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Overview

Research programme
Setting: nonlinear inverse problems on a parameter space Θ with
dim Θ =∞ or dim Θ = D →∞.
Goal: Theoretical guarantees for estimation and uncertainty quantification.
[Abraham, Altmeyer, B., Giordano, Kekkonen, Lassas, Monard, Nickl,
Paternain, Siltanen, van de Geer, Wang, . . . (2016+)]

I Example: In a Bayesian setting, we wish to approximate posterior
measures by simpler ones (Gaussian, log-concave, ...).

I Possible for some mildly ill-posed inverse problems, provided the
information operator is invertible/admits polynomial eigenvalue lower
bounds.

I For severly ill-posed problems, this hopeless for D →∞. Fix D?

Upshot
Even for extremely severe ill-posed problems, the statistical theory can
behave well in a parametric setting.
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The Calderón problem (1/2)

Electrical impedance tomography

I Infer conductivity inside body from voltage/current
measurements at electrodes;

I applications: stroke identification, pulmonary monitoring, . . .

Figure: [Huang et. al. (2016)]
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The Calderón problem (2/2)

I Let Ω ⊂ Rd (d ≥ 2) be a bounded domain with smooth boundary.

I For γ ∈ L∞(Ω,R) with ess inf γ > 0 and g ∈ H1/2(∂Ω,R) there is a
unique solution to {

−∇ · (γ∇u) = 0 in Ω
u = g on ∂Ω.

I The Dirichlet-to-Neumann operator of γ is defined by

Λγg = γ∂νu.

This is a linear map Λγ : H1/2 → H−1/2, where Hs = Hs(∂Ω,R).
I Electrical Impedance Tomography (EIT):

γ = conductivity, Λγ : voltage 7→ current

The Calderón problem
Determine γ in the interior of Ω from measurements of Λγ at ∂Ω.
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(Extremely) brief literature review

Deterministic:
I For many classes E ⊂ L∞(Ω,R), we know injectivity of

γ 7→ Λγ , E ∩ L∞+ (Ω)→ B(H1/2, H−1/2).

E.g.:
I E = {piecewise analytic} [Kohn-Vogelius (1985)]
I d ≥ 3: E = C2(Ω̄) [Sylvester-Uhlmann (1987)]
I d = 2: E = L∞(Ω) [Nachman (1996), Astala-Päivärinta (2006)]

I there are reconstruction methods (based on [Nachman (1988,
1996)]) that have been implemented numerically;

I however, typically the problem is severly ill-posed [Mandache, 2001]:

‖γ − γ′‖∞ ≤ ω(||Λγ − Λγ′‖) ⇒ ω(t) & | ln(t)|−σ

(e.g. if E = {γ ∈ Cm(Ω̄) : ‖γ‖Cm ≤M}, M,m� 1)

Statistical:
I Non-parametric estimators typically converge no better than

logarithmically in the inverse noise level [Abraham-Nickl (2019)]
(Noise model: e.g. white noise in BHS )
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Inverse problems with finitely many measurements

Question: How far can we push if we restrict to a parametric setting?
I Fix E ⊂ L∞(Ω) with dimE = D <∞.

I There is hope to set up a statistical experiment with measurements
only at finitely many locations:

Theorem [Harrach (2019), Alberti-Santacesaria (2021)]

Inverse problems in a finite dimensional unknown can be solved stably
with finitely many noiseless measurements, provided:
1. the nonlinear problem is injective;
2. its linearisation is injective;
3. some compactness properties are satisfied.
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Piecewise constant Calderón problem (1/2)

Suppose Ω = Ω0 ∪ Ω1 ∪ · · · ∪ ΩD (D ∈ N) is known partition, such as:

Ω1 Ω2 Ω3

Ω0

J2J1 J3

. . .

I We assume that the conductivity γ satisfies known upper/lower
bounds γmin ≤ γ ≤ γmax and that it is piecewise constant:

γ = γθ ≡ 1Ω0 +

D∑
k=1

θk1Ωk , θ ∈ RD

I We measure Λγ at a finite set of electrodes J = {J1, . . . , JM}, assuming

∆(J)� 1, where ∆(J) =
∣∣∂Ω\

M⋃
k=1

Jk
∣∣+ sup

k=1,...,M
diamJk.
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Piecewise constant Calderón problem (2/2)

Theorem

ED :=
{
γθ ∈ L∞(Ω) : γθ ≡ 1Ω0 +

D∑
k=1

θk1Ωk , θ ∈ RD
}

E′D := {κ ∈ L∞(Ω) : κ+ 1Ω0 ∈ ED}

On these spaces, the following properties hold true:

(P1) ED ∩ L∞+ (Ω) 3 γ → Λγ is injective;

(P2) for all γ ∈ ED ∩ L∞+ (Ω), the differential E′D 3 κ 7→ dΛγ(κ) is injective;

(P3) for all γ ∈ ED ∩ L∞+ (Ω) and κ ∈ E′D, the operator dΛγ(κ) is smoothing
and (γ, κ) 7→ ‖dΛγ(κ)‖Hs→Ht is locally bounded for any s, t ∈ R.

I Lipschitz stability (linear & non-linear) comes for free [Bourgeois
(2013)].
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From noiseless to noisy measurements (1/2)

Given a set of electrodes J = {J1, . . . , JM}, and with Λ̃γ = Λγ − Λ1, define:

Θ := {θ ∈ RD : γmin ≤ θi ≤ γmax, i = 1, . . . , D}

Gijθ :=
1

(|Ji||Jj |)1/2
〈Λ̃γθ1Ji ,1Jj 〉L2(∂Ω), 1 ≤ i, j,≤M, θ ∈ Θ,

Theorem (Finitely many noiseless measurements)

If ∆(J) ≤ δ(ED, γmin, γmax), then the following map is injective:

Θ→ RM×M , θ 7→ Gθ = (Gijθ : 1 ≤ i, j ≤M),

It obeys a Lipschitz stability estimate and has derivative of full rank.

I Direct consequence of [Harrach (2019), Alberti-Santacesaria
(2021)];

I δ depends (fairly explicitly) on Lipschitz constants, and these grow
exponentially in D.
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From noiseless to noisy measurements (2/2)

Statistical experiment
Let X = {1, . . . ,M} and λ = counting measure and recast G as follows:

G : Θ 7→ L2
λ(X ,RM ), Gθ(x) = (Gx,jθ : j = 1, . . . ,M)

Let Pθ = Law(Y,X), where (Y,X) follows the regression equation

Y = Gθ(X) + ε, X ∼ λ, ε ∼ NM (0, I).

Put PNθ = Pθ ⊗ · · · ⊗ Pθ and PN = {PNθ : θ ∈ Θ}.

I Interpretation: We choose an electrode J ∈ J at random and apply a
standard voltage. The resulting current is then measured at all
electrodes, corrupted by Gaussian noise. Repeat this N -times.

I The experiment P = P1 is differentiable in quadratic mean and has a
well-defined information matrix

Nθ ≡ dG∗θdGθ, θ ∈ Θ.

Theorem
The information matrix Nθ ∈ RD×D is invertible for all θ ∈ Θ\∂Θ.
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I The experiment P = P1 is differentiable in quadratic mean and has a
well-defined information matrix

Nθ ≡ dG∗θdGθ, θ ∈ Θ.

Theorem
The information matrix Nθ ∈ RD×D is invertible for all θ ∈ Θ\∂Θ.
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Consequences

Now we are in the classical setting of [Asymptotic Statistics, van der
Vaart (1998)], with all the nice consequences:

1. Bernstein-von-Mises theorem: If Π = π(θ)dθ is a sufficiently
regular prior on Θ (e.g π ≡ 1/|Θ|), θ0 ∈ Θ\∂Θ and ϑ ∼ Π(·|(Yi, Xi)Ni=1)
is a posterior draw, then:

∥∥∥Law
(√

N(ϑ− θ̄N )
∣∣∣(Yi, Xi)Ni=1

)
−ND(0,N−1

θ0
)
∥∥∥

TV
→ 0 in PNθ0 .

Here θ̄N = E[ϑ|(Yi, Xi)Ni=1] is the posterior mean.
2. Optimal asymptotic minimax variance: For all estimator

sequences (TN : N ∈ N) we have

lim
δ→0

lim inf
N→∞

sup
‖θ−θ0‖<δ

CovNθ
[√
N(TN − θ)

]
≥ N−1

θ0
,

and TN = θ̄N achieves this lower bound (; no analogue of this for
Nachman’s reconstruction procedure).

3. . . .
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Concluding remarks:
I The Calderón problem is just an example;

I essentially all nonlinear inverse problems for which the forward map
and its linearisation are injective can be fitted into the classical
parametric setting like this;

I only relevant for severaly ill-posed problems — in the mildly
ill-posed case there is also a satisfactory non-parametric theory.

Thank you!
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