THE RANGE OF THE NON-ABELIAN X-RAY TRANSFORM

Jan Bohr

Joint work with G.P. Paternain

AIP 2023 - Göttingen

4 September 2023

LOOKING FOR STRUCTURE IN THE RANGE OF SOME TWO-DIMENSIONAL INVERSE PROBLEMS SIMILARITIES AND LIMITATIONS ILLUSTRATED AT SOME LINEAR AND NON-LINEAR EXAMPLES

Jan Bohr

Joint work with G.P. Paternain

AIP 2023 - Göttingen

4 September 2023

◆□ → ◆□ → ◆ = → ◆ = ・ の Q · 1/8

Four inverse problems in two-dimensions – what is the range?

(1) Linear X-ray	(2) Non-Abelian X-ray
1-form f on M \downarrow Integrals along geodesics	Connection A on $M \times \mathbb{C}^n$ \downarrow Parallel transport along geodesics
(3) Calderón problem	(4) Scattering problem
Riemannian metric g on M	Riemannian metric g on M

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · りへで 2/8

Four inverse problems in two-dimensions – what is the range?

(1) Linear X-ray	(2) Non-Abelian X-ray
1-form f on M \downarrow Integrals along geodesics	Connection A on $M \times \mathbb{C}^n$ \downarrow Parallel transport along geodesics
(3) Calderon problem	(4) Scattering problem

▶ Simple setting: Injectivity of {unknown} → {data} is understood.

- **Upshot:** for (1), (2), (3) we also understand the range, but (4) is harder
- New: B.-Paternain: The transport Oka-Grauert principle for simple surfaces — Journal de l'École Polytechnique, 2023

Setting

Throughout (M, g) is a **simple surface**, that is,

- ▶ ∂M is strictly convex;
- ▶ all geodesics reach the boundary (non-trapping);
- ▶ there are no conjugate points.

Setting

Throughout (M, g) is a **simple surface**, that is,

- ▶ ∂M is strictly convex;
- ▶ all geodesics reach the boundary (non-trapping);
- ▶ there are no conjugate points.

Protagonists:

$$SM = \{(x,v) \in TM : g(v,v) = 1\}$$

$$\partial_{\pm}SM = \{(x,v) \in \partial SM : \pm g(\nu(x),v) \ge 0\}$$

$$X = \text{generator of the geodesic flow}$$

$$\left(X : C^{\infty}(SM) \to C^{\infty}(SM)\right)$$

$$\alpha = \text{scattering relation of the geodesic flow}$$

$$\left(\alpha \in \text{Diff}(\partial SM)\right)$$

$$\Omega_k = \{u \in C^{\infty}(SM) : u(x,e^{it}v) = e^{ikt}u(x,v)\}, \ k \in \mathbb{Z}$$

Setting

Throughout (M, g) is a **simple surface**, that is,

- ▶ ∂M is strictly convex;
- ▶ all geodesics reach the boundary (non-trapping);
- ▶ there are no conjugate points.

Protagonists:

$$SM = \{(x,v) \in TM : g(v,v) = 1\}$$

$$\partial_{\pm}SM = \{(x,v) \in \partial SM : \pm g(\nu(x),v) \ge 0\}$$

$$X = \text{generator of the geodesic flow}$$

$$\left(X : C^{\infty}(SM) \to C^{\infty}(SM)\right)$$

$$\alpha = \text{scattering relation of the geodesic flow}$$

$$\left(\alpha \in \text{Diff}(\partial SM)\right)$$

$$\Omega_k = \{u \in C^{\infty}(SM) : u(x,e^{it}v) = e^{ikt}u(x,v)\}, \ k \in \mathbb{Z}$$

- $\blacktriangleright \mathbf{Rk.:} X \colon \Omega_k \to \Omega_{k-1} \oplus \Omega_{k+1}$
- ▶ Def.: Call $w \in C^{\infty}(SM)$ fibrewise holomorphic if $w \in \bigoplus_{k \ge 0} \Omega_k$.

Definition (X-ray transform on 1-forms, valued in $\mathfrak{u}(1) = i\mathbb{R}$) We define $I_1: C^{\infty}(M, T^*M \otimes \mathfrak{u}(1)) \to C^{\infty}(\partial_+ SM, \mathfrak{u}(1))$ by

 $I_1 f(x, v) =$ Integral of f along geodesic $\gamma_{x,v}$

Definition (X-ray transform on 1-forms, valued in $\mathfrak{u}(1) = i\mathbb{R}$) We define $I_1: C^{\infty}(M, T^*M \otimes \mathfrak{u}(1)) \to C^{\infty}(\partial_+SM, \mathfrak{u}(1))$ by

 $I_1 f(x, v) =$ Integral of f along geodesic $\gamma_{x,v}$

Step 1: Smoothly structure the range
If
$$f_0, f_1 \in C^{\infty}(M, T^*M \otimes \mathfrak{u}(1)) \subset \Omega_{-1} \oplus \Omega_1$$
, then
 \blacktriangleright solve^(†)
 $Xw = f_0 - f_1$ $w \in C^{\infty}(SM)$

▶ restrict to ∂SM :

$$I_1f_1 + w \circ \alpha = w + I_1f_0$$
 $w \in C^{\infty}(\partial SM)$

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · の Q · 4/8</p>

(†) Thm.: $X: C^{\infty}(SM) \to C^{\infty}(SM)$ is onto

Linear X-ray – [Pestov–Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in $\mathfrak{u}(1) = i\mathbb{R}$) We define $I_1: C^{\infty}(M, T^*M \otimes \mathfrak{u}(1)) \to C^{\infty}(\partial_+ SM, \mathfrak{u}(1))$ by $I_1 f(x, v) =$ Integral of f along geodesic $\gamma_{x,v}$

Step 2: Holomorphically structure the range If $f_0, f_1 \in C^{\infty}(M, T^*M \otimes \mathfrak{u}(1)) \subset \Omega_{-1} \oplus \Omega_1$, then \blacktriangleright solve^(†)

> $w \in C^{\infty}(SM)$ $Xw = f_0 - f_1$ w fibrewise holomorphic (+even)

restrict to ∂SM :

 $w \in C^{\infty}(\partial SM)$ $I_1 f_1 + w \circ \alpha = w + I_1 f_0$ w fibrewise holomorphic (+even)

(†) THM.: $X: \bigoplus_{k>0} \Omega_{2k} \to \bigoplus_{k>-1} \Omega_{2k+1}$ is onto [Salo-Uhlmann, 2011] ◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · の Q · 4/8</p>

Linear X-ray – [Pestov–Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in $\mathfrak{u}(1) = i\mathbb{R}$) We define $I_1: C^{\infty}(M, T^*M \otimes \mathfrak{u}(1)) \to C^{\infty}(\partial_+ SM, \mathfrak{u}(1))$ by $I_1f(x, v) = \text{Integral of } f \text{ along geodesic } \gamma_{x,v}$

Step 3: Parametrise the range

▶ Fix $f_0 = 0$ as anchor, then for any other $f \in C^{\infty}(M, T^*M \otimes \mathfrak{u}(1))$:

 $\boxed{I_1 f = w - (w \circ \alpha)} \qquad \begin{array}{c} w \in C^{\infty}(\partial SM) \\ w \text{ fibrewise holomorphic (+even)} \end{array}$

▶ Given $h \in C^{\infty}(\partial SM, \mathbb{R})$ (even), solve Riemann-Hilbert problem:

$$h = w + \overline{w}$$
 w as above $\left(\rightsquigarrow w = \frac{1}{2} (\mathrm{Id} + iH_+)h \right)$

▶ Restrict h to $\partial_+ SM$, then

 $\boxed{I_1 f = iPh} \quad P = A_-^* H_+ A_+ = \begin{array}{c} \text{Pestov-Uhlmann} \\ \text{boundary operator} \end{array}$

<ロト < 回 > < 三 > < 三 > < 三 > つへで 4/8

Step 1 Smoothly structure the range

Figure:

Vertices: Points in the range Edges: Conjugations between them

- Step 1 Smoothly structure the range
- Step 2 Holomorphically structure the range

Figure: Vertices: Points in the range Edges: Conjugations between them

- Step 1 Smoothly structure the range
- Step 2 Holomorphically structure the range
- Step 3 Parametrise the range

Figure: Vertices: Points in the range Edges: Conjugations between them

- Step 1 Smoothly structure the range
- Step 2 Holomorphically structure the range
- Step 3 Parametrise the range

Figure: Vertices: Points in the range Edges: Conjugations between them

▶ Let's see how far we get with the other problems!

Definition (Non-Abelian X-ray transform on unitary connections) We define $C \colon C^{\infty}(M, T^*M \otimes \mathfrak{u}(n)) \to C^{\infty}(\partial_+ SM, U(n))$ by

 $C_A(x,v) =$ Parallel transport of connection d + A along $\gamma_{x,v}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Definition (Non-Abelian X-ray transform on unitary connections) We define $C \colon C^{\infty}(M, T^*M \otimes \mathfrak{u}(n)) \to C^{\infty}(\partial_+ SM, U(n))$ by

 $C_A(x,v) =$ Parallel transport of connection d + A along $\gamma_{x,v}$

Step 1: Smoothly structure the range If $A_0, A_1 \in C^{\infty}(M, T^*M \otimes \mathfrak{u}(n))$, then \blacktriangleright solve^(†)

$$|W^{-1}(X+A_1)W = A_0| \quad W \in C^{\infty}(SM, GL(n, \mathbb{C}))$$

▶ restrict to ∂SM:

 $C_{A_1}(W \circ \alpha) = WC_{A_0}$ $W \in C^{\infty}(SM, GL(n, \mathbb{C}))$

(†) THM.: $C^{\infty}(SM, GL(n, \mathbb{C}))$ acts transitively $C^{\infty}(SM, \mathfrak{gl}(n, \mathbb{C}))$

Non-Abelian X-ray – [B.–Paternain, 2023]

Definition (Non-Abelian X-ray transform on unitary connections) We define $C \colon C^{\infty}(M, T^*M \otimes \mathfrak{u}(n)) \to C^{\infty}(\partial_+ SM, U(n))$ by

 $C_A(x,v) =$ Parallel transport of connection d + A along $\gamma_{x,v}$

Step 2: Holomorphically structure the range If $A_0, A_1 \in C^{\infty}(M, T^*M \otimes \mathfrak{u}(n))$, then \blacktriangleright solve^(†)

 $\begin{array}{c} W^{-1}(X+A_1)W=A_0 \end{array} \qquad \begin{array}{c} W\in C^{\infty}(SM,GL(n,\mathbb{C})) \\ W,W^{-1} \text{ fibrewise holomorphic (+even)} \end{array}$

▶ restrict to ∂SM :

 $C_{A_1}(W \circ \alpha) = WC_{A_0} \qquad W \in C^{\infty}(SM, GL(n, \mathbb{C}))$ $W, W^{-1} \text{ fibrewise holomorphic (+even)}$

(†) THM.: $\mathbb{G} = \{W \text{ as above}\}\$ acts transitively on $\bigoplus_{k \ge -1} \Omega_{2k+1} \otimes \mathfrak{gl}(n, \mathbb{C})$ [Transport Oka-Grauert Principle]

Non-Abelian X-ray – [B.–Paternain, 2023]

Definition (Non-Abelian X-ray transform on unitary connections) We define $C \colon C^{\infty}(M, T^*M \otimes \mathfrak{u}(n)) \to C^{\infty}(\partial_+ SM, U(n))$ by

 $C_A(x,v) =$ Parallel transport of connection d + A along $\gamma_{x,v}$

Step 3: Parametrise the range

Fix $A_0 = 0$ as anchor, then for any other $A \in C^{\infty}(M, T^*M \otimes \mathfrak{u}(n))$:

$$C_A = W(W^{-1} \circ \alpha) \qquad \qquad W \in C^{\infty}(SM, GL(n, \mathbb{C})) \\ W, W^{-1} \text{ fibrewise holomorphic (+even)}$$

▶ Given $H \in C^{\infty}(\partial SM, \operatorname{Her}_{n}^{+})$, solve the Riemann-Hilbert problem

$$H = W^*W$$
 W as above $(\sim \text{Birkhoff theorem})$

▶ Restrict H to ∂_+SM , then:

 $C_A \equiv \mathcal{P}(H) \mod C^{\infty}_{\mathrm{Id}}(\partial M, U(n))$ $\mathcal{P} = \begin{array}{c} \text{nonlinear Pestov-Uhlmann} \\ \text{boundary operator} \end{array}$

Calderón problem – [Sharafutdinov, 2011]

Definition (DN-map)

We define Λ : Riem $(M) \to \mathcal{L}(C^{\infty}(\partial M))$ by

$$\Lambda_g f = \partial_\nu u \qquad \text{where } \begin{cases} \Delta_g u = 0 & M \\ u = f & \partial M. \end{cases}$$

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ᠑ < ៚ 7/8

Calderón problem – [Sharafutdinov, 2011]

Definition (DN-map) We define Λ : Riem $(M) \to \mathcal{L}(C^{\infty}(\partial M))$ by $\Lambda_g f = \partial_{\nu} u$ where $\begin{cases} \Delta_g u = 0 & M\\ u = f & \partial M. \end{cases}$

Step 1: Smoothly structure the range

If $g_0, g_1 \in \operatorname{Riem}(M)$, then

Solve^(†) $\varphi^* g_0 = e^{2\sigma} g_1 \quad (\varphi, \sigma) \in \operatorname{Diff}(M) \times C^{\infty}(M, \mathbb{R})$

▶ Restrict to ∂M :

$$\Lambda_{g_1}\varphi^* = \varphi^*\Lambda_{g_0} \quad \varphi \in \operatorname{Diff}_{\operatorname{Id}}(\partial M)$$

(†) Riemann mapping theorem

Calderón problem – [Sharafutdinov, 2011]

Definition (DN-map) We define Λ : Riem $(M) \to \mathcal{L}(C^{\infty}(\partial M))$ by $\Lambda_g f = \partial_{\nu} u \qquad \text{where } \begin{cases} \Delta_g u = 0 & M\\ u = f & \partial M. \end{cases}$

Step 1: Smoothly structure the range

If $g_0, g_1 \in \operatorname{Riem}(M)$, then

► Solve^(†) $\varphi^* g_0 = e^{2\sigma} g_1 \quad (\varphi, \sigma) \in \text{Diff}(M) \times C^{\infty}(M, \mathbb{R})$

▶ Restrict to ∂M :

$$\Lambda_{g_1}\varphi^* = \varphi^*\Lambda_{g_0} \quad \varphi \in \operatorname{Diff}_{\operatorname{Id}}(\partial M)$$

・ロト ・ 回 ト ・ ヨト ・ ヨ ・ の へ で - 7/8

- (†) Riemann mapping theorem
- ► As good as it gets (?)

Definition (Scattering data)

To a simple metric g we associate the scattering data $\alpha_g \in \text{Diff}(\partial SM_g)$ by

$$\begin{array}{lll} \alpha_g(x,v) &=& (\gamma_{x,v}(\tau),\dot{\gamma}_{x,v}(\tau)), \quad (x,v) \in \partial_+ SM_{\varrho} \\ \alpha_g \circ \alpha_g &=& \operatorname{Id} \end{array}$$

Definition (Scattering data)

To a simple metric g we associate the scattering data $\alpha_g \in \text{Diff}(\partial SM_g)$ by

$$\begin{array}{lll} \alpha_g(x,v) &=& (\gamma_{x,v}(\tau),\dot{\gamma}_{x,v}(\tau)), \quad (x,v) \in \partial_+ SM_{\varrho} \\ \alpha_g \circ \alpha_g &=& \mathrm{Id} \end{array}$$

Step 1: Smoothly structure the range

For two simple metrics g_0 and g_1

 \blacktriangleright solve^(†)

$$\boxed{\phi_* X_{g_0} = a X_{g_1}} \quad (\phi, a) \in \operatorname{Diff}(SM_{g_0}, SM_{g_1}) \times C^{\infty}(SM_{g_1})$$

 \blacktriangleright restrict to ∂SM :

$$\boxed{\alpha_{g_0} \circ \phi = \phi \circ \alpha_{g_1}} \quad \phi \in \operatorname{Diff}(\partial SM_{g_0}, \partial SM_{g_1})$$

Definition (Scattering data)

To a simple metric g we associate the scattering data $\alpha_g \in \text{Diff}(\partial SM_g)$ by

$$\begin{array}{lll} \alpha_g(x,v) &=& (\gamma_{x,v}(\tau),\dot{\gamma}_{x,v}(\tau)), \quad (x,v) \in \partial_+ SM_g \\ \alpha_g \circ \alpha_g &=& \mathrm{Id} \end{array}$$

Step 2: Holomorphically structure the range

- ▶ Is there a natural notion of *fibrewise holomorphicity* for diffeomorphisms $\phi: SM_{g_0} \to SM_{g_1}$? Yes
- ▶ Can the whole range be reached by conjugation with these? $No^{(\dagger)}$
- (†) Intimately connected to the complex geometry of transport twistor space \rightsquigarrow ongoing work with F. Monard and G.P. Paternain