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Splitting the Kiinneth Sequence in K-Theory. 11

C.-F. Bodigheimer
Mathematical Institute, University of Oxford, 24-29 St. Giles, Oxford OX1 3LB, UK

In [4] we proved that the complex K-theory Kiinneth sequence
0->K*X)@K*(Y)»K*X A Y)—>Tor(K*(X), K*(Y))-0

splits if X and Y are compact metric spaces, extending results of Buhstaber and
Miscenko [5], Mislin [8], Puppe [9], and Anderson [1]. As an addendum to [4]
we give here a more direct proof of the general result.

Theorem A. The Kiinneth sequence splits for all compact X, Y.

The proof relies essentially on the observation that the universal coefficient
sequences

0->K*X)®Z,— =K *(X ;n) 2 Tor (K *(X), Z,) 0

I Knsm [ Kn,m ] Kj,m

0-K*(X)QZ,~ K *(X ;m}-2=>Tor(K *(X), Z,,)~0

admit splittings which commute with coefficient homomorphisms.

Theorem B. The universal coefficient sequences split naturally in n, i.e. for each n
there is an s,: K *(X) [n]=Tor(K *(X), Z,)» K *(X ; n) such that

@ B.s.=1, for all n;

(1) Ky S = Sk, for all nym.

This improves a result of [4] and holds in addition for all “good” cohomology
theories in the sense of Deleanu and Hilton [6].

1. Proof of Theorem A, Assuming Theorem B

First we have to mention that several times we use results proved in [2, 3] and [9]
only for finite CW complexes; but in [4, Sects. 2, 3] we always pointed out why
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these results hold for compact spaces with the same proofs. All definitions and
notation are taken from [4].

Let T be the free abelian group generated by all triples (x, n, y) with xe K*(X),
yeK(Y) and n=2 a natural number such that nx=ny=0. The torsion product
Tor(K*(X), K*(Y)) is the quotient of T by the subgroup R generated by all
elements of the following forms [7, Sect. 62, p. 264]:

@) (x,n,y)+(x,ny)—(x+x,n,y), nx=nx'=ny=0,
(®) (x,n,y)+(x,n,y)=(x,n,y+y), nx=ny=ny'=0,
(c) (x,nm, y)—(nx,m,y), nmx=my=0,
(d) (x,nm,y)—(x,n,my), nx=nmy=0.

Denote by [x,n,y] the image of the generator (x,n,y) under the canonical
quotient map @ : T— T/R=Tor(K *(X), K *(Y)). Let K = @ K*X ;n®@K*(Y;n)
n2

and consider the diagram

K
L
K*(X A Y)—>Tor(K*(X), K*(Y))

¥ is given by f,u, on each component, where y, is any admissible multiplication
[2,3], and B, is the Bockstein. Likewise, I is determined by
I(x,®y,)=[(=1)B,x,), n, B,(y)] for x,e KX ;n) and y,e K*(Y;n), i=0, 1. The
diagram commutes by [9, Lemma 2].

Let S : T- K be defined by S(x, 1, y)=(—1)’s,(x)®s,(y) (for x of degree i), where
the s, are the splittings of Theorem B for X and Y, respectively. Since 8, has degree
1 we have I'S= — ©. We claim that ker® =R Cker ¥'§ so that ¥§=S6 for some
S : Tor(K*(X), K¥(Y))»K*(X A Y). Such an S is clearly a splitting for .

Now generators of forms (a) and (b) already lie in the kernel of S. For a
generator of form (c) we have by Theorem B

WS, 11, ) = B by (— 1)'8,m(6) ® 5,1 (1))
= Bnmﬂnm(( - l)isnm(x) ® Sum K;I’m, m(y))
= Bumttam((— 1)) ® Ko S (V) -

On the other hand we have
P8 (nx, m, y)=Buttn((— 1)'s,(nX)®s,,()
= Brbi((— 18K ()@ 5,,(1))
= Bt (Ko, (= 1), (%)) @ 5,(¥)) »

and by [9, Lemma 3(c)] these are equal. A similiar computation for generators of
form (d) completes the proof.
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2. Splitting the Universal Coefficient Sequences

We recall the relations [4, Proposition 1.9] for the coefficient homomorphisms
K, m and the fact that K* (X ;n) is a Z,-module. Therefore K *(X ;n) is isomorphic
to the direct sum of all the K*(X ;p*) with p* the greatest power of a prime p
dividing n. Hence it suffices to prove Theorem B for prime powers:

Lemma. Let A and C be abelian groups and B, p"-bounded groups fitting in a
simultaneously direct and inverse system of exact sequences

0->4/p" ——B, ——>C[p"] -0

n

On,n+ 1 IJ“M- tL,n Bnn+ l]lﬂ'” 1,n /n,n+ Jl)’»ﬁl,n

0-A4/p" 1B~ Cp" )0

(where o, s, Gpiyn Gnd Y, 4115 Vni1,, Gre the obvious maps). Assume that
Bun+1Pn+1,n and B,y By nvy are multiplication by p. Then there are splittings
s,:C[p"]—B, such that

(i) m,s,=1,

(ll) ﬁn,n+ lsn+ 1 :Sn’yn,n-f- 1
(111) ﬁn+ l,nsn=Sn+ lyn+ 1,n*

Proof. We only indicate how to continue the proof in [4, Theorem 2.8]; note the
change of notation.
Having achieved so far homomorphisms s, : C[p™]— B, such that

@) m,s,=1,
(b) ﬂm,m+ Xs;n+ 1 =S;n))m,m+ 1

for all m, we now consider commutativity in the opposite direction; assume
therefore we have already constructed s, ..., s, such that (i), (ii), (iii), and

Bn,n+lsll+1=sn}’n,n+1 (1)
hold. Write
s;l+1'))n+l,n—Bn+1,nsn=ln+1A (2)

for some A:C[p"]—A/p"* . It follows from our assumption B, ,, B, ,=p that
1%, o+ 14 =0, thus

Oy s 1 4=0. 3)

Given a basis [7, p. 78] %, ; of C[p"*'], a direct sum of cyclic groups, we set for a

ce®b,,, ¢ =cif c has order p*<p", and ¢’ = pc if ¢ has order p"* 1; all these ¢’ form a

basis €', of C[p"]CC[p"*']. In case ¢'=pc we have B, ,5,(c)=5,,17,+1,.(C) Y
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our assumption f,,, ,B, .+, =p. Hence 4 vanishes on the direct summand of
C[p"] generated by all c'e ¥, with ¢'=pc.

Finally, we define s, ,(¢)=s,, () —1,,,4(c) for ce¥,, ,.

Acknowledgement. The author thanks the referee for some comments on a first draft of this paper.
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