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Moduli spaces of Riemann surfaces

Introduction A motivating question would be the following: How can one classify the complex structures
on a two dimensional manifold F? The first huge step towards a satisfactory answer, is the construction of the
moduli space M. Its underlying points are in one-to-one correspondence with the set of equivalence classes of
complex structures. The study of these moduli spaces relates topology, geometry, algebra and mathematical
physics. We are interested in the homology of these moduli spaces and their harmonic compactifications.

The moduli spaces M•
g(p, q) and Mg(p, q) Fix g ≥ 0, p ≥ 1 and q ≥ 1. Our data D for a surface F

consists of

(1) a Riemann surface F of genus g with p+ q disjointly embedded discs removed, thus ∂F ∼=
∐

p+q S1;

(2) p enumerated incoming boundary circles C−1 , . . . , C
−
p ⊂ ∂F each of which has a marked point P−i ;

(3) q enumerated outgoing boundary circles C+
1 , . . . , C

+
q ⊂ ∂F each of which has a marked point P+

i .

Two surfaces [F,D] and [F ′,D′] are equivalent if and only if there is a bihomolorphic map ϕ : F −→ F ′ re-
specting the structure. The set of equivalence classes embody the moduli space of Riemann surfaces M•

g(p, q).
Forgetting the marked points on the outgoing boundaries yeilds another moduli space denoted by Mg(p, q).
Moreover, we obtain a torus bundle Tq −→M•

g(p, q) −→Mg(p, q).

Hilbert uniformization A method providing a comfortable model for M•
g(p, q) and Mg(p, q) is intro-

duced in [Böd]. In order to ease the discussion of the uniformization process, we provide a pictorial example
below, where g = 0, p = 2 and q = 1. Given a complex surface [F ] ∈ M•

g(p, q) there is a unique harmonic
potential u : F −→ R≥0 that is constant on all boundaries with u = 0 on the outgoing boundaries. The flow
of steepest descent is drawn in light blue. It has finitely many critical points S1, . . . , Sk in the interour of F .
The union of all the flow lines leaving a critical point constitute the critical graph K drawn in red.

Observe that F −K consist of exactly p components that retract onto exactly p annuli by following the
flowlines backwards. The process of “straightening the remaining flow lines” defines an injective homolorphic
map w from F −K into p complex planes. The image are p annuli A minus a finite number of radial half-rays
ending in the outer boundary of each annulus; this we call a radial slit configuration.
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The space of such maps w is denoted by H•g(p, q). It is a bundle H•g(p, q)
'−−→ M•

g(p, q) and the choices
we made constitute the fibre which is contractible. The space H•g(p, q) is homeomorphic to the space of
admissible radial slit configurations denoted by Rad•g(p, q). Analogous results hold for the moduli spaces
with unmarked outgoing boundary Mg(p, q).

The harmonic compactification

The harmonic compactification The space of radial slit configurations Rad•g(p, q) is a model for
the moduli space of Riemann surfaces M•

g(p, q). It is not compact; but allowing certain degenerations of
handles and outgoing boundaries (such that the harmonic potential u is still defined), we obtain the har-
monic compactification M•

g(p, q) ⊂ M•
g(p, q). In [EK], it is identified with a space of Sullivan diagrams

M•
g(p, q)

∼= S D•g(p, q). The spaces of Sullivan diagrams are studied in string topology, e.g. they classify all
natural (higher string-) operations on the Hochschild complex of symmetric Frobenius algebras, see [Wah].

Observe that the moduli space deformation retracts onto the subspace NM•
g(p, q) ⊂ M•

g(p, q) consisting
of all moduli where each boundary component has circumference one. Allowing the same degenerations of
handles as before, we obtain again a harmonic compactification NM•

g(p, q) ⊂ NM•
g(p, q) ⊂ M•

g(p, q) and
similarly for Mg(p, q). The relationship between the spaces discussed so far is shown in the following diagram
where all rows but the row in the lower front are torus fibrations.

Tq NM•
g(p, q) NMg(p, q)

Tq M•
g(p, q) Mg(p, q)

Tq NM•
g(p, q) NMg(p, q)

M•
g(p, q) Mg(p, q)

=

= ' '

Sewing a fixed surface of genus one with exactly one incoming and one outgoing boundary to the first
incoming boundary of a modulus [F ] increases the genus of [F ] by one. This operation defines the so called
stabilization map of moduli spaces. Moreover, there are stabilization maps on the level of harmonic compact-
ifications that respect the fibrations (being the identity on the fibre) as well as the inclusions in the diagram
above. Let us present our results on the homotopy type of the harmonic compactifications:

Theorem (B.–Egas 2016). Given parameters g ≥ 0, p = 1, q ≥ 1 and q integers ci > 1 with c = c1 + . . .+cq.

1. The harmonic compactifications M•
g(p, q) and Mg(p, q) are highly connected with respect to the number

of outgoing boundaries i.e.

πi(M
•
g(p, q)) = πi(Mg(p, q)) = 0 for 0 ≤ i ≤ q − 2 .

2. The stabilization maps

M•
g(p, q) −→M•

g+1(p, q) and Mg(p, q) −→Mg+1(p, q)

are (g + q − 2)-connected.

3. There are classes of infinite order γq ∈ H4q−1(M
•
q(1, q);Z) and ω(c1,...,cm) ∈ H2c−1(M

•
0(1,

∑
ci);Z). All

these correspond to non-trivial higher string topology operations.

Our next results describe the homotopy type of the so called stable moduli spaces M•
∞(p, q) resp. M∞(p, q)

and their harmonic compactifications. The inclusion into the stable moduli space yeilds isomorphisms in
homology in a range increasing with g. A homology class is called stable, if it survives the inclusion into the
stable moduli space.

Results on the stable and unstable homology

Theorem (B. 2017+). Given parameters g ≥ 0, p = 1 and q ≥ 1, denote the classifying maps of the torus
bundle by ϑg : NMg(p, q) −→ (CP∞)q.

1. The maps ϑg and the stabilization maps are (g − 2) connected.

2. In particular, NM•
∞(p, q) −→ NM∞(p, q) is homotopy equivalent to ETq −→ BTq ' (CP∞)q.

In [Wah] it was shown that all stable homology classes in M•
g(p, q) vanish in M•

g(p, q). Observe that this is
recovered by our theorem above because the inclusion M•

∞(p, q) ⊂M•
∞(p, q) factors through the contractible

space NM•
∞(p, q). For stable homology classes in Mg(p, q) the situation is different:

Theorem (B. 2017+). The inclusion into the stable harmonic compactification M∞(p, q) ⊂ NM∞(p, q)
induces the canonical inclusion of rings

H∗(M∞(p, q);Q) ∼= Q[u1, . . . , uq, κi | i ≥ 1]←− Q[u1, . . . , uq] ∼= H∗((CP∞)q;Q) .

In particular, the inclusion M∞(p, 1) −→M∞(p, 1) ' CP∞ induces a non-trivial map in homology.

The last statement follows from the the univeral coefficient theorem and the fact thatNM∞(p, 1) 'M∞(p, 1).

The moduli spaces Mm
g,1 In the remainder of this poster, we discuss the unstable homology of moduli

spaces of Riemann surfaces with one parametrized incoming and with m ≥ 0 unenumerated unparametrized
outgoing boundaries denoted by Mm

g,1. Observe that the forgetful map Mg(1,m) −→ Mm
g,1 is a m!-fold

covering. Moreover, the disjoint union M :=
∐

g,m Mm
g,1 is an E2-space.

In [BB], Bödigheimer and the author give a partial description of the unstable homology of the moduli
spaces Mm

g,1 by means of generators and relations. Let us discuss three examples.

Unstable homology via small models As before, the Hilbert uniformization yeilds a space of radial slit
domains Radmg,1 modelling the moduli space Mm

g,1. It is a combinatorial, relative manifold, i.e., Radmg,1
∼= P−P′

with (P,P′) a pair of compact cell complexes. The homology of Mm
g,1 is therefore Poincaré dual to the coho-

mology of P/P′. Using this description of the homology of Mm
g,1, explicit computations for 2g +m ≤ 6 were

carried out by Abhau, Bödigheimer, Ehrenfried, Hermann, Mehner, Wang and the author. This way, one
obtains explicit generators and relations using the various homology operations.

Unstable homology via braid groups I The moduli space Mm
0,1 is the space of m undistinguishable

particles in an open disc. Thus, Brm = π1(M
m
0,1) is the braid group on m stands and H∗(Brm) ∼= H∗(M

m
0,1).

Introducing a new puncture near the boundary curve of a closed surface Fg,1 of genus g with one
boundary component induces a map Mm

g,1 −→ Mm+1
g,1 of moduli spaces. The induced map in homology

H0(M
1
0,1;Z)⊗H∗(Mm

g,1;Z) −→ H∗(M
m+1
g,1 ;Z) is the operadic multiplication with the generator in H0(M

1
0,1).

It is split-injective by [BT1]. Using the braid group on two strands, we obtain infinite families of non-trivial
(unstable) homology classes.

Theorem (B. 2015+). The generator b ∈ H1(Br2;F2) ∼= H1(M
2
0,1;F2) spans a polynomial ring F2[b] inside

H∗(M;F2). Regarding H∗(M;F2) as a module over F2[b], it is torsion free.

More results on the unstable homology

Unstable classes via braid groups II It is well known that the kth braid group Brk is isomorphic to
the mapping class group Γk

0,1 of a disc with k permutable punctures. Sending the braid generators σi to
certain Dehn twists, [BT2] construct more families of maps from Brk to the mapping class group Γm

g,1 of a
surface of genus g with one boundary component and m permutable punctures. Let us review one of these.
The map φg : Br2g −→ Γ0

g,1 sends the generators σ1, . . . , σ2g−1 to the Dehn twists along the simple closed
curves a1, b1, . . . , ag, bg drawn red and blue in picture below.

a1 a2 a3
b1 b2 b3

The stable version φ∞ : Br∞ −→ Γ0
∞,1 comes from a map of double-loop spaces that is null-homotopic [BT2].

Therefore, φg is the trivial map in homology in the stable range. The same is true for most maps constructed
in [BT2]. However, it turns out that some of these are non-trivial in the unstable range.

Proposition (B. 2016+). For g ≤ 2, the map φg induces a split injection in homology outside the stable range.
Moreover, we have a canonical map ψ2 : Br6 −→ Γ0

2,1, inducing a split injection Z/3Z ∼= H4(Br6;Z) −→
H4(Γ

0
2,1;Z) .
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