e) is the exterior algebra on a one dimensional generator and I'(b)
is the divided power algebra on a single two dimensional generator (F (b)2,2:
—Z/p with generator b, and b; b ,.=(’ j’) bis j).

Note also that the above description of 7 %,,.(S'; F) remains valid even

when IF=Z, and consequently is valid for all coefficients. In fact we have the
following (formal) ring isomorphism

(2.14) T Py (81 F)xH, (K(Z,1); F)® H,(K(Z,2); ).
Remark 2.15 Let Y=2X Z, then the coproduct map

2t, z),* t<i

¢ 2Z2~22Zv2Z, (t’Z)H{*,(21~1,z) t2}

induces a bigraded coproduct map
M(e): TP*(Y)->TP*(YvY)=TP*(Y)x TP*(Y)

which, on passing to homology makes .7 %, .(Y; IF) into a bigraded Hopf alge-
bra whenever IF is a field. Such a structure is not generally available to us
when Y is not a suspension, however, since

(1) the diagonal 4: TP*(Y)— TP*(Y) x TP®(Y) is not filtration preserving, and
(2) TP®(Yx Y) is not TP*(Y) x TP®(Y) so the map TP(4) does not help either.
Of course, the filtration of TP (Y) by the TP"(Y) gives rise to a spectral sequence
converging to H,(TP®(Y); IF), with E'-term E ,=7 %, ,(Y; IF). With respect
to the derivations, d,, every term E, . is a differential graded algebra, and
when Y is a suspension is even a differential graded Hopf algebra.

Remark 2.16 Each term E, ,. in this spectral sequence is a homotopy invariant
for Y.

3 Connection with deleted symmetric products

Suppose that M?" is a compact, oriented manifold with base point %, and empty
boundary. We have

Theorem 3.1 Let FF be a field, then

(a) H2"*=r(CY(M?"— %); )= T 2, ,(M*"; TF).

(b) H2"k=r(C*(M?"); IF)~ H,(TP*(M)/ TP*~2(M); FF).

Proof. This is just Alexander-Poincaré duality. Indeed, if N = N (Sing*(M?")) is
any regular neighborhood of the singular set, then dN is a closed manifold
of dimension 2nk—1 and SP*(M?")—int(N) is an oriented manifold with bound-
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ary =0dN. (Unless char(IF)=2 the fact that this manifold is oriented is crucial
when we apply duality but C"(M) is only oriented if dim(M) is even.) Thus,
we have

H,(SP*(M), Sing!(M))=H ,(SP(M), N)= H ,(SP*(M)—int N, ON)
= H?"k~*(SP¥(M)— N)= H?"*~*(SP*(M)— Sing*(M))
=H2nk—*(ck(M2k))_

Hence, (b) follows from (2.8).
To prove (a) note that if N is a regular neighborhood of

Vi = {Sing"(M?") L SP*~ 1 (M?")},
thern the same argument works here since
SP¥(M?")/V=TP*(M?")/TP*~* (M?*"),

and SP*(M?*")—V=CKM?"— *).
When M is odd dimensional we must use twisted coefficients. Thus let

R ¢ CY(M)

be the orientation line bundle (with w, (¢)=w,(C*(M)), the first Stiefel-Whitney
class of C¥(M)). The cohomology of C¥(M) with orientation twisted coefficients,

P(CHM); )= A (T(Q); F),

is defined as the ordinary reduced cohomology in one higher dimension of
the Thom complex of £&. [

Theorem 3.2 Suppose M2"*! is a compact, oriented, closed manifold. Then we have

(a) HP™ D5=r(CHM — #); F)= 7 % ,(M; TF) = H,(TP*(Y), TP*~*(Y); IF.
(b) H2"* V&=(CH(M; TF) = H,(TP*(M)/ TP*~(M); IF).

(This is the way Poincaré duality works for non-oriented manifolds. Otherwise,
the proof is as above.)

In [B-C-T], Cohen et al. show that if M?"*! is an odd dimensional, oriented,
manifold, then H,(C*(M); IF) depends only on H,(M; IF). But they also show,
in the same paper, that H,(C*(M?"); IF~) depends only on H,(M?",IF) when
M?" is even dimensional, and oriented. Hence, we now have effective methods
for identifying both the twisted and untwisted homology of the deleted symmetric
products of manifolds in all dimensions. Short proofs of these results are given
in Part II.

4 Calculational techniques

In this section we start by introducing an important spectral sequence which
allows us to understand 7 2, ,(ZY). The case of more general spaces is handled
in 4.6 where we identify TP"(Y) up to homology with a much larger space.
This larger space, however, has a natural filtration and associated spectral
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sequence which will be our main calculational tool in the remainder of Part I
of this paper.

For TP*(XX), we have, exactly as in §1, an identification
TP®(XX)= Brp«(y). In particular, this allows us to apply the Eilenberg-Moore
spectral sequence with E2-term Tor®™TP*Y)(F,[F) to study H,(TP*(ZY); F).
With a little care we can even extend this to the study of 7, ,(2Y).

For a bigraded algebra A4, ,, the Tor*++(IF, IF) groups are naturally trigraded.
The terms of tridegree (I, m,n) come from terms of the form |6,]...|0,| with
0; of bidegree (m;, n;) and Y m;=m, Y’ n;=n. The associated bigraded Tor groups
are then given as Tor, ,= Tor, ,,. When A4 is a commutative, unitary algebra

l+m=s

Tor is a bigraded commutative ring.

Theorem 4.1 There is a spectral sequence with E*-term
EX . =Tor” T F(F )
converging to I ,.(2Y; IF).
Proof. Filter TP"(2Y) by setting
TPn(ZY)]= TP”(ZY)n(BTPw(y))J.
TP"(EY) ﬁ(BTpoo(y))j
={(ty,y1), ..., (t,, y,)| there are at most j distinct values among ¢, ..., t,}.

Then TP"(2Y),=TP"(2Y), so the filtration is complete and the associated spec-
tral sequence converges. Next consider the induced filtration on

TP"(ZY)/TP" 1 (ZY).

The E } term is obviously the direct summand of the bar construction on C,, .(Y;IF)
defined as

J

Y " x [1 Ty (LE)={10]...16,116,e 7, ,(Y: P}
ilk=n
and the E*-term is the associated bigraded Tor-term as claimed. []
Corollary 4.2

Ten 5B @ H, (SP(S)F)@H, (SP(5" ) P)

r+s=sx%
r+2s' =%’

Jor any field TF.

Proof. We proceed by induction. The corollary amounts to the asertion that
the spectral sequence of 4.1 collapses when Y=S" This is implicit in Exam-
ple 2.13 (2.14) for the case S'. For S" we simply use the standard techniques
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of [Sem] to embed the requisite cycles in the chain complex of
TP™(S™/TP™~*(S") corresponding to all the classes in the Tor-groups. [

Remark 4.3 Something like 4.2 should be expected since
TP (S"* ) ~SP*(S")x + SP*(cS")

where T: SP*(S")— SP®(S") is the squaring map. Since the squaring map dou-
bles degrees, a consistent bigrading on SP®(S") x  SP* (cS") can only be realized
if the bidegree in SP* (cS") is doubled.

Example 4.4 From 4.2
TewBH= X H,,.(SP*(S*);F)® H, (SP*(S°); IF).

r=2s"=x’
r+s=s%

Also, H, . (SP®(S?); IF)=TI(b,,,), while (if we let P"'=P? P""' __PPP' denote
the monomial in the p™-power operations in the Steenrod algebra .o/ (p))

H* (SP*(S%); Z/p)= E[15, P°13), ..., P"(15)...1® Z/p[...BP"(13)...]

where the bidegree of P(i3) in 7, ,(S*Z/p) is 2p"*'+1,2p"*"), and is
p"tt+2, 2p *Y) for BPU(15). For the rationals @ the calculation reduces to
f*,*'(sz; Q)=TI(b,,)®E(13,2), s0

Q *=2i generator b, ;
ﬁ,*(SZQQ)z Q +=2i—1 generator bz(i—Z),i—zls,z
0 otherwise

aslong as i>1.

Example 4.5 For TP®(S?) we have that d' (b, ,)=13, ,, and more generally
dP'(bP)=PU~ (15 5),  dP'(b" T PTU PETA (g )= BPET (1, )

for odd p, after comparing with more standard sequences, or, alternately, using
the Hopf algebra structure, and the fact that for odd p the E® term is 0, to
force the successive differentials.

To analyze the structure of €, ,.(Y) for more general spaces we have the
following result which leads to a very useful spectral sequence.

Theorem 4.6 Let %,(Y)= |) SP!(Y)xSP/(cY)=SP*(Y)x rSP*(cY), then
i+2j<n
H,(U,Y); A)=H,(TP"(X); A) for all untwisted coefficients A.
Proof. There is a map
p:SP®(Y)x r SP®(xY)—> TP*(Y)

defined on points by p({a,b})={a}e TP*(Y). This map is well defined since
first it is a homomorphism, and second, p({a, (0, x)})=p({ax?,* })e TP*(Y). Note
that the image of p when restricted to %,(Y) is exactly TP"(Y), and set

U, j(Y)=p~ (TP/(Y)) "%, (Y)
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SO Up\(Y)Uy 2 (Y)< ... U, (Y)=U,(Y). Then we, ;(Y) implies that w is
the image of a point of the form ({x,, ..., x;, A3, ..., A2), (t,, y1), ..., (t;, y,)) where
I<[n—j/2]—s. Moreover any such point is equivalent to the image of

(Xps ey X,(0, 44), ..., (0, &), ..., (8, 1))

Thus, we, ,(Y) if and only if weim (SP/(Y) x SPU*~21(c Y)),
In particular we®, ;(Y)—, ;-,(Y) if and only if

weim((Sp/(Y)—(Sing;(Y)u SPI~1(Y))) x SPL"=/2)(c ¥)),
and
SPi(Y) x SPUn=i21(cY)
SP’=1(Y)uSing;(Y) x SPI®~9721(cy)
=~SP/(Y)/Sing;(Y)
= TPI(Y)/TPI=1(Y)

Uy, i(Y)) Uy, ;-1 (Y)=

since SP'(cY) is contractible for all . Moreover, the map
b Uy j(Y)/Uy ;-1 (Y) > TP(Y)/TP' "1 (Y)

is directly seen to be a homotopy equivalence for each j. Consider now the
diagram

%",](Y) c 01/,,]()’) c ..o U(Y)
TP'(Y) < TP*(Y) < .. < TPYY)

The first map p, is a homotopy equivalence, and so are the relative maps ;-
Hence by iterate applications of the 5-lemma the homology maps pjy are all
isomorphisms and 4.6 follows. []

Example 4.7 V,(X)=%,,,(X) is given as the double mapping cylinder

SPY(X)x X «21_ X x X —2 , SP3(X),

where the middle term is identified with the points of the form {(t, xq), (1, x,)),
the first identification occurs when t =0, and the second when ¢t = 1. Then Uy, 2(X)
is the mapping cylinder of p: X x X - SP?(X), and thus has the homotopy
type of SP?(X). Similarly, V,(X)/%,. ,(X)~SP*(X)x X/(4X x X) and these are
the same homotopy types as in the corresponding decomposition of the singular
locus of SP*(X).

Consider the Serre spectral sequence of the map
p:SP*(Y)x 1 SP®(cY)—>SP®(ZY).

We find
Lemma 4.8 For each prime p, we have
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(1) E} j(SP*(X) x 7 SP*(c X))

~ @ H,(SP*(ZX), SP*~ ' (£X); ) ® H,(SP* (X); FF).
k

(2) EZ (U, (X))

>~ @ H,SP*(=EX),SP1(EX),E)® @ H;(SP'(X), SP’™1(X); ).

k=31 k+2v=n
(3) The map of spectral sequences induced from 4.9,

E} j(%,(X)) > EZ ;(SP*(X) X 1 SP™ (c X)),
is an injection.

(This is clear.)
The structure of differentials in the Serre spectral sequence for the quasi-
fibering

SP®(Y) — SP®(cY)

SP*(ZY)

is studied in [Sem, M 2]. On the other hand the quasi-fibering of 4.6 is induced
from this quasi-fibering via the squaring map

x2:SP*(2Y)—SP®(ZY), x2(0)=07

and so we have a natural map of spectral sequences which determines the differ-
entials in the spectral sequence for the total space SP*(Y) x  SP®(cY). However,
this observation does not necessarily determine the differentials when we use
the spectral sequence of 4.8 on restricting the filtration of the Serre spectral
sequence to the spaces %,(Y) or the quotients %,(Y)/%,-(Y). This problem
occurs typically when, for one reason or another, the first differential on an
element, (which is predicted by comparing spectral sequences), is zero. Then
we need a method of determining that all further differentials on that element
will be zero as well. For this the following results will be quite useful.

Let M2" be a closed, oriented, manifold. Suppose *e M?" is chosen. Define
an embedding

e: Ck(MZ"—*)—)Ck+1(M2n—*)
by first deforming away from =, so as to assume all points of the k-tuples

in C¥(M?"— %) lie outside a small neighborhood of #, then adjoin a new point
in this small neighborhood.

Theorem 4.9 The induced map in homology
ey: Hy (CHM?"— %), Z) - H,(C*" 1 (M?"— »); Z)

is an injection onto a direct summand.
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Proof. Define a map

crrs CFHHM2P— %) o SP(CH(M?"— )

k+1

by (xy...Xgr 10> [] <Xq... %o X441 ). Then

i=1

Grr 10Xy X 0)=<X1 . XD o (SP (€)) Pr(Kxy .. X))
and the result follows by an easy induction. []

Remark 4.10 4.9 is a special case of many results already in the literature.
In particular there is a stable section for ¢, and the relevant spaces stably split.

Corollary 4.11 (a) M2" as above, then the E*-term of the induced spectral sequence
(from 4.11) for TP*(M?*")/TP*~'(M?") is given by projecting onto the terms
in 4.11(2) of exactly degree k.

(b) In the restricted spectral sequence, elements of the form oy,([IM]) cannot
be in the images of differentials on elements not of the form 0 y,(LM]).

(The first statement is clear. The second statement follows by duality from 4.9
when we realize that the dual of the inclusion is U[M?2"]*))

5 Closed, oriented surfaces

We consider, first the case X =M§, the closed, oriented, surface of genus g.
We have

7%t generatorse,,...,e,,, te;=2¢;
5.1 H. Mz, — 1> s C2g> i i
G- {(My;Z) {Z generator f, tf=2(f+ ). e;e,+)).

i<g

Here ¢ is the map in homology induced from the squaring map M2 — SP*(M?)
sending x to x? for all xe MZ.

Next, note that if we are interested in only 7, ,(M?), we need only study
the restriction of the differentials in the Leray-Serre spectral sequence of 4.11
to the terms of exact filtration n,

(52) E},= Y HSP*ZX),SP* '(2X);[E)® H,(SP"~**(X), SP"~**"1(X); ).

o

To begin the explicit calculations we check first when F=Q, the rationals.
Then H; (SP*(ZM}?); Q) =Q[h,, ..., h,, ]® E[of]. Here, dh;=2e; has lower
second filtration, hence is not seen in (5.2). On the other hand, dof =2(f
+y e;oe,;), and this gives the reduced differential

i<g

d(of)=2 2 e;®eg =/l

i<g

for (5.2). We thus obtain
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Lemma 5.3 Let A;cE[e,, ..., e,,], be the subgroup Ann(u-), and

Bi=im(uo)NE;[ey, ..., e5,],

Ci=Q[hy, ""th]s
Di=Ei[e1, ---7eZg]/Bi'

f*.n(M§)= Z fscziAjUf@ Z fSCZiDj-

s+2i+j+2=n s+2i+j=n

Then

Proof. This is the result of the d*-differentials, i.e. the E3-term of the spectral

sequence. To see that there are no further differentials, note that we can imbed
2g

the homology of SP® (\/ S 1) in its chain complex as a commutative ring. More-
1

over, the generators appear in the correct bidegrees, and the differential d?(o f)

=2(f+ ). e;oe,.;), also embeds. Thus, the elements 4;0 f, D; are infinite cycles,

i<g

being represented by actual cycles. Also, the generators h; are non-zero in

H,(TP*(M}), M}; @), hence their products are infinite cycles in the spectral

sequence. Similarly for fe H,(MZ; Q). But this counts all the elements occuring

at E3, and 5.3 follows. [

Example 5.4 In the case of the torus M}, we have D, =D, ={e,) +{e,), while
A,=H,(M%, Q). We thus have

T M Q=QLf by, h1(Dy, H,(MT;Q) 0 f)

where the bidegree of f is (2, 1), that for h; is (2,2), that for the elements of
D, is (1, 1), and that for 4, o f is (4,3), while that for 4, o f is (5, 4).

Thus determining the E2Z , term above, and consequently the groups
H*(C"(Mgz—oo); @) reduces to analyzing the differential algebra

Ele,, ..., ey, 0f] with differential d(c f)=p. We write

E[el’ -"ang;af:l:E[el9 "-’eZg]@E[el’ --',eZgJ G'f

and let E [ey,...,e,,,0f] denote the submodule of elements of degree k in

. . . 2
the generators ey, ..., e,,. Note that E, has dimension exactly ( kg)’ 1 generates
E,, while the volume form w,=e, e, ...e,, generates E,,.

Since p is homogeneous of degree 2, the differential now takes the form

(5.5) d=@dk(g) with  di(g): Ex[ey, ..., €24] > Exv2leq, ..., €34]
k

and d,(x)=x pu.

We will study d,(g) by using induction on both k and g. It turns out that
the (co)kernels of d,(g) are determined by the (co)kernels of d,(g—1) and
(d,(g—1))?; the (co)kernels of (d,(g— 1))? are in turn determined by the (co)kernels
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of (d.(g—2))* and (d,.(g—2))*; and so on. To facilitate the induction write p
g
=Y x; where x;=e;€g4;, SO ptg= g1 + Xg, and
1
Me= M-+ 1 %
=rl Y x,..%,
(Liseeesly)

where the sum runs overall all L=(l,, ..., l,) with 1 <[, <... <[, <g. In particular,
for r=g we have p§=g! w,.

For each E[e,...,e,,] the products e;=e;,...€; with I=(i,,...,i) and
1<i, <i,<...< iy =2g form the cannonical basis. There are 4 types of basis
elements particularly adapted to the proposed induction

@ Gy, ..., )withnoi,=gor2g,

() (iy, ...,i) with g but not 2g in the list,

(3) (iy, ..., i) with 2g but not g in the list,

) (iy, ...,i) with both g and 2g in the list,

s0 E[g]=E[g—11®E;_;[g—1] ¢,®E;_1[g—1] 2, ® Ey_,[g—11x,. It is

direct now to write out the operator Au" with respect to this decomposition.
In matrix form we have

(5.6)

Mg —1 0 0 rugti A 0 0 A

0 w_, 0 0 0 B O O
(5.7) dy(g) = AL -

0 0 W, O 0 0B O

0 0 0 W, 0 00 C

Lemma 5.8 [BC] For 0<k<2g and 0<r<g the differential d\(g)": E,.[2]
“’Ek+2r[g] isa

(I)  monomorphism for k<g—r,
(I1) isomorphism for k=g—r,
(IIT) epimorphism for k>g—r.

f’roof. For g=1, the only non-trivial differential, do(1): Eo[1]1-E,[1], is an
isomorphism. For g=2 and k=0, we have do(g)'(1)=pg, and hence do(g) is
monic.

CaseI. If k<g—r, then A, A’, B as well as C in (5.7) are all monomorphisms
by hypothesis. Hence, from

0=d,(g)'(a, by, by, c)=(A(a), B(b,), B(b2), A'(a) +C(c))

we conclude that a=b,=b,=0, and so c=0 as well. Thus the operator is a
monomorphism in this case.

Case II. If k=g—r, then A is an epimorphism, A’ and B are isomorphisms,
and C is a monomorphism. Assume that d,(g) (a, by, b,,c)=(A(a), B(b,), B(b,),
A'(@)+ C(c))=0. First, b, =b,=0. We now have A(a)=p;_,a=0and pg_,c=
- :;14;:11 @ SO gy C= —ra since (5=} is an isomorphism in this degree. Hence

metie=pt_(—ra)=A(—rA)=0, but by hypothesis pEX 1 is monic here. Thus,




196 C.-F. Bodigheimer et al.

¢=0. Hence, —rpu;”} a=0, and therefore a=0 since u;~} is an isomorphism
here. Thus the map is a monomorphism, but the dimensions of both range
and domain are equal, so it is actually an isomorphism.

Case I111. 1t k>g—r, then by hypothesis 4, B and C are epimorphisms, and
A’ is a multiple of an epimorphism. Given (a, b,, b,, ¢)eE, , ,,[g], we can find
first a, by, b, satisfying A(a)=a, B(b,)=b,, and B(b,)=b,. We then choose ¢
so that C(c)=C— A’(a), and we see that we have an epimorphism in this case. []

Corollary 5.9 The ranks of the homology groups H;(E[e,, ...,e,g,6f]; d) are
given as follows,

2g 2g .
; (i—2) for i=0,1,...,g,
28\ (2 .
(i) (i+2) for i=g,g+1,...,2g,
0 in all other dimensions.

Note the apparent duality between H; and H,,_;, ;.

Next, turning to the field IF, for p an odd prime, we see that the differentials
discussed above are still present, but the situation is more complex for the
new generators, f°PU(a f)*, P(gf)*. We have that Pl(cf)* transgresses to
the fiber, where its differential is the mod p reduction of the class y,(f), a class
characterized by the property that p!y,(f)=f” in the multiplication induced
from the product pairing SP*(X) x SP*(X) - SP*(X). We have

G =2 ()t =T e,

and uP~*=(p—k)! y,_x(u), where

Vp—k(#)= Z Xi1®Xiz®“'®Xip_k’ ri=e®e; g

i1<iz<..<ip-p=g
so, with no indeterminacy, since H, (SP®(M?); Z) is torsion free, we have that

Yo(f+10)=27%(f) 7p-x (W),

and factoring out by terms of lower filtration, we have that in the spectral
sequence for TP??(MZ)/TP*?~*(M32),

d;p+1 (P10 f))=7,(1) mod(the ideal generated by p).
We have

Lemma 5.10 The element y,(u,) %0 mod (the ideal generated by u), for 2p—1=¢g
and p 23, but y, (i, 1) €this ideal.
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2p—1)2p—2)
2

On the other hand a basis for the part of the ideal spanned by the y/'s in

this dimension is given by all elements of the form

Proof. There are distinct monomials in the y; in y,(u) for M3,_;.

X @ O Xipoy o

and each of these consists of a sum of exactly p monomials. But since p and

(21)2— 1) are relatively prime we see that the best that could happen in terms

of writing a multiple of y,(x) as an element in the ideal, is that the multiple
be divisible by p. Thus the result is true for this genus. Now, for any g>2p—1,
project (S')*8 —(S")*?~2, by projecting onto the first 2p—1 coordinates and
the coordinates from g+1 to g+2p project to the next 2p—1 coordinates.
This map is a homomorphism, and, in homology, satisfies pg— 5, . Hence

it preserves the ideals, and takes y, (1) to V(12— ). This proves the first state-
ment of 5.10.

The second statement is similar. The generators for the ideal

(#p+1)mEp(Xl’ AR Xp+1)

are given by the classes x;, ® ... ® x:;,_, ® u, and these give you monomials 2

p+1
at a time. On the other hand y,(i,+1)= Y ® . Fi @ Apra Now, note
that 1
p+

2
Vpltp+1)= z 1 f2im 1 ®h2i @ Yp+1 O
i=1

5.10 follows. [

We do not know what happens in the range between p+1 and 2p—1, nor
what happens to the elements 7 ,:(u) relative to the ideal generated by

i, ’))p(,u)’ ooy Vpi- 1(#)

The next classes to study are the BPU(cf)*. In the general spectral sequence
the Kudo transgression theorem shows that

dypi-1p 1)+ 1 (BPG )N =(dapi- 141 (PU @ /)P~ @ (P (0 f)¥).
The first of these is thus given by

(5.11) d2p-1(BP @f)") =" f

This differential is non-zero exactly when p—1=g.

But we also have that the bidegree of BPU(a f)* is (2p'+2, 2p), and, among
those terms of second degree exactly n, the largest dimension which can occur
without the dual of a power of f* being present is n+2g+ 1. But the differentials
raise the part of the dimension involved with fiber terms while lowering dimen-
sion involved with h;, of, etc. on the base. And this raise can be at most 2g
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on the fiber until we involve powers of f*. Thus, there can be no non-trivial
differential of degree higher than 2g, and we have

Lemma 512 Let p=g+1, then E3=E® for the spectral sequence converging
to H,(TP*(MZ)/TP*~1(M2); ). Also, for p'=g+1 the terms BPY(c f)* and
P['](af)* are mjtmte cycles.

Hence

* *' (Mg’ p) V® I;>logp(g)["': P[i](o-f)"'] ®Ei>logp(g)["'ﬁp[i](af)a ]

where V is obtained from the differential oo f = 22 e;oe; ., and the higher differ-
entials discussed above when p<g.

Remark 5.13 Using the results above the homology structure of the spaces
C"(M} — o0) seems not too tedious, at least for special cases. However, to obtain
the groups H, (C"(M}); IF,), we must consider the portion of the spectral sequence
involving (5.2) for both n and n— 1. Here, the full differential

4
56f=2(f+zei°e.-+g>, oh=2e;,
1

is required. This changes the result somewhat, (in particular all possible differen-
tials now occur), but, once more, it is easy to handle the necessary modifications
in specific cases.

6 m—1 connected 2 m-manifolds

The next class of spaces we will look at are m— 1-connected, closed manifolds
X of dimension 2m, m=2, so for some finite r>0

Z" x=m,generatorshy, ..., h,, 4hi=h;®1+1@h;
(6.1) H(X;Z)={Z *=2m, generator L, AL=L®1+1®L+Y a; ,(h®h,)
0  otherwise.
We can always assume we are working over a ring containing 4, so we have
Lemma 6.2 In (6.1) if m is odd, then r is even, and for both even and odd m
we can change variables h; over GL;(Z (%)) so that
0 k#sif miseven
0 (k,s)=*£(2j,2j— 1) or(2j—1,2)), 1<]<( )lfmlSOdd
—1 (k,89)=(2j,2j—1)if mis odd
1 (k,5)=(2j—1,2j)if mis odd.

Moreover, in case m is even the terms a; ; are all units in Z(3).
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Proof. Since X is a closed Poincaré duality complex the cup product from
H™(X;Z(3) @ H"(X;Z(3) ~>Z(3)

defined by <a, b =<aub, [ X]) is non-singular, and symmetric for m even, skew-
symmetric for m odd. It is now standard reduction theory for bilinear forms
to reduce to the forms in 6.2. That is, when m is even the form is diagonalizable,
while when m is odd it becomes

J 0 0

0 J O
00 0 ... J

The fact that when m is even each term in the diagonalized form is a unit

follows since the determinant for the original cup product form is + 1. Hence,
the determinant of the diagonalized form is a unit over Z(}).

Corollary 6.3 When m is even, the forms which occur can be chosen so that
o= +1, 1<j<i.

Proof. First, the units of Z(}) have the form +(2%), —oo<s<oo, so UZ(3})
=7Z/2 xZ,and U/U*=7/2 x Z/2 with generators + 1, }. Hence, we can suppose

+1 .
every entry a;; is +1 or l2~ By the change of variables erse+f, froe—f

10 0 0\ .. . 10 1 0
th . .
e form (0 3 becomes |1 Similarly we can change 0 1 to 0 —1
This cuts us down to forms with all +1’s along the diagonal except perhaps
. +1 o . .. N
for a single - But the latter situation cannot occur, since the original discri-
minant was +1. [
In the situation of 6.2, 6.3 the rational calculation becomes quite simple.

We have that the E, terms are given by

(6.4) B = Q[h,,...,h, )Y®E[oh,,...,ch;,6L] meven
) 2T \Q[L,ohy,...,chJQ®E[cL,hy,...,h] modd.

There is only one differential which does not lower bidegree since the h; are
spherical in X. It is given as

Y oy hi  meven,
(6.5) deL)=] * i
2Y haj—1 hyj léjg(i)ifmisodd.

When m is even the homology of the complex given by (6.4), (6.5) is additively
isomorphic to the (graded) ring

(6.6) Q[h,, ...,h]QE[h1®E[chy,...,ch]
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with the multiplication given by h?= +h3+...+ +h?. On the other hand, the
complex in (6.4), (6.5) for m odd is exactly the one which has already appeared
and been analyzed in § 5.

Remark 6.7 The situation at odd primes is similar to that for surfaces. But
it is actually quite a bit worse from two respects. First, the ideals are much
harder to manage, and second, there are now an infinite number of non-zero
differentials.

7 Alternating products and deleted products of manifolds

In this section we give an elementary proof of the main results of [B-C-T],
in case M is an orientable, closed manifold without boundary by using simple
properties of alternating products, Poincaré duality, and some fundamental
results of Dold, [D2]. The case where dM 0 can also be analyzed in this
way, but the method does not work at all if M is not orientable.

Set AP"(X)= X"/, where <7, is the alternating group on n-letters. We also
explicitly calculate the homology with coefficients IF,, p an odd prime, of the
alternating products AP"(X) for all connected spaces X having the homotopy
types of CW-complexes. Let IF* denote the field IF with an action of Z/2 given
by ar> +a. The connection between our previous work and the AP"(X) is
given by

Lemma 7.1 Let X be a simplicial complex, then for all odd primes, p, there
is a split exact sequence

0—»H*(TP"(X)/TP"‘Z(X);IF,,')—»H*(AP"(X);]FP)—>H*(SP"(X);I[*},*)—»O.
Proof. First, a map e: SP*(X) - SP?(AP"(X)) » SP*(AP"(X)) is defined by
<x1, AR xn)t—><[x1,x2,x3, ""xn] [x25 X15X3, ~--axn]>

where [x,, ..., x,] denotes the equivalence class of (x,, ..., x,) in AP"(X). The
composition

AP"(X)—2— SP"(X)—*— SP*(AP"(X))

is (i+ Ti), where T: AP"(X)— AP"(X) is the evident Z/2-action, and
it AP"(X)— SP*(AP"(X))
is the usual inclusion. Since T?=1 on AP"(X) we have a direct sum splitting
H,(AP"(X);E)=H,(AP"(X); )" @ H,(AP"(X); E)",

and on H,(AP"(X); )" the composite is just multiplication by 2, while the
composite SP(p)ee: H, (SP*(X); IE)) » H,(SP* (SP"(X)); IF,) is also just multip-
lication by 2. The identification of H, (AP"(X); IF,)* with H, (SP"(X); IE,) follows.

It remains to study H,(AP"(X); IF,)™. First a simplicial decomposition of
X" is easily given (see e.g. [M2]), so that the simplices o; are either pointwise
fixed by an element ae ¥, or ag;nag;=0. This gives rise to a cellular decomposi-




Truncated symmetric products 201

tion of AP"(X) so the singular set is a subcomplex. Since T=1 precisely on
the cells of the singular set we see that H, (AP"(X); )" is given as the homology

(T; 2 % +(AP"(X)) ® IF,, where by ¢, we mean the chain

complex, and this is exactly

of the subcomplex

% 4 (SP"(X)/Sing"(X))QF,".
7.1 follows. [J

On the other hand, the main result of [D2] shows that H,(4P"(X); IE)
depends only on H,(X; IF,), and we have immediately from 3.2

Corollary 7.2 [B-C-T] Let X be a compact, connected and oriented manifold
without boundary, then H,(C"(X);IE) is a functor only of H (X; ) if X is
odd dimensional and p is an odd prime, but also, H, (C"(X);IE,) is a functor
only of H,(X; T, if the dimension is even.

It remains to describe the functors in 7.2. Here, again, [D 2] reduces the problem
to a much simpler one. In fact, we have

Lemma 7.3 (a) For any odd prime p, to calculate H, (AP"(X);IE) it suffices
to calculate H, (AP"(Y); IE) where Y is a wedge of spheres.
(b)If Y=Z v W then

H, (AP(Y); )= i H*(SPj(Z);]Fp)®H*(SP"_j(W);]FI,)

j=0

® Y H,(TP/(2)/TP~*(2).E)

i=0

® H, (TP"J(W)/TP"~ I~ 2(W); I,).
(c) If Y is a sphere S", then
H,(C"(S");F)= H,(C"(R"); F)® Z"H, (C" ™' (R"); IF)
where, e= + if nis odd e= — for n even.

Proof. The first statement is direct from [D2]. Specifically, Dold shows that
any two CW-complexes, L, M, with the same IF, homology will satisfy
H,(AP"(L); IE,) = H ,(AP"(M); IE,)). To see (b), note that

(7.4) AP (Zv W)=n\_/1 API(Z) x AP"I(W)/{(x, y)~(Tx, Ty)}

j=1

v AP"(Z)v AP"(W)

where T is the involution on AP’( ). Next, apply 8.1 to each of the summands.
Tensoring the homology groups and taking the invariant subgroup under Tx T
gives the result.

Finally, to show (c), we again use a result from [D2]. In [D2, §9, especially
p.76], Dold shows that if we filter AP"(X), by saying that
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{x1, ..., x,} eIE(AP"(X)) if and only if there are at least r copies of the base
point * in {x,, ..., x,}, then

e

1
H,(AP"(X);E)= Y, H (EAPX)/E . (AP"(X)); ).
0

In particular, the filtering pieces for AP"(X) are given explicitly as

SP"~"(X)/SP" " 1(X) rz2

AP Y X)/IF (AP"" (X)) r=1

AP"(X)/IF, (AP"(X)) r=0.
Now, applying 7.1 and our usual duality techniques, it follows that, for n odd,
and p an odd prime, H,(AP™(S")/IF(4P™(S"); )" =H"""*(C"(S"— *); IF),

while for n even we have H, (AP™(S")/IF (AP™(S");IE,)” =H"""*(C™(S"— *);
IE;"). This completes the proof of 7.3. [

Thus, it suffices to determine the groups H,(C™(R"); IEF). Let IF(X, k) denote
the configuration space of ordered k-tuples of distinct points in X. Probably
the easiest way to make this calculation is to use the well known calculations
of the cohomology of the spaces

D, m(S)=FR" m), A g, ()™
as split summands of the homology of the loop space ©"S"*!. In [May] it

was shown that a model for Q"S"(X) was given as a filtered object by the
construction

J,,(X)=]°_jI]F(]R", k)X g, X¥NZ15oovs 2k Xys oevs Xy)
~(Z gy ey iy eey Zhy Xpy oovs Ris -+ X)) Whenever x; = x,
for connected X homotopy equivalent to CW-complexes and [Sn] showed that
stably J,(X )z{o/ D, .(X). H, (Q"2"X; IF) was calculated in [M 3] for any con-
1

nected CW-complex X. On the other hand, D, ,,(S") is just the Thom complex
of the vector bundle

R™ > F(R", m)x 4, (R)Y" - C"(R"),
and as a result we have

H,(C"(R");E') leven

(7.5) Hips 1 (Do, m(SY); IFP)'E{H* (C"(R™); ) lodd,

so the calculation is complete.

Remark 7.6 The arguments in [D2] are quite elementary, involving, almost
entirely, formal properties of semi-simplicial complexes. As the exposition given
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there can hardly be improved on, we will not summarize the proofs here, but
urge the interested reader to read [D2].

Remark 7.7 The splitting in 7.3(c) does not hold when n is even and ¢ is +,
since, in the spectral sequence of type 4.11 converging to
H,(TP™(S*")/TP™~2(8*"); IE,), the differential d, (o f)=2f is non-trivial. This is
already seen in the remarks after (5.2). When we are looking at
H,(TP™(S")/TP™~'(S*"); IE,), we do not see this differential, and E*=E*.

Remark 7.8 In some ways the calculation indicated above for H,(C™(IR"); IE,)
is unaesthetic. The point of view, here, is that the structure of symmetric products
should be logically prior to the homology of iterated loop spaces, although
the two points of view are essentially equivalent. (In hindsight we can see that
the essential techniques for both approaches lie in the results of [D-T] on the
criteria for a map to be a quasi-fibration.) In any case, in the next few paragraphs
we give a direct method for obtaining the twisted homology groups above.

Lemma 7.9 There is a natural injection
e,: H (SP"(X)/{Sing"(X)USP" '(X)}; ") > H, +o(SP"(2X)/SP" " ' (2X); ;")

for X any connected CW-complex.

Outline proof. One begins by replacing X by a simplicial complex, then replaces
X" by a simplicial complex for which each ae ¥, satisfies either acno=§ or
wc=0 and o fixes ¢ pointwise for each simplex ¢ in X". In particular, the
images of these simplices give cell decompositions for X"/I', for all subgroups
re9,.

Next a cellular decomposition of (ZX)" is given. Its cell are (generally) the
products of the cells of X" with I", but when the cells of X" are in the singular
set (necessarily a subcomplex by our assumptions above), more care must be
taken. A simplicial decomposition of I" is given, with the r-cells indexed by
¥, as follows

622{“1’ (R tr)lta(l)éta(Z)é éta(r)}'

Then, over the singular set, note the ordering of the suspension coordinates,
so there the cells have the form o x """ x 0}! x ... x oy with r=r+...+r,, ¢
a simplex in the decomposition of X", and the simplexes o7, occuring where
the coordinates in ¢ are equal.

We now take the images of the cells above in SP"(2X), and study the resulting
chain complex. A direct calculation shows that if o¢Sing"(X), but a face
F,(6)eSing"(X) then in d(c x I") the coefficient involving F(c) x (?) is always 0.
Moreover, the remainder of the boundary, is (0_ (o)) x I", where d_ denotes
the boundary with twisted coefficients. It follows that the chain complex of
SP*(X)/Sing"(X) with twisted coefficients, but suspended up n dimensions, is
a direct summand of a chain complex for SP*(ZX).

Finally, we should note the collapsing which occurs when we are at base
point. This lowers dimension by at least 1 and forces us to include the basepoint
conditions in 7.9. The result follows. [
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As an example, we easily check that AP"(S')/AP"~*(S')~S", so

. _ Z =
H, (SP"(S")/{Sing"(S") U SP" 1(S‘)};Z)={0 :the"rwise

and this class suspends up to the generator for H,,(SP"(S?); Z)=Z.
Next, an easy induction, based on the bar construction shows

Lemma 7.10 When X is S" the injection e, of 7.9 is an isomorphism.

Thus, we obtain a complete calculation of the twisted homology groups needed
in 7.3, entirely within the context of symmetric products and Eilenberg-MacLane
spaces.

Part II: Configuration spaces and mapping spaces

The purpose of this part is to continue the observations of [B-C-T] giving
the homology of some configuration spaces. As at the end of § 7 we write IF(M, k)
for the subspace of M* given by {(m,, ..., m)|m;+m;if i)} and as usual C*(M)
for the orbit space IF(M, k)/%, where the symmetric group % acts by permuting
coordinates. Throughout Part II M is assumed to be a smooth (not necessarily
closed) manifold and all homology is taken with coefficients in the field IF.
With IF=7Z/2Z and M closed, the homology of C*¥(M) was first given in [L-M].

Among the main results here is a short proof of the results in [B-C-T]
giving the homology of C*(M) if at least one of the following is satisfied: (1)
F=7Z/2Z, (2) dimension(M) is odd, or (3) dimension(M) is even and % acts
on IF by the sign representation. Also product decompositions for certain func-
tion spaces give results for surfaces which, in rational cohomology, generalize
to (n— 1)-connected 2m-manifolds. These product decompositions give the coho-
mology of certain other configuration spaces.

8 Results

Let V denote a graded vector space over IF with V concentrated in degrees
at least one. Write

VO = V... @ V

as a %-module where %, acts by permutation of coordinates with the usual
sign conventions. If v;eV write ¥, for the cyclic #-module generated by
a=v; ®... ®v,. There are 3 important examples of V, here:

(i) V=TF concentrated in an even degree. Thus V, is a trivial %-module.

(ii) V=IF concentrated in an odd degree. Thus V, is given by the sign representa-
tion of %, and we write ¥,=IF(—1) here.

(iii) The dimension of V is at least k and v, ..., v, are linearly independent.
Then V, where a=v; ® ... ® v, is isomorphic to IF¥, as a %,-module.
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Next write S, X for the singular chains of a space X with a non-degenerate
base point, and define

H, (C*(M); V)=H (S, F(M, k) @, V,).

If Sy is a bouquet of spheres with H,(Sy) isomorphic to V as a graded vector
space, then there are isomorphisms (over any field)

H, (CK(M); V®¥)=H, D\(M, Sy)
where D, (M, S,) is the quotient space
F(M, k)x o, XP/IF(M, k) x 4, *

with * the base-point in X and X is the k-fold smash product. Furthermore,
there are isomorphisms

H, (CK(M); VoY) =D H,(CK(M); V)

where the right hand sum is over the obvious index set. For example if either
(1) M=IR" or (2) if M = M’ x R" and F =@, the groups H,,(C*(M); V,) are implic-
itin [CT1].

We now determine H,(C*(M); V®*) as a direct summand of the homology
of a much larger space C(M, X). Namely, write

cM. X)={[S’f]‘g;§:i§al_fl;-ite subset ofM}/(~)

where (~) is the equivalence relation generated by [S,f1~[S—{q}, fls- o] if
and only if f(q)= *. The space C(M, X) stably splits as \/ D,(M, X) for path-
k=1
connected X, [B2], (the original reference here is an unpublished article of
F. Cohen and L. Taylor but their proof is reproduced here). The space C(M, X)
is filtered with F; C(M, X) represented by [S, f] where S is of cardinality at
most j; similarly H,(C(M, X)) has an induced filtration. Thus there are
isomorphisms
H,CM,X)= @ H, D,(M, X)
k=1
~ @ H,(CK(M); H, X®").

k21

We shall check the following two observations.

Lemma 8.1 There are isomorphisms of vector spaces
gq Dk(M7 X)—’ Hq+2nk Dk(M’ ZZ"X)'

Lemma 8.2 Assume that X is (q—1)-connected, H(X;IF)=0 if j>N and the
dimension of M is m. Then

(1) D,(M, X) is (gt — 1)-connected,

(2) H{(D(M, X); F)=0 if j>t(m+N),
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(3) If ¢ is any homology isomorphism of H, C(M, X), then ¢ also preserves filtra-
tion degrees in homological degree less than t(m+ N) if t(m+ N —q)<gq, and
(4) If n> N —q there is an isomorphism

H,D,M,X)~H,,,,, C(M, Z*"X)

provided H; D,(M, X) is non-zero.
The point of 8.1 and 8.2 is that we know H, D,(M, X) and hence we have

H,(C'(M); V®)

provided that we know H, D,(M, X) and thus H, C(M, 2*"X) as a vector space
for all n. In some cases such as [B-C-T] these answers follow directly.

In particular if D™=[0, 1]™ with (1) M=M uD™ and (2) MND"=[0,1]""¢
x 0[0, 1] then we have by following work of Segal, Gromov, Dold and Thom

Proposition 8.3 [MD, B1] If X is a connected CW-complex then up to homotopy
equivalence there are fibrations

C(M, X)— C(M, X)—» Q" 13" X.

As a corollary we get the following where f,=dimg H, (M ; IF).

Corollary 8.4 [B-C-T] (i) If F=Z/2Z or m is odd, then H, C*(M) depends
only on H, M and m. Furthermore there is an isomorphism of vector spaces for
n>>0and 0<q<mk given by

H, CH(M)=H,, 5, C(M, 5?")

qu-*-an(],_I H Qm~qsm+2n).
9=0 f(q)

(i) if F=Z/2Z or m is even, then H,(C*(M);IF(—1)) depends only on H, M
and m. Furthermore, there is an isomorphism of vector spaces for n> >0 and
0<q<mk given by

Hy(CH(M); IF(— 1) = Hyt 2ns 1) C(M, 5277 )

;Hq+(2n+1)k(1—[ ]’I Qm—qsm+2n+1)'

q=0 f(q)

(Compare 7.3 where we must assume M is oriented.)

Next we restrict attention to a closed orientable Riemann surface of genus
g, M,. Write Mg=Mg—-{point} and map,(,) for the pointed mapping space.
If map, (X, Y) is not connected, write map3(X, Y) for the component of the
constant map. The next theorem gives the homotopy type of the mapping space
map, (M., S*").

Theorem 8.5 If n> 1, there exist principal Q*S*" fibrations

QZSZ"—*Yg,Z,,—')(SZ"_I)Zg
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and a principal Q* S3-fibration

h h QZS3—>Y&2—>(SI)28
such that

(1) there is a homotopy equivalence mapy(M,, S*)——— (Q25%)?*¢x Y, , and
(2) there is a homotopy equivalence after inverting 6

map, (M,, $")——(5* " Y¥ x ¥, ,,
forn>1,
(3) there is a fibration for n>1

Y, 2> map, (M,, S2m) > (QS4"~1)2e

which has a section after inverting 2.

Theorem 8.6 After localizing at p, p>3, there are stable decompositions

Yg,zn‘—:’+ \/ D\ (Y, 1) and
k21

stable

k
CK(Mg)———— \/ Di(Y, 2.) A D, —;(Q53)%
i=0

stable

where (QS3)*# is given the product filtration obtained from the James filtration
[J]. Thus there are isomorphisms

Hy CK(M)——— @ P Hy-2;Di(Y,2)
I; i
where I is the number of ordered partitions of j having length 2g, (a,, ..., ay,).

Thus it suffices to understand the homology of the spaces Y, ,, in order to
know the homology of C*(M,). As in (5.2) in studying H, Y, ,, the exterior
algebra

A=E[xy, ...,X54,72]
with differential given by

d(2)=2(i X2i—-1 x2i>’

i=1

is needed but here the degrees are specified by |x;|=2n—1, |z|=4n—3.

Theorem 8.7 Assume that n is greater than one.

(1) In characteristic zero there are isomorphisms

H*C(M,,5*""?)———H, (4@ Q;d) ® H*(QS*"~ )@ H*QS>" 1.
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(2) In characteristic p there are isomorphisms

H* C(M,, S~ 3)—=H* Y, ,,® H*(@5>" "),

and
(3) In characteristic n with p=g, there are isomorphisms

H*Y, ,,——H,(4®F;d)® H*QS*" "' ® H*Q>S*"~'//A[z].

Remark 8.8 8.7(1) is, of course, dual to 5.3, (2) is immediate, and (3) is dual
to 5.12.

Remark 8.9 We conjecture that the stable decompositions above for map, (M

S?" and Y, ,, are also satisfied at p=3. ¥

9 Proof of 8.1, 8.2 and 8.4

We first prove Lemma 8.1. Notice that if X, is the fat wedge in X*, then there
is a cofibration [May]

FM,t)x g, X,»F(M,t)x o, X' - D,(M, X).
Next recall that H, (F(M, t) x &, X") is the homology of the chain complex
Sy FIM,)® 4,5, X®*

and that over IF, there is a homology isomorphism g: H, X —» S, X given by
sending a class (in a choice of basis) to a representing cycle. Thus H, (F(M, 1)
X &, X") is the homology of the complex S, F(M, t)® », H, X®* and 8.1 follows
as there is an isomorphism of % ,-modules

(Hy X)®' = (Hy 1, 22X

Next we give the proof of 8.2: Notice that 8.2 (i) and 8.2 (ii) follow immediately
from the cofibration given above. To check 8.2 (iii), let a; be a non-zero element
in H,(D;(M, X);TF) and |a;| it'’s degree. Then j(g)<|a;|<j(N +m) if j<t. But
since t(m+ N —q) < q by assumption, we have j(m+ N)<(j+ 1) ¢ and the results
in 8.2 (iii) and 8.2 (iv) follow.

Finally in this section we prove 8.4: By the above remarks it suffices to
check that these are isomorphisms

H,C(M,S*")~H, H ]_[ Q"“’S"’*Z")
=08
for m odd and

H*(C(M,S2"+1))§H* n 1—[ Qm—qsm+2n+1)
=0 8@

for m even.
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This follows directly from naturality of the Serre spectral sequence, induction
on a handle decomposition for M and that the stabilization map Q'S"
->Q®>*SN¥ ! is a monomorphism in homology when IF=IF, or N —i is odd:

Namely consider the map of fibrations

C(M, §") ——— Q® Z°(M x S/M x )

g)m—qsm+n‘_____> Qooz‘oo(sn+q).

If m+n is odd, the homology of C(M, S") injects in the homology of Q% X*(M
x 8§"/M x x) by induction where M is as in Proposition 8.3. The result follows.

10 Examples related to surfaces

If M is a closed, stably parallelizeable manifold then one has C(M — {point},
2'X) is homotopy equivalent to the pointed mapping space map, (M, 2'X) for
some [, [B2]. If M is (2m)-dimensional and connected up to the middle dimension
then M is very close to being parallelizable. If m is even, its index must be
zero, and there is one further condition: M cannot contain any (connected
sum) summands which are fibrations S™ — E — S™, the associated sphere bundles
of vector bundles that are stably non-trivial. In particular all the Riemann sur-
faces M} are stably parallelizable, g >0.

Hence, in these cases we have, first, a stable splitting of map, (M, 2™ X)
using the stable splitting of C(M —{point}, X), and second, a good homotopy
type description of map, (M, 2™ X) since there is a fibration

map, (M, Z"X) »(Q"E" Xy —X Q2" "1 zm X

where w* is the “hom-dual” of the attaching map w: $*™~ ' —\/ §™ with cofiber
M. Thus one can determine the homology of C(M — {point}, X) by using this
fibration (and either the Eilenberg-Moore spectral sequence or backing up and

using the Serre spectral sequence).
In case M=M, is a closed orientable Riemann surface of genus g, there

is a map
we: ST \/ S
2g

with cofiber M . and w, is given by sending a generator of =, (S 1 %) to

[x1,x2] [X3.Xq] ... [x2g~1’x2g]

where the x; run over a choice of generators for r; (\/ S1,%). Write
2g

ad: QX x QX - QX
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for the commutator [f,g]=/gf 'g~ ' Let u,: (2X)*— QX be given as loop
multiplication taken in a given, fixed order. By definition we obtain the following
lemma,

Lemma 10.1 There is a homotopy commutative diagram

map,(\/ S, X) —%— QX

2g

= ng

[(@X)*] 9% (QXF

where w¥ is the ““hom-dual "’ of w,.

Thus a first step to computing the cohomology of map, (M,, X) is to understand
w¥ in cohomology. We shall work out a single example here where X = s2,
Recall that there are isomorphisms of Hopf algebras

H*(QS*")2xE[Xy, ..., X3, @ T'[Y1, .-, V2]
and
H*QS?*"~E[u]®TI[v]
with |x;|=|u|=2n—1 and |y;|=|v|=4n—2. Applying Lemma 10.1 in cohomo-
logy we get
(wg)*(u)=0and

q
(W;)*(U)=2 Z X2i-1%X2i-
i=1

Next we compare the morphism of fibrations in cohomology given by

QZ SZ n 1 QZ S2n

map, (M,, $*") ——  x

(Qszn)2g _L Q§2n‘

The Serre spectral sequence in mod-2 cohomology collapses while the image
of the stabilization map

H*(QSZ"_Z;]F)—*H*(QZSZ";IF)
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consists of infinite cycles for any IF by inspection of the map
map, (M., $*") —» map, (M,, 0S*")

as map, (Mg, 0S>") splits as (QS*"~")*¢x 0S>"~?. As a corollary, one gets the
rational homology of C(M,, $?"~?) and, so, again, that of C*(M,).

Theorem 10.2 If n>1 and IF=Q@, there is an isomorphism
H*C(Mg’ Szn)gH*(A (xl PR ng, Z), d)@ H*(QS“"" 1)23@ H*(Qszn— I)Zg,

where d(z2)=23 x5, X5;.

Proof. Recall that there is a homotopy equivalence QS*"~S2""1 x QS*" ! after
rationalization. Thus there is an equivalence Q282"~Q§2"~!x Q28§4"~4
~ Q82" 1 x §4"~ 3, In the Serre spectral sequence for

Qszn—l X S4n—3 _}map*(Mg, S2n)__)(QSZn)2g’
the E,-term is

E[XU ""x2g]®Q[y1a ay2g]®Q[W]®A[Z]
with |w|=2n—2 and |z|=4n—3. The differential d=d,,_, is given by d(z)
=2)" X,;—1 X3;. By inspection, the algebra generators for E,,, are all infinite
cycles.

11 Surfaces and product decompositions

In this section we again consider the pointed function spaces map, (M,, S2m),
n>1, and map3(M . 52). Notice that there are fibrations

map, (M,, S*") L, (QS2n)2E—"& , 082" n>1,and

mapl(M,, §)——(Q8?)?—"5- 0s°.
Recall that there is a fibration (over Z) given by James [J]

§2n—1 QSZYI H Qs4n—l

and thus a commutative diagram
map, (M,, 527) 1 (Q8*" )8
j 1

H2g

(QSzn)Zg (QS‘tn*l)Zg‘
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Enlarging the above to a commutative diagram giving a morphism of fibrations,
we obtain spaces Y, ,, as follows:

Q282 1 02 SZn *

| !

Yy 20— map,(M,, $") —— (QS*"7 1)

j 1
£ 2 v +
(SZn—-l)g (Qs2n)2g H2g (Qs4n—l)2g
S wi
! ! 4
Qs —— Qs ——

(where Q52" is replaced by 253 if n=1 in the bottom row).

Theorem 11.1 There are homotopy equivalences

(1) map2(M,, $*)~(Q5*?*¢x Y, ,, and
(2) map, (M., $*")~(QS*"~)?8x Y, ,, after inverting 6.

Next, recall the bundle
viF(Mg, k) x o R¥ > F(M,, k)%,
and

Proposition 11.2 [C*M?] The bundle v has order 4 and hence there are homotopy
equivalences Dy (M, S"**)~ 2D, (M,, S") and D,(M,, $*)~Z**(C*(M,)..).

Filter (252"*1)’¢ by the product filtration obtained from the James filtration
and write D,(25%"*")2¢ for the filtration quotients.

Theorem 11.3 After localizing at p, p>3, Y, ,, stably splits as \/ Dy (Y, ,,) and
there is a stable decomposition kz1

i=0

~ k
C*(M,)stably \/ Di(Y, ,) A D, _;(25%)?%.

Thus there is an isomorphism

HN(Ck(Mg);F)—:—@HN—Zj(Di(Yg,Z);IF)
I;

J

where I; is the number of ordered partitions of j having length 2g.
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Theorem 11.4 If p=g and F=Z/pZ for p= 3, there are isomorphisms

H* (Y, 2)——— H(A[Xy, ..., X34, 2]; d) ® H*QS*" "' @ H*Q?S*"~1//A[z],
and

H*map, (M,, S*"———H*Y, ,, ® H*(QS*"~ )2,

Proof of 11.1 Consider the unit sphere bundle in the tangent bundle of S2”,
7(S?"). There is a bundle

SZn—l T.'(Szn) T S2n

and t(S?"), after localization at an odd prime is S*"~!. Thus there is a p-local
fibration

S2n—~1 S4n—1 T SZn

where n is the Whitehead square [1,,, 15,]. Since the triple Whitehead product

[12'” [lZn’ lzn]] =0

after localizing at primes at least 5, there is a homotopy commutative diagram

S4n71 v SZn Wan Vv 1 S2n v SZn fold SZn

4n—1 2n [ 2n
§*" xS — 2n,

Using this action we illustrate the proof of 11.1 by proving the case (1) for
the space map3 (M,, S?).

Since map, (M,, S°) splits as (25°)*% x Q2S3, the action of S* on S? induces
a homotopy commutative diagram

Y, 2 X (Q8%?¢ —— Y, , x map,, (M., S*) — map3(M,, S?)
lprojeet f‘ﬂ_z‘

(Q253)%# -, (QS3)2.

But the map of Y, , x {point} induced by the action is the inclusion of a fibre
In the space map$(M,, S?) as Y, , is also the fibre in

Y, » > mapg(M,, 5?) > (Q25%)¢
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obtained from the diagram

Qs 2’5 ——

, —— map3(M,, §*)—— (9253%)%
J 1

v v
(Sl)Zg (Qsz)Zg H2g (953)2g

A il
Qs —— Qs3 —

The theorem follows.

Remark 11.5 The fibration Y, , —(S")?# is classified by a map
(8128 > 08>
which sends the generator of H2(QS3,Z) to 2(). X1 X2))-
Remark 11.6 When localized at p=3, there is a p-local fibration
Y, 2.~ map,(M,, $*") - (25*"~1)*8, n> 1.

This fibration has a cross-section although we don’t know that it is a trivial
fibration. Nevertheless notice that there is a diagram of fibrations

map*(Mg,SZ"_‘)————l-»map*(Mg,Sz"“)————» *
QZ S4n— 1 map* (" o Tszn) (Qs4n— 1)2g

l | |
Y 2n ——— map,(M,,$*") —— (QS5*""1)%*

Furthermorée)since S2" is a 3-local H-space, S*" !, the function space map, (M,
152" is homotopy equivalent to a product (QS*"~ )8 x Q254" 1,

Proof of 11.3 If p>3, this theorem follows from the action $*"~' x §2" — g4n!
given in the proof of 11.1 together with the periodicity in 8.1, 8.2, and 11.2.
The proof is analogous to that given in [C*M?] for the stable decomposition
of D, (M,, S?"~') and we omit the details.
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Proof of 11.4 Consider the morphisms of fibrations

QZ S2n 1 stzn

<«

(S2n11)2g Q§2n

and the p-local decomposition Q252" ~0QS8?"~ ! x Q254" !, Since a direct degree
check gives that the 4-module indecomposables of H*Q2 54"~ !: degrees greater
than 4n— 3, must be infinite cycles by naturality. The theorem follows for Y ,,.

To check the case of map, (M,, S*"), appeal to the product decomposition
for the space map(M,, S?) and use periodicity in 11.2.
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