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Overview 1/2: Range characterisations in inverse problems

Inverse problems are typically posed in terms of a forward operator
F: X = ).
Often F~! is not available, so we ask for injectivity, stability, ...

... & the range:
Problem: Characterise/understand the range F(X) C V.

Examples:

1. HELcAsON-Lubpwia (1964): F = linear X-ray transform on R™ //
range is characterised by moment conditions;

2. PESTOV-UHLMANN (2004): F = linear X-ray transform on simple
surface // range is parametrised by boundary operator;

3. SHARAFUTDINOV (2011): F arising from Calder6n problem on disk //
elements of the range are related by conjugation;

4. Buraco-Ivanov (2014): F = boundary distance map for Finsler
metrics on n-ball // range is open under suitable perturbations;

5. This talk: F = non-Abelian X-ray transform on simple surface //
nonlinear version of Pestov-Uhlmann result.



Overview 2/2: Connections to complex geometry

Common theme for some of these characterisations in 2D: Based on hard
transitivity theorem with complex geometric interpretation.

Transitivity theorem

Complex geometry

Calderén problem
on the disk

Linear X-ray
on simple surface

Non-Abelian X-ray
on simple surface

any g is conformally flat
3 "scalar holomorphic
integrating factors"

3 "matrix holomorphic
integrating factors"

Riemann mapping
theorem

Transport Oka-Grauert
principle: M(Z) =0

<= transitivity of a
certain group action

Structure of talk: o000 — 0000

We introduce a novel
transport twistor space Z

(® ~ Gabriel’s talk)



The non-Abelian X-ray transform

Let (M, g) be a compact Riemannian surface with boundary dM. Assume
that M is strictly convex and that M is non-trapping (= M = disk).

On SM = {(z,v) € TM : g(v,v) = 1} consider the transport equation

(X+A)R=0o0n SM, (TE)
with X = geodesic vector field and A € C*°(SM,C"*™) an attenuation.
Note: R € C*°(SM,C"*") solves (TE), iff V geodesics : [0, 7] — M,

d

S BO®),7(1) + AR(v(2),7(8)) = 0. (TE")

Let 0+SM = {(z,v) € SM : 2 € OM,+g(v,v(z)) > 0} = influx /outflux.

Definition
Let R = unique solution of (TE) with R|s_sa = Id, define:

Cx = Rla,sm € C%(0+SM,GL(n,C)) ~+ scattering data of A;
A— Ca ~> mnon-Abelian X-ray trafo.



The non-Abelian X-ray transform — Injectivity

Examples:

> Scalar case (n =1): Cy = exp(IA), where I = linear X-ray transform;
» Connections: If A(x,v) = A, (v) for 1-form A € Q' (M), then

Ca = parallel transport of connection d + A on M x C";
» Polarimetric Neutron Tomography: If A(z,v) = ®(z) € s0(3), then

Cp = spin rotation in SO(3) of neutrons after traversing B field.

Theorem (PATERNAIN-SALO-UHLMANN 2012 & 2020)

Let (M, g) be simple (i.e. OM strictly convex, non-trapping & no conjugate
points). Suppose A(z,v) = Az (v) + ®(z) and B = B, (v) + U(x) are s.th.

Ca = Chg.
Then there exists a gauge p € C*°(M,GL(n,C)) with ¢ =1d on OM and

®=¢ 'Wp, A=y 'do+ ¢ 'Bep.



The non-Abelian X-ray transform — Range characterisation

Theorem (B.-PATERNAIN)

Let (M, g) be a simple surface and g € C*°(04+SM,U(n)), then TFAE:
1. ¢ = Cy for some u(n)-valued A = & + A;

2. q lies in the range of a boundary operator

P: C®(845M,C™™) > D(P) — C™(94+SM, U(n)).

» Nonlinear version of PESTOV-UHLMANN (2004);

» P defined in terms of BIRKHOFF factorisation; morally its domain is

D(P) ~ Hermitian metrics __  Radiative/dispersive
T on9;SM xC"™ 7 degrees of freedom (DOF);
» Analogy with Ward correspondence by MasoN (2006):

Solutions to 1:1 Solitonic Radiative/dispersive
ASDYM DOF DOF

» TOG principle: # nontrivial holomorphic vector bundles on Z.



The non-Abelian X-ray transform — Definition of P

Her, = Hermitian positive definite n X n matrices;
G = {FeC>®(SM,GL(n,C)): F,F~" are fibrewise holomorphic};
a = scattering relation of (M, g).

Theorem (Symmetric BIRKHOFF factorisation)

For any H € C*(SM, Her}) there exists F € G such that H = F*F.

How to generate elements in the range of C°(M,u(n)) > ® — Cg:

1. Start with w € D(P) := C5°(SM, Herl});

2. extend to first integral w® € C°°(SM, Her?);

3. factor as w* = F*F (unique after requiring Fy = Id);
4. let ® = —(XF)F~' € C°°(M,u(n)), then

C@IP’LU = F‘@SMO(F_1|35MOCY) on 8+SM

» To get the whole range, need to solve (X + ®)F with F € G (~ HIF );

I

» we prove existence of HIF using injectivity of I and Nash-Moser IFT.



Transport twistor space

We set up a correspondence for any orientable Riemannian surface:

(M,g) ~ (degenerated) complex surface Z;

A~ holomorphic vector bundle over Z.
Idea: Fill in the disks in SM and extend X to Cauchy-Riemann operator.

Theorem (The transport twistor space)

The 4-manifold Z = {(z,v) € TM : g(v,v) < 1} supports a unique complex
rank 2 distribution D C TcZ with the following properties:

1. D is involutive (that is, [D,D] C D);
2. DND =0 on Z\SM and DN D = spanc X on SM;
3. the fibres o = Z NTey M =D are holomorphic (that is, 7%y, C D).

In particular, Z™ is a complex surface with T*'Z™* = D.

» Construction extends to other flows on SM (e.g. magnetic flows);

» Z is branched double cover of classical twistor space from
DuBo1s-VIOLETTE (1983), O’BRIAN-RAWNSLEY (1985),
LEBRUN-MASON (2002).



Transport twistor space — Definition of D

Example: Suppose M C C with Euclidean metric, then

SM = {(z,u) €C*: 2z € M,|u| =1}.
Write z = x + iy and g = cos 6 + isin @, then

X =cos -0y +sinf -0y = uo. + oz :ﬂ(u28z+65).
Definition
On Z = {(z,p) €C*: 2 € M, || < 1} we define D C TcZ by
D = spang {pﬁaz + 8,;,&;} .

Say f € C°°(U) is holomorphic iff (1120, + 0:)f = daf =0 on U C Z open.

» [D,D] =0and DN D = spang X for |u| = 1 are immediate;

» to incorporate different geometries/flows, replace X with = X + A\V.
If 4> \(2, 1) is p-holomorphic, then D is well defined by

D = spang {,u28z + 0z + 1" A0y, On}s

» description in isothermal coordinates, but D is defined invariantly.



Transport twistor space — Correspondence principles

Notions of complex geometry (e.g. d-complex, Dolbeaut cohomology,
holomorphic vector bundles) are defined on Z smooth up to the boundary

Let uy be the kth vertical Fourier mode of a function v on SM.
Or>iol = {ueC¥(SM):up=0for k < ko};
U = {AeC™(SM,C""): A, =0for k< —1}

Theorem (Correspondence principles)

The twistor space of any orientable Riemannian surface (M, g) satisfies:

{u € B0 : Xu=0} p=0,
A) Hg’p(Z) = Br>—10%/ X (Br>0k)

p=1
0 p>2.
_ | holomorphic vector bundle structures | .,
B )= { on Z x C", up to isomorphism } — (76

Theorem (TOG principle for simple surfaces)

> Hg‘l(Z) >~ M4 (Z) =0 — SALO-UHLMANN (2011)
> M, (Z) =0 for n > 2 — B.-PATERNAIN



Transport twistor space — Slogan and open problems

Cohomology computations & TOG-principle suggest the following slogan:

The twistor space of a simple surface behaves like a (con-
tractible) Stein surface.

Open questions:

» If M,g) is simple, is Z'™ an actual Stein surface?
» If (M, g1) and (M, g2) are both simple, do we have Z; = Z5?

» Which holomorphic vector bundles exist in the non-simple case?

Thank you for your attention & happy birthday Gunther!
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Appendix: The blow down map [

Recall: The Cauchy Riemann equations on Z(R?) = C, x D, are

(10, +0:)f =0 and 8uf =0.

The blow down map
The following map is holomorphic:

B:Z—C? Blz,p) = (z— p’z,p)
It has a partial inverse given by

w 2Re(pw) ” B
S TR € B = 13

B (w, ) = (

» Original approach of ESKIN-RALSTON (2004) to obtain HIF: Use § to
desingularise Z and apply the classical Oka-Grauert principle on 5(Z).



