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» Example: In a Bayesian setting, we wish to approximate posterior
measures by simpler ones (Gaussian, log-concave, ...).

» Possible for some mildly ill-posed inverse problems, provided the
information operator is invertible/admits polynomial eigenvalue lower
bounds.

» For severly ill-posed problems, this hopeless for D — co. Fix D?
Upshot

Even for extremely severe ill-posed problems, the statistical theory can
behave well in a parametric setting.



The Calder6on problem (1/2)

Electrical impedance tomography

» Infer conductivity inside body from voltage/current
measurements at electrodes;

» applications: stroke identification, pulmonary monitoring, ...
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Figure: [HuaNnG ET. AL. (2016)]
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> Let Q C R? (d > 2) be a bounded domain with smooth boundary.

» For v € L°(, R) with essinfy > 0 and g € H'/?(3Q, R) there is a
unique solution to

U g on 0.

{—V~(7Vu) = 0 inQ

» The Dirichlet-to-Neumann operator of « is defined by
Ayg = ~O,u.

This is a linear map A~ : HY? 5 H™Y2 where H® = H* (09, R).
» Electrical Impedance Tomography (EIT):

~v = conductivity, A : voltage — current

The Calderén problem

Determine v in the interior of 2 from measurements of A, at 9%2.
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Deterministic:
» For many classes E C L% (2, R), we know injectivity of

v Ay, ENLE(Q) — BHY?, H?).

E.g.:
» E = {piecewise analytic} [Konn-VocrLius (1985)]
» d>3: E=C?Q) [Svivester-Univann (1987)]
» d=2: E=L°(Q) [Nacuman (1996), AstaLa-PAIvARINTA (2006)]

» there are reconstruction methods (based on [Nacuman (1988,
1996)]) that have been implemented numerically;

» however, typically the problem is severly ill-posed |Manpache, 2001]:
v =7 llee Sw([Ay =Ayll) = w(t) 2 |In)]™°

(eg. if E={yeC™Q):|llem < M}, M,m > 1)

Statistical:
» Non-parametric estimators typically converge no better than
logarithmically in the inverse noise level |Asranav-Nickrn (2019)]
(Noise model: e.g. white noise in Bus )
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Question: How far can we push if we restrict to a parametric setting?
» Fix £ C L>®(Q2) with dimEF = D < .

» There is hope to set up a statistical experiment with measurements
only at finitely many locations:

Theorem [HARRACH (2019), ALBERTI-SANTACESARIA (2021)]
Inverse problems in a finite dimensional unknown can be solved stably
with finitely many noiseless measurements, provided:

1. the nonlinear problem is injective;

2. its linearisation is injective;

3. some compactness properties are satisfied.
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Suppose 2 = QU Q1 U---UQp (D € N) is known partition, such as:

Ju J2 Jz

@ Q, Q

Qo

» We assume that the conductivity ~y satisfies known upper/lower
bounds Ymin < v < Ymax and that it is piecewise constant:

D
v=70=1a, + Y _0kla,, 0€cR”

k=1

» We measure A, at a finite set of electrodes J = {J1, ..., Ju}, assuming

M
AJ) <1, where A(J) = [0\ U Ji|+ sup diamJy.
e k=1,...,M
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Piecewise constant Calderén problem (2/2)

Theorem
D
Ep = {’ygeLoo(Q)l’YQElQO+Zeklﬂk, HERD}
k=1
Ep = {keL®Q):k+1g, € Ep}

On these spaces, the following properties hold true:
(P1) Ep NL(Q) 5 v — A, is injective;
(P2) for all vy € Ep N LY (), the differential EL 3 k — dA4 (k) is injective;

(P3) for all y € Ep N LY () and k € Ep, the operator dA (k) is smoothing
and (v, k) = ||dA~ () || gs -t ts locally bounded for any s,t € R.

» Lipschitz stability (linear & non-linear) comes for free [Bourcros
(2013)].
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Given a set of electrodes J = {Ji,..., Ju}, and with A, = A, — A4, define:

S = {HERD:'YmingeiS'Ymax,izl,...,D}
ij 1 A ..
Gy = W<A’Y€1J“l"j>L2(39)7 1<4,5, <M, 6€0,

Theorem (Finitely many noiseless measurements)
If A(J) < 6(ED, Ymin, Ymax), then the following map is injective:
0 =RM 915 Gy=(GY :1<14,5 < M),
It obeys a Lipschitz stability estimate and has derivative of full rank.
» Direct consequence of [HarrAcH (2019), ALBERTI-SANTACESARIA
(2021)];

» § depends (fairly explicitly) on Lipschitz constants, and these grow
exponentially in D.
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Statistical experiment
Let X = {1,..., M} and X = counting measure and recast G as follows:
G: 0 LA(X,RM), Go(x) = (G357 :j=1,...,M)
Let Py = Law(Y, X), where (Y, X) follows the regression equation
Y=Gy(X)+e X~ e~Nu(0,I).
Put P;' = Py ®---® Py and Py = {P}' : 0 € ©}.
» Interpretation: We choose an electrode J € J at random and apply a

standard voltage. The resulting current is then measured at all
electrodes, corrupted by Gaussian noise. Repeat this N-times.

» The experiment P = P; is differentiable in quadratic mean and has a
well-defined information matrix

Ny = dG;dGs, 6 € O.

Theorem
The information matriz Ng € RP*P is invertible for all 6 € ©\O. |
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Now we are in the classical setting of [Asvvproric StartisTics, van DER
Vaarr (1998)], with all the nice consequences:

1. Bernstein-von-Mises theorem: If IT = 7(6)df is a sufficiently
regular prior on © (e.g = 1/|0|), 6o € ©\OO and 9 ~ TI(-|(Y;, X:)1)
is a posterior draw, then:

HLaW (\/ﬁ(ﬁ — éN)‘(Y;,Xi)évzl) —ND(OvNe_Ol)

| —0in B,
TV

Here Oy = E[9|(Y;, X:)iL,] is the posterior mean.

2. Optimal asymptotic minimax variance: For all estimator
sequences (I : N € N) we have

lim liminf sup Covy [VN(Tw —0)] > Np.',
§—0 N—oo 16—60 <5

and T = Oy achieves this lower bound (~ no analogue of this for
Nachman’s reconstruction procedure).
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and its linearisation are injective can be fitted into the classical
parametric setting like this;

» only relevant for severaly ill-posed problems — in the mildly
ill-posed case there is also a satisfactory non-parametric theory.

Thank you!



