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Transport equations

Let (M, g) be a Riemannian surface.

SM =
{

(x, v) ∈ TM : g(v, v) = 1
}
, (ϕt) = geodesic flow on SM

Definition (Geodesic vector field)

X : C∞(SM)→ C∞(SM), Xu =
d

dt

∣∣∣
t=0

u ◦ ϕt

Transport equation

Xu = −f on SM
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Inverse problems

Motto: Always work on phase space!
Many geometric inverse problems are best understood via the transport
equation. (cf. Paternain–Salo–Uhlmann: GIP in 2D, 2023)

Example: Geodesic X-ray tomography on simple surfaces
Let (M, g) be simple (e.g. (D, |dz|2) or small perturbation).
Can we recover f ∈ C∞(M) from integral measurements?

I0f(γ) =

∫ τ

0

f ◦ γ(t) dt, γ : [0, τ ]→M complete geodesic

I Injectivity: I0f(·) = 0 ⇒ f = 0 ⇔

{
Xu = −f
u|∂SM = 0

⇒ u = 0

I Duality: (Pestov–Uhlmann 2005) m

∀q ∈ C∞(M) ∃u ∈ C∞(SM) :

Xu = 0∫
SxM

u(x, v)dv = q(x)
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Transport twistor spaces – Overview

New Motto: Always work on twistor space!

I Analogy:

"÷ ÷
I Allow to complexify transport equations & capture interplay with

fibrewise Fourier analysis
I Reinterpret statements about GIP in complex geometric language
I Closely related to projective twistor space studied by

LeBrun–Mason, Hitchin,... going back to Penrose.
I Tool?
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Transport twistor space – Construction

Let (M, g) = (D, e2σ|dz|2) where σ ∈ C∞(D,R). Let

Z = {(z, µ) ∈ C2 : |z|, |µ| ≤ 1} .

On SM ∼= {|µ| = 1} we use coordinates z = x1 + ix2 and µ = eiθ. Then:

X = e−σ
(
cos θ · ∂x1 + sin θ · ∂x2 +

(
− ∂x1σ · sin θ + ∂x2σ · cos θ

)
· ∂θ
) ∫

a

= e−σ
(
µ · ∂z + µ̄ · ∂z̄ +

(
µ∂zσ − µ̄∂z̄σ

)
· (µ̄∂µ̄ + µ∂µ)

)
Definition
On Z we define the complex vector field

Ξσ = e−σ
(
µ2 · ∂z + ∂z̄ +

(
µ2∂zσ − ∂z̄σ

)
· (µ̄∂µ̄ + µ∂µ)

)
∈ C∞(Z, TCZ)

The transport twistor space of (D, e2σ|dz|2) is the (degenerate) complex
surface

(Z,Dσ), Dσ = spanC(Ξσ, ∂µ̄) ⊂ TCZ
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Transport twistor space – Characterisation

05M 1µL = I

2- = M
µ⇒ , DEspanef-g.fi)

Zoe

I Functions f : Z → C are holomorphic iff they satisfy CR–equations

Ξσf = 0 and ∂µ̄f = 0.

I Uniquely characterised (mod orientation) by the following properties:

1. Dσ ∩ D̄σ =

{
0 Z\SM
CX SM

(degeneration to transport equation)

2. [Dσ ,Dσ ] ⊂ Dσ (involutivity)

3. ∂µ̄ ∈ Dσ (holomorphicity of fibres)

I The interior Z◦ is a classical complex surface with T 0,1Z◦ = D |Z◦
I Invariantly defined for every oriented Riemannian surface (M, g).
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Dictionary and Stein properties

I Dictionary:

Geodesic flow Twistor space

Invariant functions (= kerX|C∞(SM)) Holomorphic functions on Z
that are ‘fibrewise holomorphic’

Invariant distributions (= kerX|D′(SM)) Holomorphic functions on Z◦

that are ‘fibrewise holomorphic’ with polynomial growth at SM

Connections and matrix potentials on M Holomorphic vector bundles on Z
(= 0th order perturbations of X)

I Stein properties: Assume (M, g) is simple. Then e.g.:

1. Let ι0 : M → Z be the 0-section. Then:

I0 is injective ⇔ · · · ⇔ ι∗0 : A(Z)→ A(M) is onto

2.
Range characterisation of I0 ⇔ H0,1

∂̄
(Z) = 0

[1] B.-Paternain, The transport Oka-Grauert principle for simple surfaces. JEP 2023

[2] B.-Lefeuvre-Paternain, Invariant distributions and the TTS of closed surfaces. Preprint 2023
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Euclidean β-map

Goal: Understand the complex geometry of Z

Holomorphic blow-down
If (M, g) = (D, |dz|2), there is a global holomorphic blow-down:

β : Z → C2, β(z, µ) = (z − µ2z̄, µ)

I β : Z◦ → β(Z◦) is a biholomorphism onto a domain of holomorphy
I β resolves degeneracy (akin to LeBrun–Mason’s work in Zoll case)
I We can use β to construct holomorphic functions on Z. E.g. get

explicit extension operator:

Eβ : A(M)→ A(Z), Eβf(z, µ) = f(z − µ2z̄), ι∗0 ◦ Eβ = Id

I Next: How to define such β-maps for other geometries? ; [3]

[3] B.-Monard-Paternain, Local & global blow downs of TTS, Preprint 2023+ε
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Global blow-down maps

Theorem (Constant curvature disks)

If (M, g) = (D, e2σκ |dz|2) with σκ = − log
(
1 + κ|z|2

)
(|κ| < 1), then

β : Z → C2, β(z, µ) =

(
z − µ2z̄

1 + κz̄2µ2
, µ

1 + κ|z|2

1 + κz̄2µ2

)
has holomorphic blow-down structure (HBS).

I Eβ : A(M)→ A(Z), Eβf(z, µ) = f
(

z−µ2z̄
1+κz̄2µ2

)
, ι∗0 ◦ Eβ = Id.

Theorem (Perturbations of constant curvature disks)

If (M, g) = (D, e2σ|dz|2) and σ ≈ σκ (in C∞-topology). Then there is a map

β : Z → C2

with holomorphic blow-down structure.

I Consistent with previous definitions (β-maps are canonical)
I Proof: (βσ) is a continuous family and HBS an open condition.
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Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Definition
A smooth map β : Z → C2 has HBS iff
1. β|SM separates geodesics
2. β : Z◦ → β(Z◦) is a biholomorphism

I Problem: Conditions are not open for diff-topo reasons:

IRs $

I. !
$ $0

(a) Topological embeddings are
not open.

IRs $

I. !
$ $0

(b) Smooth embeddings of
non-compact manifolds are not
open.
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I Key: Introduce Hermitian metrics that make β bi-Lipschitz:

ΩC2 = idw ∧ dw̄ + idξ ∧ dξ̄
Ωσ = i(1− |µ|4)2Ξ̄∨σ ∧ Ξ∨σ + i∂∨µ ∧ ∂∨µ̄
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ΩC2 = idw ∧ dw̄ + idξ ∧ dξ̄
Ωσ = i(1− |µ|4)2Ξ̄∨σ ∧ Ξ∨σ + i∂∨µ ∧ ∂∨µ̄

Theorem (Openness under simultaneous perturbations)

Suppose β0 : (Z,Dσ0 ,Ωσ0)→ C2 has HBS and

σ ≈ σ0, β ≈ β0 (in C∞-topology), dβ(Dσ) = 0.

Then also β : (Z,Dσ,Ωσ)→ C2 has HBS.
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Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z.

Small geodesic disks look nearly Euclidean, hence:

Theorem (Transport Newlander–Nirenberg Theorem)

For any point p ∈ Z there is a neighbourhood U ⊂ Z and a smooth map

β : U → C2

that is holomorphic on U (dβ(D) = 0) and an embedding on U\∂Z.

I Degeneracy of D can always be resolved locally;
I holomorphic functions on U separate points;
I ...

Theorem (Classical Newlander–Nirenberg theorem)

Let X be a 2n-manifold and D ⊂ TCX an involutive distribution of rank n.
For every point p ∈ X with D ∩D(p) = 0 there exists a neighbourhood
U ⊂ X and an embedding β : U → Cn with dβ(D) = 0.
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Thank you for your attention.


