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Four inverse problems in two-dimensions – what is the range?

(1) Linear X-ray

1-form f on M
↓

Integrals along geodesics

(2) Non-Abelian X-ray

Connection A on M × Cn
↓

Parallel transport along geodesics

(3) Calderón problem

Riemannian metric g on M
↓

DN-map of ∆g

(4) Scattering problem

Riemannian metric g on M
↓

Scattering relation of geodesic flow

I Simple setting: Injectivity of {unknown} → {data} is understood.
I Upshot: for (1),(2),(3) we also understand the range, but (4) is harder
I New: B.-Paternain: The transport Oka-Grauert principle for

simple surfaces — Journal de l’École Polytechnique, 2023
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Setting

Throughout (M, g) is a simple surface, that is,
I ∂M is strictly convex;
I all geodesics reach the boundary (non-trapping);
I there are no conjugate points.

Protagonists:

SM = {(x, v) ∈ TM : g(v, v) = 1}
∂±SM = {(x, v) ∈ ∂SM : ±g(ν(x), v) ≥ 0}

X = generator of the geodesic flow(
X : C∞(SM)→ C∞(SM)

)
α = scattering relation of the geodesic flow(

α ∈ Diff(∂SM)
)

Ωk = {u ∈ C∞(SM) : u(x, eitv) = eiktu(x, v)}, k ∈ Z

I Rk.: X : Ωk → Ωk−1 ⊕ Ωk+1

I Def.: Call w ∈ C∞(SM) fibrewise holomorphic if w ∈ ⊕k≥0Ωk.
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Linear X-ray – [Pestov–Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in u(1) = iR)
We define I1 : C∞(M,T ∗M ⊗ u(1))→ C∞(∂+SM, u(1)) by

I1f(x, v) = Integral of f along geodesic γx,v

Step 1: Smoothly structure the range
If f0, f1 ∈ C∞(M,T ∗M ⊗ u(1)) ⊂ Ω−1 ⊕ Ω1, then
I solve(†)

Xw = f0 − f1 w ∈ C∞(SM)

I restrict to ∂SM :

I1f1 + w ◦ α = w + I1f0 w ∈ C∞(∂SM)

(†) Thm.: X : C∞(SM)→ C∞(SM) is onto
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Linear X-ray – [Pestov–Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in u(1) = iR)
We define I1 : C∞(M,T ∗M ⊗ u(1))→ C∞(∂+SM, u(1)) by

I1f(x, v) = Integral of f along geodesic γx,v

Step 2: Holomorphically structure the range
If f0, f1 ∈ C∞(M,T ∗M ⊗ u(1)) ⊂ Ω−1 ⊕ Ω1, then
I solve(†)

Xw = f0 − f1
w ∈ C∞(SM)
w fibrewise holomorphic (+even)

I restrict to ∂SM :

I1f1 + w ◦ α = w + I1f0
w ∈ C∞(∂SM)
w fibrewise holomorphic (+even)

(†) Thm.: X : ⊕k≥0 Ω2k → ⊕k≥−1Ω2k+1 is onto [Salo-Uhlmann, 2011]
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Linear X-ray – [Pestov–Uhlmann, 2004]

Definition (X-ray transform on 1-forms, valued in u(1) = iR)
We define I1 : C∞(M,T ∗M ⊗ u(1))→ C∞(∂+SM, u(1)) by

I1f(x, v) = Integral of f along geodesic γx,v

Step 3: Parametrise the range

I Fix f0 = 0 as anchor, then for any other f ∈ C∞(M,T ∗M ⊗ u(1)):

I1f = w − (w ◦ α)
w ∈ C∞(∂SM)
w fibrewise holomorphic (+even)

I Given h ∈ C∞(∂SM,R) (even), solve Riemann–Hilbert problem:

h = w + w̄ w as above
(
; w =

1

2
(Id + iH+)h

)
I Restrict h to ∂+SM , then

I1f = iPh P = A∗−H+A+ =
Pestov–Uhlmann
boundary operator
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Template

Step 1 Smoothly structure the range

Step 2 Holomorphically structure the range
Step 3 Parametrise the range

q0

q1

q3

q4

Figure:
Vertices: Points in the range
Edges: Conjugations between them

I Let’s see how far we get with the other problems!
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Non-Abelian X-ray – [B.–Paternain, 2023]

Definition (Non-Abelian X-ray transform on unitary connections)

We define C : C∞(M,T ∗M ⊗ u(n))→ C∞(∂+SM,U(n)) by

CA(x, v) = Parallel transport of connection d+A along γx,v

Step 1: Smoothly structure the range
If A0, A1 ∈ C∞(M,T ∗M ⊗ u(n)), then
I solve(†)

W−1(X +A1)W = A0 W ∈ C∞(SM,GL(n,C))

I restrict to ∂SM :

CA1(W ◦ α) = WCA0 W ∈ C∞(SM,GL(n,C))

(†) Thm.: C∞(SM,GL(n,C)) acts transitively C∞(SM, gl(n,C))
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Non-Abelian X-ray – [B.–Paternain, 2023]

Definition (Non-Abelian X-ray transform on unitary connections)

We define C : C∞(M,T ∗M ⊗ u(n))→ C∞(∂+SM,U(n)) by

CA(x, v) = Parallel transport of connection d+A along γx,v

Step 2: Holomorphically structure the range
If A0, A1 ∈ C∞(M,T ∗M ⊗ u(n)), then
I solve(†)

W−1(X +A1)W = A0
W ∈ C∞(SM,GL(n,C))
W,W−1 fibrewise holomorphic (+even)

I restrict to ∂SM :

CA1(W ◦ α) = WCA0

W ∈ C∞(SM,GL(n,C))
W,W−1 fibrewise holomorphic (+even)

(†) Thm.: G = {W as above} acts transitively on ⊕k≥−1Ω2k+1 ⊗ gl(n,C)
[Transport Oka-Grauert Principle]
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Non-Abelian X-ray – [B.–Paternain, 2023]

Definition (Non-Abelian X-ray transform on unitary connections)

We define C : C∞(M,T ∗M ⊗ u(n))→ C∞(∂+SM,U(n)) by

CA(x, v) = Parallel transport of connection d+A along γx,v

Step 3: Parametrise the range

I Fix A0 = 0 as anchor, then for any other A ∈ C∞(M,T ∗M ⊗ u(n)) :

CA = W (W−1 ◦ α)
W ∈ C∞(SM,GL(n,C))
W,W−1 fibrewise holomorphic (+even)

I Given H ∈ C∞(∂SM,Her+n ), solve the Riemann–Hilbert problem

H = W ∗W W as above
(
; Birkhoff theorem

)
I Restrict H to ∂+SM , then:

CA ≡ P(H) mod C∞Id (∂M,U(n)) P =
nonlinear Pestov–Uhlmann
boundary operator
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Calderón problem – [Sharafutdinov, 2011]

Definition (DN-map)

We define Λ: Riem(M)→ L(C∞(∂M)) by

Λgf = ∂νu where

{
∆gu = 0 M

u = f ∂M.

Step 1: Smoothly structure the range
If g0, g1 ∈ Riem(M), then
I Solve(†)

ϕ∗g0 = e2σg1 (ϕ, σ) ∈ Diff(M)× C∞(M,R)

I Restrict to ∂M :

Λg1ϕ
∗ = ϕ∗Λg0 ϕ ∈ DiffId(∂M)

(†) Riemann mapping theorem
I As good as it gets (?)
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Scattering problem

Definition (Scattering data)

To a simple metric g we associate the scattering data αg ∈ Diff(∂SMg) by

αg(x, v) = (γx,v(τ), γ̇x,v(τ)), (x, v) ∈ ∂+SMg

αg ◦ αg = Id

Step 1: Smoothly structure the range
For two simple metrics g0 and g1
I solve(†)

φ∗Xg0 = aXg1 (φ, a) ∈ Diff(SMg0 , SMg1)× C∞(SMg1)

I restrict to ∂SM :

αg0 ◦ φ = φ ◦ αg1 φ ∈ Diff(∂SMg0 , ∂SMg1)

(†) Thm.: The geodesic flows of any two simple metrics are orbit
conjugate.
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Scattering problem

Definition (Scattering data)

To a simple metric g we associate the scattering data αg ∈ Diff(∂SMg) by

αg(x, v) = (γx,v(τ), γ̇x,v(τ)), (x, v) ∈ ∂+SMg

αg ◦ αg = Id

Step 2: Holomorphically structure the range

I Is there a natural notion of fibrewise holomorphicity for
diffeomorphisms φ : SMg0 → SMg1? — Yes

I Can the whole range be reached by conjugation with these? — No(†)

(†) Intimately connected to the complex geometry of transport twistor
space ; ongoing work with F. Monard and G.P. Paternain


