Thin bases of order \(h \), J. Number Theory, 98 (2003), 34-46

• reference [5]: for “\(n \)-ter” read “\(h \)-ter”

Shifted convolution sums and subconvexity bounds for automorphic \(L \)-functions, IMRN 2004, 3905-3926

• first display in Section 4 should read \(\lambda \gg \frac{Q^2}{(Nm_1)^{1+\varepsilon}} \)

• p.17: the first term of the last line of the display after (4.7) should be \(2^{3\nu/2}m^{1/4} \), and this inequality holds for \(2^{\nu} \leq \min(w^2, m^{3/8}) \). To cover the remaining range, one can use Lemma 4.4 instead of Lemma 4.1a in the next display getting

\[
\begin{align*}
 r(f_1, 2^{\nu}m) - r(f_2, 2^{2\nu}m) &\ll (Nm2^{\nu})^5HN3^{2\nu/2}N(m^{1/4}vw + m^{13/28}vw^{3/14}) \\
 &\ll HN^{7/2+\epsilon}(2^{2\nu}m)^{13/28+\epsilon}
\end{align*}
\]

if \(2^{\nu} \geq \max(w^{1/2}, w^{7/3}m^{-1/2}) \). This extra estimate is not necessary if one uses Proposition 2.1 in [Ternary quadratic forms..., CRM lecture notes 46 (2008), 1-17].

Rankin-Selberg \(L \)-functions on the critical line, Manusc. Math. 117 (2005), 111-133

• (3.1) should read: \(\lambda \gg \frac{Q^2}{L^{1+\varepsilon}} \)

A Burgess-like subconvex bound for twisted \(L \)-functions (with appendix 2 by Z. Mao), Forum Math. 19 (2007), 61-106

• p.98 line -3: for \(\pi \otimes \chi \) read \(\pi \otimes \chi \chi^{5-4} \).

• second last display on p.7: the Eisenstein series are wrongly defined. It should be

\[
E_{a}(z; s) := \sum_{\gamma \in \Gamma} \vartheta(\gamma)j(\gamma z)^{-k}j(\sigma^{-1}_{a}, \gamma z)^{-k}|j(\sigma^{-1}_{a} \gamma, z)|^{k}(3\sigma^{-1}_{a} \gamma z)^{s}
\]

where \(\vartheta(\gamma) = \chi(d)^{-1}(\frac{\gamma}{d}) \) and \(j(\gamma, z) = cz + d \). Similarly the display before (2.7) needs to be adjusted as in [14, p.3876].

• Lemma 3: For \(K_{ir} \) read \(K_{2ir} \)
Ternary quadratic forms and sums of three squares with restricted variables, CRM lecture notes 46 (2008), 1-17

• before (1.8): remove the sentence “Note that we must have $\alpha_1\alpha_2 = 0$, since q is primitive.”
• p.8, line -7: for “Theorem 1 and Remark 1” read “Theorem 2”
• estimate in the second line of the proof of Lemma 2.3: for $n^{3/2}\Delta^{-1/2} + n^{1+\varepsilon}$ read $x^{3/2}\Delta^{-1/2} + x^{1+\varepsilon}$
• display after (2.5): for $s(n, \rho_j)$ read $|s(n, \rho_j)|$
• second display after (2.5): for x read h
• (2.6): add $(nN)^{\varepsilon}$ at the end.
• Proposition 3.1: for $n \equiv 3 \pmod{8}$ read $n \equiv 3 \pmod{24}$

Hybrid bounds for twisted L-functions, Crelle 621 (2008), 53-79

• (4.9): $J_k-1 = i^{k-1}\phi(k-1,0)$
• on p.75 it is assumed that V is independent of t. This is a priori not the case. Instead of the approximate functional equation (2.12) one should use Proposition 1 of “A hybrid asymptotic formula for the second moment...” This introduces an error of $D^{1/2}T^{-A}$ in (7.2) and the argument goes through as claimed. (7.3) holds only on the support of ψ (which is all that is needed) and for the display after (7.4) one has to first write V as an inverse Mellin transform.
• (8.8): for N_0 read N

On the central value of symmetric square L-functions, Math. Z. 260 (2008), 755-777

• equation (2.10) and the last display in Section 3: the h-sum should be removed
• equation (3.1): for $\chi_D(d)$ read $\chi_D(d)$

Twisted L-functions over number fields..., GAFA 20 (2010), 1-52

• p.7, line -2: add “...to a section $\phi \in H$ such that the restriction of $\phi(s)$ to K is independent of $s \in \mathbb{C}$.”
• p.11, lines -11 to -9: q has to be restricted to a fixed parity $q \equiv \kappa \pmod{2}$ for $\kappa \in \{0, 1\}$.
• the second last display on p.30 is not correct as claimed, but a variant of it is true. See http://www.renyi.hu/~gharcos/hilbert_erratum.pdf for a corrigendum
• Section 2.12: some notational changes are necessary: In lines -5 to -1 of p. 32, the ideal classes should be understood in the narrow sense, while the generator γ and the product r_1r_2 should be totally positive. The Kuznetsov formula (92) should be corrected as follows: on the left hand side the restriction $\varepsilon_x = 1$ should be omitted, and on the right hand side the summation over U/U^2 should be restricted to U^+/U^2. Accordingly the proof must be slightly modified. The analysis must be carried out on the larger space

$$FS = L^2(GL_2(K)Z(K_\infty)\backslash GL_2(\mathbb{A})/K(\mathbb{C})) = \bigoplus_{\omega \in \mathbb{C}(K)} L^2(GL_2(K)\backslash GL_2(\mathbb{A})/K(\mathbb{C}), \omega).$$
In particular, whenever we refer to $L^2(GL_2(K) \setminus GL_2(A)/K(\epsilon), \omega)$, it should be understood as $L^2(GL_2(K) \setminus GL_2(A)/K(\epsilon), \omega)$ without T. Accordingly, each restriction $\varepsilon_\pi = 1$ or $\varepsilon_\omega = 1$ should be disregarded in the text. Then Lemma 6 and Theorems 2-3 remain valid, and for the latter we do not need to assume that π_1 and π_2 have the same signature character, cf. [Remarks 11 & 13]. Complete details can be found in P. Maga, A semi-adelic Kuznetsov formula over number fields, arXiv:1209.5220.

- p.45, lines -10 to -9: all 5 occurrences of c should be t.
- p.7, line -4 in Section 2.1: for “even finite number” read “even number”
- p.18, line 10: for $1, x$ read $1, x^n$.

Subconvexity for a double Dirichlet series, Compositio Math. 174 (2011), 355-374

- p.358, sentence after (9): $\psi_2(n) = -1$ if ... and $\psi_{-2}(n) = -1$.
- Equation (11): $\delta_0 = \begin{cases} 0, & \psi = \psi_1, d \equiv 1 \pmod{4}, \\ \psi \equiv \psi_{-1}, d \equiv 3 \pmod{4}, \\ \psi \equiv \psi_2, d \equiv 0 \pmod{4}, \\ \psi \equiv \psi_{-2}, d \equiv 0 \pmod{4}. \end{cases}$
- Equation (18), although quoted from [IK], is nevertheless incorrect (counterexample: $z = -s + 1/10$), but the polynomial dependence plays no role in the application of (18) on p. 368
- Equation (31): remove $\psi'(d)$ in the numerator in the first line
- p.362, line -4: for “and (11) together with (8) - (29), we find” read ”and (11), together with (8), to (29), we find”
- p.365, first display: $C = \frac{1}{4} + \frac{(u+l)}{2} \left| \frac{1}{4} + \frac{iw}{2} \right| \left(\text{i.e. remove } C(0, u) \right)$
- p.365, display after (39): add a factor π^{-2s} to the first term on the right side and remove this factor in (43)
- p.368, 4th display, second line: for $n^{1/2+it-s}d_0^{1/2+iu-w}$ read $n^{1/2+it+s}d_0^{1/2+iu+w}$
- p.372, display before (67): $D_{\psi, \psi}(t, u, p; W) \ll U^\varepsilon ((TU)^{1/4} + T^{1/6}U^{1/3}) \ll (TUS)^{1/6+\varepsilon}$

- Proposition 3: for \tilde{F} read \tilde{F}

Subconvexity for twisted L-functions on $GL(3)$, Amer. J. Math. 134 (2012), 1385-1421

- p.1386, first display; p.1391, second and 6th display; display above (19); display above (21); (21); p.1405 first, third and 5th display; p.1406, first display: add summation condition $(m, q) = 1$.
- Lemma 2: for ω^*_j read ω^*_j
- statement of Lemma 9: it should be

$$D := \{ z \in \mathbb{C} : \inf \{|z - y| : y \in [a, b]\} < \rho \}$$

(replace $>$ with $<$)
• p.1397, 4th display: the second line should read
\[
\left(e^\left(\frac{\pm s}{4} \right) e^\left(\pm \frac{\alpha_1}{2} \right) + e^\left(\pm \frac{\alpha_2}{2} \right) + e^\left(\pm \frac{\alpha_3}{2} \right) \right) + e^\left(\pm \frac{3s}{4} \right)
\]
• p.1400, line 1: for “\(e(2\sqrt{yD})\) or \(\phi(y) = e(\pm 3(xy)^{1/3})\)” read “\(2\sqrt{yD}\) or \(\phi(y) = \pm 3(xy)^{1/3}\).”

Period integrals an Rankin-Selberg \(L\)-functions on \(GL(n)\), GAFA 22 (2012), 608-622

• p.612, first display: in the first integral a factor \(y^k\) is missing.
• (3.5) should read
\[
\asymp \prod_{j,k=1}^{n-1} \left| \frac{\Gamma_R(s + n(\nu_j + \ldots + \nu_k))}{\Gamma_R(1 + n(\nu_j + \ldots + \nu_k))} \right|
\]
• display after (3.10): for \(x^t y^t y x\) read \(x y y x^t x^t\)

Non-vanishing of \(L\)-functions, the Ramanujan conjecture, and families of Hecke characters, Canad. J. Math. 65 (2013), 22-51

• Lemma 6.2: The constant \(C\) depends also on \(\phi\).

• Display before (8.4): for \(\frac{d^2}{dx^2}\) read \(\frac{d^2}{dt^2}\)

On the 4-norm of an automorphic form, J. EMS 15 (2013), 1825-1852

• (2.8): the notation \(L(1, Ad^2f)\) differs from the usual meaning by a factor \((1 - 1/q)\).
• (2.12): the last formula should be \(q^{1/2}|\lambda_g(q)| \ll 1\) instead of \(q^{-1/2}|\lambda_g(q)| \ll 1\)
• (2.16) and (2.18): the integral in the diagonal should be from \(-\infty\) to \(\infty\).

• Section 2.5, line 2: for “space functions” read “space of functions”.
• second line, proof of Lemma 4.1: for \(\alpha_1\) and \(\alpha_2\) read \(\alpha, \beta\).
• two lines before (4.11): for \(N\ell^{1/2}\) read \(n\ell_F(\ell)^{1/2}\)
• (4.11): for \(\delta_1\) read \(\delta_2\)

Applications of the Kuznetsov formula on \(GL(3)\), Invent. math. 194 (2013), 673-729

• p.677, first display: for \((SL(3,\mathbb{Z}) \cup U)\backslash U\) read \((SL(3,\mathbb{Z}) \cap U)\backslash U\)
• (1.4): the left hand side should be \(C^{-1-\varepsilon}\)
• display after (2.13): the leading constant should be 4 instead of 8
• Remark 1: for \(y_1 = y_2 = \frac{3}{2\pi}T - \frac{1}{100}T^{1/3}\) read \(y_1 = y_2 = \frac{3}{2\sqrt{2\pi}}T - \frac{1}{100}T^{1/3}\)
• line below (3.5): constant \(\rightarrow\) constants
Lemma 2: the left hand side should have exponent $-1 - \varepsilon$ instead of -1. The proof needs to be modified as follows: let $T := (1 + |\nu_0|) \times 1 + \max(|\nu_1|, |\nu_2|)$ and fix $\varepsilon > 0$.

- in the third display of the proof we integrate y_1, y_2 over $[T^{-\varepsilon}, \infty)$.
 It is easy to see that for some absolute constant c there are at most $T^{c\varepsilon}$ copies of the fundamental domain intersecting $[T^{-\varepsilon}, \infty)^2 \times [0, 1]^3$.
 Hence the fourth display becomes $\ll T^{c\varepsilon/2} \|\phi\|$.

- By the exponential decay of the Whittaker function at $y_1, y_2 \geq T^{1 + \varepsilon/3}$ we have

$$
\int_{T^{-\varepsilon}}^{\infty} \int_{T^{-\varepsilon}}^{\infty} |\tilde{W}_{\epsilon_1, \epsilon_2}(y_1, y_2)|^2 (y_1^2 y_2)^{1/2} \frac{dy_1 dy_2}{y_1 y_2} \\
\geq \int_{0}^{\infty} \int_{0}^{\infty} |\tilde{W}_{\epsilon_1, \epsilon_2}(y_1, y_2)|^2 (y_1^2 y_2)^{1/2} \frac{dy_1 dy_2}{y_1 y_2} - T^{\frac{1}{2} (1 + \frac{1}{4\varepsilon} - \frac{1}{4\varepsilon})} \\
\gg (1 + |\nu_0|)(1 + |\nu_1|)(1 + |\nu_2|)^{-1/2},
$$

and we complete the proof as before with an additional factor $T^{c\varepsilon}$.

(A stronger result is given in Theorem 3 of Brumley, Effective multiplicity one on GL_N and narrow zero-free regions for Rankin-Selberg L-functions.)

- Lemma 3: the variables m_1 and m_2 should be exchanged, and in the factor $(n, m)^\varepsilon$ in (4.1) should be $(nm)^\varepsilon$.

- Section 7, line 4: for $m_1 x_2$ read $m_1 x_1$

- in the display after (7.3), the indices m_1, m_2 should be interchanged in the w_0-Kloosterman term S_3, the same in (8.2). Corresponding, the Kloosterman sum in (9.3) should be $S(\epsilon_1, \epsilon_2 m, n, 1, D_1, D_2)$. For these sums, the analogue of (6.6) is

$$
\sum_{D_1 \leq X_1} \sum_{D_2 \leq X_2} |S(\pm 1, m, 1, D_1, D_2)| \ll (X_1 X_2)^{3/2 + \varepsilon}(nm)^\varepsilon.
$$

- (8.7): for $X_1^2 X_2$ read $(X_1 X_2)^2$. Correspondingly, in the estimation of Σ_{2a} in the proof of Theorem 2 replace X with X^2.

- long display before (8.12): for $x_2 + i\sqrt{x_1^2 + 1}$ in the the last line read $\sqrt{x_1^2 + 1}$

- (9.2): for $-C_1, -C_2$ read C_1, C_2

- Proof of Theorem 5, line 8: for “From Proposition 3 and Proposition 5” read “From Lemma 3 and Proposition 5”

- Reference 14: the correct title is “A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations”

- Reference 25: for Li, Xinman read Li, Xianman

- (2.4): the second summation condition should be $|\text{ver}(U)| = k$

- Lemma 8: for $r \in S(d_1)$ read $r \in S(u_1)$.

THE SECOND MOMENT OF TWISTED MODULAR L-FUNCTIONS, GAFA 25 (2015), 453-516

- Theorem 4: it should be assumed that $f_1 \neq f_2$.

• (1.14) and the following display: the leading factor should be $M^3/(C^3N)$ instead of $M^3/(C^3N^{3/2})$.

• display below (5.5) should read

\[
rf(c) = \sum_{b|c} \frac{\mu(b)\lambda_f(b)^2}{b} \left(\sum_{d|b} \frac{\chi_0(d)}{d} \right)^{-2}, \quad \alpha(c) = \sum_{b|c} \frac{\mu(b)\lambda_0(b)}{b^2}, \quad \beta(c) = \sum_{b|c} \frac{\mu^2(b)\chi_0(b)}{b}
\]

• in (5.8) the first expression should read

\[
A(p) = \frac{\lambda_f(p)}{\sqrt{p}(1 + \chi_0(p)/p)}
\]

• in the display above (5.9), the following adjustments should be made

\[
\xi_p(1) = \frac{-\lambda_f(p)}{\sqrt{p}(1 + \chi_0(p)/p)} \xi_p(\ell' \xi_p'(p')) = (rf(p)(1 - \chi_0(p)p^{-2}))^{-1/2}
\]

• (6.5) should read $J_{2it}(1/2+i\tau) \ll ((1+|\tau+2it|)(1+|\tau-2it|))^{-1/4}e^{-\pi\max(0,|\tau|)}$.

• 3rd display on p. 481: for $Y(t)$ should read $Y = t^2/(t + X)$.

• (7.6) should read $\Delta \gg C^2(\ell_1 \ell_2)^{-1/2} - \varepsilon$.

• (7.20): the s-countour should be $[1/2 - iC^eT_-, 1/2 + iC^eT_-]$.

• (8.13), second line: the last term should be $N^{1/2}/(dr_2)^{1/2}$ instead of $NM^{1/2}/(dr_2)$.

• p. 496, first display: the last factor should be raised to the power 1/2.

• p. 496, line -2: the summation condition should be $\ell' - \ell' = d'r$.

• p. 497, line 2: the first formula should be replaced with

\[
|\lambda_2 \left(\frac{\delta_2}{g} \right) \lambda_1 \left(\frac{\delta_1}{h} \right) (\ell' \ell_2 \ell_2 d')^{1/2} \ll \left(\frac{\delta_2}{g} \right)^{1/2} \left(\frac{\delta_1}{h} \right)^{1/2} (gh)^{1/2} = (\delta_1 \delta_2)^{1/2}
\]

• (12.4): replace the right hand side with $q^r(AB)^{1/2}X$.

• p. 512, penultimate display: this expression is only used for $B > AX^2$, in which case the condition $a_1a_2 = b_1b_2$ is moot.

KLOOSTERMAN SUMS IN RESIDUE CLASSES, J. EMS 17, 51-69.

• p. 54, second paragraph: for $SL_2(\mathbb{Q}) \setminus SL_2(\mathbb{A}_Q)$ read $GL_2(\mathbb{Q}) \setminus GL_2(\mathbb{A}_Q)$. The parenthesis at the end of paragraph should be deleted.

• p. 65, line 13: for $C_2 = (C, Q)$ read $C_2 = (C, Q^\infty)$.

THE SUP-NORM PROBLEM FOR PGL(4), IMRN 2015 (Vol. 14), 5311-5332

• (3.4): for \asymp read \ll

• (3.9), (6.2), (6.4), (6.6): for $|c(\mu)|^{-2}$ read $\prod_{1 \leq j < k \leq n} (1 + |\mu_j - \mu_k|)$.

• penultimate paragraph of introduction: for $Q(\sqrt{n^2+1})$ read $Q(\sqrt{n^2-1})$

ON THE SIZE OF IKEDEA LIFTS, MANUSCR. MATH. 148 (2015), 341-349

• equation (2.3): π^k in the numerator should be π^{k-1}.

Bounds for eigenforms on arithmetic hyperbolic 3-manifolds, Duke Math. J. 165 (2016), 625-659

• Lemma 1: in line 6 of the proof, \(kB'\) should be \(k^2B'\) and in line 9, \((k+1)B'\) should be \((k^2+1)B'\)

Subconvexity for sup-norms of cusp forms on PGL(n), Selecta Math. 22 (2016), 1269-1287

• two lines after (4.3): for “feature” read “features”

On moments of twisted L-functions, Amer. J. Math. 139 (2017), 707-768

• Section 2.3, third display: the value of \(a\) equals that of (2.1) if \(f\) is even and equals \((1 + \chi(-1))/2\) if \(f\) is odd.

Applications of the Kuznetsov formula on \(\text{GL}(3)\): the level aspect, Math. Ann. 369 (2017), 723-759

• Lemma 4 should be replaced with the following variation:

Lemma 4. Let \(W : (0, \infty)^6 \to \mathbb{C}\) be a fixed smooth compactly supported function. Let \(A_1, A_2 > 0\) and define \(A := \exp(\max(\log A_1, \log A_2))\). Let \(P \geq 1\), and let \(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 \in \mathbb{R}\) be such that \(\min(|\alpha_1|, |\alpha_2|, |\beta_1|, |\beta_2|, |\gamma_1|, |\gamma_2|) \leq P\). Then the six-fold Fourier transform

\[
\hat{J} := \int_{(0, \infty)^6} J_{c,F}(A_1\sqrt{t_1u_1v_1}, A_2\sqrt{t_2u_2v_2}) W(t_1, t_2, u_1, u_2, v_1, v_2) \\
\times e(-t_1\alpha_1 - t_2\alpha_2 - u_1\beta_1 - u_2\beta_2 - v_1\gamma_1 - v_2\gamma_2) dt_1 dt_2 du_1 du_2 dv_1 dv_2
\]

is bounded by

\[O_C \left((PA)^\varepsilon (P^2 \max(A_2^{-2/3}A_1^{-1/3}, A_1^{-2/3}A_2^{-1/3}) + P^{-C})\right)\]

for any constant \(C > 0\). In addition, it is bounded by

\[A^\varepsilon \max(|\alpha_1|, |\beta_1|, |\gamma_1|)^{-1/2} \max(|\alpha_2|, |\beta_2|, |\gamma_2|)^{-1/2},\]

as long as both maxima are non-zero.

Proof. Suppose that \(|\alpha_1|\) is the smallest of the variables. Choose a sufficiently large constant \(c_1\) and a sufficiently large constant \(c_1 > c_2\). We split the \(x_1, x_2, x_3\)-integration in four pieces

(i) \(|x_1|, A_1^2|\eta_1|/\xi_1 \leq c_1P\),
(ii) \(|x_1| \leq c_2P, A_1^2|\eta_1|/\xi_1 \geq c_1P\),
(iii) \(|x_1| \geq c_1P, A_1^2|\eta_1|/\xi_1 \leq c_2P\)

and the remaining portion (iv), which is contained in \(|x_1|, A_1^2|\eta_1|/\xi_1 \geq c_2P\).

The conditions (i) imply \(|x_1| \ll P, x_2x_4 \ll PA_2^{2/3}A_1^{1/3}\) (note that this is \(\ll P\) by Lemma 3), and the area of this region is \(\ll P^2(A_2^{2/3}A_1^{1/3})(AP)^\varepsilon\).

Integrating by parts in the \(y_1\)-integral we can save arbitrarily many factors of \(P\) in regions (ii) and (iii). Integrating by parts in \(t_1\), the same holds for region (iv). We conclude the bound \(O_C((PA)^\varepsilon (P^2A_2^{2/3}A_1^{-1/3}) + P^{-C})\). If, say, \(|\alpha_2|\) is the smallest of the variables, we interchange indices and run the same argument.
The second bound follows by not restricting x_1, x_2, x_3 at all and applying in the penultimate display of the proof the simple stationary phase bound
\[
\int e(at + b\sqrt{t})W(t)dt \ll |a|^{-1/2}, \quad a \neq 0
\]
for a fixed smooth function W with compact support in $(0, \infty)$.

- third display after (5.3): the right hand side should be $\left(\frac{M^3d_2}{N(d_1d_2d_3)^{1/2}}\right)^j$
- penultimate display of Section 5: we apply the second bound of Lemma 4, unless $x_1x_2y_1y_2z_1z_2 = 0$, in which case we apply the first bound with $P = N^\varepsilon$. This replaces the last fraction in the first line
\[
\frac{(d_1d_2d_3)^2N(D_1D_2)^{1/2}}{M^3d_2} \rightarrow \frac{\min(d_1d_2, d_1d_3, d_2d_3)(D_1D_2)^{1/2}}{M} + \frac{(d_1d_2d_3)^2N(D_1 + D_2)}{M^3d_2}
\]
which still suffices to conclude $\Sigma_0 \ll N^{2+\varepsilon}$.

The Manin-Peyre formula for a certain biprojective threefold,
Math. Ann. 370 (2018), 491-553

- (3.4): for $N_r(\mathbf{X}, \mathbf{Y})$ read $N^{(1)}_r(\mathbf{X}, \mathbf{Y})$
- Lemma 4.3: The quantity $V_{r,(\alpha, \delta, \zeta)}(\mathbf{X}, \mathbf{Y}, B)$ should be slightly re-defined. Condition (4.5) and the display before (4.3) should be replaced with $\alpha_j\zeta_j|a_jz_j| \leq X_j, \delta_i\delta_k\zeta_k|d_id_iz_k| \leq Y_k$. Statement and proof of Lemma 4.5 remain the same except that the first 4 lines of the proof can be deleted.
- Lemma 4.4/4.5: the quantity $V_{r,(\alpha, \delta, \zeta)}(B, H)$ should be redefined: (4.14) should be replaced with $\max_{i,j,k} \alpha_j\zeta_j|a_jz_j| \max_{i,j,k} \delta_i\delta_k\zeta_k|d_id_iz_k| \leq B$. Lemma 4.4 and its proof remain unaffected, but $S(B, H)$ is re-defined, and the bound in Lemma 4.5 should be $B(\log B)^3(\log H)(\alpha_1\alpha_2\alpha_3\delta_2\delta_3)^{2/3}\zeta_1\zeta_2\zeta_3)^{-1}$. This is needed in the proof of Lemma 5.2: in the last double display the integral over S_3 should be the same in both lines, and an application of the modified Lemma 4.5 completes the proof.
- (5.8): for $[1, \infty)$ read $[1, [1, \infty)$ and for x_n read x_9
- Lemma 5.1/5.2: for δ read $(\delta + 1/\log B)$.
- (5.13) should be replaced with
\[
D\left(\prod_{\ell} v_\ell \hat{f}_{\Delta}(s_{\ell})\right) \ll D\frac{\Delta^{-18}}{|s_{11}s_{12} \cdots s_{33}|^{1/2}}.
\]
- two lines before (5.16): for $N^{(1)}_{\Delta, T}(B)$ read $N^{(2)}_{\Delta, T}(B)$
- display after (5.16): the factor $\prod_{\ell}(w_\ell - 1)^{-1}$ is missing.

Higher order divisor problems, Math. Z. 290 (2018), 937-952

- line after display after Theorem 1: for “norm form” read “incomplete norm form”
- last display of the paper: the exponent in the first error term should $k - 1 - \frac{1}{k-1} + \varepsilon$ instead of $k - 2 + \frac{1}{k-1} + \varepsilon$.

- (3.8): a factor $-i$ is missing on the right hand side. In the subsequent formula, the factor ± 1 should be $\mp i$.

- three lines before Corollary 4: for $(t,\ldots,t-(k-1)t)$ read $(t+i(k/2-1), t+i(k/2-2),\ldots,t+i(1-k/2),-(k-1)t)$ and the following display should be

$$
\lambda = \lambda(t) = \frac{k^3-k}{24} + \frac{1}{2}((t+i(k/2-1))^2+\ldots+(t+i(1-k/2))^2+(k-1)^2t^2) = \frac{k(k-1)}{8}(4t^2+1) \asymp t^2
$$

Der Satz von Green-Tao, Mitteilungen DMV **15** (2007), 160-164

- p.162, line 40/41: for “unendlich” read “beliebig”

L-functions, automorphic forms and arithmetic, in: Symmetries in Algebra and Number Theory, Göttingen 2009

- p.16, example 2: for “for all primes p” read “for almost all primes p”