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Basics I

Introduction A motivating question would be the following: How can one classify all complex structures
on a two dimensional manifold F? The first huge step towards a satisfactory answer, is the construction
of the moduli space M. Its underlying points are in one-to-one correspondence with the set of equivalence
classes of complex structures. The study of these moduli spaces relates topology, geometry, algebra and
mathematical physics.

The moduli space Mm
g,n Keep g ≥ 0, m ≥ 0 and n ≥ 1 fixed. A surface with structure consists of

(1) a complex surface F of genus g;

(2) a set P = {P1, . . . , Pm} ⊂ F of m distinct points;

(3) an ordered set Q = (Q1, . . . , Qn) ⊂ F of n distinct points disjoint from P ;

(4) directions X = (X1, . . . , Xn) in the repsectively tangent spaces at Q1, . . . , Qn.

Two surfaces [F,P ,Q,X ] and [F ′,P ′,Q′,X ′] are equivalent if and only if there is a map ϕ : F −→ F ′

respecting the structure i.e.

(5) ϕ : F
∼=−−→ F ′ as complex manifolds.

(6) ϕ : P
∼=−−→ P ′ resp. ϕ : Q

∼=−−→ Q′ resp. Dϕ : X
∼=−−→ X ′ as (un)ordered sets.

The set of equivalence classes embody the moduli space of Riemann surfaces Mm
g,n. The assertion n ≥ 1

ensures that it is both a manifold of dimension 6g−6+2m+4n and a classifying space BΓm
g,n for the mapping

class group (because the action of Γm
g,n on the Teichmüller space is well behaved).

The mapping class group Γm
g,n Consider an oriented smooth surface F of genus g with P , Q and X as

above. Let

Diff + = Diff +(F,P ,Q,X ) = {ϕ : F
∼=−−→ F | smooth, orientation preserving, respecting (6)} . (7)

with the C∞-Whitney topology and let Diff +
0 ⊂ Diff + be the subspace of diffeomorphisms isotopic to the

identity. The usual composition of maps turns Diff + into a topological group with Diff +
0 a contractible

subgroup. The mapping class group is

Γm
g,n = Diff +(F,P ;Q,X ) / Diff +

0 (F,P ;Q,X ) = π0Diff +(F,P ;Q,X ) . (8)

Instead of fixing directions X at Q, we remove an open small disc around every Qi and obtain a compact
surface F̂ with n boundary circles which are required to be fixed in a small ε-neighbourhood.

This gives an isomorphic group

Γm
g,n = Diff +(F̂ ,P ; ∂F̂ ) / Diff +

0 (F̂ ,P ; ∂F̂ ) = π0Diff +(F̂ ,P ; ∂F̂ ) . (9)

It is finitely presented by Dehn twists.

Hilbert uniformization A method providing a nice model for Mm
g,n is introduced in [Böd1]. In order to

ease the discussion of the uniformization process, we provide a pictorial example on the next page, where
g = 1, m = 0 and n = 1. Given a surface [F ] ∈Mm

g,n we choose a map u : F −→ R̂ ⊂ Ĉ which is harmonic
away from P and Q. Moreover, we assert a dipole at every Qi ∈ Q in direction Xi and with a logarithmic
sink at every Pj ∈ P . The flow of steepest descent has finitely many critical points S1, . . . , Sk. The union of
Q, P , all the Sl and the flow lines leaving the Sl constitute the critical graph K drawn in red.

Basics II & Questions

Observe that F −K consist of exactly n contractible components because every flow line starts near exactly
one Qi. The process of “straightening the remaining flow lines” defines a bihomolorphic map u + iv from
F −K into the complex plane. The image is C minus a finite number of horizontal half-rays running to the
left.
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We denote the space of such maps u + iv by Hm
g,n. It is a bundle Hm

g,n
'−−→Mm

g,n and the choices we made
constitute the fibre which is contractible. The space Hm

g,n is homeomorphic to the space of admissible slit
configurations denoted by Parmg,n.

The E2-space structure The data of a slit picture L ∈ Parmg,1 consists of the endpoints of the half-rays
and certain glueing information. Thus, L is inscribed in a square of finite area. Placing two slit pictures into
disjoint squares in C defines an H-space structure on Par =

∐m
g,1Parmg,1. Observe: this operation is induced

by joining the two corresponding surfaces by a pair of pants.
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More generally, the little 2-cubes operad C̃(C) =
∐

k≥0{k disjoint, paraxial squares in C} acts on Par. As
a consequence, H∗(Par) ∼= H∗(

∐
g,mMm

g,1) is not only a commutative Pontryargin ring, but a Dyer–Lashof
algebra.

Questions Denote M =
∐

g,mMm
g,1.

1. What are the homology modules H∗(M
m
g,n) for given parameters g, n and m?

2. What are generators of H∗(M
m
g,n) for given parameters g, n and m?

3. How does the homology of the braid groups act on H∗(M)?

4. How are the generators related by Browder operations, Dyer–Lashof operations and other homology
operations?

Partial Answers I

The stable range and the Madsen–Weiss Theorem The Harer stabilization theorem states, that the

multiplication with the generator in H0(Γ
0
1,1) induces an isomorphism H∗(Γ

0
g,1)

∼=−−→ H∗(Γ
0
g+1,1) if ∗ ≤ 2

3
g−1,

compare [Wah]. Thus Γ∞,1 = ∪gΓg,1 is an approximation of every Γg,1 in this so called stable range. In
[MW] Madsen and Weiss construct a certain spectrum MT (d)+ detecting the homotopy type of a cobordism
category. As a special case, a group completion theorem yields a homology isomorphism

Z×BΓ∞,1
'−−→ Ω∞MT (2)+ .

This proves a conjecture by Mumford.

Theorem (Madsen–Weiss 2002). The rational cohomology of Γ∞,1 is

H∗(Γ∞,1;Q) ∼= Q[κ1, κ2, . . .]

with κi the Mumford–Morita–Miller characteristic classes for surface bundles. In particular, H∗(Γ
0
g+1,1;Q)

is known in the stable range ∗ ≤ 2
3
g − 1.

Homology calculations in the unstable range The space of parallel slit domains Parmg,n is a a combi-
natorial, relative manifold, i.e. Parmg,n

∼= P−P′ with (P,P′) a pair of compact cell complexes. The homology
of Mm

g,n is therefore Poincaré dual to the cohomology of P/P′. Computations for 2g + m < 6 were done by
Ehrenfried, Mehner and Wang using this model; and Godin using another model. Bödigheimer introduces
a nice filtration on P in [Böd2]. It descends to a certain homotopy retract of P/P′ provided by Visy. This
allows explicit calculations. We state some of our results for 2g +m = 6.

Theorem (Bödigheimer, B., Hermann 2014). The rational betti numbers of the moduli spaces are as follows.

∗ = 0 ∗ = 1 ∗ = 2 ∗ = 3 ∗ = 4 ∗ = 5 ∗ = 6 ∗ = 7 ∗ = 8 ∗ = 9

dimQH∗( M
2
2,1 ) 1 0 1 3 0 2 2 0 0 0

dimQH∗( M
0
3,1 ) 1 0 1 1 0 1 1 0 0 1

Bödigheimer and Mehner describe most of the generators of the known homology as embedded manifolds.
For example, H3(M

0
2,1;Z) = Z is generated by the fundamental class of the sphere bundle of the universal

surface bundle over the moduli space M0
2,0. Bödigheimer and the author provide a handful of relations

between generators via generatlized Browder operations.

Braid groups The moduli space Mm
0,1 is the space of m undistinguishable particles in the plane. Thus,

π1(M
m
0,1) = Γm

0,1 is the braid group on m stands. Using the theory of iterated loop spaces, Cohen provides
the p-torsion of the integral homology and its description as Dyer–Lashof algebra. The classical result by
Arnold and Fuks is then obtained as corollary: The homology of the braid group is a truncated subring

H∗ = H∗(M
m
0,1;F2) ≤ F2[ x1, x2, x3, . . . ]

where deg(xi) = 2i − 1 and x = xl11 · · ·x
lk
k ∈ H∗ for

∑
i li2

i ≤ n and xi+1 = Q1(xi) with Q1 the first
Dyer–Lashof operation.

Partial Answers II & References

The action of the homology of the Braid groups Forgetting the marked points defines a fibration
Mm

g,1 −→M0
g,1 with fibre Cm(Fg,1) the unordered configuration space on the surface without marked points.

Adding a marked point near the boundary curve, defines a map α over M0
g,1. The induced map in homology,

is the multiplication with the generator in H0(M
1
0,1).

Theorem (Bödigheimer, Tillmann 2001). Adding a marked point α : Mm
g,1 −→Mm+1

g,1 admits a stable retract

Ω∞Σ∞Mm+1
g,1 −→ Ω∞Σ∞Mm

g,1. In particular, the restriction of the multiplication in one argument

H0(M
1
0,1;Z)⊗H∗(Mm

g,1;Z) −→ H∗(M
m+1
g,1 ;Z)

admits a retraction.

Using this, we obtain a family of non-trivial homology operations.

Theorem (B. 2015). The following restriction of the multiplication is injective.

H1(M
2
0,1;Z/2Z)⊗H∗(Mm

g,1;Z/2Z) −→ H∗+1(M
m+2
g,1 ;Z/2Z)
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[Böd1] Carl-Friedrich Bödigheimer. “On the topology of moduli spaces of Riemann surfaces. Part I:
Hilbert Uniformization”. Mathematica Gottingensis 1990.
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[BT] Carl-Friedrich Bödigheimer and Ulrike Tillmann. “Stripping and splitting decorated mapping class

groups”. Cohomological Methods in Homotopy Theory Vol. 196, 2001, pp. 47–57.
[BH] Felix Jonathan Boes and Anna Hermann. “Moduli Spaces of Riemann Surfaces — Homology

Computations and Homology Operations”. Masters Thesis. Universität Bonn, 2014.
[CLM] Frederick R. Cohen, Thomas J. Lada, and J. Peter May. “The homology of iterated loop spaces”.

Lecture Notes in Mathematics Vol. 533, 1976, pp. 207–351.
[Meh] Stefan Mehner. ”Homologieberechnungen von Modulräumen Riemannscher Flächen durch diskrete
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