LOCAL AND GLOBAL BLOW-DOWNS OF TRANSPORT TWISTOR SPACE

Jan Bohr
Joint with F. Monard and G.P. Paternain

HKUST - Hongkong

14 December 2023
UNIVERSITÄT BONN

Transport equations

Let (M, g) be a Riemannian surface.

$$
S M=\{(x, v) \in T M: g(v, v)=1\}, \quad\left(\varphi_{t}\right)=\text { geodesic flow on } S M
$$

Transport equations

Let (M, g) be a Riemannian surface.

$$
S M=\{(x, v) \in T M: g(v, v)=1\}, \quad\left(\varphi_{t}\right)=\text { geodesic flow on } S M
$$

Definition (Geodesic vector field)

$$
X: C^{\infty}(S M) \rightarrow C^{\infty}(S M), \quad X u=\left.\frac{d}{d t}\right|_{t=0} u \circ \varphi_{t}
$$

Transport equations

Let (M, g) be a Riemannian surface.

$$
S M=\{(x, v) \in T M: g(v, v)=1\}, \quad\left(\varphi_{t}\right)=\text { geodesic flow on } S M
$$

Definition (Geodesic vector field)

$$
X=e^{-\sigma}\left(\cos \theta \cdot \partial_{x_{1}}+\sin \theta \cdot \partial_{x_{2}}+\left(-\partial_{x_{1}} \sigma \cdot \sin \theta+\partial_{x_{2}} \sigma \cdot \cos \theta\right) \cdot \partial_{\theta}\right)
$$

Transport equations

Let (M, g) be a Riemannian surface.

$$
S M=\{(x, v) \in T M: g(v, v)=1\}, \quad\left(\varphi_{t}\right)=\text { geodesic flow on } S M
$$

Definition (Geodesic vector field)

$$
X: C^{\infty}(S M) \rightarrow C^{\infty}(S M), \quad X u=\left.\frac{d}{d t}\right|_{t=0} u \circ \varphi_{t}
$$

Transport equation

$$
X u=-f \text { on } S M
$$

Transport equations

Let (M, g) be a Riemannian surface.

$$
S M=\{(x, v) \in T M: g(v, v)=1\}, \quad\left(\varphi_{t}\right)=\text { geodesic flow on } S M
$$

Definition (Geodesic vector field)

$$
X: C^{\infty}(S M) \rightarrow C^{\infty}(S M), \quad X u=\left.\frac{d}{d t}\right|_{t=0} u \circ \varphi_{t}
$$

Transport equation

$$
(X+\mathbb{A}) u=-f \text { on } S M
$$

Inverse problems

Motto: Always work on phase space!
Many geometric inverse problems are best understood via the transport equation.
(cf. Paternain-Salo-Uhlmann: GIP in 2D, 2023)

Inverse problems

Motto: Always work on phase space!
Many geometric inverse problems are best understood via the transport equation.
(cf. Paternain-Salo-Uhlmann: GIP in 2D, 2023)
Example: Geodesic X-ray tomography on simple surfaces
Let (M, g) be simple (e.g. $\left(\mathbb{D},|d z|^{2}\right)$ or small perturbation).

Inverse problems

Motto: Always work on phase space!
Many geometric inverse problems are best understood via the transport equation.
(cf. Paternain-Salo-Uhlmann: GIP in 2D, 2023)
Example: Geodesic X-ray tomography on simple surfaces
Let (M, g) be simple (e.g. $\left(\mathbb{D},|d z|^{2}\right.$) or small perturbation).
Can we recover $f \in C^{\infty}(M)$ from integral measurements?

$$
I_{0} f(\gamma)=\int_{0}^{\tau} f \circ \gamma(t) d t, \quad \gamma:[0, \tau] \rightarrow M \text { complete geodesic }
$$

Inverse problems

Motto: Always work on phase space!
Many geometric inverse problems are best understood via the transport equation.
(cf. Paternain-Salo-Uhlmann: GIP in 2D, 2023)
Example: Geodesic X-ray tomography on simple surfaces
Let (M, g) be simple (e.g. $\left(\mathbb{D},|d z|^{2}\right.$) or small perturbation).
Can we recover $f \in C^{\infty}(M)$ from integral measurements?

$$
I_{0} f(\gamma)=\int_{0}^{\tau} f \circ \gamma(t) d t, \quad \gamma:[0, \tau] \rightarrow M \text { complete geodesic }
$$

- Injectivity: $I_{0} f(\cdot)=0 \Rightarrow f=0 \Leftrightarrow\left\{\begin{array}{l}X u=-f \\ \left.u\right|_{\partial S M}=0\end{array} \quad \Rightarrow \quad u=0\right.$

Inverse problems

Motto: Always work on phase space!
Many geometric inverse problems are best understood via the transport equation. (cf. Paternain-Salo-Uhlmann: GIP in 2D, 2023)

Example: Geodesic X-ray tomography on simple surfaces
Let (M, g) be simple (e.g. $\left(\mathbb{D},|d z|^{2}\right)$ or small perturbation).
Can we recover $f \in C^{\infty}(M)$ from integral measurements?

$$
I_{0} f(\gamma)=\int_{0}^{\tau} f \circ \gamma(t) d t, \quad \gamma:[0, \tau] \rightarrow M \text { complete geodesic }
$$

- Injectivity: $\begin{aligned} & I_{0} f(\cdot)=0 \Rightarrow f=0 \\ & \text { - Duality: (Pestov-UhLmann 2005) }\end{aligned} \Leftrightarrow \frac{\left\{\begin{array}{l}X u=-f \\ \left.u\right|_{\partial S M}=0\end{array} \quad \Rightarrow u=0\right.}{\hat{\mathbb{1}}}$

$$
\forall q \in C^{\infty}(M) \exists u \in C^{\infty}(S M):\left\{\begin{array}{l}
X u=0 \\
\int_{S_{x} M} u(x, v) d v=q(x)
\end{array}\right.
$$

Inverse problems

Motto: Always work on phase space!
Many geometric inverse problems are best understood via the transport equation.
(cf. Paternain-Salo-Uhlmann: GIP in 2D, 2023)
Example: Geodesic X-ray tomography on simple surfaces
Let (M, g) be simple (e.g. $\left(\mathbb{D},|d z|^{2}\right)$ or small perturbation).
Can we recover $f \in C^{\infty}(M)$ from integral measurements?

$$
I_{0} f(\gamma)=\int_{0}^{\tau} f \circ \gamma(t) d t, \quad \gamma:[0, \tau] \rightarrow M \text { complete geodesic }
$$

- Injectivity: $\begin{aligned} & I_{0} f(\cdot)=0 \Rightarrow f=0\end{aligned} \Leftrightarrow \frac{\left\{\begin{array}{l}X u=-f \\ \left.u\right|_{\partial S M}=0\end{array} \Rightarrow u=0\right.}{\Uparrow}$
- Duality: (PESTOV-UHLMANN 2005)

$$
\forall q \in C^{\infty}(M) \exists u \in C^{\infty}(S M):\left\{\begin{array}{l}
X u=0 \\
u_{0}=q
\end{array}\right.
$$

Transport twistor spaces - Overview

New Motto: Always work on twistor space!

Transport twistor spaces - Overview

New Motto: Always work on twistor space!

- Analogy:

Transport twistor spaces - Overview

New Motto: Always work on twistor space!

- Analogy:

- Allow to complexify transport equations \& capture interplay with fibrewise Fourier analysis

Transport twistor spaces - Overview

New Motto: Always work on twistor space!

- Analogy:

- Allow to complexify transport equations \& capture interplay with fibrewise Fourier analysis
- Reinterpret statements about GIP in complex geometric language

Transport twistor spaces - Overview

New Motto: Always work on twistor space!

- Analogy:

- Allow to complexify transport equations \& capture interplay with fibrewise Fourier analysis
- Reinterpret statements about GIP in complex geometric language
- Closely related to projective twistor space studied by LeBrun-Mason, Hitchin,... going back to Penrose.

Transport twistor spaces - Overview

New Motto: Always work on twistor space!

- Analogy:

- Allow to complexify transport equations \& capture interplay with fibrewise Fourier analysis
- Reinterpret statements about GIP in complex geometric language
- Closely related to projective twistor space studied by LeBrun-Mason, Hitchin,... going back to Penrose.
- Tool?

Transport twistor space - Construction

Let $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ where $\sigma \in C^{\infty}(\mathbb{D}, \mathbb{R})$. Let

$$
Z=\left\{(z, \mu) \in \mathbb{C}^{2}:|z|,|\mu| \leq 1\right\} \text {. }
$$

Transport twistor space - Construction

Let $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ where $\sigma \in C^{\infty}(\mathbb{D}, \mathbb{R})$. Let

$$
Z=\left\{(z, \mu) \in \mathbb{C}^{2}:|z|,|\mu| \leq 1\right\}
$$

On $S M \cong\{|\mu|=1\}$ we use coordinates $z=x_{1}+i x_{2}$ and $\mu=e^{i \theta}$. Then:

$$
X=e^{-\sigma}\left(\cos \theta \cdot \partial_{x_{1}}+\sin \theta \cdot \partial_{x_{2}}+\left(-\partial_{x_{1}} \sigma \cdot \sin \theta+\partial_{x_{2}} \sigma \cdot \cos \theta\right) \cdot \partial_{\theta}\right)
$$

Transport twistor space - Construction

Let $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ where $\sigma \in C^{\infty}(\mathbb{D}, \mathbb{R})$. Let

$$
Z=\left\{(z, \mu) \in \mathbb{C}^{2}:|z|,|\mu| \leq 1\right\}
$$

On $S M \cong\{|\mu|=1\}$ we use coordinates $z=x_{1}+i x_{2}$ and $\mu=e^{i \theta}$. Then:

$$
\begin{aligned}
X & =e^{-\sigma}\left(\cos \theta \cdot \partial_{x_{1}}+\sin \theta \cdot \partial_{x_{2}}+\left(-\partial_{x_{1}} \sigma \cdot \sin \theta+\partial_{x_{2}} \sigma \cdot \cos \theta\right) \cdot \partial_{\theta}\right) \\
& =e^{-\sigma}\left(\mu \cdot \partial_{z}+\bar{\mu} \cdot \partial_{\bar{z}}+\left(\mu \partial_{z} \sigma-\bar{\mu} \partial_{\bar{z}} \sigma\right) \cdot\left(\bar{\mu} \partial_{\bar{\mu}}+\mu \partial_{\mu}\right)\right)
\end{aligned}
$$

Transport twistor space - Construction

Let $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ where $\sigma \in C^{\infty}(\mathbb{D}, \mathbb{R})$. Let

$$
Z=\left\{(z, \mu) \in \mathbb{C}^{2}:|z|,|\mu| \leq 1\right\}
$$

On $S M \cong\{|\mu|=1\}$ we use coordinates $z=x_{1}+i x_{2}$ and $\mu=e^{i \theta}$. Then:

$$
\begin{aligned}
X & =e^{-\sigma}\left(\cos \theta \cdot \partial_{x_{1}}+\sin \theta \cdot \partial_{x_{2}}+\left(-\partial_{x_{1}} \sigma \cdot \sin \theta+\partial_{x_{2}} \sigma \cdot \cos \theta\right) \cdot \partial_{\theta}\right) \\
& =e^{-\sigma}\left(\mu \cdot \partial_{z}+\bar{\mu} \cdot \partial_{\bar{z}}+\left(\mu \partial_{z} \sigma-\bar{\mu} \partial_{\bar{z}} \sigma\right) \cdot\left(\bar{\mu} \partial_{\bar{\mu}}+\mu \partial_{\mu}\right)\right)
\end{aligned}
$$

Definition

On Z we define the complex vector field

$$
\Xi_{\sigma}=e^{-\sigma}\left(\mu^{2} \cdot \partial_{z}+\partial_{\bar{z}}+\left(\mu^{2} \partial_{z} \sigma-\partial_{\bar{z}} \sigma\right) \cdot\left(\bar{\mu} \partial_{\bar{\mu}}+\mu \partial_{\mu}\right)\right) \in C^{\infty}\left(Z, T_{\mathbb{C}} Z\right)
$$

Transport twistor space - Construction

Let $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ where $\sigma \in C^{\infty}(\mathbb{D}, \mathbb{R})$. Let

$$
Z=\left\{(z, \mu) \in \mathbb{C}^{2}:|z|,|\mu| \leq 1\right\}
$$

On $S M \cong\{|\mu|=1\}$ we use coordinates $z=x_{1}+i x_{2}$ and $\mu=e^{i \theta}$. Then:

$$
\begin{aligned}
X & =e^{-\sigma}\left(\cos \theta \cdot \partial_{x_{1}}+\sin \theta \cdot \partial_{x_{2}}+\left(-\partial_{x_{1}} \sigma \cdot \sin \theta+\partial_{x_{2}} \sigma \cdot \cos \theta\right) \cdot \partial_{\theta}\right) \\
& =e^{-\sigma}\left(\mu \cdot \partial_{z}+\bar{\mu} \cdot \partial_{\bar{z}}+\left(\mu \partial_{z} \sigma-\bar{\mu} \partial_{\bar{z}} \sigma\right) \cdot\left(\bar{\mu} \partial_{\bar{\mu}}+\mu \partial_{\mu}\right)\right)
\end{aligned}
$$

Definition

On Z we define the complex vector field

$$
\Xi_{\sigma}=e^{-\sigma}\left(\mu^{2} \cdot \partial_{z}+\partial_{\bar{z}}+\left(\mu^{2} \partial_{z} \sigma-\partial_{\bar{z}} \sigma\right) \cdot\left(\bar{\mu} \partial_{\bar{\mu}}+\mu \partial_{\mu}\right)\right) \in C^{\infty}\left(Z, T_{\mathbb{C}} Z\right)
$$

The transport twistor space of $\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ is the (degenerate) complex surface

$$
\left(Z, \mathscr{D}_{\sigma}\right), \quad \mathscr{D}_{\sigma}=\operatorname{span}_{\mathbb{C}}\left(\Xi_{\sigma}, \partial_{\bar{\mu}}\right) \subset T_{\mathbb{C}} Z
$$

Transport twistor space - Characterisation

Transport twistor space - Characterisation

- Functions $f: Z \rightarrow \mathbb{C}$ are holomorphic iff they satisfy CR-equations

$$
\Xi_{\sigma} f=0 \quad \text { and } \quad \partial_{\bar{\mu}} f=0
$$

Transport twistor space - Characterisation

- Functions $f: Z \rightarrow \mathbb{C}$ are holomorphic iff they satisfy CR -equations

$$
\Xi_{\sigma} f=0 \quad \text { and } \quad \partial_{\bar{\mu}} f=0 .
$$

- Uniquely characterised (mod orientation) by the following properties:

1. $\mathscr{D}_{\sigma} \cap \overline{\mathscr{D}}_{\sigma}= \begin{cases}0 & Z \backslash S M \\ \mathbb{C} X & S M\end{cases}$ (degeneration to transport equation)
2. $\left[\mathscr{D}_{\sigma}, \mathscr{D}_{\sigma}\right] \subset \mathscr{D}_{\sigma}$
3. $\partial_{\bar{\mu}} \in \mathscr{D}_{\sigma}$
(involutivity)
(holomorphicity of fibres)

Transport twistor space - Characterisation

- Functions $f: Z \rightarrow \mathbb{C}$ are holomorphic iff they satisfy CR -equations

$$
\Xi_{\sigma} f=0 \quad \text { and } \quad \partial_{\bar{\mu}} f=0 .
$$

- Uniquely characterised (mod orientation) by the following properties:

1. $\mathscr{D}_{\sigma} \cap \overline{\mathscr{D}}_{\sigma}= \begin{cases}0 & Z \backslash S M \\ \mathbb{C} X & S M\end{cases}$ (degeneration to transport equation)
2. $\left[\mathscr{D}_{\sigma}, \mathscr{D}_{\sigma}\right] \subset \mathscr{D}_{\sigma}$ (involutivity)
3. $\partial_{\bar{\mu}} \in \mathscr{D}_{\sigma}$ (holomorphicity of fibres)

- The interior Z° is a classical complex surface with $T^{0,1} Z^{\circ}=\left.\mathscr{D}\right|_{Z^{\circ}}$

Transport twistor space - Characterisation

- Functions $f: Z \rightarrow \mathbb{C}$ are holomorphic iff they satisfy CR -equations

$$
\Xi_{\sigma} f=0 \quad \text { and } \quad \partial_{\bar{\mu}} f=0 .
$$

- Uniquely characterised (mod orientation) by the following properties:

1. $\mathscr{D}_{\sigma} \cap \overline{\mathscr{D}}_{\sigma}= \begin{cases}0 & Z \backslash S M \\ \mathbb{C} X & S M\end{cases}$ (degeneration to transport equation)
2. $\left[\mathscr{D}_{\sigma}, \mathscr{D}_{\sigma}\right] \subset \mathscr{D}_{\sigma}$ (involutivity)
3. $\partial_{\bar{\mu}} \in \mathscr{D}_{\sigma}$ (holomorphicity of fibres)

- The interior Z° is a classical complex surface with $T^{0,1} Z^{\circ}=\left.\mathscr{D}\right|_{Z^{\circ}}$
- Invariantly defined for every oriented Riemannian surface (M, g).

Dictionary and Stein properties

- Dictionary:

Geodesic flow	Twistor space
Invariant functions $\left(=\left.\operatorname{ker} X\right\|_{C}{ }^{\infty}(S M)\right)$	Holomorphic functions on Z
that are 'fibrewise holomorphic'	
Invariant distributions $\left(=\left.\operatorname{ker} X\right\|_{\mathcal{D}^{\prime}(S M)}\right)$	Holomorphic functions on Z°
that are 'fibrewise holomorphic'	with polynomial growth at $S M$
Connections and matrix potentials on M	Holomorphic vector bundles on Z
$(=0$ th order perturbations of $X)$	

Dictionary and Stein properties

- Dictionary:

Geodesic flow	Twistor space
Invariant functions $\left(=\left.\operatorname{ker} X\right\|_{C}{ }^{\infty}(S M)\right)$	Holomorphic functions on Z
that are 'fibrewise holomorphic'	
Invariant distributions $\left(=\left.\operatorname{ker} X\right\|_{\mathcal{D}^{\prime}(S M)}\right)$	Holomorphic functions on Z°
that are 'fibrewise holomorphic'	with polynomial growth at $S M$
Connections and matrix potentials on M	Holomorphic vector bundles on Z
$(=0$ th order perturbations of $X)$	

- Stein properties: Assume (M, g) is simple. Then e.g.:

Dictionary and Stein properties

- Dictionary:

Geodesic flow	Twistor space
Invariant functions $\left(=\left.\operatorname{ker} X\right\|_{C^{\infty}(S M)}\right)$ that are 'fibrewise holomorphic'	Holomorphic functions on Z
Invariant distributions $\left(=\left.\operatorname{ker} X\right\|_{\mathcal{D}^{\prime}(S M)}\right)$	
that are 'fibrewise holomorphic'	Holomorphic functions on Z° with polynomial growth at $S M$ Connections and matrix potentials on M $(=0$ th order perturbations of $X)$
Holomorphic vector bundles on Z	

- Stein properties: Assume (M, g) is simple. Then e.g.:

1. Let $\iota_{0}: M \rightarrow Z$ be the 0 -section. Then:

$$
I_{0} \text { is injective } \Leftrightarrow \cdots \Leftrightarrow \iota_{0}^{*}: \mathcal{A}(Z) \rightarrow \mathcal{A}(M) \text { is onto }
$$

Dictionary and Stein properties

- Dictionary:

Geodesic flow	Twistor space
Invariant functions $\left(=\left.\operatorname{ker} X\right\|_{C^{\infty}(S M)}\right)$ that are 'fibrewise holomorphic'	Holomorphic functions on Z
Invariant distributions $\left(=\right.$ ker $\left.\left.X\right\|_{\mathcal{D}^{\prime}(S M)}\right)$	
that are 'fibrewise holomorphic'	Holomorphic functions on Z°
with polynomial growth at $S M$	
Connections and matrix potentials on M	Holomorphic vector bundles on Z
$(=0$ th order perturbations of $X)$	

- Stein properties: Assume (M, g) is simple. Then e.g.:

1. Let $\iota_{0}: M \rightarrow Z$ be the 0 -section. Then:

$$
I_{0} \text { is injective } \Leftrightarrow \cdots \Leftrightarrow \iota_{0}^{*}: \mathcal{A}(Z) \rightarrow \mathcal{A}(M) \text { is onto }
$$

2.

$$
\text { Range characterisation of } I_{0} \Leftrightarrow H_{\bar{\partial}}^{0,1}(Z)=0
$$

Dictionary and Stein properties

- Dictionary:

Geodesic flow	Twistor space
Invariant functions $\left(=\left.\operatorname{ker} X\right\|_{C^{\infty}(S M)}\right)$ that are 'fibrewise holomorphic'	Holomorphic functions on Z
Invariant distributions $\left(=\right.$ ker $\left.\left.X\right\|_{\mathcal{D}^{\prime}(S M)}\right)$	
that are 'fibrewise holomorphic'	Holomorphic functions on Z°
with polynomial growth at $S M$	
Connections and matrix potentials on M	Holomorphic vector bundles on Z
$(=0$ th order perturbations of $X)$	

- Stein properties: Assume (M, g) is simple. Then e.g.:

1. Let $\iota_{0}: M \rightarrow Z$ be the 0 -section. Then:

$$
I_{0} \text { is injective } \Leftrightarrow \cdots \Leftrightarrow \iota_{0}^{*}: \mathcal{A}(Z) \rightarrow \mathcal{A}(M) \text { is onto }
$$

2.

$$
\text { Range characterisation of } I_{0} \Leftrightarrow H_{\bar{\partial}}^{0,1}\left(Z_{\mathbb{P}}\right)=0
$$

[1] B.-Paternain, The transport Oka-Grauert principle for simple surfaces. JEP 2023
[2] B.-Lefeuvre-Paternain, Invariant distributions and the TTS of closed surfaces. Preprint 2023

Euclidean β-map

Goal: Understand the complex geometry of Z

Euclidean β-map

Goal: Understand the complex geometry of Z
Holomorphic blow-down
If $(M, g)=\left(\mathbb{D},|d z|^{2}\right)$, there is a global holomorphic blow-down:

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(z-\mu^{2} \bar{z}, \mu\right)
$$

Euclidean β-map

Goal: Understand the complex geometry of Z
Holomorphic blow-down
If $(M, g)=\left(\mathbb{D},|d z|^{2}\right)$, there is a global holomorphic blow-down:

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(z-\mu^{2} \bar{z}, \mu\right)
$$

- $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism onto a domain of holomorphy

Euclidean β-map

Goal: Understand the complex geometry of Z
Holomorphic blow-down
If $(M, g)=\left(\mathbb{D},|d z|^{2}\right)$, there is a global holomorphic blow-down:

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(z-\mu^{2} \bar{z}, \mu\right)
$$

- $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism onto a domain of holomorphy
- β resolves degeneracy (akin to LeBrun-Mason's work in Zoll case)

Euclidean β-map

Goal: Understand the complex geometry of Z

Holomorphic blow-down

If $(M, g)=\left(\mathbb{D},|d z|^{2}\right)$, there is a global holomorphic blow-down:

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(z-\mu^{2} \bar{z}, \mu\right)
$$

- $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism onto a domain of holomorphy
- β resolves degeneracy (akin to LeBrun-MASON's work in Zoll case)
- We can use β to construct holomorphic functions on Z. E.g. get explicit extension operator:

$$
E_{\beta}: \mathcal{A}(M) \rightarrow \mathcal{A}(Z), \quad E_{\beta} f(z, \mu)=f\left(z-\mu^{2} \bar{z}\right), \quad \iota_{0}^{*} \circ E_{\beta}=\mathrm{Id}
$$

Euclidean β-map

Goal: Understand the complex geometry of Z

Holomorphic blow-down

If $(M, g)=\left(\mathbb{D},|d z|^{2}\right)$, there is a global holomorphic blow-down:

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(z-\mu^{2} \bar{z}, \mu\right)
$$

- $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism onto a domain of holomorphy
- β resolves degeneracy (akin to LeBrun-Mason's work in Zoll case)
- We can use β to construct holomorphic functions on Z. E.g. get explicit extension operator:

$$
E_{\beta}: \mathcal{A}(M) \rightarrow \mathcal{A}(Z), \quad E_{\beta} f(z, \mu)=f\left(z-\mu^{2} \bar{z}\right), \quad \iota_{0}^{*} \circ E_{\beta}=\mathrm{Id}
$$

- Next: How to define such β-maps for other geometries? $\sim[3]$
[3] B.-Monard-Paternain, Local \& global blow downs of TTS, Preprint 2023+ ϵ

Theorem (Constant curvature disks)

$$
\begin{aligned}
& \text { If }(M, g)=\left(\mathbb{D}, e^{2 \sigma_{\kappa}}|d z|^{2}\right) \text { with } \sigma_{\kappa}=-\log \left(1+\kappa|z|^{2}\right) \quad(|\kappa|<1) \text {, then } \\
& \beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}, \mu \frac{1+\kappa|z|^{2}}{1+\kappa \bar{z}^{2} \mu^{2}}\right)
\end{aligned}
$$

has holomorphic blow-down structure (HBS).

Theorem (Constant curvature disks)

$$
\begin{aligned}
& \text { If }(M, g)=\left(\mathbb{D}, e^{2 \sigma_{\kappa}}|d z|^{2}\right) \text { with } \sigma_{\kappa}=-\log \left(1+\kappa|z|^{2}\right) \quad(|\kappa|<1) \text {, then } \\
& \beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}, \mu \frac{1+\kappa|z|^{2}}{1+\kappa \bar{z}^{2} \mu^{2}}\right)
\end{aligned}
$$

has holomorphic blow-down structure (HBS).

- $E_{\beta}: \mathcal{A}(M) \rightarrow \mathcal{A}(Z), \quad E_{\beta} f(z, \mu)=f\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}\right), \quad \iota_{0}^{*} \circ E_{\beta}=\mathrm{Id}$.

Global blow-down maps

Theorem (Constant curvature disks)
If $(M, g)=\left(\mathbb{D}, e^{2 \sigma_{\kappa}}|d z|^{2}\right)$ with $\sigma_{\kappa}=-\log \left(1+\kappa|z|^{2}\right)(|\kappa|<1)$, then

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}, \mu \frac{1+\kappa|z|^{2}}{1+\kappa \bar{z}^{2} \mu^{2}}\right)
$$

has holomorphic blow-down structure (HBS).

- $E_{\beta}: \mathcal{A}(M) \rightarrow \mathcal{A}(Z), \quad E_{\beta} f(z, \mu)=f\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}\right), \quad \iota_{0}^{*} \circ E_{\beta}=\mathrm{Id}$.

Theorem (Perturbations of constant curvature disks)
If $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ and $\sigma \approx \sigma_{\kappa}$ (in C^{∞}-topology). Then there is a map

$$
\beta: Z \rightarrow \mathbb{C}^{2}
$$

with holomorphic blow-down structure.

Global blow-down maps

Theorem (Constant curvature disks)
If $(M, g)=\left(\mathbb{D}, e^{2 \sigma_{\kappa}}|d z|^{2}\right)$ with $\sigma_{\kappa}=-\log \left(1+\kappa|z|^{2}\right) \quad(|\kappa|<1)$, then

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}, \mu \frac{1+\kappa|z|^{2}}{1+\kappa \bar{z}^{2} \mu^{2}}\right)
$$

has holomorphic blow-down structure (HBS).

$$
-E_{\beta}: \mathcal{A}(M) \rightarrow \mathcal{A}(Z), \quad E_{\beta} f(z, \mu)=f\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}\right), \quad \iota_{0}^{*} \circ E_{\beta}=\mathrm{Id} .
$$

Theorem (Perturbations of constant curvature disks)
If $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ and $\sigma \approx \sigma_{\kappa}$ (in C^{∞}-topology). Then the map

$$
\beta: Z \rightarrow \mathbb{C}^{2},\left.\quad \beta\right|_{S M}=\left(\mathbb{S}_{\mathrm{ev}}\left(I_{0}\left(I_{0}^{*} I_{0}\right)^{-1} z\right)^{\sharp}, \mathbb{S}_{\text {odd }}\left(I_{1}\left(I_{1}^{*} I_{1}\right)^{-1} d z\right)^{\sharp}\right)
$$

has holomorphic blow-down structure.

Global blow-down maps

Theorem (Constant curvature disks)
If $(M, g)=\left(\mathbb{D}, e^{2 \sigma_{\kappa}}|d z|^{2}\right)$ with $\sigma_{\kappa}=-\log \left(1+\kappa|z|^{2}\right)(|\kappa|<1)$, then

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}, \mu \frac{1+\kappa|z|^{2}}{1+\kappa \bar{z}^{2} \mu^{2}}\right)
$$

has holomorphic blow-down structure (HBS).

- $E_{\beta}: \mathcal{A}(M) \rightarrow \mathcal{A}(Z), \quad E_{\beta} f(z, \mu)=f\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}\right), \quad \iota_{0}^{*} \circ E_{\beta}=\mathrm{Id}$.

Theorem (Perturbations of constant curvature disks)
If $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ and $\sigma \approx \sigma_{\kappa}$ (in C^{∞}-topology). Then the map

$$
\beta: Z \rightarrow \mathbb{C}^{2},\left.\quad \beta\right|_{S M}=\left(\mathbb{S}_{\text {ev }}\left(I_{0}\left(I_{0}^{*} I_{0}\right)^{-1} z\right)^{\sharp}, \mathbb{S}_{\text {odd }}\left(I_{1}\left(I_{1}^{*} I_{1}\right)^{-1} d z\right)^{\sharp}\right)
$$

has holomorphic blow-down structure.

- Consistent with previous definitions (β-maps are canonical)

Global blow-down maps

Theorem (Constant curvature disks)
If $(M, g)=\left(\mathbb{D}, e^{2 \sigma_{\kappa}}|d z|^{2}\right)$ with $\sigma_{\kappa}=-\log \left(1+\kappa|z|^{2}\right)(|\kappa|<1)$, then

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}, \mu \frac{1+\kappa|z|^{2}}{1+\kappa \bar{z}^{2} \mu^{2}}\right)
$$

has holomorphic blow-down structure (HBS).

- $E_{\beta}: \mathcal{A}(M) \rightarrow \mathcal{A}(Z), \quad E_{\beta} f(z, \mu)=f\left(\frac{z-\mu^{2} \bar{z}}{1+\kappa \bar{z}^{2} \mu^{2}}\right), \quad \iota_{0}^{*} \circ E_{\beta}=\mathrm{Id}$.

Theorem (Perturbations of constant curvature disks)
If $(M, g)=\left(\mathbb{D}, e^{2 \sigma}|d z|^{2}\right)$ and $\sigma \approx \sigma_{\kappa}$ (in C^{∞}-topology). Then the map

$$
\beta: Z \rightarrow \mathbb{C}^{2},\left.\quad \beta\right|_{S M}=\left(\mathbb{S}_{\mathrm{ev}}\left(I_{0}\left(I_{0}^{*} I_{0}\right)^{-1} z\right)^{\sharp}, \mathbb{S}_{\text {odd }}\left(I_{1}\left(I_{1}^{*} I_{1}\right)^{-1} d z\right)^{\sharp}\right)
$$

has holomorphic blow-down structure.

- Consistent with previous definitions (β-maps are canonical)
- Proof: $\left(\beta_{\sigma}\right)$ is a continuous family and HBS an open condition.

Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Definition

A smooth map $\beta: Z \rightarrow \mathbb{C}^{2}$ has HBS iff

1. $\left.\beta\right|_{S M}$ separates geodesics
2. $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism

Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Definition

A smooth map $\beta: Z \rightarrow \mathbb{C}^{2}$ has HBS iff

1. $\left.\beta\right|_{S M}$ separates geodesics
2. $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism

- Problem: Conditions are not open for diff-topo reasons:

(a) Topological embeddings are not open.

(b) Smooth embeddings of non-compact manifolds are not open.

Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Definition

A smooth map $\beta: Z \rightarrow \mathbb{C}^{2}$ has HBS iff

1. $\left.\beta\right|_{\partial_{+} S M}$ is a C_{α}^{∞}-embedding
2. $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism

- Problem: Conditions are not open for diff-topo reasons:

(a) Topological embeddings are not open.
(b) Smooth embeddings of non-compact manifolds are not open.

Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Definition

A smooth map $\beta: Z \rightarrow \mathbb{C}^{2}$ has HBS iff

1. $\left.\beta\right|_{\partial_{+} S M}$ is a C_{α}^{∞}-embedding
2. $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism
3. $\beta^{*} \Omega_{\mathbb{C}^{2}} \gtrsim \underline{\Omega}_{\sigma}$

- Key: Introduce Hermitian metrics that make β bi-Lipschitz:

$$
\begin{aligned}
\Omega_{\mathbb{C}^{2}} & =i d w \wedge d \bar{w}+i d \xi \wedge d \bar{\xi} \\
\underline{\Omega}_{\sigma} & =i\left(1-|\mu|^{4}\right)^{2} \bar{\Xi}_{\sigma}^{\vee} \wedge \Xi_{\sigma}^{\vee}+i \partial_{\mu}^{\vee} \wedge \partial_{\bar{\mu}}^{\vee}
\end{aligned}
$$

Holomorphic blow-down structure

Q. How to define holomorphic blow-down structure?

Definition

A smooth map $\beta: Z \rightarrow \mathbb{C}^{2}$ has HBS iff

1. $\left.\beta\right|_{\partial_{+} S M}$ is a C_{α}^{∞}-embedding
2. $\beta: Z^{\circ} \rightarrow \beta\left(Z^{\circ}\right)$ is a biholomorphism
3. $\beta^{*} \Omega_{\mathbb{C}^{2}} \gtrsim \underline{\Omega}_{\sigma}$

- Key: Introduce Hermitian metrics that make β bi-Lipschitz:

$$
\begin{aligned}
\Omega_{\mathbb{C}^{2}} & =i d w \wedge d \bar{w}+i d \xi \wedge d \bar{\xi} \\
\underline{\Omega}_{\sigma} & =i\left(1-|\mu|^{4}\right)^{2} \bar{\Xi}_{\sigma}^{\vee} \wedge \Xi_{\sigma}^{\vee}+i \partial_{\mu}^{\vee} \wedge \partial_{\bar{\mu}}^{\vee}
\end{aligned}
$$

Theorem (Openness under simultaneous perturbations)
Suppose $\beta_{0}:\left(Z, \mathscr{D}_{\sigma_{0}}, \Omega_{\sigma_{0}}\right) \rightarrow \mathbb{C}^{2}$ has HBS and

$$
\sigma \approx \sigma_{0}, \beta \approx \beta_{0} \quad\left(\text { in } C^{\infty} \text {-topology }\right), \quad d \beta\left(\mathscr{D}_{\sigma}\right)=0
$$

Then also $\beta:\left(Z, \mathscr{D}_{\sigma}, \underline{\Omega}_{\sigma}\right) \rightarrow \mathbb{C}^{2}$ has HBS.

Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z.

Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z. Small geodesic disks look nearly Euclidean, hence:

Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z. Small geodesic disks look nearly Euclidean, hence:

Theorem (Transport Newlander-Nirenberg Theorem)
For any point $p \in Z$ there is a neighbourhood $U \subset Z$ and a smooth map

$$
\beta: U \rightarrow \mathbb{C}^{2}
$$

that is holomorphic on $U(d \beta(\mathscr{D})=0)$ and an embedding on $U \backslash \partial Z$.

Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z. Small geodesic disks look nearly Euclidean, hence:

Theorem (Transport Newlander-Nirenberg Theorem)

For any point $p \in Z$ there is a neighbourhood $U \subset Z$ and a smooth map

$$
\beta: U \rightarrow \mathbb{C}^{2}
$$

that is holomorphic on $U(d \beta(\mathscr{D})=0)$ and an embedding on $U \backslash \partial Z$.

- Degeneracy of \mathscr{D} can always be resolved locally;

Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z. Small geodesic disks look nearly Euclidean, hence:

Theorem (Transport Newlander-Nirenberg Theorem)

For any point $p \in Z$ there is a neighbourhood $U \subset Z$ and a smooth map

$$
\beta: U \rightarrow \mathbb{C}^{2}
$$

that is holomorphic on $U(d \beta(\mathscr{D})=0)$ and an embedding on $U \backslash \partial Z$.

- Degeneracy of \mathscr{D} can always be resolved locally;
- holomorphic functions on U separate points;

Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z. Small geodesic disks look nearly Euclidean, hence:

Theorem (Transport Newlander-Nirenberg Theorem)

For any point $p \in Z$ there is a neighbourhood $U \subset Z$ and a smooth map

$$
\beta: U \rightarrow \mathbb{C}^{2}
$$

that is holomorphic on $U(d \beta(\mathscr{D})=0)$ and an embedding on $U \backslash \partial Z$.

- Degeneracy of \mathscr{D} can always be resolved locally;
- holomorphic functions on U separate points;

Complex geometry of twistor space

Let (M, g) be a general oriented Riemannian surface with twistor space Z. Small geodesic disks look nearly Euclidean, hence:

Theorem (Transport Newlander-Nirenberg Theorem)

For any point $p \in Z$ there is a neighbourhood $U \subset Z$ and a smooth map

$$
\beta: U \rightarrow \mathbb{C}^{2}
$$

that is holomorphic on $U(d \beta(\mathscr{D})=0)$ and an embedding on $U \backslash \partial Z$.

- Degeneracy of \mathscr{D} can always be resolved locally;
- holomorphic functions on U separate points;

Theorem (Classical Newlander-Nirenberg theorem)
Let X be a $2 n$-manifold and $\mathscr{D} \subset T_{\mathbb{C}} X$ an involutive distribution of rank n. For every point $p \in X$ with $\mathscr{D} \cap \bar{D}(p)=0$ there exists a neighbourhood $U \subset X$ and an embedding $\beta: U \rightarrow \mathbb{C}^{n}$ with $d \beta(\mathscr{D})=0$.

Thank you for your attention.

