The range of the non-Abelian X-Ray TRANSFORM

Jan Bohr
Joint work with G.P. Paternain

AIP 2023 - Göttingen
4 September 2023

UNIVERSITÄT BONN

LOOKING FOR STRUCTURE IN THE RANGE OF SOME TWO-DIMENSIONAL INVERSE PROBLEMS
 ```SIMILARITIES AND LIMITATIONS ILLUSTRATED AT SOME \\ LINEAR AND NON-LINEAR EXAMPLES```

Jan Bohr

Joint work with G.P. Paternain

AIP 2023 - Göttingen

4 September 2023

Four inverse problems in two-dimensions - what is the range?

(1) Linear X-ray

1-form f on M \downarrow
Integrals along geodesics
(2) Non-Abelian X-ray

Connection A on $M \times \mathbb{C}^{n}$ \downarrow
Parallel transport along geodesics
(4) Scattering problem

Riemannian metric g on M \downarrow
Scattering relation of geodesic flow

Four inverse problems in two-dimensions - what is the range?

(1) Linear X-ray

1-form f on M \downarrow
Integrals along geodesics
(2) Non-Abelian X-ray

Connection A on $M \times \mathbb{C}^{n}$ \downarrow

Parallel transport along geodesics

(4) Scattering problem

Riemannian metric g on M \downarrow
Scattering relation of geodesic flow

- Simple setting: Injectivity of $\{$ unknown $\} \rightarrow\{$ data $\}$ is understood.
- Upshot: for (1),(2),(3) we also understand the range, but (4) is harder
- New: B.-Paternain: The transport Oka-Grauert principle for simple surfaces - Journal de l'École Polytechnique, 2023

Setting

Throughout (M, g) is a simple surface, that is,

- ∂M is strictly convex;
- all geodesics reach the boundary (non-trapping);
- there are no conjugate points.

Setting

Throughout (M, g) is a simple surface, that is,

- ∂M is strictly convex;
- all geodesics reach the boundary (non-trapping);
- there are no conjugate points.

Protagonists:

$$
\begin{aligned}
S M= & \{(x, v) \in T M: g(v, v)=1\} \\
\partial_{ \pm} S M= & \{(x, v) \in \partial S M: \pm g(\nu(x), v) \geq 0\} \\
X= & \text { generator of the geodesic flow } \\
& \left(X: C^{\infty}(S M) \rightarrow C^{\infty}(S M)\right)
\end{aligned}
$$

$\alpha=$ scattering relation of the geodesic flow $(\alpha \in \operatorname{Diff}(\partial S M))$

$$
\Omega_{k}=\left\{u \in C^{\infty}(S M): u\left(x, e^{i t} v\right)=e^{i k t} u(x, v)\right\}, k \in \mathbb{Z}
$$

Setting

Throughout (M, g) is a simple surface, that is,

- ∂M is strictly convex;
- all geodesics reach the boundary (non-trapping);
- there are no conjugate points.

Protagonists:

$$
\begin{aligned}
S M= & \{(x, v) \in T M: g(v, v)=1\} \\
\partial_{ \pm} S M= & \{(x, v) \in \partial S M: \pm g(\nu(x), v) \geq 0\} \\
X= & \text { generator of the geodesic flow } \\
& \left(X: C^{\infty}(S M) \rightarrow C^{\infty}(S M)\right) \\
\alpha= & \text { scattering relation of the geodesic flow } \\
& (\alpha \in \operatorname{Diff}(\partial S M)) \\
\Omega_{k}= & \left\{u \in C^{\infty}(S M): u\left(x, e^{i t} v\right)=e^{i k t} u(x, v)\right\}, k \in \mathbb{Z}
\end{aligned}
$$

- Rk.: $X: \Omega_{k} \rightarrow \Omega_{k-1} \oplus \Omega_{k+1}$
- Def.: Call $w \in C^{\infty}(S M)$ fibrewise holomorphic if $w \in \oplus_{k \geq 0} \Omega_{k}$.

Linear X-ray - [Pestov-Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in $\mathfrak{u}(1)=i \mathbb{R}$)
We define $I_{1}: C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(1)\right) \rightarrow C^{\infty}\left(\partial_{+} S M, \mathfrak{u}(1)\right)$ by

$$
I_{1} f(x, v)=\text { Integral of } f \text { along geodesic } \gamma_{x, v}
$$

Linear X-ray - [Pestov-Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in $\mathfrak{u}(1)=i \mathbb{R}$)
We define $I_{1}: C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(1)\right) \rightarrow C^{\infty}\left(\partial_{+} S M, \mathfrak{u}(1)\right)$ by

$$
I_{1} f(x, v)=\text { Integral of } f \text { along geodesic } \gamma_{x, v}
$$

Step 1: Smoothly structure the range
If $f_{0}, f_{1} \in C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(1)\right) \subset \Omega_{-1} \oplus \Omega_{1}$, then

- solve $^{(\dagger)}$

$$
X w=f_{0}-f_{1} \quad w \in C^{\infty}(S M)
$$

- restrict to $\partial S M$:

$$
I_{1} f_{1}+w \circ \alpha=w+I_{1} f_{0} \quad w \in C^{\infty}(\partial S M)
$$

(\dagger) Thm.: $X: C^{\infty}(S M) \rightarrow C^{\infty}(S M)$ is onto

Linear X-ray - [Pestov-Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in $\mathfrak{u}(1)=i \mathbb{R}$)
We define $I_{1}: C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(1)\right) \rightarrow C^{\infty}\left(\partial_{+} S M, \mathfrak{u}(1)\right)$ by

$$
I_{1} f(x, v)=\text { Integral of } f \text { along geodesic } \gamma_{x, v}
$$

Step 2: Holomorphically structure the range
If $f_{0}, f_{1} \in C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(1)\right) \subset \Omega_{-1} \oplus \Omega_{1}$, then

- solve $^{(\dagger)}$

$$
\begin{array}{ll}
X w=f_{0}-f_{1} & w \in C^{\infty}(S M) \\
w \text { fibrewise holomorphic (+even) }
\end{array}
$$

- restrict to $\partial S M$:

$$
\begin{array}{|ll}
I_{1} f_{1}+w \circ \alpha=w+I_{1} f_{0} & \begin{array}{l}
w \in C^{\infty}(\partial S M) \\
w \text { fibrewise holomorphic (+even) }
\end{array}
\end{array}
$$

(\dagger) Thm.: $X: \oplus_{k \geq 0} \Omega_{2 k} \rightarrow \oplus_{k \geq-1} \Omega_{2 k+1}$ is onto [Salo-Uhlmann, 2011]

Linear X-ray - [Pestov-Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in $\mathfrak{u}(1)=i \mathbb{R}$)
We define $I_{1}: C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(1)\right) \rightarrow C^{\infty}\left(\partial_{+} S M, \mathfrak{u}(1)\right)$ by
$I_{1} f(x, v)=$ Integral of f along geodesic $\gamma_{x, v}$

Step 3: Parametrise the range

- Fix $f_{0}=0$ as anchor, then for any other $f \in C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(1)\right)$:

$$
\begin{array}{ll}
I_{1} f=w-(w \circ \alpha) & \begin{array}{l}
w \in C^{\infty}(\partial S M) \\
w \text { fibrewise holomorphic (+even) }
\end{array} \text {) }
\end{array}
$$

- Given $h \in C^{\infty}(\partial S M, \mathbb{R})$ (even), solve Riemann-Hilbert problem:

$$
h=w+\bar{w} \quad w \text { as above } \quad\left(\sim w=\frac{1}{2}\left(\operatorname{Id}+i H_{+}\right) h\right)
$$

- Restrict h to $\partial_{+} S M$, then

$$
I_{1} f=i P h \quad P=A_{-}^{*} H_{+} A_{+}=\begin{aligned}
& \text { Pestov-Uhlmann } \\
& \text { boundary operator }
\end{aligned}
$$

Template

Step 1 Smoothly structure the range

Template

Step 1 Smoothly structure the range
Step 2 Holomorphically structure the range

Template

Step 1 Smoothly structure the range
Step 2 Holomorphically structure the range
Step 3 Parametrise the range

Template

Step 1 Smoothly structure the range
Step 2 Holomorphically structure the range
Step 3 Parametrise the range

- Let's see how far we get with the other problems!

Definition (Non-Abelian X-ray transform on unitary connections)
We define $C: C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(n)\right) \rightarrow C^{\infty}\left(\partial_{+} S M, U(n)\right)$ by
$C_{A}(x, v)=$ Parallel transport of connection $d+A$ along $\gamma_{x, v}$

Non-Abelian X-ray - [B.-Paternain, 2023]

Definition (Non-Abelian X-ray transform on unitary connections)
We define $C: C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(n)\right) \rightarrow C^{\infty}\left(\partial_{+} S M, U(n)\right)$ by

$$
C_{A}(x, v)=\text { Parallel transport of connection } d+A \text { along } \gamma_{x, v}
$$

Step 1: Smoothly structure the range
If $A_{0}, A_{1} \in C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(n)\right)$, then

- solve $^{(\dagger)}$

$$
W^{-1}\left(X+A_{1}\right) W=A_{0} \quad W \in C^{\infty}(S M, G L(n, \mathbb{C}))
$$

- restrict to $\partial S M$:

$$
C_{A_{1}}(W \circ \alpha)=W C_{A_{0}} \quad W \in C^{\infty}(S M, G L(n, \mathbb{C}))
$$

(\dagger) Thm.: $C^{\infty}(S M, G L(n, \mathbb{C}))$ acts transitively $C^{\infty}(S M, \mathfrak{g l}(n, \mathbb{C}))$

Non-Abelian X-ray - [B.-Paternain, 2023]

Definition (Non-Abelian X-ray transform on unitary connections)
We define $C: C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(n)\right) \rightarrow C^{\infty}\left(\partial_{+} S M, U(n)\right)$ by

$$
C_{A}(x, v)=\text { Parallel transport of connection } d+A \text { along } \gamma_{x, v}
$$

Step 2: Holomorphically structure the range
If $A_{0}, A_{1} \in C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(n)\right)$, then

- solve $^{(\dagger)}$

$$
W^{-1}\left(X+A_{1}\right) W=A_{0}
$$

$$
\begin{aligned}
& W \in C^{\infty}(S M, G L(n, \mathbb{C})) \\
& W, W^{-1} \text { fibrewise holomorphic (+even) }
\end{aligned}
$$

- restrict to $\partial S M$:

$$
\begin{array}{ll}
C_{A_{1}}(W \circ \alpha)=W C_{A_{0}} & W \in C^{\infty}(S M, G L(n, \mathbb{C})) \\
W, W^{-1} \text { fibrewise holomorphic (+even) }
\end{array}
$$

(\dagger) Tнм.: $\mathbb{G}=\{W$ as above $\}$ acts transitively on $\oplus_{k \geq-1} \Omega_{2 k+1} \otimes \mathfrak{g l}(n, \mathbb{C})$ [Transport Oka-Grauert Principle]

Non-Abelian X-ray - [B.-Paternain, 2023]

Definition (Non-Abelian X-ray transform on unitary connections)
We define $C: C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(n)\right) \rightarrow C^{\infty}\left(\partial_{+} S M, U(n)\right)$ by

$$
C_{A}(x, v)=\text { Parallel transport of connection } d+A \text { along } \gamma_{x, v}
$$

Step 3: Parametrise the range

- Fix $A_{0}=0$ as anchor, then for any other $A \in C^{\infty}\left(M, T^{*} M \otimes \mathfrak{u}(n)\right)$:

$$
C_{A}=W\left(W^{-1} \circ \alpha\right)
$$

$$
W \in C^{\infty}(S M, G L(n, \mathbb{C}))
$$

$$
W, W^{-1} \text { fibrewise holomorphic (+even) }
$$

- Given $H \in C^{\infty}\left(\partial S M, \operatorname{Her}_{n}^{+}\right)$, solve the Riemann-Hilbert problem

$$
H=W^{*} W \quad W \text { as above } \quad(\sim \text { Birkhoff theorem })
$$

- Restrict H to $\partial_{+} S M$, then:

$$
C_{A} \equiv \mathcal{P}(H) \quad \bmod C_{\mathrm{Id}}^{\infty}(\partial M, U(n)) \quad \mathcal{P}=\begin{aligned}
& \text { nonlinear Pestov-Uhlmann } \\
& \text { boundary operator }
\end{aligned}
$$

Calderón problem - [Sharafutdinov, 2011]

Definition (DN-map)

We define $\Lambda: \operatorname{Riem}(M) \rightarrow \mathcal{L}\left(C^{\infty}(\partial M)\right)$ by

$$
\Lambda_{g} f=\partial_{\nu} u \quad \text { where } \quad \begin{cases}\Delta_{g} u=0 & M \\ u=f & \partial M\end{cases}
$$

Calderón problem - [Sharafutdinov, 2011]

Definition (DN-map)

We define $\Lambda: \operatorname{Riem}(M) \rightarrow \mathcal{L}\left(C^{\infty}(\partial M)\right)$ by

$$
\Lambda_{g} f=\partial_{\nu} u \quad \text { where } \begin{cases}\Delta_{g} u=0 & M \\ u=f & \partial M .\end{cases}
$$

Step 1: Smoothly structure the range
If $g_{0}, g_{1} \in \operatorname{Riem}(M)$, then

- Solve ${ }^{(\dagger)}$

$$
\varphi^{*} g_{0}=e^{2 \sigma} g_{1} \quad(\varphi, \sigma) \in \operatorname{Diff}(M) \times C^{\infty}(M, \mathbb{R})
$$

- Restrict to ∂M :

$$
\Lambda_{g_{1}} \varphi^{*}=\varphi^{*} \Lambda_{g_{0}} \quad \varphi \in \operatorname{Diff}_{\mathrm{Id}}(\partial M)
$$

(\dagger) Riemann mapping theorem

Calderón problem - [Sharafutdinov, 2011]

Definition (DN-map)

We define $\Lambda: \operatorname{Riem}(M) \rightarrow \mathcal{L}\left(C^{\infty}(\partial M)\right)$ by

$$
\Lambda_{g} f=\partial_{\nu} u \quad \text { where } \begin{cases}\Delta_{g} u=0 & M \\ u=f & \partial M .\end{cases}
$$

Step 1: Smoothly structure the range
If $g_{0}, g_{1} \in \operatorname{Riem}(M)$, then

- Solve ${ }^{(\dagger)}$

$$
\varphi^{*} g_{0}=e^{2 \sigma} g_{1} \quad(\varphi, \sigma) \in \operatorname{Diff}(M) \times C^{\infty}(M, \mathbb{R})
$$

- Restrict to ∂M :

$$
\Lambda_{g_{1}} \varphi^{*}=\varphi^{*} \Lambda_{g_{0}} \quad \varphi \in \operatorname{Diff}_{\mathrm{Id}}(\partial M)
$$

(\dagger) Riemann mapping theorem

- As good as it gets (?)

Scattering problem

Definition (Scattering data)

To a simple metric g we associate the scattering data $\alpha_{g} \in \operatorname{Diff}\left(\partial S M_{g}\right)$ by

$$
\begin{aligned}
\alpha_{g}(x, v) & =\left(\gamma_{x, v}(\tau), \dot{\gamma}_{x, v}(\tau)\right), \quad(x, v) \in \partial_{+} S M_{g} \\
\alpha_{g} \circ \alpha_{g} & =\operatorname{Id}
\end{aligned}
$$

Scattering problem

Definition (Scattering data)

To a simple metric g we associate the scattering data $\alpha_{g} \in \operatorname{Diff}\left(\partial S M_{g}\right)$ by

$$
\begin{aligned}
\alpha_{g}(x, v) & =\left(\gamma_{x, v}(\tau), \dot{\gamma}_{x, v}(\tau)\right), \quad(x, v) \in \partial_{+} S M_{g} \\
\alpha_{g} \circ \alpha_{g} & =\operatorname{Id}
\end{aligned}
$$

Step 1: Smoothly structure the range

For two simple metrics g_{0} and g_{1}

- solve $^{(\dagger)}$

$$
\phi_{*} X_{g_{0}}=a X_{g_{1}} \quad(\phi, a) \in \operatorname{Diff}\left(S M_{g_{0}}, S M_{g_{1}}\right) \times C^{\infty}\left(S M_{g_{1}}\right)
$$

- restrict to $\partial S M$:

$$
\alpha_{g_{0}} \circ \phi=\phi \circ \alpha_{g_{1}} \quad \phi \in \operatorname{Diff}\left(\partial S M_{g_{0}}, \partial S M_{g_{1}}\right)
$$

(\dagger) Thm.: The geodesic flows of any two simple metrics are orbit conjugate.

Scattering problem

Definition (Scattering data)

To a simple metric g we associate the scattering data $\alpha_{g} \in \operatorname{Diff}\left(\partial S M_{g}\right)$ by

$$
\begin{aligned}
\alpha_{g}(x, v) & =\left(\gamma_{x, v}(\tau), \dot{\gamma}_{x, v}(\tau)\right), \quad(x, v) \in \partial_{+} S M_{g} \\
\alpha_{g} \circ \alpha_{g} & =\text { Id }
\end{aligned}
$$

Step 2: Holomorphically structure the range

- Is there a natural notion of fibrewise holomorphicity for diffeomorphisms $\phi: S M_{g_{0}} \rightarrow S M_{g_{1}}$? - Yes
- Can the whole range be reached by conjugation with these? - $\mathrm{No}{ }^{(\dagger)}$
(\dagger) Intimately connected to the complex geometry of transport twistor space \sim ongoing work with F. Monard and G.P. Paternain

