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Inverse problems

Motto: Always work on phase space!

Many geometric inverse problems are best understood via the transport
equation. (cf. ParERNAIN-SALO-UHLMANN: GIP in 2D, 2023)

Example: Geodesic X-ray tomography on simple surfaces

Let (M, g) be simple (e.g. (I, |dz|?) or small perturbation).

Can we recover f € C°°(M) from integral measurements?

Inf(v) = / fon(t) dt, ~:[0,7] = M complete geodesic
0

>Injectivity:‘[0f(.):0 N fZO‘ PN {Xu——f

=

u=0

ulasm =0
» Duality: (PEsTov—UHLMANN 2005) T
Xu=0
Vg € C(M) Ju € C®(SM) : { “
uy = q
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Transport twistor space — Construction

Let (M, g) = (D, e2?|dz|?) where o € C*°(D,R). Let

[Z={em eC el <13

On SM = {|u| = 1} we use coordinates z = x; + iz2 and pu = ', Then:
X = e 7 (cos0: sy +sinb- 0, + (— 05,0 -8inf + 0zy0 - cos) - )
= e 7 (u-0-+p- 0=+ (pdzo — adz0) - (i0n + pdy,))

Definition

On Z we define the complex vector field
o =e 7 (1 9. + 0: + (1’8.0 — 8:0) - (B0 + pdyu)) € C*(Z,TcZ)

The transport twistor space of (I, e??|dz|?) is the (degenerate) complex
surface

‘ (Z,%5), 9 =spang(Es,0n) C TcZ ‘
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Transport twistor space — Characterisation

» Functions f: Z — C are holomorphic iff they satisfy CR—equations
Esf=0 and Oupf=0.

» Uniquely characterised (mod orientation) by the following properties:

_ 0 Z\SM . )
1. 9N Ds = {(CX SM (degeneration to transport equation)
2. (Do, %5) C D5 (involutivity)
3. On € Y5 (holomorphicity of fibres)

» The interior Z° is a classical complex surface with T%'Z° = 9|40

» Invariantly defined for every oriented Riemannian surface (M, g).
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Invariant distributions (= ker X|p/(sar)) Holomorphic functions on Z°
that are ‘fibrewise holomorphic’ with polynomial growth at SM

Connections and matrix potentials on M || Holomorphic vector bundles on Z
(= 0th order perturbations of X)

» Stein properties: Assume (M, g) is simple. Then e.g.:

1. Let vo: M — Z be the 0-section. Then:

[ ] -

1y A(Z) = A(M) is onto

‘ Range characterisation of I ‘ & Hg’l(Zp) =0

[1] B.-PATERNAIN, The transport Oka-Grauert principle for simple surfaces. JEP 2023

[2] B.-LEFEUVRE-PATERNAIN, Invariant distributions and the TTS of closed surfaces. Preprint 2023
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Goal: Understand the complex geometry of Z

Holomorphic blow-down
If (M, g) = (D, |dz|?), there is a global holomorphic blow-down:

B:Z—C% Blz,p) = (2 — 4’z p)

» [3: Z° — B(Z°) is a biholomorphism onto a domain of holomorphy
> [ resolves degeneracy (akin to LEBRUN—MASON’s work in Zoll case)

» We can use [ to construct holomorphic functions on Z. E.g. get
explicit extension operator:

Ep: AM) — A(Z), Bsf(z.p) = f(z—1°2), 1jo By =1d

» Next: How to define such S-maps for other geometries? ~ [3]

[3] B.-MONARD-PATERNAIN, Local & global blow downs of TTS, Preprint 2023+ ¢
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Global blow-down maps

Theorem (Constant curvature disks)

If (M, g) = (D, 7% |dz|?) with o = —log(1 + k|2|?) (|k| < 1), then

B: 2 -, ﬂ(z,u)Z(z_HQE “"‘Z'2>

1+ kz2u2’ 1y KkZ2p2

has holomorphic blow-down structure (HBS).

1+m22u2

> Bgs AM) = A(Z), Esf(zm) = (53555), 6oBs=1d
Theorem (Perturbations of constant curvature disks)
If (M, g) = (D, e*|dz|?) and o = 0. (in C°°-topology). Then the map
B:Z—C? PBlsmu= (Sev (-’0(-73-’0)712)n »Sodd (Il(-’ikfl)fldz)ﬂ)
has holomorphic blow-down structure.

» Consistent with previous definitions (S-maps are canonical)

» Proof: (8,) is a continuous family and HBS an open condition. [
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Q. How to define holomorphic blow-down structure?

Definition

A smooth map 8: Z — C? has HBS iff
1. B|swm separates geodesics
2. B: Z° — B(Z°) is a biholomorphism

» Problem: Conditions are not open for diff-topo reasons:
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(b) Smooth embeddings of

(a) Topological embeddings are non-compact manifolds are not
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Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Definition

A smooth map 8: Z — C? has HBS iff
1. Blo, sm is a C3-embedding
2. B: Z° — B(Z°) is a biholomorphism

» Problem: Conditions are not open for diff-topo reasons:

|~
l
pJe— b
(b) Smooth embeddings of

(a) Topological embeddings are non-compact manifolds are not
not open. open.
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Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Definition

A smooth map 3: Z — C? has HBS iff
1. Blo, s is a C5 -embedding
2. B: Z° — B(Z°) is a biholomorphism
3. B Q2 2 0,

» Key: Introduce Hermitian metrics that make § bi-Lipschitz:

Qe = idw A dw+ idé N dE
Q i(1— |u|")?E) ANEY +i0) NO)

Theorem (Openness under simultaneous perturbations)

Suppose Bo: (Z, Doy, Qoy) — C* has HBS and
o~ oo, B~ By (in C™-topology), dB(%-)=0.

Then also B: (Z, 2-,9,) — C* has HBS.
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Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z.
Small geodesic disks look nearly Euclidean, hence:

Theorem (Transport Newlander—Nirenberg Theorem)
For any point p € Z there is a neighbourhood U C Z and a smooth map
B:U—C?
that is holomorphic on U (d5(2) = 0) and an embedding on U\OZ.
» Degeneracy of & can always be resolved locally;

» holomorphic functions on U separate points;
> ...

Theorem (Classical Newlander—Nirenberg theorem)

Let X be a 2n-manifold and 2 C TcX an involutive distribution of rank n.
For every point p € X with 2 N %(p) = 0 there exists a neighbourhood
U C X and an embedding B: U — C™ with d3(Z) = 0.



Thank you for your attention.



