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Chapter 1

Introduction and Summary

The mapping class group Map(M) of a manifold M is the group of diffeomor-
phisms of M up to isotopy. The most prominent example is the mapping class
group of a closed surface Sg of genus g ≥ 2. This group (often called the Te-
ichmüller modular group) appears in many branches of modern mathematics:
for example Teichmüller theory, low-dimensional geometry, algebraic geom-
etry and complex analysis. Consequently, Map(Sg) is studied from many
different points of view (see [FM11] or [I02] for good introductions to the
subject).

Here, we are interested in groups as geometric objects: a finitely gener-
ated group can be equipped with a (coarsely) unique left-invariant metric
(the so called word metric). In the last decade, tools have been developed
to effectively investigate the geometry of Map(Sg) and some of its natural
subgroups (see e.g. [MM00], [Ha09b] and [MMS10]).

Mapping class groups of other manifolds are less well understood – in
particular from a geometric point of view. In this thesis we consider two
examples which show rich geometric behavior: the mapping class groups of
handlebodies and of doubled handlebodies.

1.1 Handlebody groups

A handlebody Vg of genus g is the three-manifold obtained by attaching
g three-dimensional one-handles to a three-dimensional ball. The mapping
class group of Vg is commonly called handlebody group. The handlebody
group has been studied from algebraic and dynamical points of view (see e.g.
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6 CHAPTER 1. INTRODUCTION AND SUMMARY

[Wa98] and [M86]). However, hardly anything is known about the large-scale
geometry of Map(Vg).

One approach to the geometry of Map(Vg) is via the geometry of surface
mapping class groups. Namely, the boundary ∂Vg of Vg is a closed surface of
genus g. Restriction of diffeomorphisms of Vg to the boundary surface ∂Vg

defines a homomorphism ι : Map(Vg) → Map(∂Vg) which is injective. Hence,
the handlebody group can be identified with a subgroup of the mapping class
group of the closed surface ∂Vg. In Chapter 2 we study the extrinsic geometry
of Map(Vg) as a subgroup of the surface mapping class group Map(∂Vg).

By extrinsic geometry we mean the following. Let H < G be a finitely
generated subgroup of a finitely generated group G. The inclusion map
H → G is coarsely Lipschitz with respect to the word metrics dH and dG on
H and G, respectively. In general, however, this inclusion map may distort
distances by an arbitrary factor. If the inclusion is in fact a quasi-isometric
embedding, i.e. if there is a number K > 0 with

1

K
dG(h, h′) − K ≤ dH(h, h′) ≤ KdG(h, h′) + K ∀h, h′ ∈ H

then we say that the subgroup H is undistorted in G. Undistorted subgroups
inherit their geometry from the ambient group G. Hence, if the handlebody
group was undistorted in the surface mapping class group, its geometry could
be easily understood.

However, we show in Chapter 2 that the intrinsic geometry of the handle-
body group differs considerably from the geometry as a subgroup of Map(∂Vg).
The results in this chapter are joint work with Ursula Hamenstädt.

Theorem 1.1.1 ([HH11a]). Let V be a handlebody of genus at least 2. Then
the handlebody group of V is exponentially distorted in the mapping class
group of ∂V .

Recall that a finitely generated subgroup H < G of a finitely generated
group G is called exponentially distorted if the following holds. The word
norm of H can be bounded by an exponential function of the word norm of
G. On the other hand, there is no such bound of sub-exponential growth
type.

The proof of Theorem 1.1.1 consists of two parts — a lower and an upper
bound on distortion. To show the upper bound we define racks, which are an
analog of train tracks for handlebodies. A large rack is a system of disks in



1.1. HANDLEBODY GROUPS 7

V and arcs on ∂V satisfying certain completeness conditions (see Section 2.6
for the formal definition). We define an equivalence relation (rigid isotopy)
on the set of large racks, such that the handlebody group acts on the set of
rigid isotopy classes of racks with finite quotient and finite stabilizers. Thus,
one can define a graph of rigid racks which serves as a geometric model for
the handlebody group. This construction is inspired by the train track graph
for surface mapping class groups (see [Ha09b]). Using a surgery procedure,
we then define distinguished paths in the graph of rigid racks (splitting paths)
whose lengths can be bounded in terms of intersection numbers. This yields
the upper bound on distortion.

To show the lower distortion bound, we use the geometry of outer au-
tomorphism groups Out(Fg) of free groups. Namely, the handlebody group
projects onto Out(Fg) via its action on the fundamental group of Vg. Using
point-pushing homeomorphisms as the main tool we explicitly define a se-
quence of handlebody group elements ϕn with the following properties. On
the one hand, the word norm of ϕn in Map(∂Vg) grows linearly in n. On
the other hand, the images of ϕn in Out(Fg) have exponentially growing
word norm. As a consequence, the word norm of ϕn in Map(Vg) also grows
exponentially in n, showing the desired lower bound on distortion.

As a consequence of Theorem 1.1.1, the intrinsic large-scale geometry of
the handlebody group cannot simply be inferred from the geometry of surface
mapping class groups. In fact, the large-scale geometry of handlebody groups
shows features that distinguish it from Map(∂Vg).

One such difference can be found in the geometric structure of curve
stabilizers. Consider a nonseparating disk D in Vg and a simple closed curve α
on ∂Vg which intersects ∂D in a single point.

We consider the stabilizer of the free homotopy class of α both in Map(∂Vg)
and Map(Vg). In the surface mapping class group, stabilizers of free homo-
topy classes of simple closed curves are undistorted (see [MM00], [HM10] or
[Ha09b]). The main theorem of Chapter 3 states that this is not the case for
the handlebody group.
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Theorem 1.1.2. Suppose that the genus of V is at least 3. Then the stabilizer
of a curve α as above is at least exponentially distorted in the handlebody
group.

To put this theorem into context, we again consider outer automorphism
groups of free groups. Since the kernel of the projection Map(Vg) → Out(Fg)
is infinitely generated [McC85], it is in general not possible to transfer geo-
metric properties from Out(Fg) to the handlebody group.

Nevertheless, the analog of Theorem 1.1.2 holds in the case of Out(Fg).
Namely, a simple closed curve α as above defines a primitive element in
π1(Vg). The stabilizer of α in the handlebody group projects onto the sta-
bilizer of the conjugacy class of the free factor generated by this primitive
element. By a theorem of Handel and Mosher [HM10], this stabilizer is ex-
ponentially distorted in Out(Fg).

In fact, this distortion is the central ingredient to the proof of Theo-
rem 1.1.2. Namely, we explicitly construct a sequence in the handlebody
group such that on the one hand, the word norms in Map(Vg) grow linearly.
On the other hand, we use the projections to Out(Fg) and the result of
Handel and Mosher to conclude that the word norms in the stabilizer grow
exponentially fast.

The upper bound of distortion is again obtained by a topological surgery
argument using the graph of rigid racks as a geometric model for the han-
dlebody group.

To further understand the intrinsic large-scale geometry of handlebody
groups, one can consider quasi-isometry invariants from geometric group the-
ory. One very useful of these invariants is the growth rate of the Dehn func-
tion of a finitely presented group. The Dehn function can be defined as the
isoperimetric function of a presentation complex of the group. The growth
rate of the Dehn function is a quasi-isometry invariant of finitely presented
groups which has consequences for geometric and algorithmic properties of
the group ([Gr87], [ECHLPT]).

Mapping class groups have quadratic Dehn functions (since they are au-
tomatic [Mo95]). Outer automorphism groups of free groups on the other
hand are known to have exponential Dehn function ([HV96], [BV95], [HM10],
[BV10]). Hence, estimating the Dehn function of the handlebody group may
help in comparing it to both surface mapping class groups and outer auto-
morphism groups of free groups. In Chapter 4 we prove an upper bound for
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the Dehn function of Map(Vg). The results in this chapter are again obtained
as joint work with Ursula Hamenstädt (see [HH11c]). We show

Theorem 1.1.3 ([HH11c]). The Dehn function of the handlebody group has
at most exponential growth rate.

The proof of this theorem uses a generalization of the graph of rigid
racks. Using this new geometric model, we then explicitly decompose a
loop of length L in the handlebody group into a concatenation of at most
ek·L uniformly short loops. The main tool used in this construction are the
splitting paths already used in the proof of the upper distortion bound of
Theorem 1.1.1. The main additional step in the proof of Theorem 1.1.3 is a
careful combinatorial control of splitting paths issuing in adjacent vertices of
the graph of rigid racks.

1.2 Outer automorphisms of free groups

The second type of mapping class groups we study in this thesis are those of
doubled handlebodies. The closed three-manifold Mg obtained by doubling
a handlebody Vg across its boundary surface is homeomorphic to a g-fold
connected sum of S1 × S2 (here, Si denotes the i-dimensional sphere). By a
theorem of Laudenbach [L74], the natural map from the mapping class group
of Mg to Out(Fg) has finite kernel.

Both geometric and algebraic properties of outer automorphism groups of
free groups have been studied intensively over the last years, (see e.g. [CV86],
[BH92], [BFH97] or [V02] for an excellent survey).

The description of Out(Fg) as a cofinite quotient of the mapping class
group of Mg allows to study it using topological methods. Although this
point of view was already taken by Hatcher [Ha95] to study homological
properties of Out(Fg), it has not been used to systematically investigate the
large-scale geometry of Out(Fg).

In Chapter 5 we begin such a study. We use techniques inspired by recent
results on surface mapping class groups to investigate the extrinsic geometry
of two natural families of subgroups in Out(Fg). The results in this chapter
are joint work with Ursula Hamenstädt (see [HH11b]).

The basic tool is a geometric model for Out(Fg) using simple sphere
systems in Mg, which was defined by Hatcher [Ha95]. A simple sphere system
is a collection of disjointly embedded, pairwise nonhomotopic 2–spheres in Mg
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with simply connected complement. Using a topological surgery procedure
for simple sphere systems in Mg we show that stabilizers of essential spheres in
Mg are undistorted in Map(Mg). By rephrasing this result in group-theoretic
terms we obtain a new short proof of the following recent result by Handel
and Mosher [HM10].

Theorem 1.2.1 ([HM10, Theorem 1 (1) and Theorem 7] and [HH11b, The-
orem 2.1]).

i) The stabilizer of the conjugacy class of a free splitting of Fg is undistorted
in Out(Fg).

ii) The stabilizer of the conjugacy class of a corank 1 free factor is undis-
torted in Out(Fg).

As another application of this strategy we can connect the geometry of
surface mapping class groups to the geometry of Out(Fn). Consider a surface
Sg,1 of genus g with one puncture. The fundamental group of Sg,1 is a free
group on 2g generators. Using a variant of the Dehn-Nielsen-Baer theorem,
the mapping class group of Sg,1 can be identified with a subgroup of Out(F2g).
We show

Theorem 1.2.2 ([HH11b, Theorem 3.2]). The mapping class group of Sg,1

is undistorted in Out(F2g).

The proof of this theorem again uses a topological argument in Mg.
Namely, we consider embeddings of a surface S1

g of genus g with one boundary
component into M2g which induce an isomorphism of fundamental groups.
By intersecting such an embedded surface with a simple sphere system for
M2g one obtains a binding arc system for the surface S1

g . Such binding arc sys-
tems can be used to construct a geometric model for the mapping class group
of Sg,1. We use this intersection procedure to produce paths in Map(Sg,1)
out of paths in Out(Fg). Using a careful control of homotopy classes of both
the embedded surface and sphere systems we then use these paths to show
the desired undistortion statement.
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Chapter 2

Extrinsic geometry of

handlebody groups1

2.1 Introduction

A handlebody Vg of genus g is a 3-manifold bounded by a closed orientable
surface ∂Vg = Sg of genus g. Explicitly, Vg can be constructed by attach-
ing g one-handles to a 3-ball. Handlebodies are basic building blocks for
closed 3-manifolds, since any such manifold can be obtained by gluing two
handlebodies along their boundaries.

The handlebody group Map(Vg) is the subgroup of the mapping class
group Map(∂Vg) of the boundary surface defined by isotopy classes of those
orientation preserving homeomorphisms of ∂Vg which can be extended to
homeomorphisms of Vg. It turns out that Map(Vg) can be identified with the
group of orientation preserving homeomorphisms of Vg up to isotopy.

The handlebody group is a finitely presented subgroup of the mapping
class group (compare [Wa98] and [S77]), and hence it can be equipped with
a word norm. The goal of this chapter is to initiate an investigation of the
coarse geometry of the handlebody group induced by this word norm.

The geometry of mapping class groups of surfaces is quite well under-
stood. Therefore, understanding the geometry of the inclusion homomor-

1This chapter is identical with the preprint [HH11a]
Ursula Hamenstädt and Sebastian Hensel,
The geometry of the handlebody groups I: Distortion,
arXiv:1101.1838
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phism Map(Vg) → Map(∂Vg) may allow to deduce geometric properties of
the handlebody group from geometric properties of the mapping class group.
This task would be particularly easy if the handlebody group was undistorted
in the ambient mapping class group (i.e. if the inclusion was a quasi-isometric
embedding).

Many natural subgroups of the mapping class group are known to be
undistorted. One example is given by groups generated by Dehn twists about
disjoint curves (studied by Farb, Lubotzky and Minsky in [FLM01]) where
undistortion can be proved by considering the subsurface projections onto
annuli around the core curves of the Dehn twists.

Another example of undistorted subgroups are mapping class groups of
subsurfaces (compare [MM00] or [Ha09a]). In this case, the proof of undistor-
tion relies on the construction of quasi-geodesics in the mapping class group –
either train track splitting sequences as in [Ha09a] or hierarchy paths defined
by Masur and Minsky in [MM00].

Other important subgroups of the mapping class group are known to be
distorted. As one example we mention the Torelli group, which is exponen-
tially distorted by [BFP07]. A finitely generated subgroup H of a finitely
generated group G is called exponentially distorted in G if the following
holds. On the one hand, the word norm in H of every element h ∈ H is
coarsely bounded from above by an exponential of the word norm of h in
G. On the other hand, there is a sequence of elements hi ∈ H such that the
word norm of hi in G grows linearly, while the word norm of hi in H grows
exponentially.

The argument from [BFP07] can be used to show exponential distortion
for other normal subgroups of the mapping class group as well. Since the
handlebody group is not normal, it cannot be used to analyze the handlebody
group.

Answering a question raised in [BFP07], we show that nevertheless the
same conclusion holds true for handlebody groups in almost all cases.

Theorem. The handlebody group for genus g ≥ 2 is exponentially distorted
in the mapping class group.

Our result is also valid for handlebodies with marked points or spots;
allowing to lower the genus to 1 if there are at least two marked points or
spots. In the case of genus 0 and the solid torus with one marked point the
handlebody group is obviously undistorted and hence we obtain a complete
classification of distorted handlebody groups.



2.1. INTRODUCTION 15

The basic idea for the proof of the main theorem can be sketched in the
special case of a solid torus V1,2 with two marked points. The handlebody
group of a solid torus with one marked point is infinite cyclic, generated
by the Dehn twist T about the unique essential simple diskbounding curve.
Since point-pushing maps are contained in the handlebody group, the Birman
exact sequence yields that Map(V1,2) is equal to the fundamental group of
the mapping torus of the once-punctured torus defined by T . The Dehn
twist T acts on the fiber π1(T1,1) = F2 of the Birman exact sequence as a
Nielsen twist, therefore in particular as an element of linear growth type.
This implies that the fiber is undistorted in the handlebody group. As this
fiber is exponentially distorted in the mapping class group by [BFP07], the
handlebody group of a torus with two marked points is at least exponentially
distorted in the corresponding mapping class group.

In the general case, the argument is more involved since we have no
explicit description of the handlebody group. However, the basic idea remains
to show that parts of the fiber of some suitable Birman exact sequence are
undistorted in the handlebody group.

The upper distortion bound uses a geometric model for the handlebody
group. This model, the graph of rigid racks, is similar in spirit to the train
track graph which was used in [Ha09a] to study the mapping class group.
We construct a family of distinguished paths connecting any pair of points
in this graph to each other. The length of these paths can be bounded using
intersection numbers. The geometric control obtained this way allows to
show the exponential upper bound on distortion.

The chapter is organized as follows. In Section 2.2 we recall basic facts
about handlebody groups of genus 0 and 1. Section 2.3 contains the lower
distortion bound for handlebodies with at least one marked point or spot. In
Section 2.4 we show the lower distortion bound for closed surfaces. Section 2.5
introduces a surgery procedure for disk systems which is important for the
construction of paths in the handlebody group. Section 2.6 is devoted to
the construction of racks, and demonstrates some of their similarities (and
differences) to train tracks on surfaces. Section 2.7 contains the construction
of the geometric model for the handlebody group and a distinguished family
of paths establishing the upper bound on distortion.
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2.2 Low-complexity cases

As a first step, we analyze the cases of those genus 0 and 1 handlebody groups
which turn out to be undistorted. The results in this section are easy and
well-known, and we record them here for completeness.

To formulate the results in full generality, we need to introduce the notion
of handlebodies with marked points and spots. A handlebody of genus g with
k marked points and s spots V s

g,k is a handlebody of genus g, together with s
pairwise disjoint disks D1, . . . , Ds on its boundary surface Sg, and k pairwise
distinct points p1, . . . , pk in ∂Vg \ (D1 ∪ . . . ∪ Ds).

The mapping class group Map(∂V s
g,k, p1, . . . , pk, D1, . . . , Ds) of the bound-

ary surface (with the same marked points and disks) consists of homeomor-
phisms of ∂Vg which fix the set {p1, . . . , pk} and restrict to the identity on
each of the Di up to isotopy respecting the same data. Note that this group
agrees with the mapping class group of the bordered surface obtained by re-
moving the interior of the marked disks, as these mapping classes have to fix
each boundary component (following the definition in [FM11, Section 2.1]).
In the same way as for the case without marked points or spots, the han-
dlebody group Map(V s

g,p, p1, . . . , pk, D1, . . . , Ds) is defined as the subgroup of
those isotopy classes of homeomorphisms that extend to the interior of V s

g,p.
All curves and disks are required not to meet any of the marked points.

A simple closed curve on ∂V is essential if it is neither contractible nor freely
homotopic to a marked point. A disk D in V is called essential, if ∂D ⊂ ∂V
is an essential simple closed curve.

Proposition 2.2.1. Let V = V s
0,k be a handlebody of genus 0, with any

number of marked points and spots. Then the handlebody group of V is equal
to the mapping class group of its boundary.

Proof. Let f : S2 → S2 be any homeomorphism of the standard 2-sphere
S2 ⊂ R

3 onto itself. We can explicitly construct a radial extension F :
D3 → D3 to the standard 3-ball D3 ⊂ R

3 by setting F (t · x) = t · f(x) for
x ∈ S2, t ∈ [0, 1]. Therefore every mapping class group element is contained
in the handlebody group.

In particular, the handlebody groups of genus 0 are undistorted in the
corresponding mapping class groups. Similarly, for a solid torus with at most
one marked point or spot, the handlebody group can be explicitly identified
and turns out to be undistorted.
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To this end, suppose V is a solid torus with at most one marked point
(V = V1,0 or V = V1,1) or with one marked spot (V = V 1

1 ). Let δ be an
essential simple closed curve on the boundary torus of V that bounds a disk
in V . The curve δ is uniquely determined up to isotopy.

Proposition 2.2.2. The handlebody group of V is the stabilizer of δ in the
mapping class group. In particular, it is undistorted in the mapping class
group.

Thus, if V = V1,0 or V = V1,1, then the handlebody group is cyclic and
generated by the Dehn twist about δ.

If V = V 1
1 , then the handlebody group is the free abelian group of rank 2

which is generated by the Dehn twist about δ and the Dehn twist about the
spot.

Proof. The handlebody group fixes the set of isotopy classes of essential
disks in V . Since δ is the unique diskbounding curve up to isotopy, Map(V )
therefore is contained in the stabilizer of δ. On the other hand, the disk
bounded by δ cuts V into a spotted ball. Hence, by Proposition 2.2.1 the
handlebody group Map(V ) contains the stabilizer of δ.

If V = V1,0 or V1,1, the complement of δ in ∂V is an annulus (possibly
with a puncture). From this, it is immediate that the handlebody group is
generated by the Dehn twist about δ.

If V = V 1
1 , the same argument shows that then the handlebody group

is generated by the Dehn twist about δ and the spot. It is clear that these
mapping classes commute.

Since stabilizers of simple closed curves are known to be undistorted sub-
groups of the mapping class group (compare [MM00] or [Ha09b]), the han-
dlebody group of a solid torus with at most one spot or marked point is
undistorted.

2.3 Handlebodies with marked points

In this section we describe the lower bound for distortion of handlebody
groups with marked points. We begin with the case of genus g ≥ 2 with
a single marked point. The case of several marked points or spots will be
an easy consequence of this result. The case of a torus with several marked
points requires a different argument which will be given at the end of this
section.
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Theorem 2.3.1. Let V = Vg,1 be a handlebody of genus g ≥ 2 with one
marked point, and let ∂V = Sg,1 be its boundary surface. Then the handlebody
group Map(V ) < Map(∂V ) is at least exponentially distorted.

The proof is based on the relation between the mapping class group of a
closed surface Sg and the mapping class group of a once-punctured surface
Sg,1. We denote the marked point of ∂V = Sg,1 by p, and we will often denote
the mapping class group of Sg,1 by Map(Sg, p).

Recall the definition of the point-pushing map P : π1(S, p) → Map(S, p).
Namely, let γ : [0, 1] → S be a loop in S based at p. Then there is an
isotopy ft : S → S supported in a small neighborhood of the loop γ[0, 1]
such that f0 = id, and ft(p) = γ(t). To see this, note that locally around
γ(t0) such an isotopy certainly exists (for example, since any orientation
preserving homeomorphism of the disk is isotopic to the identity). The image
of γ is compact, and hence the desired isotopy can be pieced together from
finitely many such local isotopies. The endpoint f1 of such an isotopy is a
homeomorphism of (S, p). We call its isotopy class the point pushing map
P(γ) along γ. It depends only on the homotopy class of γ.

The image of the point pushing map is contained in the handlebody group
Map(V, p) – to see this, simply define the local version by pushing a small
half-ball instead of a disk.

By construction, the image of the point pushing map lies in the kernel of
the forgetful homomorphism Map(S, p) → Map(S) induced by the puncture
forgetting map (S, p) → (S, S). In fact this is all of the kernel, compare
[Bi74].

Theorem 2.3.2 (Birman exact sequence). Let S be a closed oriented surface
of genus g ≥ 2 and p ∈ S any point. The sequence

1 // π1(S, p)
P // Map(S, p) // Map(S) // 1

is exact.

The point pushing map is natural in the sense that

P(fα) = f ◦ P(α) ◦ f−1 (2.1)

for each f ∈ Map(S, p) (see [Bi74] for a proof of this fact).
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The Birman exact sequence corresponds to the relation between the inner
and the outer automorphism group of π1(S, p):

1 // π1(S, p)
P //

∼=
��

Map(S, p)

∼=
��

// Map(S)

∼=
��

// 1

1 // Inn(π1(S, p)) // Aut(π1(S, p)) // Out(π1(S, p)) // 1

where π1(S, p) can be identified with its inner automorphism group because
it has trivial center, and the other two isomorphisms are given by the Dehn-
Nielsen-Baer theorem. In other words, we have the following.

Lemma 2.3.3. Let [γ], [α] ∈ π1(S, p) be two loops at p. Then

P(α)(γ) = [α] ∗ [γ] ∗ [α]−1

where ∗ denotes concatenation of loops, and takes place left-to-right.

Now we are ready to give the proof of the main theorem of this section.

Proof of Theorem 2.3.1. Let δ be a separating simple closed curve on S such
that one component of S \ δ is a bordered torus T with one boundary circle,
and such that δ bounds a disk D in the handlebody V . Without loss of
generality we assume that the base point p lies on δ.

a

b

δ

Figure 2.1: The setup in the proof of Theorem 2.3.1. Generators for the
fundamental group of the handlebody are drawn solid, the loops extending
these to a generating set of π1(S, p) are drawn dashed.

Choose loops a, b based at p which generate the fundamental group of T
and such that b bounds a disk in V (and hence a does not). Extend a, b to
a generating set of the fundamental group of π1(S, p) by adding loops in the
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complement of T (see Figure 2.1). Let f ∈ Map(S, p) be a mapping class
such that f(a) = a2 ∗ b and f(b) = a ∗ b which preserves δ and acts as the
identity on S \T . Such an f can for example be obtained as the composition
of suitably oriented Dehn twists along a and b.

Define Φk = P(fka). By Equation (2.1), in the mapping class group
Map(S, p) we have Φk = fkP(a)f−k, and hence the word norm of Φk in the
mapping class group with respect to any generating set grows linearly in k.

On the other hand, consider the map

Map(V, p)
π
→ Aut(π1(V, p)) = Aut(Fg)

defined by the action on the fundamental group. Lemma 2.3.3 implies that
Φk acts on π1(S, p) as conjugation by fk(a). To compute the action of π(Φk)
on π1(V, p), denote the projection of the fundamental group of the surface S
to the fundamental group of the handlebody by P : π1(S, p) → π1(V, p).

Since b bounds a disk in V , its projection vanishes: P (b) = 0. The
generator a of π1(S, p) projects to a primitive element in π1(V, p), P (a) = A.
Hence P (fk(a)) = ANk for some Nk > 0. The choice of f guarantees that we
have Nk ≥ 2k. Since the point pushing map is natural with respect to the
projection to the handlebody, π(Φk) acts on π1(V, p) as conjugation by ANk .

In other words, as an element of Aut(Fg) the projection π(Φk) is the Nk–
fold power of the conjugation by A. Since conjugation by A is an infinite order
element in Aut(Fg) and all infinite order elements have positive translation
length (compare [A02, Theorem 1.1]) this implies that the word norm of
π(Φk) grows exponentially in k. As π : Map(V, p) → Aut(Fg) is a surjective
homomorphism between finitely generated groups, it is Lipschitz with respect
to any choice of word metrics. Therefore, the word norm of Φk in Map(V, p)
also grows exponentially in k. This shows the theorem.

Remark 2.3.4. The proof we gave extends verbatim to the case of the pure
handlebody group of a handlebody of genus g ≥ 2 with several marked points
and any number of spots (just move everything but one marked point into
the complement of T ). Here, the pure handlebody group is the subgroup
of those mapping classes which send each marked point to itself. Since this
group has finite index in the full handlebody group, the proof also shows that
handlebody groups with several marked points and any number of spots are
at least exponentially distorted if the genus is at least 2.

As a next case, we consider handlebody groups of handlebodies with spots
instead of marked points.
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Corollary 2.3.5. Let V = Vg be a genus g ≥ 2 handlebody and let D ⊂ ∂V be
a spot. Then the handlebody group Map(V, D) < Map(∂V, D) of the spotted
handlebody is at least exponentially distorted.

Proof. Note that there is a commutative diagram with surjective projection
homomorphisms

0 // 〈T 〉 //

=

��

Map(V, D)

��

// Map(V, p)

��

// 0

0 // 〈T 〉 // Map(∂V, D) // Map(∂V, p) // 0

induced by collapsing the marked spot to a point. The kernel of such a
projection homomorphism is infinite cyclic and generated by the Dehn twist
T about the spot. In particular, every element g in Map(∂V, p) lifts to an
element in Map(∂V, D), and if g ∈ Map(V, p) then the lift is contained in the
handlebody group Map(V, D). These lifts are well-defined up to the Dehn
twist T which lies in the handlebody group and acts trivially on π1(V, p).

Choose any lift f̃ of the element f used in the proof of Theorem 2.3.1. Let
Φ̃ be a lift of the point pushing map Φ0 defined in the proof of Theorem 2.3.1,
and define Φ̃k = f̃kΦ̃f̃−k. Note that these elements are lifts of the elements
Φk and therefore contained in the handlebody group.

Now Φ̃k has word norm in Map(S, D) again bounded linearly in k. As

elements of the spotted handlebody group the word norm of Φ̃k grows expo-
nentially in k, as this is true for the Φk.

Remark 2.3.6. Again, the same proof works for handlebodies with more than
one spot and any number of marked points.

As a last case, we consider the handlebody of a torus with more than one
marked point.

Theorem 2.3.7. Let V = V1,n be a solid torus with n ≥ 2 marked points.
Then the handlebody group Map(V ) is at least exponentially distorted in
Map(∂V ).

Proof. The strategy of this proof is similar to the preceding ones. We con-
sider the Birman exact sequence for pure mapping class groups and pure
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handlebody groups.

1 // π1Cn
P // PMap(∂V, p0, p1, . . . , pn) // Map(∂V, p0) // 1

1 // π1Cn
//

=

OO

PMap(V, p0, p1, . . . , pn) //

OO

Z = 〈T 〉 //

OO

1

where Cn denotes the configuration space of n points in ∂V \ {p0}, and T the
Dehn twist along the (unique) disk δ on ∂V \{p0}. An element of π1Cn can be
viewed as an n-tuple of parametrized loops γi, where γi is based at pi (subject
to the condition that at each point in time, the values of all these loops are dis-
tinct). Note that the pure mapping class group PMap(∂V, p0, p1, . . . , pn) acts
on Cn by acting on all component loops. The map P is the generalized point
pushing map, pushing all marked points simultaneously along the loops γi.
The map P is natural with respect to the action of PMap(∂V, p0, p1, . . . , pn)
in the sense that P(fγ) = f ◦ P(γ) ◦ f−1.

Every element of PMap(V, p0, p1, . . . , pn) can be written in the form P(γ)·

T̃ l, where γ denotes an n-tuple of loops, and T̃ is some (fixed) lift of the Dehn
twist T . In this description, the multiplicity l and the homotopy class of the
n-tuple of loops γ is well-defined. Now note that

(
P(γ) · T̃ l

)
·
(
P(γ′) · T̃ l′

)
= P(γ) · P

(
T̃ l′(γ′)

)
T̃ l+l′ (2.2)

= P
(
T̃ l′(γ′) ∗ γ

)
T̃ l+l′

by the naturality of P and the fact that P is a homomorphism (note that
concatenation of loops is executed left-to-right, while composition of maps is
done right-to-left).

Choose an element β ∈ π1(∂V, p0) = F2 which extends δ to a basis
of π1(∂V, p0). Note that then β is a generator of the fundamental group
π1(V, p0) = Z of the solid torus V1. We also choose loops βi ∈ π1(∂V, pi)
for all i = 1, . . . , n which are freely homotopic to β. These loops give an
identification of π1(V, pi) with Z.

Define a map b : PMap(V, p0, p1, . . . , pn) → Z as follows. Let ϕ = P(γ)·T̃ l

be any element of the pure handlebody group. Each component loop γi of γ
defines a loop in π1(V, pi) (which might be trivial). This loop is homotopic
to the ki-th power of βi for some number ki. Associate to ϕ the sum of the
ki.
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Now choose any generating set γ1, . . . , γN of π1Cn. Then the pure handle-
body group PMap(V, p0, p1, . . . , pn) is generated by P(γj) and T̃ . We claim
that there is a constant k0, such that

b
(
ϕ · P(γi)

)
≥ b(ϕ) − k0 (2.3)

Namely, by equation (2.2), we have to compare the projections of the com-
ponents of

γ and T̃ l(γj) ∗ γ

to each of the π1(V, pi). However, applying T̃ does not change this projection.
Since γj is one of finitely many generators, there is a maximal number of
occurrences of the projection of βi which can be canceled by adding the
projection of γj. This shows inequality (2.3).

Now we can finish the proof using a similar argument as in the proof of
Theorem 2.3.1. Namely, choose again f a pseudo-Anosov element with the
property that applying f multiplies the number of occurrences of βi by 2 in
all π1(∂V, pi). Then P(fkβ) has length growing linearly in the mapping class
group, while b(fkβ) grows exponentially. By inequality (2.3) this implies that
the word norm in the pure handlebody group also grows exponentially. Since
the pure handlebody group has finite index in the full handlebody group the
theorem follows.

Remark 2.3.8. The same argument that extends Theorem 2.3.1 to Corol-
lary 2.3.5 applies in this case and shows that also all torus handlebody groups
with at least two spots or marked points are exponentially distorted.

2.4 Handlebodies without marked points

In this section we complete the proof of the exponential lower bound on the
distortion of the handlebody groups by showing that the handlebody group
of a handlebody of genus g ≥ 2 without marked points or spots is distorted
in the mapping class group.

For genus g ≥ 3, the idea is to replace the point pushing used in the
proofs above by pushing a subsurface around the handlebody. The resulting
handlebody group element does not induce a conjugation on π1(V, p), but
instead induces a partial conjugation on the fundamental group of the com-
plement of the pushed subsurface. Since g ≥ 3, such an element projects to
a nontrivial element in the outer automorphism group of Fg. Then a similar
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reasoning as in Section 2.3 applies. The case of genus 2 requires a different
argument and will be given at the end of this section.

Theorem 2.4.1. For a handlebody V = Vg of genus g ≥ 3, the handlebody
group Map(V ) is at least exponentially distorted in the mapping class group
Map(∂V ).

Proof. Choose a curve δ which bounds a disk D, such that V \D is the union
of a once-spotted genus 2 handlebody V1 and a once-spotted genus g − 2
handlebody V2. Denote the boundary of Vi by Si, and choose a basepoint
p ∈ δ. This defines a free decomposition of the fundamental group of the
handlebody

Fg = π1(V, p) = π1(V1, p) ∗ π1(V2, p) = F2 ∗ Fg−2.

We denote by Map(Si, δ) the mapping class group of the bordered surface
Si, emphasizing that each such mapping class has to fix δ pointwise. The
stabilizer of δ in the mapping class group of S is of the form

GS = Map(S1, δ) × Map(S2, δ)/ ∼

where the equivalence relation ∼ identifies the Dehn twist about δ in the
groups Map(S1, δ) and Map(S2, δ). Note that the Dehn twist about δ lies in
the handlebody group and acts trivially on π1(V, p). Therefore, the stabilizer
of δ in the handlebody group is of the form

GV = Map(V1,D) × Map(V2,D)/ ∼ .

In particular, the handlebody group Map(V1,D) injects into GV . There is
a homomorphism GV → Aut(F2) × Aut(Fg−2) induced by the actions of
Map(Vi, p) on π1(Vi, p). This homomorphism is natural with respect to the
inclusion Aut(F2) × Aut(Fg−2) → Aut(Fg) defined by the free decomposi-
tion of π1(V, p) given above. It is also natural with respect to the inclusion
Aut(F2) → Aut(F2) × Aut(Fg−2) defined by Map(V1,D) → GV . Summariz-
ing, we have the following commutative diagram.

Map(S1, δ) // GS
// Map(S, p) // Map(S)

Map(V1,D) //

OO

��

GV
//

OO

��

Map(V, p) //

OO

��

Map(V )

OO

��
Aut(F2) // Aut(F2) × Aut(Fg−2) // Aut(Fg) // Out(Fg)
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Let Φ̃k ∈ Map(V1,D) be the elements constructed in the proof of Corol-

lary 2.3.5. The image of Φ̃k in Aut(F2)×Aut(Fg−2) is the Nk–th power of a
conjugation in the free factor F2 defined by V1, and the identity on the free
factor Fg−2 defined by V2, where Nk ≥ 2k. In other words, this projection is
a Nk–th iterate of a partial conjugation. Therefore, it projects to a nontrivial
element of infinite order in Out(Fg). From there, one can finish the proof
using the argument in the proof of Theorem 2.3.1.

The last case is that of a genus 2 handlebody without marked points or
spots. In this case, the strategy is to use the distortion of the handlebody
group of a solid torus with two spots to produce distorted elements in the
stabilizer of a nonseparating disk in the genus 2 handlebody.

To make this precise, we use the following construction. Let V be a genus
2 handlebody and S its boundary surface. Choose a nonseparating essential
simple closed curve δ that bounds a disk D in V . Cutting S at δ yields a
torus S2

1 with two boundary components δ1 and δ2. Choose once and for all a
continuous map S2

1 → S which maps both δ1 and δ2 to δ and which restricts
to a homeomorphism

S2
1 \ (δ1 ∪ δ2) → S \ δ.

The isotopy class of such a map depends on choices, but we fix one such map
for the rest of this section. This map induces induces a homomorphism

Map(S2
1) → StabMap(S)(δ)

since the homeomorphisms and isotopies used to define the mapping class
group Map(S2

1) of the torus S2
1 have to fix δ1 and δ2 pointwise and therefore

extend to S.
Since δ bounds a disk, an analogous construction works for the handle-

body groups, and we obtain

Map(V 2
1 ) → StabMap(V )(D).

Let p ∈ δ be a base point, and let a, b be smooth embedded loops in S with
the following properties (compare Figure 2.2).

i) The projections A and B of a and b to π1(V, p) form a free basis of
π1(V, p) = F2.

ii) The loops a and b intersect δ exactly in the basepoint p.
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δ
a

b
p

T

Figure 2.2: The setting for a genus 2 handlebody.

iii) The loop a hits δ from different sides at its endpoints, while b returns
to the same side.

On the surface S2
1 obtained by cutting S at δ, the loop a defines an arc from

one boundary component to the other, while b defines a loop. By slight abuse
of notation we will denote these objects by the same symbols. We choose
the initial point of the loop b as base point of this cut-open surface, and call
it again p. Then the projection B of b to the spotted solid torus V 2

1 is a
generator of its fundamental group π1(V

2
1 , p) = Z.

Now consider the torus T ′ ⊂ S with one boundary component obtained as
the tubular neighborhood of a∪δ in S (compare Figure 2.2 for the situation).
The complement of T ′ in S again is a torus with one boundary component
which we denote by T . Choose a reducible homeomorphism f of V 2

1 which
preserves T and restricts to a pseudo-Anosov homeomorphism f on the torus
T ⊂ S with the property that the projection of the loop fk(b) to π1(V

2
1 ) is

BNk , for Nk ≥ 2k. Such an element can be constructed explicitly as in the
proof of Theorem 2.3.5. In particular, we may assume that f fixes the arc a
pointwise.

Consider now as in the proof of Theorem 2.3.5 the map that collapses the
boundary components of V 2

1 to marked points. On this solid torus V1,2 with
two marked points, a defines an arc from marked point to marked point, and
b defines a based loop at one of the marked points which we again use as
base point for this surface. Let P = P(b) be the point pushing map on V1,2

defined by b, and let P̃ be any lift of this point-pushing map to the surface
S2

1 with boundary. As before, P̃ is an element of the handlebody group. We
define

Φk = fk ◦ P̃ ◦ f−k.

Lemma 2.4.2. Φk is an element of the handlebody group of V 2
1 . Φk(B) is
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homotopic to B as a loop based at p in the handlebody V 2
1 , and Φk(A) is

homotopic, as an arc relative to its endpoints, to A ∗ BNk in V 2
1 .

Proof. Φk projects to the point-pushing map along fk(b) on the solid torus
with two marked points V1,2 obtained by collapsing the boundary components
of V 2

1 . Hence, Φk is the lift of a handlebody group element and therefore lies in
the handlebody group itself (see the discussion in the proof of Theorem 2.3.5).
This yields the first claim.

To see the other claims, we can work in the solid torus V1,2 with two
marked points, as the projection from V 2

1 to V1,2 that collapses the spots to
marked points induces a isomorphism on fundamental groups.

Here by construction Φk projects to the point-pushing map along fk(b).
Lemma 2.3.3 now implies that this projection acts as conjugation by BNk on
the fundamental group, giving the second claim.

By construction of f , the arc a and the loop bk = fk(b) only intersect at
the base point. The loop bk is a simple curve and thus there is an embedded
tubular neighborhood of bk on V1,2 which is orientation preserving homeo-
morphic to [0, 1]/(0 ∼ 1) × [−1, 1] = S1 × [−1, 1] and such that S1 × {0}
is the loop bk. After perhaps reversing the orientation of bk and perform-
ing an isotopy, we may assume that the intersection of a with this tubular
neighborhood equals {0} × [−1, 0].

Since bk is simple, the point pushing map along bk is isotopic to the map
supported on the tubular neighborhood which is defined by

(x, t) 7→ (x + (t + 1), t) for t ∈ [−1, 0]

(x, t) 7→ (x − t, t) for t ∈ [0, 1]

This implies that the point pushing map acts on the homotopy class
of a by concatenating a with the loop fk(b) (up to possibly changing the
orientation of a). Since fk(b) projects to BNk in the handlebody, this implies
the last claim of the lemma.

Theorem 2.4.3. The handlebody group of a genus 2 handlebody is at least
exponentially distorted.

Proof. We use the notation from the construction described above. Consider
the image Ψk of Φk in the stabilizer of D in the handlebody group Map(V2).
By construction, Ψk fixes the curve δ pointwise and therefore acts on π1(V, p).
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By the preceding lemma, this action is given by

A 7→ A ∗ BNk

B 7→ B

Therefore, Ψk acts as the Nk-th power of a simple Nielsen twist on F2. In
particular, it projects to the Nk-th power of a nontrivial element in Out(F2).
From here, one can finish the proof as for the preceding distortion theorems.

2.5 Disk exchanges and surgery paths

In this section we study disk systems in handlebodies and introduce certain
types of surgery operations for disk systems. These surgery operations form
the basis for the construction of distinguished paths in the handlebody group
(see Lemma 2.7.8).

In the sequel we always consider a handlebody V of genus g ≥ 2 with
a finite number m of marked points on its boundary ∂V . The discussion
remains valid if some of the marked points are replaced by spots.

Definition 2.5.1. A disk system for V is a set of essential disks in V which
are pairwise disjoint and non-homotopic. A disk system is called simple if all
of its complementary components are simply connected. It is called reduced
if it is simple and has a single complementary component.

We usually consider disk systems only up to isotopy. For a handlebody of
genus g, a reduced disk system consists of precisely g non-separating disks.
The complement of a reduced disk system in V is a ball with 2g spots (and
possibly some marked points). The boundary of a reduced disk system is a
multicurve in ∂V with g components which cuts ∂V into a 2g-holed sphere
(with some number of marked points). The handlebody group acts transi-
tively on the set of isotopy classes of reduced disk systems.

We say that two disk systems D1,D2 are in minimal position if their
boundary multicurves intersect in the minimal number of points and if every
component of D1 ∩ D2 is an embedded arc in D1 ∩ D2 with endpoints in
∂D1 ∩ ∂D2. Disk systems can always be put in minimal position by applying
suitable isotopies. In the sequel we always assume that disk systems are in
minimal position.



2.5. DISK EXCHANGES AND SURGERY PATHS 29

Note that the minimal position of disks behaves differently than the nor-
mal position of sphere systems as defined in [Ha95]. Explicitly, let Σ be
a reduced disk system and D an arbitrary disk. Suppose D is in minimal
position with respect to Σ. Then a component of D \ Σ may have several
boundary components on the same side of a disk in Σ. In addition, the
collection of components of D \ Σ does not determine the disk D uniquely.

Let D be a disk system. An arc relative to D is a continuous embedding
ρ : [0, 1] → ∂V such that its endpoints ρ(0) and ρ(1) are contained in ∂D.
An arc ρ is called essential if it cannot be homotoped into ∂D with fixed
endpoints and if the number of intersections of ρ with ∂D is minimal in its
isotopy class.

Choose an orientation of the curves in ∂D. Since ∂V is oriented, this
choice determines a left and a right side of a component α of ∂D in a small
annular neighborhood of α in ∂V . We then say that an endpoint ρ(0) (or
ρ(1)) of an arc ρ lies to the right (or to the left) of α, if a small neighborhood
ρ([0, ǫ]) (or ρ([1 − ǫ, 1])) of this endpoint is contained in the right (or left)
side of α in a small annulus around α. A returning arc relative to D is an
arc both of whose endpoints lie on the same side of some boundary ∂D of a
disk D in D, and whose interior is disjoint from ∂D.

Let E be a disk which is not disjoint from D. An outermost arc of ∂E
relative to D is a returning arc ρ relative to D such that there is a component
E ′ of E \D whose boundary is composed of ρ and an arc β ⊂ D. The interior
of β is contained in the interior of D. We call such a disk E ′ an outermost
component of E \ D.

For every disk E which is not disjoint from D there are at least two
distinct outermost components E ′, E ′′ of E \ D. Every outermost arc of a
disk is a returning arc. However, there may also be components of ∂E \ D
which are returning arcs, but not outermost arcs. For example, a component
of E \ D may be a rectangle bounded by two arcs contained in D and two
subarcs of ∂E with endpoints on ∂D which are homotopic to a returning arc
relative to ∂D.

Let now D be a simple disk system and let ρ be a returning arc whose
endpoints are contained in the boundary of some disk D ∈ D. Then ∂D \
{ρ(0), ρ(1)} is the union of two (open) intervals γ1 and γ2. Put αi = γi ∪ ρ.
Up to isotopy, α1 and α2 are simple closed curves which are disjoint from D
(compare [St99] and [M86] for this construction). Therefore both α1 and α2

bound disks in the handlebody which we denote by Q1 and Q2. We say that
Q1 and Q2 are obtained from D by simple surgery along the returning arc ρ.
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The following observation is well-known (compare [M86, Lemma 3.2], or
[St99]).

Lemma 2.5.2. If Σ is a reduced disk system and ρ is a returning arc with
endpoints on D ∈ Σ, then for exactly one choice of the disks Q1, Q2 defined
as above, say the disk Q1, the disk system obtained from Σ by replacing D by
Q1 is reduced.

Proof. A reduced disk system equipped with an orientation defines a basis
over Z for the relative homology group H2(V, ∂V ; Z) = Z

n. The homology
class of the oriented disk D is the sum of the homology classes of the suitably
oriented disks Q1 and Q2. Since D is a generator of H2(V, ∂V ; Z), there is
exactly one of the disks Q1, Q2, say the disk Q1, so that the disk system
D′ obtained from D by replacing D by Q1 defines a basis for H2(V, ∂V ; Z).
Then this disk system is reduced.

Note that the disk Q1 is characterized by the requirement that the two
spots in the boundary of V \ Σ corresponding to the two copies of D are
contained in distinct connected components of V \ (Σ∪Q1). It only depends
on Σ and the returning arc ρ.

Definition 2.5.3. Let Σ be a reduced disk system. A disk exchange move
is the replacement of a disk D ∈ Σ by a disk D′ which is disjoint from Σ
and such that (Σ \ D) ∪ D′ is a reduced disk system. If D′ is determined
as in Lemma 2.5.2 by a returning arc of a disk in a disk system D then the
modification is called a disk exchange move of Σ in direction of D or simply
a directed disk exchange move.

A sequence (Σi) of reduced disk systems is called a disk exchange sequence
in direction of D (or directed disk exchange sequence) if each Σi+1 is obtained
from Σi by a disk exchange move in direction of D.

Lemma 2.5.4. Let Σ1 be a reduced disk system and let D be any other disk
system. Then there is a disk exchange sequence Σ1, . . . , Σn in direction of D
such that Σn is disjoint from D.

Proof. We define the sequence Σi inductively. Suppose Σi is already defined
and not yet disjoint from D. Then there is a outermost arc ρ of D with
respect to Σi. By Lemma 2.5.2, there is a disk system Σi+1 obtained by a
disk exchange move along this returning arc. As a result of this surgery,
the geometric intersection number between Σi+1 and D is strictly smaller
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than the geometric intersection number between Σi and D. Now the lemma
follows by induction on the geometric intersection number between ∂Σ1 and
∂D.

2.6 Racks

In this section we define and investigate combinatorial objects which serve
as analogs of train tracks for handlebodies. Let again V be a handlebody of
genus g ≥ 2, perhaps with marked points on the boundary.

Definition 2.6.1. A rack R in V is given by a reduced disk system Σ(R),
called the support system of the rack R, and a collection of pairwise disjoint
essential embedded arcs in ∂V \ ∂Σ(R) with endpoints on ∂Σ(R), called
ropes, which are pairwise non-homotopic relative to ∂Σ(R). At each side of
a support disk D ∈ Σ(R), there is at least one rope which ends at the disk
and approaches the disk from this side.

A rack R is called large, if the union of ∂Σ(R) and the set of ropes
decompose ∂V into disks.

Note that the number of ropes of a rack is uniformly bounded. In the
sequel we often consider isotopy classes of racks.

Explicitly, we say that two racks R, R′ are (weakly) isotopic if their sup-
port systems Σ(R), Σ(R′) are isotopic and if after an identification of Σ(R)
with Σ(R′), each rope of R is freely homotopic relative to ∂Σ(R) to a rope of
R′. In Section 2.7 we will introduce a more restrictive notion of equivalence
of racks.

The handlebody group Map(V ) acts transitively on the set of reduced
disk systems, and it acts on the set of weak isotopy classes of racks. For
every reduced disk system Σ the stabilizer of ∂Σ in Mod(∂V ) is contained
in Map(V ) (compare Proposition 2.2.1). This implies that there are only
finitely many orbits for the action of Map(V ) on the set of weak isotopy
classes of racks. The stabilizer in Map(V ) of a weak isotopy class of a rack R
with support system Σ(R) contains the group Z

n of Dehn twists about the
components of ∂Σ(R). In particular, this stabilizer is infinite.

Definition 2.6.2. 1. A disk system D (or an arbitrary geodesic lamina-
tion λ on ∂V ) is carried by a rack R if it is in minimal position with
respect to the support system Σ(R) of R and if each component of
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∂D \ ∂Σ(R) (or of λ \ ∂Σ(R)) is homotopic relative to ∂Σ(R) to a rope
of R.

2. An embedded essential arc ρ in ∂V with endpoints in ∂Σ(R) is carried
by R if each component of ρ \ ∂Σ(R) is homotopic relative to ∂Σ(R)
to a rope of R.

3. A returning rope of a rack R is a rope which begins and ends at the
same side of some fixed support disk D (i.e. defines a returning arc
relative to ∂Σ(R)).

Remark 2.6.3. i) A disk system D is carried by a rack R if and only if each
individual disk D ∈ D is carried by R.

ii) Every disk which does not intersect the support system Σ(R) of a rack
R is not carried by R. In particular, the support system itself is not
carried by R.

Let R be a rack with support system Σ(R) and let α be a returning rope
of R with endpoints on a support disk D ∈ Σ(R). By Lemma 2.5.2, for one
of the components γ1, γ2 of ∂D \ α, say the component γ1, the simple closed
curve α∪ γ1 is the boundary of an embedded disk D′ ⊂ H with the property
that the disk system (Σ \ D) ∪ D′ is reduced.

A split of the rack R at the returning rope α is any rack R′ with support
system Σ′ = (Σ(R) \ D) ∪ D′ whose ropes are given as follows.

1. Up to isotopy, each rope ρ′ of R′ has its endpoints in (∂Σ(R)\∂D)∪γ1 ⊂
∂Σ(R) and is an arc carried by R.

2. For every rope ρ of R there is a rope ρ′ of R′ such that ρ is a component
of ρ′ \ ∂Σ(R).

The above definition implies in particular that a rope of R which does
not have an endpoint on ∂D is also a rope of R′. Moreover, there is a map
Φ : R′ → R which maps a rope of R′ to an arc carried by R, and which maps
the boundary of a support disk of R′ to a simple closed curve γ of the form
γ1 ◦ γ2 where γ1 either is a rope of R or trivial, and where γ2 is a subarc
of the boundary of a support disk of R (which may be the entire boundary
circle). The image of Φ contains every rope of R.
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Splits of racks behave differently from splits of train tracks. Although this
distinction is not explicitly needed for the rest of this work, we note some im-
portant differences in the remainder of this section. For these considerations
we always consider racks up to weak isotopy.

A split of a rack R at a returning rope is not unique. If R′ is a split of
R and if ϕ is a Dehn-twist about the boundary of a support disk of R then
ϕ(R′) is a split of R as well. Moreover the following example shows that
even up to the action of the group of Dehn twists about the boundaries of
the support system of R, there may be infinitely many racks which can be
obtained from R by a split.

Example: Let V be the handlebody of genus 2 and let Σ be a reduced disk
system consisting of two disks. Let R be a rack with support system Σ which
contains two distinct returning ropes α, β approaching the same support disk
D ∈ Σ from two distinct sides. Let E ⊂ V be an essential disk carried by R
with the following property. There is an outermost component E ′ of E \ Σ
which contains an arc homotopic to α in its boundary. Attached to E ′ ⊂ E is
a rectangle component Rβ ⊂ E of E \Σ with two opposite sides on D which
is a thickening of the returning rope β. The rectangle Rβ is attached to a
rectangle Rα with two sides on D which is a thickening of α looping about
the half-disk E ′. Rα in turn is attached to a second copy of Rβ etc (see the
figure). A rack R′ whose support system is obtained from Σ by a single disk

exchange in direction of E and which carries ∂E contains a returning rope
ρ which is carried by R and so that ρ \ Σ has an arbitrarily large number of
components.

Another important difference between racks and train tracks concerns the
relation between carrying and splitting. One the one hand, there are splits
R′ of R which carry disks which are not carried by R. Namely, let R be a
rack and R′ be a split of R. Denote the support disk of R′ which is not a
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support disk of R by D. In particular, if D is a disk carried by both R and
R′, then images of D under arbitrary powers of the Dehn twist about ∂D are
still carried by R′, but not necessarily by R.

On the other hand, let D be a disk carried by a rack R. Then there
may be no split R′ of R which still carries D. Namely, R may have a single
returning rope ρ and thus every split of R has the same support system Σ′.
If Σ′ is disjoint from D, no rack with support system Σ′ carries D.

2.7 The graph of rigid racks

In this section we construct a geometric model for the handlebody group.
By a geometric model we mean a connected locally finite graph on which
the handlebody group acts properly and cocompactly as a group of automor-
phisms. The construction is similar in spirit to the construction of the train
track graph in [Ha09a], which is a geometric model for the mapping class
group. The model we construct admits a family of distinguished paths which
are used for a coarse geometric control of the handlebody group. These paths
are constructed below in Lemmas 2.7.6 and 2.7.8.

As a first step one can define a graph of racks R(V ) in direct analogy to the
definition of the train track graph in [Ha09a]. The vertex set of R(V ) is the
set of weak isotopy classes of large racks (satisfying a suitable completeness
condition which is not important for the current work). Two such vertices
are connected by an edge of length one if the corresponding racks are related
by a single split. By construction, the handlebody group acts on R(V ) as
a group of automorphisms. Imitating the proof of connectivity for the train
track graph from [Ha09a, Corollary 3.7] one can then show that R(V ) is
connected. Since this result is not needed in the sequel we do not include a
proof here.

The graph of racks defined in this way is not a geometric model for the
handlebody group, as the stabilizer of a weak isotopy class of a rack contains
the group generated by Dehn twists about the support system, and thus is in
particular infinite. For the same reason, the graph of racks is locally infinite.
Also recall that even up to the action of the group of Dehn twists about the
support system of R, there may be infinitely many different racks which can
be obtained from R by a single split (as demonstrated by the example in
Section 2.6).

To define a geometric model for the handlebody group using racks, we
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therefore have to overcome two difficulties. On the one hand, we need to
record twist parameters at the support curves so that the stabilizer of a
rack with a set of such twist parameters becomes finite. On the other hand,
the edges have to be more restrictive than splits so that the graph becomes
locally finite.

For the purposes of this chapter, these problems will be addressed by
considering a more restrictive notion of equivalence of racks.

Definition 2.7.1. i) Let R be a large rack. The union of the support
system and the system of ropes of R defines a cell decomposition of the
surface ∂V which we call the cell decomposition induced by R.

ii) Let R and R′ be racks. We say that R and R′ are rigidly isotopic if the
cell decompositions induced by R and R′ are isotopic as cell decomposi-
tions of the surface ∂V .

In particular, if ϕ is a simple Dehn twist about the boundary of a support
curve of a rack R, then R and ϕn(R) are not rigidly isotopic for n ≥ 2.
This observation and the fact that the stabilizer of a reduced disk system
in the mapping class group is contained in the handlebody group imply the
following.

Corollary 2.7.2. The handlebody group acts on the set of rigid isotopy
classes of racks with finite quotient and finite stabilizers.

This corollary shows that the set of rigid isotopy classes of racks can be
used as the set of vertices of a Map(V )-graph which is a geometric model for
Map(V ).

To define a suitable set of edges for such a graph we note the following
lemma.

Lemma 2.7.3. i) There is a number K1 > 0 with the following property.
Let R, R′ be two racks sharing the same support system. Then there is
a sequence

R = R1, . . . , RN = R′

of racks, such that the number of intersections between the cell decompo-
sitions induced by Ri and Ri+1 is less than K1 for all i = 1, . . . , N − 1.

ii) There is a number K2 > 0 with the following property. Let R be a rack
and let α be a returning rope of R. Then there is a rack R′ which is
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obtained from R by a split along α such that the number of intersections
between the cell decompositions induced by R and R′ is less than K2.

Proof. Part i) of the lemma follows immediately from the fact that for every
reduced disk system Σ of V , the stabilizer of ∂Σ in the mapping class group
of ∂V is contained in the handlebody group and acts with finite quotient on
the set of all rigid isotopy classes of racks with a common support system.

To prove part ii), let Σ′ be the reduced disk system obtained from the
support system of R by the disk exchange along the returning rope α. Every
component of ∂Σ′ is homotopic to a union of uniformly few edges of the cell
decomposition induced by R. Therefore, the number of intersections between
Σ′ and the cell decomposition induced by R can be uniformly bounded. Now
the claim follows as in part i) since the stabilizer of ∂Σ′ in the mapping class
group of ∂V is contained in the handlebody group.

Definition 2.7.4. The graph of rigid racks RR(V ) is the graph whose vertex
set is the set of rigid isotopy classes of large racks. Two such vertices are
joined by an edge if the intersection number between the cell decompositions
induced by the large racks corresponding to the edges is at most K. Here K
is the maximum of the constants K1 and K2 of Lemma 2.7.3.

Remark 2.7.5. Part ii) of Lemma 2.7.3 can be interpreted as the fact that
twisting data about the support system of a rack R determines a finite num-
ber of splits which are adapted to these twist parameters. Furthermore,
each of these possible splits carries a coarsely unique set of twist parameters
induced by the original rack R.

Lemma 2.7.3 implies that RR(V ) is connected. Since the handlebody
group acts on RR(V ) properly discontinuously and cocompactly, it is a ge-
ometric model of the handlebody group by the Svarć-Milnor-Lemma.

As a next step we define a distinguished class of paths in RR(V ). These
paths are sufficiently well-behaved to obtain a coarse geometric control for the
handlebody group. The length estimates for these paths use markings and
Corollary 2.A.4 which relates word norms of mapping class group elements to
intersection numbers of cell decompositions. The necessary definitions and
statements are given in the Appendix.

In order to simplify the notation for the rest of the chapter, we usually do
not specify constants or additive and multiplicative errors in formulas, but
rather state that a quantity x is “coarsely bounded” by some other quantity
y (or “uniformly bounded”). By this we mean that there are constants C1, C2
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which only depend on the genus (and the number of marked points) of V ,
such that x is bounded by C1 · y + C2 (or C1).

Lemma 2.7.6. There is a number k > 0 satisfying the following. Let P be
a pants decomposition of ∂V all of whose components bound disks in V . Let
R be a large rack with support system Σ(R). Then there is a large rack R′

with the following properties.

i) The support system Σ(R′) of R′ agrees with the one of R.

ii) Each component of P which intersects the support system of R essentially
is carried by R′.

iii) Each component of P \ ∂Σ(R′) intersects the cell decomposition induced
by R′ in at most k points.

iv) The distance between R and R′ in RR(V ) is coarsely bounded by the
geometric intersection number between P and the 1–skeleton of the cell
decomposition induced by R.

Proof. Denote the cell decomposition induced by R by C. Let S ′ be the
surface obtained from ∂V by cutting at ∂Σ(R). The intersection of P with
S ′ is a union of simple closed curves and arcs connecting the boundary com-
ponents of S ′. We call these arcs the arcs induced by P . Let R̂ be the rack
whose support support system agrees with the one of R and whose ropes are
given by the arcs induced by P . If R̂ is not a large rack, then we can add
ropes to R̂ which intersect P in uniformly few points, and which intersect
ropes of R in at most i(P, C) points. Call the result R′.

From the construction of the rack R′, properties i) to iii) are immediate.
Property iv) follows by applying Corollary 2.A.4 to the cell decomposition C
and the cell decomposition induced by R′ on the subsurface S ′.

Definition 2.7.7. If P and R′ satisfy conclusions ii) and iii) of Lemma 2.7.6
above, we say that P is effectively carried by R′.

The following lemma is the main step towards the upper distortion bound
for the handlebody group and contains the construction of the distinguished
paths in the handlebody group.

Lemma 2.7.8. Let P be a pants decomposition all of whose components
bound disks in V . Suppose P is effectively carried by a rack R with support
system Σ(R). If at least one component of P intersects ∂Σ(R) essentially,
there is a rack R′ with the following properties.
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i) The support system Σ(R′) is obtained from Σ(R) by a disk exchange
move in the direction of a component of P .

ii) P is effectively carried by R′.

iii) The distance of R and R′ in RR(V ) is coarsely bounded by i(P, ∂Σ(R)).

Proof. Since the intersection of P with ∂Σ(R) is nonempty, the rack R has
a returning rope α corresponding to an arc induced by P .

Let Σ′ be the reduced disk system obtained from Σ(R) by a disk ex-
change along the returning leaf α. Each component of ∂Σ′ intersects the cell
decomposition induced by R in uniformly few points. Define a rack R̂ with
support system Σ′ by choosing the arcs induced by P relative to Σ′ as ropes.
By construction, each rope of R̂ is obtained as a concatenation of ropes of
R (as in the definition of the split of a rack). Furthermore, each rope of R̂
intersects Σ(R) in at most as many points as P does. Therefore, the inter-
section number between a rope of R̂ and the cell decomposition induced by
R can be coarsely bounded by i(P, ∂Σ(R)). We can extend R̂ in any way
to a large rack R′ such that every rope of R′ has the same property. Both
R′ and R intersect ∂Σ′ in uniformly few points. The mapping class group of
∂V \ ∂Σ′ is contained in the handlebody group and undistorted in the map-
ping class group. Hence Corollary 2.A.4 applied in the subsurface ∂V \ ∂Σ′

implies that the distance between R and R′ in RR(V ) is coarsely bounded
by i(P, ∂Σ(R)). Now we can apply Lemma 2.7.6 to R′ to obtain a rack with
the desired properties.

The following theorem is an easy consequence of Lemma 2.7.8.

Theorem 2.7.9. Let g ≥ 2 be arbitrary. Then the handlebody group Map(Vg)
is at most exponentially distorted in the mapping class group.

Together with the results from Sections 2.3 and 2.4 this theorem implies
the main theorem from the introduction.

Proof of Theorem 2.7.9. There is a number K > 0 such that for every large
rack R there is a pants decomposition PR whose geometric intersection num-
ber with the cell decomposition C(R) induced by R is bounded by K. This
is due to the fact that the handlebody group acts cocompactly on the graph
of rigid racks.
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Let R0 be a rack, and P0 such a pants decomposition. Let f be an
arbitrary element of the handlebody group. Put P = f(P0). By Proposi-
tion 2.A.3 the geometric intersection number between P and P0 is coarsely
bounded exponentially in the word norm of f in the mapping class group.
Denote this bound by N .

As a first step, apply Lemma 2.7.6 to R0 and P to construct a rack R1

which effectively carries P and whose distance to R0 is coarsely bounded
by N . Next, use Lemma 2.7.8 to construct a rack R2 whose distance to R1

is again coarsely bounded by N , and such that the number of intersections
between P and Σ(R2) is strictly less than the number of intersections be-
tween P and Σ(R1). Inductively repeating this procedure we find a sequence
R1, . . . , RK of racks of length K coarsely bounded by N2, and such that P
is disjoint from Σ(RK). In particular, there is a handlebody group element g
which maps P0 to P and whose word norm in the handlebody group is also
coarsely bounded by N2. The difference f−1 ◦ g fixes the pants decompo-
sition P0 and hence is a Dehn multitwist about P0. As the group of Dehn
multitwists about P0 is contained in the handlebody group, and undistorted
in the mapping class group, the word norm of f−1 ◦ g in the handlebody
group is also coarsely bounded by N2. This shows the theorem.

2.A Markings and intersection numbers

In this Appendix we recall some facts about markings and intersection num-
bers which are used several times in this work.

Our terminology deviates slightly from the one used in [MM00], so we
also recall the necessary definitions.

Definition 2.A.1. A marking µ of a surface S is a pants decomposition P
of S together with a clean transversal for each curve in P . Here, a clean
transversal to a pants curve γ ∈ P is a curve c which is disjoint from all
curves γ′ ∈ P \ γ and which intersects γ in the minimal number of points.

Two clean transversals to a curve α in a pants decomposition P differ by
a Dehn twist about α (after possibly applying a half-twist about α). In this
way, the set of clean transversals can be thought of as a twist normalization
about the pants decomposition curves.

Note that the object we denote by “marking” is called “complete clean
marking” in the terminology of [MM00]. The more general notion of marking
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used in [MM00] does not play any role in the present work.
Let S be a oriented surface of finite type and negative Euler characteristic

(possibly with punctures and boundary components). Subsurface projections
to annuli in S are defined in the following way (compare [MM00]). Recall
that the arc complex of a closed annulus A is the graph whose vertex set is
the set of arcs connecting the two boundary components of A up to isotopy
fixing ∂A pointwise. Two such vertices are connected by an edge of length
one, if the corresponding arcs can be realized with disjoint interior.

Let α be an essential simple closed curve on S. By Sα we denote the
annular cover corresponding to α. Explicitly, Sα is a covering surface of S
corresponding to the (conjugacy class of the) cyclic subgroup of π1(S) gener-
ated by α. Since S has negative Euler characteristic, it carries a hyperbolic
metric which lifts to a hyperbolic metric on the annulus Sα. In particular,
Sα has a natural boundary compactifying it to a closed annulus.

Let β be a simple closed curve or essential arc on S intersecting α. Con-
sider the set of lifts β̃ of β to Sα which connect the two boundary components
of Sα. Every element of this set defines a vertex in the arc complex of the
annulus Sα. We call the set of all these vertices the subsurface projection of
β to α. The subsurface projection of β to α has diameter at most one as all
lifts of β to Sα are disjoint.

Definition 2.A.2. The marking graph of S is the graph whose vertex set
is the set of isotopy classes of markings. Two such markings µ and µ′ are
joined by an edge of length one if they differ by an elementary move. An
elementary move from µ to µ′ is one of the following two operations.

i) µ′ has the same underlying pants decomposition as µ. The transversals
of µ′ are obtained from the ones of µ by applying one primitive Dehn
twist about one of the pants curves.

ii) Replace a pants curve α by its corresponding clean transversal β in µ.
Then modify α to a clean transversal of β (“cleaning the marking” in
the terminology of [MM00]).

The cleaning operation is described in detail in [MM00, Lemma 2.4] (also
compare the discussion on page 21 of [MM00]).

Since the details are not relevant for the current work, we do not review
them here. The marking graph is a connected, locally finite graph on which
the mapping class group of S acts with finite point stabilizers and finite
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quotient (compare [MM00]). Therefore, it is quasi-isometric to the mapping
class group.

The following proposition is well-known to experts and relates distances
in the marking graph to intersection numbers. Since we did not find a proof
in the literature, we include one here for completeness.

Proposition 2.A.3. Let µ1, µ2 be markings of a surface S. If µ1 and µ2 are
of distance k in the marking graph, then the total number of intersections
between µ1 and µ2 is bounded exponentially in k. Conversely, the total inter-
section number between µ1 and µ2 is a coarse upper bound for the distance
between µ1 and µ2 in the marking graph of S.

Proof. We begin with the lower bound for the distance in the marking graph.
Let µ1 and µ2 be two markings. For a number ǫ > 0, we say a marked Rie-
mann surface X belongs to the ǫ-thick part of Teichmüller space if the length
of each simple closed geodesic on X is at least ǫ. We will simply speak of the
thick part, if the corresponding ǫ is understood from the context. There are
points Xi the ǫ-thick part of Teichmüller space for S such that each curve
in µi is shorter than some universal constant C on Xi. Here, ǫ is a universal
constant depending only on the genus of the surface S. Explicitly, let Pi be
the underlying pants decomposition of the marking µi. The pants decom-
position Pi defines Fenchel-Nielsen coordinates for the Teichmüller space of
S. This implies that there is a marked Riemann surface X ′

i such that each
curve in Pi has hyperbolic length 1 on X ′

i. On a hyperbolic pair of pants all
of whose boundary components have lengths equal one the distance between
any two boundary components is uniformly bounded. This implies that on
X ′

i there are clean transversals to Pi whose hyperbolic length is also uni-
formly bounded. By changing the marking on X ′

i by Dehn twists about Pi

we obtain the desired surfaces Xi.
If the distance between µ1 and µ2 in the marking graph is bounded by k,

then the Teichmüller distance between X1 and X2 is also coarsely bounded
by k since the mapping class group acts properly and cocompactly on the
thick part of Teichmüller space. Thus the total hyperbolic length of µ2 on
X1 is bounded by e2k ·C by Wolpert’s lemma ([W79, Lemma 3.1]). But each
curve in µ1 has a collar of definite width on X1 since its length is bounded
by C, and therefore the total number of intersections of µ1 and µ2 is also
coarsely bounded by e2k.

Next we show the upper bound for the distance in the marking graph.
In the proof we will use singular Euclidean structures as in [B06] and the
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relation between the mapping class group of a surface and the corresponding
Teichmüller space.

Let P1 and P2 be the underlying pants decompositions of the markings
µ1, µ2. We may assume that P1∪P2 fills the surface, i.e. that all components
of S \ (P1 ∪ P2) are simply connected. Namely, if P1 ∪ P2 does not fill, then
P1 and P2 share a common curve α. We can then change the transversal
to α in µ1 such that the diameter of the subsurface projection to α of the
transversals to α in µ1 and µ2 is at most one. The number of steps necessary
for this modification is bounded by the intersection number between the two
transversals. We can then pass to the subsurface obtained by cutting S along
the common curve α and discarding the corresponding transversal. Repeat
this procedure until P1 ∪ P2 fills.

Furthermore, we can assume that the twist about a pants curve δ ∈ P1

defined by µ1 coarsely agrees with the one defined by P2. By this we mean
the following. Since P1 and P2 fill the surface, there is at least one curve of
P2 which intersects δ. Denote by cδ the transversal to δ in µ1. The diameter
of the subsurface projection of P2 and cδ to δ is bounded from above by
the intersection number between µ1 and µ2. Hence, after modifying the
transversal to δ in µ1 by at most i(µ1, µ2) Dehn twists about δ, the diameter
of the projection is at most 3. Similarly, we modify µ2 such that the twist
about the pants curves in P2 given by µ2 agrees with the one defined by P1.

For a pair of measured laminations λ1, λ2 which jointly fill the surface
and satisfy i(λ1, λ2) = 1 we denote by q(λ1, λ2) the quadratic differential
whose horizontal measured lamination is λ1 and whose vertical measured
lamination is λ2. Now let ρ be the Teichmüller geodesic defined by P1 and
P2; that is ρt = q(e−tP1, e

t/i(P1, P2)P2) (compare the construction in [B06]
for pairs of curves). Recall that on every hyperbolic surface of genus g there
is a pants decomposition such that the hyperbolic length of each pants curve
is bounded by a universal constant B (the Bers constant) which depends
only on the genus. By the collar lemma, a curve whose hyperbolic length is
bounded by B has extremal length coarsely bounded by B. Thus the length
of such a curve in any singular Euclidean metric in the same conformal class
is bounded by a universal constant B′.

We set T = log(2B′). Then for the singular Euclidean metric defined by
ρ−T , a curve whose length is smaller than B′ cannot intersect P1. Hence,
P1 is the only Bers short pants decomposition for ρ−T . Similarly, P2 is the
only Bers short pants decomposition on ρlog(i(P1,P2))+T . In particular, there
are two points X1, X2 in Teichmüller space, whose Teichmüller distance is
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bounded by 2T + log(i(P1, P2)) and such that Pi is Bers short on Xi.
Now for any k which is sufficiently large, by work of Rafi we have the

following estimate for the Teichmüller distance dT (X1, X2) (compare [R07,
Equation (19)]).

dT (X1, X2) ≻
∑

Y

[dY (µ′
1, µ

′
2)]k +

∑

α/∈Γ

log [dα(µ′
1, µ

′
2]k .

Here, µ′
1 and µ′

2 are shortest markings on X1 and X2, respectively, and [x]k
is a cutoff function which is 0 if x ≤ k and x otherwise. The expression
a ≻ b means that a is coarsely bounded by b. The first sum is taken over all
subsurfaces Y ⊂ S, while the indexing set Γ of the second sum is the set of
(isotopy classes of) simple closed curves which are short on either X1 or X2.
Note that in our case Γ agrees with the union of the pants curves in P1 and
P2. In both cases dY (or dα) denotes the diameter of the set of subsurface
projections of µ′

1 and µ′
2 to Y (or α).

In our case, since P1 and P2 fill, we can replace the subsurface projections
of µ′

i by those of Pi, except maybe in the cases where the subsurface is
bounded by curves contained in Γ. Hence we get

dT (X1, X2) ≻
∑

∂Y 6⊂Γ

[dY (P1, P2)]k +
∑

α/∈Γ

log [dα(P1, P2)]k .

Now, since dT (X1, X2) ≺ log(i(P1, P2)) we have

i(P1, P2) ≻
∑

∂Y 6⊂Γ

[dY (P1, P2)]k +
∑

α/∈Γ

[dα(P1, P2)]k .

Since the number of subsurfaces whose boundary is completely contained in
Γ is uniformly bounded, and the total intersection of µ1 and µ2 bounds each
of these projections, we get

i(µ1, µ2) ≻
∑

Y

[dY (µ1, µ2)]k +
∑

α

[dα(µ1, µ2)]k .

where now the sums are taken over all subsurfaces and all curves respectively.
By [MM00, Theorem 6.12], the right hand side of this inequality is coarsely
equal to the distance of µ1 and µ2 in the marking graph. This shows the first
claim.
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In the proof of the upper bound on distortion of the handlebody group
the following corollary is used in an essential way.

Corollary 2.A.4. Let N > 0 be given. Let C be a cell decomposition of the
surface S with at most N cells. Let f ∈ Map(S) be arbitrary. The intersec-
tion number between C and f(C) is coarsely bounded by an exponential of
the word norm of f . Here, the constants depend on the genus of S and the
number N .

Similarly, let C and C ′ are cell decomposition with at most N cells and
which intersect in K points. Then there is a mapping class g whose word
norm is bounded coarsely in K, and such that g(C) and C ′ intersect in uni-
formly few points.

Proof. Note that up to the action of the mapping class group there are only
finitely many cell decompositions C of S with at most N cells. Hence, there
is a constant K > 0 such that for any such cell decomposition C there is a
marking µC whose intersection number with C is bounded by K.

By the preceding Proposition 2.A.3 the number of intersections between
µC and f(µC) is coarsely bounded exponentially in the word norm of f . Since
the intersection number between f(µC) and f(C) is uniformly bounded, the
corollary follows.

Similarly, if C and C ′ intersect in K points, then the intersection number
between µC and µC′ can be coarsely bounded by K. Hence, Proposition 2.A.3
implies the second claim of the corollary.



Chapter 3

Distorted stabilizers in the

handlebody group

3.1 Introduction

Let Vg be a handlebody of genus g ≥ 3. In this chapter we consider the
stabilizer of certain type of curve in the handlebody group. To describe the
class of curves we are interested in, let D1 be a properly embedded, nonsep-
arating disk in V . Let α1 be a simple closed curve which intersects ∂D1 in
a single point. We call such curves Vg–primitive, since they define conjugacy
classes of primitive elements in the fundamental group of the handlebody Vg

(see Lemma 3.5.4).
The main result of this chapter is the following

Theorem 3.1.1. Let Vg be a handlebody of genus g ≥ 3. Then the stabilizer
of a Vg–primitive curve in Map(Vg) is exponentially distorted.

The relevance of this theorem stems from the following observation. In-
stead of considering the stabilizer of α in the handlebody group, we could
consider the stabilizer of α in the full mapping class group of the boundary
surface ∂Vg. Here, the stabilizer of α is undistorted (see [HM10] for a com-
plete proof of this fact, which is an easy consequence of the work in [MM00]).
Hence, by Theorem 3.1.1 the extrinsic geometry of curve stabilizers is differ-
ent in the handlebody group and in surface mapping class groups.

On the other hand, the analog of Theorem 3.1.1 is true for outer auto-
morphism groups of free groups. By work of Handel and Mosher [HM10],
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the stabilizer of the conjugacy class of a free factor of rank 1 in a free group
of rank ≥ 3 is exponentially distorted. The stabilizer of α in the handlebody
group projects (via the action on the fundamental group) to the stabilizer of
such a free factor.

In fact, this geometric property of Out(Fg) is one of the two main ingre-
dients to the proof of Theorem 3.1.1. To transfer it to the handlebody group,
we explicitly construct elements of the handlebody group which project in
Out(Fg) to the distorted sequence that Handel and Mosher consider.

The upper distortion bound in Theorem 3.1.1 follows using a geomet-
ric model for the handlebody group, namely the graph of rigid racks (see
[HH11a]). We identify the stabilizer of a V –primitive curve α as a suitable
subgraph of the graph of racks. Then one can employ a surgery method,
together with an estimate of intersection numbers, to obtain the upper dis-
tortion bound.

This chapter is organized as follows. In Section 3.2 we recall disk and
point pushing maps for surface mapping class groups and handlebody groups.
These form the basic building blocks for the construction of Nielsen twists in
the handlebody group in Section 3.3. In Section 3.4 we use these elements
to show the lower bound on distortion. Section 3.5 finishes the proof of
Theorem 3.1.1 by proving the upper distortion bound.

3.2 Point and disk pushing homeomorphisms

Let S2
g−1 be a closed surface of genus g−1 ≥ 1 with two disjoint marked disks

D+, D−. We use the convention that both isotopies and homeomorphisms
of surfaces and handlebodies fix the set of marked points setwise and each
marked disk pointwise. Let Sg−1,2 be the surface of genus g − 1 with two
marked points x+, x− obtained by collapsing each of the marked disks of
S2

g−1 to a point. It is well-known (compare e.g. [FM11, Proposition 3.19])
that there is a short exact sequence relating the mapping class groups of S2

g−1

to the pure mapping class group of Sg−1,2 as follows. By the pure mapping
class group PMap we mean the subgroup of the mapping class group that
fixes each marked point.

1 → Z
2 → Map(S2

g−1) → PMap(Sg−1,2) → 1 (3.1)

Here, the kernel Z
2 is generated by Dehn twists about the marked disks D+

and D−. Next, we describe how the mapping class group of a surface with
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marked points changes when a marked point is removed.
This is described by the Birman exact sequence. For its formulation in

our context, let x = x± be one of the marked points of Sg−1,2 and let Sg−1,1

be the surface obtained from Sg−2,2 by forgetting the marked point x.

Theorem 3.2.1 (compare [FM11, Theorem 4.6] and [Bi74]). There is a short
exact sequence sequence

1 → π1(Sg−1,1, x) → PMap(Sg−1,2) → Map(Sg−1,1) → 1.

The map P : π1(Sg−1,1, x) → Map(Sg−1,2) is the so-called point-pushing
map and can be constructed as follows. Let γ : [0, 1] → Sg−1,1 be a loop based
at x. Choose an isotopy Ft of Sg−1,1 with the property that Ft(x) = γ(t) and
F0 = id. The endpoint F1 of this isotopy is a homeomorphism of Sg−1,2,
which we call the point pushing homeomorphism P (γ) along γ. We let P(γ)
be the image of P (γ) in the mapping class group of Sg−1,2. In fact, P(γ)
only depends on the homotopy class of γ, and thus defines a homomorphism
P : π1(Sg−1,1, x) → PMap(Sg−1,2).

We call a preimage of P(γ) in Map(S2
g−1) under the map in the se-

quence (3.1) a disk pushing mapping class.

It is well-known that point pushing homeomorphisms act on the funda-
mental group by conjugations (compare e.g. [FM11, page 247]). The follow-
ing lemma establishes a similar property for the action on arcs connecting
the two marked points.

Lemma 3.2.2. Let Sg−1,2 be a surface with two marked points x+, x−, and
let α : [0, 1] → Sg−1,2 be an arc connecting x− to x+. Let γ be a loop based
at x+ and let P (γ) be the corresponding point-pushing homeomorphism.

Then the arc P (γ)(α) is homotopic on Sg−1 relative to its endpoints to
the arc obtained by concatenating α and γ.

Proof. Suppose first that γ is an embedded loop. Then there is a regular
tubular neighborhood U of the loop γ which is orientation preserving home-
omorphic to S1 × [−1, 1] such that S1 × {0} is the loop γ. Up to isotopy,
the intersection of α with this neighborhood is a disjoint union of arcs, one
of which has the form {s0} × [−1, 0] for a point s0 ∈ S1 and possibly others
of the form {si} × [−1, 1] for s1, . . . , sk ∈ S1.

The point pushing homeomorphism along γ can be chosen to be supported
in the tubular neighborhood U , and there takes the form of a left Dehn twist
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on S1× [−1, 0] followed by a right Dehn twist on S1× [0, 1] (compare Fact 4.7
of [FM11]). From this the claim is immediate. (see also the discussion in the
proof of Lemma 4.2 of [HH11a]).

The general case follows since every loop γ can be written as a concate-
nation of embedded loops.

At this point we want to emphasize that the image arc P (γ)(α) is in
general not homotopic to the concatenation of α and γ as an arc on Sg−1,2,
since the homotopy constructed in the proof above may pass through the
marked points.

The whole discussion so far is in fact compatible with handlebody groups.
Namely, suppose that S2

g−1 is the boundary of a handlebody V 2
g−1 of genus

g − 1 with two marked disks on its boundary. Then the Dehn twist about
each of the marked disks is contained in the handlebody group of V 2

g−1. Thus,
the short exact sequence (3.1) implies that there is a short exact sequence

1 → Z
2 → Map(V 2

g−1) → Map(Vg−1,2) → 1

where Vg−1,2 is the handlebody of genus g − 1 with two marked points on its
boundary surface obtained by collapsing the two marked disks on ∂V 2

g−1 to
points.

Point pushing homeomorphisms extend to the interior of the handlebody
(to see this, simply choose the defining isotopy to be an isotopy of the han-
dlebody and not just the boundary surface). Hence, Theorem 3.2.1 implies
that there is a Birman exact sequence for handlebody groups:

1 → π1(Sg−1,1, x) → PMap(Vg−1,2) → Map(Vg−1,1) → 1

Because of these two sequences, disk pushing mapping classes are contained
in the handlebody groups.

3.3 Nielsen twists in the handlebody group

The main technical step in lower distortion bound of Theorem 3.1.1 is an
explicit construction of elements in the handlebody group which act on the
fundamental group in an easy fashion.

To be describe the outer automorphisms we will use, let Fg be the free
group on g generators, and let e1, . . . , eg be a generating set. Pick one of
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these generators, say eg, and consider a word G in e1, . . . , eg−1. Then there
is an automorphism of Fg acting on the basis (ei) as follows:

e1 7→ Ge1

e2 7→ e2

. . .

eg 7→ eg

For the purpose of this chapter, we call such an automorphism (and its image
in the outer automorphism group) a Nielsen twist.

Now let Vg be a handlebody if genus g, and let D be an essential nonsep-
arating disk in Vg. The complement U of D in Vg is a handlebody of genus
g − 1 with two disks removed from its boundary. Let V ′ be a handlebody of
genus g − 1 with two distinguished disks D+ and D− on its boundary. The
inclusion of U in V induces a continuous map F : V ′ → V which maps both
D+ and D− to D, and which induces a homeomorphism of the complement
of D+ and D− to U . We will consider V ′ as if it were a submanifold of V
and often call it the complement of D in V if no confusion can occur. Note
that the homeomorphism F induces a homomorphism F∗ of the handlebody
group of V ′ into the handlebody group of V .

We next describe a convenient loop system on ∂Vg which generates the
fundamental group of Vg. Let Σ = {D1, . . . , Dg} be a cut system of Vg, i.e. a
collection of pairwise disjoint, nonisotopic disks which cut Vg into a spotted
ball. Since D is nonseparating, we may assume that D1 = D.

We choose a base point y ∈ ∂D. Let e1, . . . , eg be a collection of dis-
jointly embedded loops on ∂Vg with the following properties. Suppose that
e1 approaches D from two different sides at its two endpoints, and that all
other ei, i 6= 1 approach D from the same side at both of their endpoints.
Furthermore, the loop ei is disjoint from Dk for all k 6= i (except possibly
at the basepoint if k = 1) and the loop ei intersects the disk Di in a single
point. Since Σ decomposes Vg into a ball, such a collection of loops generate
π1(Vg, y).

The preimages of the e2, . . . , eg under F thus are loops on V ′ based at
one of the distinguished disks, say D+. The preimage of e1 under F is an arc
connecting the marked disk D− to the marked disk D+. If no confusion can
occur, we denote these preimages by the same symbol. Let Ṽ be the handle-
body of genus g − 1 with two marked points x+, x− obtained by collapsing
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D

e1 e2 e3

Figure 3.1: The setup for Lemma 3.3.1

the marked disk D± of V ′ to the point x±. The loops e2, . . . , eg project to

loops based at x+ on Ṽ , while e1 projects to an arc connecting x− to x+ (up
to possibly reversing the orientation of e1). Again, we will denote these loops
and arcs by the same symbol, if the context is clear.

The next lemma is the main step in understanding the action of F∗-images
of disk pushing mapping classes on the fundamental group of Vg.

Lemma 3.3.1. Let γ be a loop on ∂V ′ based at a point y on D+. Let
[γ] ∈ π1(Sg,1, x

+) be the homotopy class defined by the projection of γ to Ṽ .
Let ϕ be a disk-pushing map defined by γ on S2

g = ∂V ′. Then the map
F∗ϕ has the following properties.

i) F∗ϕ(D) = D.

ii) F∗ϕ(ei) is homotopic on ∂V to the loop obtained by conjugating ei by
[γ], for i = 2, . . . , g.

iii) F∗ϕ(e1) is homotopic in V ′ to the loop obtained by concatenating e1 and
γ relative to its endpoints.

Proof. The first property is immediate from the definition of F∗. Property
ii) follows since point pushing maps act by conjugation on the fundamental
group (compare e.g. [FM11, page 247]). Property iii) is a consequence of
Lemma 3.2.2. There is a slight subtlety hidden here, as Lemma 3.2.2 only
states that the arc ϕ(e1) is homotopic to the concatenation of α and [γ]
on Sg−1. In particular, such a homotopy may pass over the marked points.

Therefore, the arc defined by ϕ(e1) on Ṽ is homotopic to the concatenation
of e1 and γ only if we allow the arc to pass through the marked disks D+

and D−. However, since we are only interested in the homotopy class of the
of the loop F∗ϕ(e1) in the handlebody and not on its boundary surface, this
is not an issue.
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The following corollary is immediate from Lemma 3.3.1.

Corollary 3.3.2. The map F∗ϕ from Lemma 3.3.1 maps in Out(Fn) to the
image of a Nielsen twist

e1 7→ Ge1

e2 7→ e2

. . .

en 7→ en

where G is the image of γ in the fundamental group π1(Vg, y) of the handle-
body.

3.4 The lower distortion bound

In this section we prove the lower distortion bound for the curves described
in the introduction. As a first step, we note the following lemma, which
motivates the notation Vg–primitive curve.

Lemma 3.4.1. Let Vg be a handlebody of genus g and let α be a Vg–primitive
curve. Then the projection of α in π1(V ) defines the conjugacy class of a
primitive element.

Proof. Let D1 be the nonseparating disk which intersects α in a single point.
Put δ1 to be the boundary of a regular neighborhood of ∂D1 ∪α1. The curve
δ1 bounds a separating essential disk D′ in Vg. The disk D′ cuts Vg into a
spotted solid torus T and a handlebody V ′ of genus g − 1. The curve α1

defines the conjugacy class of a generator of π1(T ). Complete D1 to a cut
system Σ = {D1, . . . , Dg} of Vg by adding g − 1 disks which are contained in
V ′. Let p ∈ ∂Vg be a basepoint on the boundary of the handlebody. Then
there is a basis of π1(Vg, p) defined by disjointly embedded loops γ1, . . . , γg on
∂Vg based at p with the following properties. The loop γ1 is freely homotopic
to α1. Furthermore, a γi, i > 1 is disjoint from Dj , j 6= i and intersects Di in
one point. Hence α defines the conjugacy class of a primitive element.

We call a basis of loops for π1(Vg, p) as in the previous proof a dual basis
to Σ (or a dual basis to an extension of D).

The goal of this section is to prove the following:
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Proposition 3.4.2. Let g ≥ 3 and Vg be a handlebody of genus g. Let α be
a Vg–primitive curve. Then the stabilizer of the homotopy class of α is at
least exponentially distorted in the handlebody group.

The proof of this theorem uses the work of Handel and Mosher on dis-
torted stabilizers of (conjugacy classes of) primitive elements in Out(Fg) to
show the lower bound on distortion.

We begin by reviewing the construction from Section 4.3 (Case 1) of
[HM10] that we will use.

Let γ1, . . . , γg be a dual basis of loops to an extension Σ of D as defined
above. We denote by e1, . . . , eg the images of the γi in Fg = π1(Vg, p). Handel
and Mosher consider the following automorphism Θ : Fg → Fg:

Θ(e1) = e1e2

Θ(e2) = e1

Θ(ei) = ei for 3 ≤ i ≤ g

and a sequence of automorphisms Φk : Fg → Fg defined as

Φk(ei) = ei for i < n

Φk(en) = enΘk(e1)

By slight abuse of notation we will denote the images of Θ and Φk in the
outer automorphism group of Fg by the same symbols.

The following lemma is proven in the discussion of Case 1 of Section 4.3
of [HM10].

Lemma 3.4.3. Let G be the stabilizer of the conjugacy class of e1 in the
outer automorphism group of Fg. Then the word norm ‖Φk‖G of Φk as an
element of G grows exponentially with k.

We want to construct suitable mapping classes ϕk of the handlebody Vg

inducing Φk on the fundamental group level.
Let δi be the boundary of a regular neighborhood of γi ∪ ∂Di. For each

1 ≤ i ≤ g, the curve δi is essential, separating and diskbounding in Vg.
We first choose a homeomorphism f : Vg → Vg which fixes δg, αg and ∂Dg

pointwise and which induces Θ on the fundamental group level. To see that
this is possible, observe that the disk bounded by δg decomposes Vg into two
complementary components. Let Vg−1 be the component not containing γg
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and V̂ be the other component. The inclusion Vg−1 → Vg induces an isomor-
phism of the fundamental group of Vg−1 onto the subgroup of Fg generated by
α1, . . . , αg−1. Since the homomorphisms from the handlebody group to the
outer automorphism group of the fundamental group is onto, we can choose
a homeomorphism f ′ : Vg−1 → Vg−1 which induces the restriction of Θ to
〈e1, . . . , eg−1〉.

Now extend this homeomorphism to V̂ by the identity to obtain the
desired map f . Let ϑ be the mapping class defined by f .

To define ϕk we use the construction of maps in the handlebody group
described in Section 3.3. To stay consistent with the notation used in that
section, put D = Dg and choose a basepoint p ∈ ∂Dg.

Since the homeomorphism f fixes the disk Dg, it induces a homeomor-
phism of V ′ to itself, which we denote by the same letter.

Let V ′ be the complement (as defined in Section 3.3) of Dg and let D+

and D− be the two distinguished spots on ∂V ′. Let p ∈ D+ be a base point
and let γ be a loop based at p such that the image of γ in π1(Vg) is conjugate
to e1.

Let F : V ′ → V ′ be a disk pushing homeomorphism defined by γ. Then
F (k) := fk ◦ F ◦ f−k is a disk pushing homeomorphism along fk(γ1) on V ′.

Define ϕk to be the mapping class Vg obtained from F (k) by regluing the
two spots D+ and D− as described in Section 3.3.

In the handlebody group, ϕk = ϑk ◦ϕ0 ◦ϑ−k by construction. Hence, the
word length of ϕk grows linearly in k by the triangle inequality.

By Corollary 3.3.2, the element ϕk induces a Nielsen twist on the level
of fundamental groups, appending the image of Θk(e1) to eg. In particular,
ϕk induces Φk on π1(Vg, y) and fixes the simple closed curve α1 (this follows
from the fact that ϕk acts as conjugation on the loop γ1 on the boundary
surface).

Hence the word norm of ϕk in the stabilizer of α1 in the handlebody group
is coarsely bounded from below by the word norm of Φk in the stabilizer of
e1 in the outer automorphism group of the free group. By Lemma 3.4.3 the
latter grows exponentially. On the other hand, the word norm of ϕk in the
handlebody group grows linearly. As a consequence, Proposition 3.4.2 follows
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3.5 The upper distortion bound

In this section we show that stabilizer of an Vg–primitive curve is at most
exponentially distorted in the handlebody group, completing the proof of
Theorem 3.1.1.

To do so, we employ the results of [HH11a]. In particular, we use the
graph of rigid racks as a geometric model of the handlebody group. For
convenience, we recall the basic definitions and facts here.

Definition 3.5.1. A rack R is a cut system Σ(R) (called the support sys-
tem) together with a collection of pairwise disjoint arcs on ∂V \ ∂Σ(R) with
endpoints on ∂Σ(R) (called the ropes) such that on each side of each support
disk there is at least one rope with an endpoint approaching the support disk
on that side. A rack R is called large if ∂Σ(R) together with the collection
of ropes decomposes ∂V into disks. The cell decomposition of ∂V defined by
these curves and arcs is called the cell decomposition induced by the rack R.
Two large racks are called rigidly isotopic if the cell decompositions of ∂V
induced by them are isotopic.

The importance of racks stems from the following construction which is
inspired by the train track graph for closed surfaces.

Definition 3.5.2. The graph of rigid racks is the graph whose vertex set is
the set of rigid isotopy classes of large racks. Two such vertices are connected
by an edge, if the cell decompositions induced by the corresponding racks
intersect in at most K points (Here, K is a uniform constant chosen in such
a way that the resulting graph is connected; compare [HH11a, Lemma 7.3]
for details).

By Corollary 7.2 of [HH11a], the handlebody group acts on the graph of
rigid racks properly discontinuously and cocompactly as a group of automor-
phisms. Hence, by the Svarc-Milnor lemma it is quasi-isometric to the graph
of rigid racks.

As a next step, we define a geometric model of the stabilizer of α in the
graph of rigid racks.

Definition 3.5.3. Let α be a Vg–primitive curve. We say that a rack R is
adapted to α if the following holds. The support system of R contains a disk
D which intersects α in a single point. Furthermore, R contains a rope which
is freely homotopic to α.
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Lemma 3.5.4. The stabilizer of α in the handlebody group acts on the set
of isotopy classes of racks which are adapted to α with finite quotient.

Proof. As a first step, note that the stabilizer of α acts transitively on the
set of isotopy classes of reduced disk systems which intersect α in a single
point. Namely, let Σ and Σ′ be two such reduced disk systems, and let D ∈ Σ
(respectively D′ ∈ Σ′) be the disks which intersect α.

The complements of ∂Σ ∪ α and ∂Σ′ ∪ α on ∂Vg are homeomorphic as
surfaces. Therefore, there is is a mapping class of the boundary surface
∂Vg which fixes α and maps ∂Σ to ∂Σ′. Since every homeomorphism of the
boundary of a spotted ball extends to the interior of the ball, such a mapping
class is contained in the handlebody group.

Hence, it suffices to show the statement of the lemma for racks adapted
to α which have a common support system. The stabilizer of ∂Σ in the
mapping class group is contained in the handlebody group. Now the claim is
an immediate consequence of the fact that there are only finitely many cell
decompositions of a surface with uniformly few cells up to the action of the
mapping class group.

Lemma 3.5.4 allows to estimate the word norm of an element in the
stabilizer of α in the handlebody group. Namely, let ϕ be such a handlebody
group element. Suppose that there is an edge-path in the graph of rigid racks
connecting R0 to ϕ(R0), where R0 is adapted to α. Furthermore, assume that
we can arrange the edge-path in such a way that every vertex corresponds
to a rack which is adapted to α. Then the length of such a path is a coarse
upper bound for the word norm of ϕ in the stabilizer of α.

This strategy is executed in the following proposition, which finishes the
proof of Theorem 3.1.1.

Proposition 3.5.5. The stabilizer of the free homotopy class of α in the
handlebody group is at most exponentially distorted.

Proof. Let D be a nonseparating disk intersecting the simple closed curve
α ⊂ ∂Vg in one point. Extend D = D1 to a reduced disk system Σ0 =
{D1, . . . , Dg} which is disjoint from α (see the discussion at the beginning
of Section 3.4). We further choose simple closed curves α1, . . . , αg which
are pairwise disjoint, and such that α1 = α and the geometric intersection
number between αi and ∂Dj is 1 if i = j and 0 otherwise.

Let δk be the boundary of a regular neighborhood of αk∪∂Dk . The curve
δk bounds a disk in V . We let D0 be the disk system bounded by {δ1, . . . , δg}.
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By construction of the curves δk, the complement of D0 consists of g solid
once-spotted tori and a spotted ball. As a consequence, Σ0 is the unique
reduced disk system which is disjoint from D0.

Let R0 be a large rigid rack whose support system is Σ0, which contains
the curves αi as a rope (i.e. R0 is adapted to α) and which intersects D0 in
uniformly few points.

Let ϕ be a handlebody group element fixing α. We will prove that there
is a path in RR(V ) connecting R0 to f(R0) such that all racks occurring
in this path are adapted to α. Furthermore, the length of this path can be
bounded by an exponential function of the distance between R0 and f(R0).
By the discussion above, this suffices to show the proposition.

The existence of the desired path is a consequence of the proof of the
upper distortion bound in [HH11a]. We repeat the construction here. Put
D = f(D0) and Σ = f(Σ0). By Lemma 7.6 of [HH11a] there is a large rack R1

which carries D′ and such that the distance between R0 and R1 in the graph
of rigid racks is bounded by the geometric intersection number between ∂D′

and the one-skeleton of the cell decomposition induced by R0.
Proposition A.3 from [HH11a] implies that this intersection number N1

is bounded exponentially in the word norm of f in the handlebody group.
Since α is disjoint from D′ we can assume without loss of generality that R
still contains α as a rope. In fact, the proof of Lemma 7.6 also yields that
there is a path in the graph of rigid racks connecting R0 to R1 such that each
rack in this path is adapted to α and such that the length of this path is also
bounded by N1.

As in the proof of Theorem 7.9 of [HH11a] we now apply Lemma 7.8 of
[HH11a] repeatedly to obtain an edge-path of racks Ri, i = 1, . . . , N , such
that D is disjoint from the support system of RN . Again, since D is disjoint
from α, all racks Ri can be chosen to be adapted to α.

By choice of D, the reduced disk system Σ is the unique reduced disk
system disjoint from D. Hence, the rigid rack RN has Σ as its support
system and contains α as a rope. Thus, we can connect RN to f(R0) with a
path of rigid racks, all of which have Σ as their support system and contain
α as a rope. The distance between RN and f(R0) is at most N1 + N + d by
the triangle inequality, where d is the distance between R0 and f(R0).

The stabilizer of ∂Σ is undistorted in the handlebody group and fur-
thermore is equal to the stabilizer of ∂Σ in the mapping class group of ∂V .
Hence, the stabilizer of ∂Σ ∪ α is also undistorted in the handlebody group.



3.5. THE UPPER DISTORTION BOUND 57

This implies that the path connecting RN to f(R0) as above can be chosen
to have length coarsely bounded by N1 + N + d.
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Chapter 4

Isoperimetric inequalities for

handlebody groups1

4.1 Introduction

A handlebody of genus g ≥ 2 is a compact orientable 3-manifold V whose
boundary ∂V is a closed surface of genus g. The handlebody group Map(V ) is
the group of isotopy classes of orientation preserving homeomorphisms of V .
Via the natural restriction homomorphism, the group Map(V ) can be viewed
as a subgroup of the mapping class group Map(∂V ) of ∂V . This subgroup is
of infinite index, and it surjects onto the outer automorphism group of the
fundamental group of V which is the free group with g generators.

The handlebody group is finitely presented. Thus it can be equipped
with a word norm that is unique up to quasi-isometry. Hence, the handle-
body group carries a well-defined large-scale geometry. However, this large
scale geometry is not compatible with the large-scale geometry of the ambi-
ent group Map(∂V ). Namely, we showed in [HH11a] (compare Chapter 2)
that the handlebody group is an exponentially distorted subgroup of the
mapping class group of the boundary surface for every genus g ≥ 2. Here, a
finitely generated subgroup H < G of a finitely generated group G is called
exponentially distorted if the following holds. First, the word norm in H of

1This chapter is identical with the preprint [HH11c]
Ursula Hamenstädt and Sebastian Hensel,
Isoperimetric inequalities for the handlebody groups,
arXiv:1109.5255
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every element h ∈ H can be bounded from above by an exponential function
in the word norm of h in G. On the other hand, there is no such bound with
sub-exponential growth rate.

As a consequence, it is not possible to directly transfer geometric proper-
ties from the mapping class group to the handlebody group. In this chapter
we initiate an investigation of the intrinsic large-scale geometry of the han-
dlebody group.

A particularly useful geometric invariant of a finitely presented group G
is its Dehn function, which can be defined as the isoperimetric function of a
presentation complex for G (see Section 4.4 for a complete definition). Al-
though the Dehn function itself depends on the choice of a finite presentation
of G, the growth type of the Dehn function does not. In fact, the growth
type of the Dehn function is a quasi-isometry invariant of G.

The mapping class group Map(∂V ) of ∂V is automatic [Mo95] and hence
has quadratic Dehn function. Since Map(V ) is exponentially distorted in
Map(∂V ), this fact does not provide any information on the Dehn function
of Map(V ). On the other hand, for g ≥ 3 the Dehn function of the outer
automorphism group Out(Fg) of a free group Fg on g generators is exponen-
tial [HV96, BV95, BV10, HM10]. However, since the kernel of the projection
from the handlebody group to Out(Fg) is infinitely generated [McC85], this
fact also does not restrict the Dehn function of Map(V ).

The goal of this chapter is to give an upper bound for the Dehn function
of Map(V ). We show

Theorem 4.1.1. The handlebody group Map(V ) satisfies an exponential iso-
perimetric inequality, i.e. the growth of its Dehn function is at most expo-
nential.

The strategy of proof for Theorem 4.1.1 is similar to the strategy em-
ployed in [HV96] to show an exponential upper bound for the Dehn function
of outer automorphism groups of free groups. We construct a graph which is
a geometric model for the handlebody group (a similar construction is used
in [HH11a] in order to show exponential distortion of handlebody groups).
Vertices of this graph correspond to isotopy classes of special cell decom-
positions of ∂V containing the boundary of a simple disk system in their
one-skeleton. A simple disk system is a collection of pairwise disjoint, pair-
wise non-homotopic embedded disks in V which decompose V into simply
connected regions. We then use a a surgery procedure for disk systems to
define a distinguished class of paths in this geometric model. Although these
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paths are in general not quasi-geodesics for the handlebody group (see the
example at the end of this note), they are sufficiently well-behaved so that
they can be used to fill a cycle with area bounded by an exponential function
in the length of the cycle.

The organization of this chapter is as follows. In Section 2 we introduce
disk systems and special paths in the disk system graph. Section 3 discusses
a geometric model for the handlebody group. This model is used in Section
4 for the proof of Theorem 4.1.1.

4.2 Disk exchange paths

In this section we collect some facts about properly embedded disks in a
handlebody V of genus g ≥ 2. In particular, we describe a surgery procedure
that is central to the construction of paths in the handlebody group.

A disk D in V is called essential if it is properly embedded and if ∂D
is an essential simple closed curve on ∂V . A disk system for V is a set of
pairwise disjoint essential disks in V no two of which are homotopic. A disk
system is called simple if all of its complementary components are simply
connected. It is called reduced if in addition it has a single complementary
component.

We usually consider disks and disk systems only up to proper isotopy.
Furthermore, we will always assume that disks and disk systems are in min-
imal position if they intersect. Here we say that two disk systems D1,D2 are
in minimal position if their boundary multicurves intersect in the minimal
number of points in their respective isotopy classes and if every component
of D1∩D2 is an embedded arc in D1∩D2 with endpoints in ∂D1∩∂D2. Note
that minimal position of disks is not unique; in particular the intersection
pattern D1 ∩ D2 is not determined by the isotopy classes of D1 and D2.

The following easy fact will be used frequently throughout the chapter.

Lemma 4.2.1. The handlebody group acts transitively on the set of isotopy
classes of reduced disk systems. Every mapping class of ∂V that fixes the
isotopy class of a simple disk system is contained in the handlebody group.

Proof. The first claim follows from the fact that the complement of a reduced
disk system in V is a ball with 2g spots and any two such manifolds are
homeomorphic. The second claim is immediate since every homeomorphism
of the boundary of a spotted ball extends to the interior.
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Let D be a disk system. An arc relative to D is a continuous embedding
ρ : [0, 1] → ∂V whose endpoints ρ(0) and ρ(1) are contained in ∂D. An arc
ρ is called essential if it cannot be homotoped into ∂D with fixed endpoints.
In the sequel we always assume that arcs are essential and that the number
of intersections of ρ with ∂D is minimal in its isotopy class.

Choose an orientation of the curves in ∂D. Since ∂V is oriented, this
choice determines a left and a right side of a component α of ∂D in a small
annular neighborhood of α in ∂V . We then say that an endpoint ρ(0) (or
ρ(1)) of an arc ρ lies to the right (or to the left) of α, if a small neighborhood
ρ([0, ǫ]) (or ρ([1 − ǫ, 1])) of this endpoint is contained in the right (or left)
side of α in a small annulus around α. A returning arc relative to D is an
arc both of whose endpoints lie on the same side of the boundary ∂D of a
disk D in D, and whose interior is disjoint from ∂D.

Let E be a disk which is not disjoint from D. An outermost arc of
∂E relative to D is a returning arc ρ relative to D, with endpoints on the
boundary of a disc D ∈ D, such that there is a component E ′ of E \D whose
boundary is composed of ρ and an arc β ⊂ D. The interior of β is contained
in the interior of D. We call such a disk E ′ an outermost component of E\D.

For every disk E which is not disjoint from D there are at least two distinct
outermost components E ′, E ′′ of E \ D. There may also be components of
∂E \ D which are returning arcs, but not outermost arcs. For example, a
component of E \ D may be a rectangle bounded by two arcs contained in
D and two subarcs of ∂E with endpoints on ∂D which are homotopic to a
returning arc relative to ∂D.

Let now D be a simple disk system and let ρ be a returning arc whose
endpoints are contained in the boundary of some disk D ∈ D. Then ∂D \
{ρ(0), ρ(1)} is the union of two (open) intervals γ1 and γ2. Put αi = γi ∪ ρ.
Up to isotopy, α1 and α2 are simple closed curves in ∂V which are disjoint
from D (compare [St99] for this construction). Therefore both α1 and α2

bound disks in the handlebody which we denote by Q1 and Q2. We say that
Q1 and Q2 are obtained from D by simple surgery along the returning arc ρ.

The following observation is well known (compare [M86, Lemma 3.2],
[St99] or [HH11a]).

Lemma 4.2.2. If Σ is a reduced disk system and ρ is a returning arc with
endpoints on D ∈ Σ, then for exactly one choice of the disks Q1, Q2 defined
as above, say the disk Q1, the disk system obtained from Σ by replacing D by
Q1 is reduced.
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The disk Q1 is characterized by the requirement that the two spots in
the boundary of V \ Σ corresponding to the two copies of D are contained
in distinct connected components of H \ (Σ∪Q1). It only depends on Σ and
the returning arc ρ. We call the interval γ1 used in the construction of the
disk Q1 the preferred interval defined by the returning arc.

Definition 4.2.3. Let Σ be a reduced disk system. A disk exchange move
is the replacement of a disk D ∈ Σ by a disk D′ which is disjoint from Σ
and such that (Σ \ D) ∪ D′ is a reduced disk system. If D′ is determined
as in Lemma 4.2.2 by a returning arc of a disk in a disk system D then the
modification is called a disk exchange move of Σ in direction of D or simply
a directed disk exchange move.

A sequence (Σi) of reduced disk systems is called a disk exchange sequence
in direction of D (or directed disk exchange sequence) if each Σi+1 is obtained
from Σi by a disk exchange move in direction of D.

The following lemma is an easy consequence of the fact that simple
surgery reduces the geometric intersection number (see [HH11a] for a proof).

Lemma 4.2.4. Let Σ1 be a reduced disk system and let D be any other disk
system. Then there is a disk exchange sequence Σ1, . . . , Σn in direction of D
such that Σn is disjoint from D.

To estimate the growth rate of the Dehn function of the handlebody group
we will need to compare disk exchange sequences starting in disjoint reduced
disk systems. This is made possible by considering another type of surgery
sequence for disk systems, which we describe in the remainder of this section.

To this end, let D be any simple disk system and let ρ be a returning
arc. A full disk replacement defined by ρ modifies a simple disk system D to
a simple disk system D′ as follows. Let D ∈ D be the disk containing the
endpoints of the returning arc ρ. Replace D by both disks Q1, Q2 obtained
from D by the simple surgery defined by ρ. The disks Q1, Q2 are disjoint
from each other and from D. If one (or both) of these disks is isotopic to a
disk Q from D\D then this disk will be discarded (i.e. we retain a single copy
of Q; compare [Ha95] for a similar construction). We say that a sequence
(Di) is a full disk replacement sequence in direction of D (or directed full
disk replacement sequence) if each Di+1 is obtained from Di by a full disk
replacement along a returning arc contained in ∂D.

The following two lemmas relate full disk replacement sequences to disk
exchange sequences. Informally, these lemmas state that every directed disk
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exchange sequence may be extended to a full disk replacement sequence,
and conversely every full disk replacement sequence contains a disk exchange
sequence. To make this idea precise, we use the following

Definition 4.2.5. Let D be a disk system. Suppose that D0, . . . ,Dn is a
full disk replacement sequence in direction of D and that Σ1, . . . , Σk is a disk
exchange sequence in direction of D.

We say that the sequences (Di) and (Σi) are compatible, if there is a non-
decreasing surjective map r : {0, . . . , n} → {1, . . . , k} such that Σr(i) ⊂ Di

for all i.

Lemma 4.2.6. Let Σ be a reduced disk system, let D be a simple disk system
containing Σ and let D = D0,D1, . . . ,Dm be a full disk replacement sequence
in direction of a disk system D′. Then there is a disk exchange sequence
Σ = Σ0, Σ1, . . . , Σu in direction of D′ which is compatible with (Di).

Proof. We proceed by induction on the length of the full disk replacement
sequence (Di). If this length equals zero there is nothing to show. Assume
that the claim holds true whenever this length does not exceed m − 1 for
some m > 0.

Let D0, . . . ,Dm be a full disk replacement sequence of length m and let
Σ ⊂ D0 be a reduced disk system. Let D ∈ D0 be the disk replaced in the
full disk replacement move connecting D0 to D1.

If D ∈ Σ then for one of the two disks obtained from D by simple surgery,
say the disk D′, the disk system Σ1 = (Σ \ D) ∪ D′ is reduced. However,
Σ1 ⊂ D1 and the claim now follows from the induction hypothesis.

If D 6∈ Σ then Σ ⊂ D1 by definition and once again, the claim follows
from the induction hypothesis.

Lemma 4.2.7. Let Σ0, . . . , Σm be a disk exchange sequence of reduced disk
systems in direction of a disk system D′. Then for every simple disk system
D0 ⊃ Σ0 there is a full disk replacement sequence D0, . . . ,Dk in direction of
D′ which is compatible with (Σi).

Proof. We proceed by induction on the length m of the directed disk exchange
sequence.

The case m = 0 is trivial, so assume that the lemma holds true for
directed disk exchange sequences of length at most m − 1 for some m ≥ 1.
Let Σ0, . . . , Σm be a directed disk exchange sequence of length m. Suppose
Σ1 is obtained from Σ0 by replacing a disk D ∈ Σ0. Let ρ be the returning
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arc with endpoints on D defining the disk replacement, and let D1 be the
disk in Σ1 which is the result of the simple surgery.

We distinguish two cases. In the first case, ρ ∩ D0 = ρ ∩ D. Then ρ is
a returning arc relative to D0. Let D1 be the disk system obtained from D0

by the full disk replacement defined by ρ. One of the two disks obtained by
simple surgery along ρ is the disk D1 and hence D1 ∈ D1. The claim now
follows from the induction hypothesis, applied to the disk exchange sequence
Σ1, . . . , Σm of length m − 1 and the simple disk system D1 containing Σ1.

In the second case, the returning arc ρ intersects D0\D. Then ρ\(D0\D)
contains a component ρ′ which is a returning arc with endpoints on a disk
Q ∈ D0\{D}. A replacement of the disk Q by both disks obtained from Q by
simple surgery using the returning arc ρ′ reduces the number of intersection
components of ρ ∩ (D0 \ D). Moreover, the resulting disk system contains
D. In finitely many surgery steps, say s ≥ 1 steps, we obtain a simple disk
system Ds with the following properties.

1. Ds contains D and is obtained from D0 by a full disk replacement
sequence.

2. ρ ∩ (Ds − D) = ∅.

Define r(i) = 0 for i = 0, . . . , s, where r is the function required in the
definition of compatibility. We now can use the procedure from the first case
above, applied to Σ0,Ds and ρ to carry out the induction step.

This completes the proof of the lemma.

4.3 The graph of rigid racks

The goal of this section is to describe a construction of paths in the handle-
body group whose geometry is easy to control. A version of these paths was
already used in [HH11a] to establish an upper bound for the distortion of the
handlebody group in the mapping class group.

The main objects are given by the following

Definition 4.3.1. A rack R in V is given by a reduced disk system Σ(R),
called the support system of the rack R, and a collection of pairwise disjoint
essential embedded arcs in ∂V \ ∂Σ(R) with endpoints on ∂Σ(R), called
ropes, which are pairwise non-homotopic relative to ∂Σ(R). At each side of
a support disk D ∈ Σ(R), there is at least one rope which ends at the disk
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and approaches the disk from this side. A rack is called large if the set of
ropes decomposes ∂V \ ∂Σ(R) into simply connected regions.

We will consider racks up to an equivalence relation called “rigid isotopy”
which is defined as follows.

Definition 4.3.2. i) Let R be a large rack. The union of the support
system and the system of ropes of R defines the 1–skeleton of a cell
decomposition of the surface ∂V which we call the cell decomposition
induced by R.

ii) Let R and R′ be racks. We say that R and R′ are rigidly isotopic if there
is an isotopy of ∂V which maps the support system of R to the support
system of R′ and defines an isotopy of the cell decompositions induced
by R and R′.

In particular, if T is a simple Dehn twist about the boundary of a support
disk of a rack R, then R and T n(R) are not rigidly isotopic for n ≥ 2. This
observation and the fact that the stabilizer in the mapping class group of a
reduced disk system is contained in the handlebody group imply the following

Lemma 4.3.3. The handlebody group acts on the set of rigid isotopy classes
of racks with finite quotient and finite point stabilizers.

For simplicity of notation, we call a rigid isotopy class of a large rack
simply a rigid rack. Lemma 4.3.3 allows us to use rigid racks as the vertex
set of a Map(V )–graph. More precisely, we make the following

Definition 4.3.4. The graph of rigid racks RRK(V ) is the graph whose
vertex set is the set of rigid racks. Two such vertices are joined by an edge if
up to isotopy, the 1–skeleta of the cell decompositions induced by the racks
intersect in at most K points.

It follows easily from Lemma 4.3.3 that the number K may be chosen in
such a way that the graph RRK(V ) is connected. In Lemma 7.3 of [HH11a]
such a number K > 0 is constructed explicitly. In the sequel, we will always
use this choice of K and suppress the mention of K from our notation. It
then follows from Lemma 4.3.3 and the Svarc-Milnor lemma that the graph
RR(V ) is quasi-isometric to Map(V ).

Next we construct a family of distinguished paths in the graph of rigid
racks. The paths are inspired by splitting sequences of train tracks on sur-
faces. To this end, we first define a notion of “carrying” for racks.
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Definition 4.3.5. 1. A disk system D is carried by a rigid rack R if it is
in minimal position with respect to the support system Σ(R) of R and
if each component of ∂D \ ∂Σ(R) is homotopic relative to ∂Σ(R) to a
rope of R.

2. An embedded essential arc ρ in ∂V with endpoints on ∂Σ(R) is carried
by R if each component of ρ \ ∂Σ(R) is homotopic relative to ∂Σ(R)
to a rope of R.

3. A returning rope of a rigid rack R is a rope which begins and ends at
the same side of some fixed support disk D (i.e. defines a returning arc
relative to ∂Σ(R)).

Let R be a rigid rack with support system Σ(R) and let α be a returning
rope of R with endpoints on a support disk D ∈ Σ(R). By Lemma 4.2.2, for
one of the components γ1, γ2 of ∂D \ α, say the component γ1, the simple
closed curve α ∪ γ1 is the boundary of an embedded disk D′ ⊂ H with the
property that the disk system (Σ \ D) ∪ D′ is reduced.

A split of the rigid rack R at the returning rope α is any rack R′ with
support system Σ′ = (Σ(R) \ D) ∪ D′ whose ropes are given as follows.

1. Up to isotopy, each rope ρ′ of R′ has its endpoints in (∂Σ(R)\∂D)∪γ1 ⊂
∂Σ(R) and is an arc carried by R.

2. For every rope ρ of R there is a rope ρ′ of R′ such that up to isotopy,
ρ is a component of ρ′ \ ∂Σ(R).

The above definition implies in particular that a rope of R which does
not have an endpoint on ∂D is also a rope of R′. Moreover, there is a map
Φ : R′ → R which maps a rope of R′ to an arc carried by R, and which maps
the boundary of a support disk of R′ to a simple closed curve γ of the form
γ1 ◦ γ2 where γ1 either is a rope of R or trivial, and where γ2 is a subarc
of the boundary of a support disk of R (which may be the entire boundary
circle). The image of Φ contains every rope of R.

We are now ready to recall the construction of a distinguished class of
edge-paths in the graph of rigid racks from [HH11a]. These paths are suf-
ficiently well-behaved to yield some geometric control of the handlebody
group.

For a reduced disk system Σ let RR(V, Σ) be the complete subgraph of
RR(V ) whose vertices are marked rigid racks with support system Σ.
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Definition 4.3.6. Let D be a simple disk system. A D-splitting sequence
of racks is an edge-path Ri in the graph of rigid racks with the following
properties.

i) There is a disk exchange sequence Σi in direction of D and a sequence
of numbers 1 = r1 < · · · < rk such that the support system of Rj is Σi

for all ri ≤ j ≤ ri+1 − 1. The sequence Σi is called the associated disk
exchange sequence.

ii) For ri ≤ j ≤ ri+1 −1, the sequence Rj is a uniform quasi-geodesic in the
graph RR(V, Σi).

Here and in the sequel, we say that a path is a uniform quasigeodesic
if the quasigeodesic constants of the path depend only on the genus of the
handlebody. Similarly, we say that a number is uniformly bounded, if there
is a bound depending only on the genus of V .

We showed in [HH11a] that any two points in the graph of rigid racks
can be connected by a splitting sequence. More precisely, the proof of The-
orem 7.9 of [HH11a] yields

Theorem 4.3.7. Let R, R′ be two rigid racks. Then there is a disk system D
depending only on the support system of R′ with the following property. Let
Σ(R) = Σ1, Σ2, . . . , Σn be a disk exchange sequence in direction of D such
that Σn is disjoint from D.

Then there is a splitting sequence connecting R to R′ whose associated
disk exchange sequence is (Σi). The length of such a sequence is bounded
uniformly exponentially in the distance between R and R′ in the graph of
rigid racks.

In Section 4.2 we saw that D–disk exchange sequences starting in disjoint
reduced disk systems can be compared using full disk replacement sequences.
In the rest of this section we develop a slight generalization of racks, which
will allow to similarly compare D–splitting sequences starting in adjacent
vertices of RR(V ).

Namely, define an extended rack R in the same way as a rack except that
now the support system D(R) of R may be any simple disk system instead of
a reduced disk system. The cell decomposition induced by an extended rack
is defined in the obvious way, and similarly we can talk about rigid isotopies
between extended racks. The rigid isotopy class of an extended rack is called
a rigid extended rack.
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Rigid extended racks can be used in the same way as racks to define a
geometric model for the handlebody group.

Definition 4.3.8. The graph of rigid extended racks RERK(V ) is the graph
whose vertex set is the set of large rigid extended racks. Two such vertices are
connected by an edge of length one if up to isotopy the 1–skeleta of the cell
decompositions induced by the corresponding vertices intersect in at most K
points.

Again, the constant K is chosen in such a way that the graph of rigid
extended racks is connected. We denote the resulting graph by RER(V ). For
future use, we choose the constant K big enough such that in addition the
following holds. For a simple disk system D let RER(V,D) be the complete
subgraph of RER(V ) whose vertices are rigid extended racks with support
system D. We may choose K large enough such that for any simple disk
system D the subgraph RER(V,D) is connected.

An analog of Lemma 4.3.3 holds for rigid extended racks as well, and
implies that the handlebody group acts on the graph of rigid extended
racks with finite quotient. Thus, the graph of rigid extended racks is quasi-
isometric to the handlebody group. Note also that every large rack is a large
extended rack. Thus the graph of rigid extended racks embeds as a subgraph
in the graph of rigid extended racks. This inclusion is a quasi-isometry.

A full split of a rigid extended rack is defined as follows. Let R be a rigid
extended rack and let α be a returning rope of R. A rigid extended rack R′ is
called a full split of R at α if the support system of R′ is obtained from Σ(R)
by a full disk replacement along α. Moreover, we require that the ropes of
R′ satisfy the analogous conditions as the ropes of a split of a rigid rack.

The following is a natural generalization of splitting paths to extended
racks.

Definition 4.3.9. Let D be a simple disk system. A full D-splitting sequence
of racks is an edge-path (Ri) in the graph of rigid extended racks with the
following properties.

i) There is a full disk exchange sequence (Di) in direction of D and a
sequence of numbers 1 = r1 < · · · < rk such that the support system
of Rj is Di for all ri ≤ j ≤ ri+1 − 1. The sequence (Di) is called the
associated full disk exchange sequence.
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ii) For ri ≤ j ≤ ri+1 − 1, the sequence (Rj) is a uniform quasi-geodesic in
the graph RER(V, Σi).

The proof of Theorem 7.9 of [HH11a] implies the following theorem which
allows to connect two rigid racks with a full splitting sequence.

Theorem 4.3.10. There is a number k1 with the following property. Let
R, R′ be two rigid racks. Then there is a simple disk system D̂ depending
only on the support system of R′ with the following property. Let D(R) =
D1,D2, . . . ,Dn be a full disk exchange sequence in direction of D̂ such that
Dn is disjoint from D̂.

Then there is an extended rigid rack R̂ which is at distance at most k1

to R′ in RER(V ), and there is a full splitting sequence connecting R to R̂
whose associated full disk replacement sequence is (Di). The length of any
such sequence is bounded by ek1d, where d is the distance between R and R′

in the graph of rigid extended racks.

Combining Lemmas 4.2.6 and 4.2.7 with Theorem 4.3.10 above, we obtain
the following.

Corollary 4.3.11. There is a number k2 > 0 with the following property.

i) Let (Ri), i = 1, . . . N be a D–splitting sequence of racks with associated
disk exchange sequence (Σj). Let (Dj) be a full disk replacement se-
quence compatible with (Σj). Then there is a full D–splitting sequence

R̃k, k = 1, . . .K such that the following holds. The associated full disk
replacement sequence to (R̃k) is Dj. Furthermore, R̃1 = R1 and the

distance between R̃K and RN is at most k1. The length K of any such
sequence is at most ek2d, where d is the distance between R0 and RK in
the graph of rigid racks.

ii) Conversely, suppose that R̃k, k = 1, . . . , K is a full D–splitting sequence
with associated full disk replacement sequence Dj. Suppose further that

(Σj) is a disk exchange sequence compatible with (Di). If R̃1 is a large
rack, then there is a D–splitting sequence R1, R2, . . . , RN whose associ-
ated disk exchange sequence is (Σj) such that RN is of distance at most

k1 to R̃K . The length N of any such sequence is at most ek2d, where d
is the distance between R0 and RN in the graph of rigid racks.
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4.4 The Dehn function of Map(Vg)

In this section we prove the main result of this chapter.

Theorem 4.4.1. The Dehn function of the handlebody group has at most
exponential growth rate.

To begin, we recall the definitions of the Dehn function and growth rate.
Let G be a finitely presented group. Choose a finite generating S and let
R be a finite defining set of relations for G. This means the following. The
set R generates a subgroup R0 of the free group F (S) with generating set
S. Denote by R the normal closure of R0 in F (S). The set R is called a
defining set of relations for G if the quotient F (S)/R is isomorphic to G.

Every r ∈ R < F (S) can be written as a product of conjugates of elements
in R:

r = Πn
i=1r

γi

i , ri ∈ R, γi ∈ G.

We call the minimal length n of such a product the area Area(r) needed to
fill the relation r. On the other hand, r can be written as a word in the
elements of S. We call the minimal length of such a word the the length l(r)
of the loop r.

The Dehn function of G is then be defined by

δ(n) = max{Area(r)|r ∈ R with l(r) ≤ n}.

The function δ depends on the choice of the generating set S and the set of
relations R. However, the Dehn function obtained from different generating
sets and defining relations are equivalent in the following sense. Say that
two functions f, g : N → N are of the same growth type, if there are numbers
K, L > 0 such that

L−1 · g(K−1 · x − K) − L ≤ f(x) ≤ L · g(K · x + K) + L

for all x ∈ N.
In this section we use the graph RER(V ) of rigid extended racks as a

geometric model for the handlebody group.
To estimate the Dehn function, we consider a loop γ in RER(V ) of length

R > 0. We have to show that there is a number k > 0 and that there are at
most ekR loops ζ1, . . . , ζm of length at most k so that γ can be contracted to
a point in m steps consisting each of replacing a subsegment of ζi by another
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subsegment of ζi. This suffices, since each loop ζi as above corresponds to a
cycle in the handlebody group which can be filled with uniformly small area.

Recall from Section 4.3 the definition of the graph RER(V,D). The fol-
lowing lemma allows to control the isoperimetric function of these subgraphs.

Lemma 4.4.2. Let D be a simple disk system for V .

i) RER(V,D) is a connected subgraph of RER(V ) which is equivariantly
quasi-isometric to the stabilizer of ∂D in the mapping class group of ∂V .

ii) RER(V, Σ) is quasi-isometrically embedded in RER(V ).

iii) Any loop in RER(V, Σ) can be filled with area coarsely bounded quadrat-
ically in its length.

Proof. RER(V, Σ) is connected by definition of the graph of rigid extended
racks (see Section 4.3).

Let G be the stabilizer of ∂D in the mapping class group of ∂V . The
group G is contained in the handlebody group since every homeomorphism
of the boundary of a spotted ball extends to the interior. The group G
acts on RER(V,D) with finite quotient and finite point stabilizers. To show
this, note that up to the action of the mapping class group, there are only
finitely many isotopy classes of cell decompositions of a bordered sphere
with uniformly few cells. Thus by the Svarc-Milnor lemma, RER(V,D) is
equivariantly quasi-isometric to G, showing i).

The stabilizer G of ∂D is quasi-isometrically embedded in the full map-
ping class group of ∂V (see [MM00] or [Ha09b, Theorem 2]). Hence G is
also quasi-isometrically embedded in the handlebody group. Together with
i) this shows ii).

The group G is a Lipschitz retract of the mapping class group of ∂V (see
[HM10] for a detailed discussion of this fact which is a direct consequence of
the work of Masur and Minsky [MM00]). Mapping class groups are automatic
[Mo95] and hence have quadratic Dehn function. Then the same holds true
for G (compare again [HM10]). This implies claim iii).

As the next step, we use Corollary 4.3.11 to control splitting paths start-
ing at adjacent points in the graph of marked racks. We show that these
paths can be constructed in such a way that the resulting loop can be filled
with controlled area. Together with the length estimate for marked splitting
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paths from Theorem 4.3.10 this will imply the exponential bound for the
Dehn function.

The main technical tool in this approach is given by the following lemma.

Lemma 4.4.3. For each k > 0 there is a number k3 > 0 with the following
property.

Let D be a simple disk system. Let Ri, i = 1, . . . , N be a D–splitting
sequence of rigid racks and let R̃j , j = 1, . . . , M be a full D–splitting sequence
of extended racks such that the following holds.

i) The rigid extended racks R1 and R̃1 (respectively RN and R̃M) have
distance at most k in the graph of rigid extended racks.

ii) The associated disk exchange sequences of Ri and R̃j are compatible.

Then the loop γ in RER(V ) formed by the sequences (Ri), (R̃j) and geodesics

between R1 and R̃1 and RN and R̃M can be filled with area k3(N + M)3.

Proof. The idea of the proof is to inductively decompose the loop γ into
smaller loops, each of which can be filled with area at most k3(N + M)2 for
a suitable k3.

Denote the disk exchange sequence associated to Ri by Σi, i = 1, . . . , n)

and the full disk replacement sequence associated to R̃j by Dj, j = 1, . . .m.
Let r : {1, . . . , m} → {1, . . . , n} be the monotone non-decreasing surjective
function given by compatibility, i.e. Σr(j) ⊂ Dj for all j = 1, . . . , m.

We define
I(i) = {k | Σ(Rk) = Σi}

and
J(i) = {k | D(R̃k) = Dl and r(l) = i}.

Put ik = max I(k) and jk = max J(k). We will inductively choose paths

dk connecting Rik to R̃jk
and paths ck connecting Rik+1 to R̃jk+1 with the

following properties.

i) The path ck is a uniform quasigeodesic in RER(V, Σk+1).

ii) The path dk is a uniform quasigeodesic in RER(V, Σk).

iii) The paths ck+1, dk are uniform fellow-travelers, i.e. the Hausdorff dis-
tance between ck+1 and dk is uniformly bounded.
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A family of paths with these properties implies the statement of the lemma
in the following way.

The restriction of the sequence Ri to I(k) and the restriction of R̃−1
j to

J(k) form together with c−1
k−1 and dk a loop γk in RER(V, Σk). The length of

ck−1 and dk is coarsely bounded by N +M by the triangle inequality. Hence,
the length of γk can be coarsely bounded by 4(N + M). Since RER(V, Σk)
admits a quadratic isoperimetric function, this loop can thus be filled with
area bounded by k3(N + M)2 for some uniform constant k3.

Similarly, the paths d−1
k and ck+1 , together with the edges connecting

Rik to Rik+1 and R̃jk
to R̃jk+1 form a loop δk. The length of δk can again be

coarsely bounded by 2(N +M) using the triangle inequality. Since the paths
dk and ck are fellow-travelers, δk can be filled with area depending linearly
on its length.

There are at most 2 max(N, M) loops γk, δk. Hence, the concatenation
of all the loops γi and δj can be filled with area at most k3(N + M)3 (af-
ter possibly enlarging the constant k2). The paths ci and di occur in the
concatenation of γi and δj twice, with opposite orientations, except for c0

and the last occurring arc dL. As a consequence, the concatenation of the
loops γi and δj is, after erasing these opposite paths, uniformly close to γ
in the Hausdorff metric. Thus, γ may also be filled with area bounded by
k3(N + M)2 (again possibly increasing k3).

We now describe the inductive construction of the paths ck and dk. We
set c0 = d0 to be the constant path R1. Suppose that the paths ci, di are
already constructed for i = 0, . . . , k − 1.

The support systems of Rik and R̃jk
both contain Σk. We first construct

the path dk connecting Rik and R̃jk
.

Namely, the reduced disk systems Σk and Σk+1 are disjoint. The simple
disk system Σk ∪Σk+1 is disjoint from the support systems of Rik , Rik+1 and

R̃jk
, R̃jk+1 by definition of a split. Furthermore, the 1-skeleta of the cell

decompositions of all four of these extended racks intersect ∂Σk ∪ ∂Σk+1 in
uniformly few points. Hence, there are rigid extended racks U1, U2 which
have Σk ∪ Σk+1 as their support system and such that U1 is uniformly close
to Rik , and U2 is uniformly close to R̃jk

in RER(V ). Let e be a geodesic path
in RER(V, Σk ∪ Σk+1) connecting U1 and U2. Since RER(V, Σk ∪ Σk+1) is
undistorted in RER(V ) by Lemma 4.4.2, the length of e is coarsely bounded
by N +M +1. By adding uniformly short geodesic segments in RER(V, Σk)
at the beginning and the end of e, we obtain the path dk with property ii).
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By definition of ik and jk, we have ik +1 ∈ I(k+1) and jk +1 ∈ J(k+1).

Hence, both Rik+1 and R̃jk+1 contain Σk+1 in their support systems. We can
thus define ck with properties i) and iii) by adding uniformly short geodesic
segments in RER(V, Σk+1) to the beginning and the end of e.

We have now collected all the tools for the proof of the main theorem.

Proof of Theorem 4.4.1. Recall that it suffices to show that every loop in the
graph of rigid racks can be filled with area coarsely bounded by an exponen-
tial function of its length.

Let Ri be a loop of length L in the graph of rigid racks based at R0 = R̂.
Let Σ̂ be the disk system given by Theorem 4.3.10 applied to R′ = R0. Since
the graph of rigid racks is quasi-isometric to the graph of extended rigid
racks, we can consider Ri as a loop in RER(V ) and it suffices to show that
this loop can be filled in RER(V ) with area bounded exponentially in its
length.

The strategy of this proof is similar to the proof of Lemma 4.4.3: we will
write the loop (Ri) as a concatenation of smaller loops whose area we can
control.

We will define paths ci in RER(V ) with the following properties.

1. The path ci connects Ri to a rack which is uniformly close to R̂ in
RER(V ).

2. The path ci is a Σ̂–splitting sequence of racks.

3. The loop formed by ci, ci+1, the edge between Ri and Ri+1, and a
geodesic connecting other pair of endpoints of ci, ci+1 can be filled with
area bounded by ek3L.

As a consequence, the loop (Ri) itself can be filled with area at most Lek3L,
proving the theorem.

The construction of the paths ci is again by induction. We set c0 to be
the constant path R0. Suppose now that the path ck is already constructed.
Since Rk and Rk+1 are connected by an edge in the graph of rigid racks,

their support systems Σk and Σk+1 are disjoint. Let Σ
(i)
k , i = 1, . . . , n be

the disk exchange sequence associated to the splitting sequence ck. Put
D1 = Σk ∪ Σk+1. Using Lemma 4.2.7 we obtain a full disk replacement

sequence (Di) compatible with (Σ
(i)
k ). Corollary 4.3.11 part i) then yields a
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full splitting sequence R̃k, k = 1, . . . , M with associated full disk exchange
sequence (Di). By Lemma 4.4.2, the loop formed by ck and R̃k, k = 1, . . . , M
can be filled with area bounded by k2(N +M)3, where N is the length of the
path ck.

Using Lemma 4.2.6 on the sequence (Di) and the initial reduced disk

system (Σk+1) we obtain a Σ̂–splitting sequence (Σ
(i)
k+1) compatible with (Di),

which starts in Σk+1. Corollary 4.3.11 part ii) now yields a Σ̂–splitting
sequence ck+1 starting in Rk+1 and ending uniformly close to R̂. Applying
Lemma 4.4.3 again, we see that the loop formed by ck+1 and R̃k, k = 1, . . . , M
can be filled with area bounded by k3(N

′ + M)3, where N ′ is the length of
the path ck+1.

Since both ck and ck+1 are splitting sequences connecting points which are
of distance at most L, their lengths can be bounded by k4e

k4L for a suitable k4

by Theorem 4.3.7. As a consequence, the paths ck and ck+1 satisfy condition
iii). This concludes the inductive construction of ci and the proof of the
theorem.

The proof of the theorem would give a polynomial bound for the Dehn
function provided that the length of the splitting paths used to fill in loops
had a length which is polynomial in the distance between their endpoints.
Unfortunately, however, the following example show that such a bound does
not exist. This is similar to the behavior of paths of sphere systems used
in [HV96] to show an exponential upper bound for the Dehn function of
Out(Fn),

For simplicity of exposition, we do not construct these paths in the graph
of rigid racks (or the handlebody group), but instead in a slightly simpler
graph. The example given below can be extended to the full graph of rigid
racks in a straightforward fashion.

We define RD(V ) to be the graph of reduced disk systems in V . The
vertex set of RD(V ) is the set of isotopy classes of reduced disk systems, and
two such vertices are connected by an edge of length one if the corresponding
disk systems are disjoint. Every directed disk exchange sequence defines an
edge-path in RD(V ). The following example shows that the length of these
edge-paths may be exponential in the distance between their endpoints.

Example 4.4.4. Consider a handlebody V of genus 4. For each n ∈ N we
will construct a disk exchange sequence Σ

(n)
1 , . . . , Σ

(n)
N(n) such that on the one

hand, the length N(n) of the sequence growth exponentially in n. On the
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other hand, the distance between endpoints Σ
(n)
1 and Σ

(n)
N(n) in RD(V ) grows

linearly in n. To simplify the notation, in this example we will only construct
the endpoint Σ

(n)
N(n) and denote it by Σn.

We choose three disjoint simple closed curves α1, α2, α3 which decompose
the surface ∂V into a pair of pants, two once-punctured tori and a once-
punctured genus 2 surface (see Figure 4.1). We may choose the αi such that
they bound disks in V . We denote the two solid tori in the complement of
these disks by T1, T2 and the genus 2 subhandlebody by V ′.

c0

D1 D2

D3 D4

α1 α2

α3

Figure 4.1: The setup for the example of a non-optimal disk exchange path.
An admissible arc is drawn dashed.

Let Σ0 = {D1, D2, D3, D4} be a reduced disk system such that D1 ⊂
T1, D2 ⊂ T2 and D3, D4 ⊂ V ′. Choose a base point p on α3. Let γ1, γ2

be two disjointly embedded loops on ∂V ∩ V ′ based at p with the following
property. The loop γ1 intersects the disk D3 in a single point and is disjoint
from D4, while γ2 intersects D4 in a single point and is disjoint from D3.
Since the complement of D3 ∪ D4 in V ′ is simply connected, such a pair of
loops generates the fundamental group of V ′. Denote the projections of γ1
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and γ2 to π1(V
′, p) by A1 and A2, respectively.

Let c be an embedded arc on ∂V . We say that c is admissible if the
following holds. The arc c connects the disk D1 to the disk D2. The interior
of c intersects α1 and α2 in a single point each. Furthermore it intersects α3

in two points, and its interior is disjoint from both D1 and D2.
Let c be an admissible arc. The intersection of c with V ′ is an embedded

arc c′ connecting α3 to itself. The arc c′ may be turned into an embedded
arc in V ′ based at p by connecting the two endpoints of c′ to p along α3.
Since the curve α3 bounds a disk in V ′, the image of this loop in π1(V

′, p) is
determined by the homotopy class of the arc c relative to ∂D1, ∂D2. We call
this image the element induced by the arc c.

Choose an admissible arc c0 in such a way that it intersects the disk D3

in a single point, and is disjoint from D4 (see Figure 4.1 for an example). Up
to changing the orientation of γ1 we may assume that the element induced
by c0 is A1.

We now describe a procedure that produces essential disks from admissi-
ble arcs. To this end, let c be an admissible arc. Consider a regular neighbor-
hood U of D1 ∪ c ∪ D2. Its boundary consists of three simple closed curves.
Two of them are homotopic to either ∂D1 or ∂D2. The third one we denote
by β(c). Note that β(c) bounds a nonseparating disk in V .

Choose a fixed element ϕ of the handlebody group of V with the following
properties. The mapping class ϕ fixes the isotopy classes of the curves α1, α2

and α3. The restriction of ϕ to the complement of V ′ is isotopic to the
identity. The restriction of ϕ to V ′ induces an automorphism of exponential
growth type on π1(V

′). To be somewhat more precise, we may choose ϕ such
that it acts on the basis Ai as the following automorphism Φ:

A1 7→ A1A2

A2 7→ A2
1A2

Put cn = ϕn(c0) and βn = β(cn). We claim that a disk exchange sequence
in direction of βn that makes βn disjoint from Σ0 has length at least 2n.

To this end, note that the arc cn intersects the disks D3 and D4 in at
least 2n points. Namely, the element of π1(V

′, p) induced by ϕn(c0) is equal
to Φn(A1). The cyclically reduced word describing Φn(A1) in the basis A1, A2

has length at least 2n by construction of Φ.
Hence, the curve βn can be described as follows. Choose a parametriza-

tion βn : [0, 1] → ∂V . Then there are numbers 0 < t1 < · · · < tN < tN+1 <
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· · · < t2N < 1 such that the following holds. Each subarc βn([ti, ti+1]) in-
tersects Σ0 only at its endpoints. The subarcs βn([tN , tN+1]) and βn([0, t1] ∪
[t2N , 1]) are returning arcs to Σ0. Furthermore, the arcs βn([ti, ti+1]) and
βn([t2N−i, t2N+1−i]) are homotopic relative to Σ0 for all i = 1, . . . , N − 1.
More generally, if there are numbers ti with these properties for a reduced
disk system Σ we say that βn is a long string of rectangles with respect to
Σ. The number N is then called the length of the string of rectangles. By
construction, the length N of the string of rectangles βn defines with respect
to Σ0 is at least 2n.

The curve βn has two returning arcs with respect to Σ0. Choose one of
them, say βn([tN , tN+1]), and denote it by a. Let σ ∈ Σ0 denote the disk
containing the endpoints of a. One of the disks obtained by simple surgery
along a is isotopic to either D1 or D2 (depending on which returning arc we
chose). The preferred interval defined by a contains every intersection point
of βn with σ except the endpoints of a.

Denote by Σ1 the reduced disk system obtained by simple surgery along a.
By construction, the subarc βn(tN−1, tN+2) now defines a returning arc with
respect to Σ1. One of the disks obtained by simple surgery along this return-
ing arc is still properly isotopic to D1. Furthermore, the subarcs βn([ti, ti+1])
and βn([t2N−i, t2N+1−i]) are still arcs with endpoints on Σ1 which are homo-
topic relative to Σ1 for all i = 1, . . . , N − 2. Each of these arcs cannot be
homotoped into ∂Σ1.

Hence the curve βn has a description as a string of rectangles of length
N −1 with respect to Σ1 and the argument can be iterated. By induction, it
follows that any disk exchange sequence starting in Σ0 which ends in a disk
system disjoint from βn has length at least 2n.

On the other hand, the growth of the distance between Σ0 and ϕn(Σ0)
in the graph of reduced disk systems is linear in n by the triangle inequality.
The curve βn intersects ϕn(Σ0) in uniformly few points, and thus the disk
system ϕn(Σ0) is uniformly close to a reduced disk system that is disjoint
from βn. Thus the disk systems Σn have the properties described in the
beginning of the example.
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Chapter 5

Out(Fn) as a mapping class

group1

5.1 Introduction

The mapping class group Map(Sg) of a closed surface Sg of genus g is defined
in topological terms: it is the quotient of the group of homeomorphisms of Sg

by the connected component of the identity. The classical Dehn-Nielsen-Baer
theorem identifies Map(Sg) with a purely algebraic object, namely the outer
automorphism group Out(π1(Sg, p)) of the fundamental group of the surface
Sg.

The mapping class group is finitely presented and hence it admits a family
of left invariant metrics which are unique up to quasi-isometry. Such a metric
can be investigated using simple topological objects as the main tool. In
[MM00] the authors construct explicit families of quasi-geodesics in Map(Sg)
using the combinatorics of isotopy classes of simple closed curves on Sg. This
approach leads to a geometric understanding of the mapping class group and
of many of its natural subgroups.

The outer automorphism group Out(Fn) of the free group with n ≥ 2
generators is a finitely presented group which also has a topological descrip-
tion. To this end, let Mn be the connected sum of n copies of S1 × S2. By a

1This chapter is identical with the preprint [HH11b]
Ursula Hamenstädt and Sebastian Hensel,
Sphere systems, intersections and the geometry of Out(Fn),
arXiv:1109.2687
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theorem of Laudenbach [L74], Out(Fn) is a cofinite quotient of the group of
all isotopy classes of orientation preserving homeomorphism of Mn.

As in the case of surface mapping class groups, the geometry of Out(Fn)
can be investigated using as a tool the simplest essential submanifolds of Mn,
namely embedded spheres. This idea was used by Hatcher in [Ha95] to show
homological stability for Out(Fn). A geometric application of this approach
includes an upper bound for the growth rate of the Dehn function of Out(Fn)
(see [HV96]).

The main goal of this chapter is to initiate an investigation of the large-
scale geometry of Out(Fn) from this topological point of view. Explicitly,
we analyze the extrinsic geometry of two families of subgroups of Out(Fn)
which can be described as follows.

The fundamental group of a surface Sg,1 of genus g ≥ 1 with one punc-
ture is the free group F2g. A version of the Dehn-Nielsen-Baer theorem
for the mapping class group Mod(Sg,1) of Sg,1 states that there is a group
isomorphism ι of Mod(Sg,1) onto the subgroup of Out(Fn) of all outer auto-
morphisms which preserve the conjugacy class defined by a puncture parallel
simple closed curve in Sg,1. We show

Theorem 5.3.2. The homomorphism ι is a quasi-isometric embedding.

In fact, for any number m ≥ 1, the mapping class group of a surface S of
genus g ≥ 0 with m ≥ 0 punctures and fundamental group Fn embeds onto
a subgroup of Out(Fn). However, we do not investigate such subgroups in
the case m ≥ 2 here.

There is an analog of Theorem 5.3.2 for graphs which admit cofinite
actions of Mod(Sg,1) and Out(F2g), respectively. Namely, let AG(Sg,1) be
the arc graph of Sg,1. The vertex set of AG(Sg,1) is the set of isotopy classes
of essential embedded arcs connecting the puncture of Sg,1 to itself. Two such
vertices are connected by an edge if the corresponding arcs are disjoint up to
homotopy. The mapping class group Map(Sg,1) of a once-punctured surface
acts on AG(Sg,1). We define the sphere graph SG(M2g) of M2g as the graph
whose vertex set is the set of isotopy classes of embedded essential spheres
in M2g. Two such vertices are connected by an edge if the corresponding
spheres are disjoint up to homotopy. The tools developed for the proof of
Theorem 5.3.2 also yield

Proposition 5.3.9. There is a Map(Sg,1)–equivariant quasi-isometric em-
bedding of the arc graph AG(Sg,1) into the sphere graph SG(M2g).
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The main idea for the proof of Theorem 5.3.2 is as follows. The mapping
class group of the 3-manifold M2g acts properly and cocompactly on the graph
S0(M2g) whose vertices are reduced sphere systems, i.e. systems of 2g pairwise
non-isotopic essential spheres which cut M2g into a single simply connected
region. Consider an embedding ϕ : S1

g → M of a surface S1
g of genus g with

one boundary component into M2g which induces an isomorphism on the
level of fundamental groups. The intersection of a simple sphere system with
the image of ϕ (where both surfaces are supposed to be in general position)
defines an embedded system of arcs on S1

g which decomposes S1
g into simply

connected regions. We can use the set of isotopy classes of such arc systems
as a vertex set for a Map(Sg,1)–complex on which Map(Sg,1) acts properly
and cocompactly. The main task is now to show that edge paths in S0(M2g)
can be arranged to trace out edge paths of the same length in this complex.
We also have to establish a topological characterization of those edge-paths
in S0(M2g) which connect two points in a fixed orbit of ι(Mod(S2g)).

Investigating Out(Fn) via sphere systems and intersections can also be
used to give a short proof of a recent result of Handel and Mosher [HM10]. We
define a procedure which makes a simple sphere system disjoint from a given
essential 2–sphere σ in Mn. This procedure allows us to show that stabilizers
of homotopy classes of essential spheres in the mapping class group of Mn

are undistorted. Recall that a finitely generated subgroup H of a finitely
generated group G is said to be undistorted if the inclusion map of H into
G is a quasi-isometric embedding.

Namely, the stabilizer of the homotopy class of sphere σ in the mapping
class group of Mn is equivariantly quasi-isometric to the complete subgraph
S(Mn, σ) of S(Mn) whose vertices correspond to simple sphere systems con-
taining σ. Let Σ, Σ′ be two simple sphere systems containing σ and let
Σ1, . . . , ΣN is a shortest path in S(Mn) connecting Σ to Σ′. Applying the
intersection procedure to each Σi we obtain a path of length N in S(Mn, σ)
connecting Σ to Σ′. Thus, the subgraph S(Mn, σ) is undistorted in S(Mn)
and therefore the stabilizer of σ is undistorted in the mapping class group
of Mn. By rephrasing this result in group theoretic terms, we obtain the
following result of [HM10].

Theorem 5.2.1. i) The stabilizer of the conjugacy class of a free splitting
Fn = G ∗ H is undistorted in Out(Fn).

ii) Let G < Fn be a free factor of corank 1. Then the stabilizer of the
conjugacy class of G is undistorted in Out(Fn).
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This chapter is organized as follows. In Section 5.2, we first give some
background on the manifold Mn and sphere systems. This section also con-
tains the proof of Theorem 5.2.1. Section 5.3 is devoted to the proof of
Theorem 5.3.2 and Proposition 5.3.9. Appendix 5.A contains a topological
lemma about stabilizers of spheres in Mn which is used in Section 5.2.

5.2 Stabilizers of spheres

Let Fn be the free group on n generators. By Out(Fn) we denote the outer
automorphism group of Fn. Explicitly, Out(Fn) is the quotient of the group
Aut(Fn) of all automorphisms of Fn by the subgroup of inner automorphisms.

The purpose of this section is to give a short topological proof of a theorem
of Handel and Mosher [HM10]. For its formulation, we use the following
definitions. A free splitting of the free group Fn consists of two subgroups
G, H < Fn such that Fn = G ∗ H . By this we mean the following: the
inclusions of G and H into Fn induce a natural homomorphism G ∗H → Fn,
where ∗ denotes the free product of groups. By stating that Fn = G ∗ H we
require that this homomorphism is an isomorphism.

We say that an automorphism ϕ of Fn preserves the free splitting Fn =
G ∗ H , if ϕ preserves the groups G and H . It is possible to define free
splittings in a more general way using actions of Fn on trees (see [HM10,
Section 1.4]) but in this chapter we use the definition given above.

A corank 1 free factor is a subgroup G of Fn of rank n − 1 such that
there exists a cyclic subgroup H of Fn with Fn = G ∗ H . We say that an
automorphism ϕ of Fn preserves this corank 1 free factor, if ϕ preserves the
group G. We emphasize that ϕ is not required to preserve the cyclic group
H , and that the group H is not uniquely determined by G.

An element [ϕ] ∈ Out(Fn) is said to preserve the conjugacy class of the
free splitting G ∗ H (or corank 1 free factor G), if there is a representative
ϕ of [ϕ] which preserves the free splitting G ∗ H (or the corank 1 free factor
G).

A finite, symmetric generating set of a group G defines a word norm on G.
We call the metric induced by such a norm a word metric on G. Two different
finite generating sets of G give rise to quasi-isometric metrics. Recall that a
map f : X → Y between metric spaces is called a quasi-isometric embedding,
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if there is a number K > 0 such that

1

K
dY (f(x), f(x′)) − K ≤ dX(x, x′) ≤ KdY (f(x), f(x′)) + K

for all x, x′ ∈ X. A finitely generated subgroup H < G of a finitely generated
group G is called undistorted if the inclusion homomorphism H → G is a
quasi-isometric embedding.

We can now state the main theorem of this section.

Theorem 5.2.1. i) The stabilizer of the conjugacy class of a free splitting
Fn = G ∗ H is undistorted in Out(Fn).

ii) Let G < Fn be a free factor of corank 1. Then the stabilizer of the
conjugacy class of G is undistorted in Out(Fn).

As indicated in the introduction, we will prove Theorem 5.2.1 using the
topology of the connected sum Mn of n copies of S2×S1 (where Sk denotes the
k–sphere). Alternatively, Mn can be obtained by doubling a handlebody of
genus n along its boundary. Since π1(Mn) = Fn, there is a natural homomor-
phism from the group Diff+(Mn) of orientation preserving diffeomorphisms
of Mn to Out(Fn). This homomorphism factors through the mapping class
group Map(Mn) = Diff+(Mn)/Diff0(Mn) of Mn, where Diff0(Mn) is the con-
nected component of the identity in Diff+(Mn). In fact, Laudenbach [L74,
Théorème 4.3, Remarque 1)] showed that the following stronger statement is
true.

Theorem 5.2.2. There is a short exact sequence

1 → K → Diffeo+(Mn)/Diffeo0(Mn) → Out(Fn) → 1

where K is a finite group, and the map Diffeo+(Mn)/Diffeo0(Mn) → Out(Fn)
is induced by the action on the fundamental group.

By [L74, Théorème 4.3, part 2)], we can replace diffeomorphisms by home-
omorphisms in the definition of the mapping class group of Mn.

An embedded 2-sphere in Mn is called essential, if it does not bound a 3-
ball in Mn. Throughout the chapter we assume that 2-spheres are smoothly
embedded, essential and are two-sided in Mn.

The following observation identifies the stabilizers in Map(Mn) which
occur in Theorem 5.2.1. The statement is an immediate consequence of
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Corollary 21 of [HM10] and a standard topological argument which is for
example presented in [AS09]. For completeness of exposition we provide a
purely topological proof in Appendix 5.A.

Lemma 5.A.1. i) Let σ be an essential separating sphere in Mn. Then the
stabilizer of σ in Map(Mn) projects onto the stabilizer of the conjugacy
class of a free splitting in Out(Fn). Furthermore, every stabilizer of a
conjugacy class of a free splitting arises in this way.

ii) Let σ be a nonseparating sphere in Mn. Then the stabilizer of σ in
Map(Mn) projects onto the stabilizer of the conjugacy class of a corank
1 free factor in Out(Fn). Furthermore, every stabilizer of a conjugacy
class of a corank 1 free factor arises in this way.

To study stabilizers of essential spheres in Mn we use the following ge-
ometric model for the mapping class group of Mn (compare [Ha95] and
[HV96]).

A sphere system is a set {σ1, . . . , σm} of essential spheres in Mn no two of
which are homotopic. A sphere system is called simple if its complementary
components in Mn are simply connected. The sphere system graph S(Mn)
is the graph whose vertex set is the set of homotopy classes of simple sphere
systems. Two such vertices are joined by an edge of length 1 if the corre-
sponding sphere systems are disjoint up to homotopy.

The mapping class group of Mn acts on S(Mn) properly discontinuously
and cocompactly (see e.g. the proof of Corollary 4.4 of [HV96] for details on
this). Furthermore, the surgery procedure described in Section 3 of [HV96]
shows that S(Mn) is connected. The finite subgroup K occurring in the
statement of Theorem 5.2.2 of Map(Mn) acts trivially on isotopy classes of
spheres and hence this action factors through an action of Out(Fn).

For an essential sphere σ, let S(Mn, σ) be the complete subgraph of S(Mn)
whose vertex set is the set of homotopy classes of simple sphere systems con-
taining σ. The surgery procedure described in [HV96] shows that the graph
S(Mn, σ) is connected. The stabilizer of σ in Out(Fn) acts cocompactly on
S(Mn, σ). Thus the Svarc-Milnor lemma immediately implies the following.

Lemma 5.2.3. i) The sphere system graph S(Mn) is quasi-isometric to
Out(Fn).

ii) The graph S(Mn, σ) is equivariantly quasi-isometric to the stabilizer of
σ in Out(Fn).
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Combining Lemma 5.A.1 and Lemma 5.2.3, Theorem 5.2.1 thus reduces
to the following.

Theorem 5.2.4. The inclusion of S(Mn, σ) into S(Mn) is a quasi-isometric
embedding.

The main tool used in the proof of this statement is a surgery procedure
that makes a given simple sphere system disjoint from the sphere σ. On
the one hand, this surgery procedure is inspired by the construction used in
[HV96] to show that the sphere system complex is contractible. On the other
hand, it is motivated by the subsurface projection methods of [MM00].

To describe this surgery procedure we fix an essential sphere σ in Mn for
the rest of this section. We treat separating and nonseparating spheres in a
unified manner using the following notation. If σ is separating, let M1 and
M2 be its complementary components in Mn and put Ni = M i ∪σ. We then
let N be the disjoint union of N1 and N2. If σ is nonseparating, let M be its
complement. There is a canonical way to add two copies of σ to M to obtain
a compact three-manifold N whose boundary consists of two spheres.

In both cases, N is a compact three-manifold whose boundary consists
of two copies of σ. If no confusion can occur we will often treat N as if it
were a submanifold of Mn and call it the complement of σ. In particular, we
simply speak of the intersection of a sphere system with N .

Consider now a simple sphere system Σ of Mn. By applying a homotopy,
we may assume that all intersections between Σ and σ are transverse. The
intersection of the spheres in Σ with N is a disjoint union of properly embed-
ded surfaces C1, . . . , Cm, possibly with boundary. Each Ci is a subsurface of
a sphere in Σ, and thus it is a bordered sphere. If Σ contains spheres disjoint
from σ then some of the Ci may be spheres without boundary components.
We call the Ci the sphere pieces defined by Σ.

We say that Σ and σ intersect minimally if the number of connected
components of Σ ∩ σ is minimal among all sphere systems homotopic to Σ
which intersect σ transversely.

Every simple sphere system Σ can be changed by a homotopy to intersect
σ minimally. Unless stated otherwise, we will assume from now on that
spheres and sphere systems intersect minimally. Let Σ′ ⊃ Σ be a simple
sphere system and suppose that Σ intersects σ minimally. Then Σ′ can be
homotoped relative to Σ to intersect σ minimally.

Details on the construction of such a homotopy can be found in [Ha95].
Hatcher also shows the existence of a unique normal form of spheres with
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respect to simple sphere systems which gives more information than minimal
intersection. Since we do not use this normal form here, we refer the reader
to [Ha95] for details.

Let C be one of the sphere pieces of Σ, and let α1, . . . , αk be its bound-
ary components on ∂N . A gluing datum for C is a set of disks D1, . . . , Dk

contained in ∂N such that ∂Di = αi for all 1 ≤ i ≤ k. The disks Di are
called closing disks. Let C ′ be the surface obtained from C by gluing Di

along ∂Di to αi. Since C is a bordered sphere, the surface C ′ is an immersed
sphere in N (which may be inessential). We say that C ′ is obtained from
C by capping off the boundaries according to the gluing datum. By a gluing
datum D for {Ci, 1 ≤ i ≤ m} (or gluing datum for Σ) we mean a set of disks
on σ consisting of a gluing datum for each sphere piece Ci of Σ.

We say that a gluing datum D for Σ is admissible if it satisfies the fol-
lowing compatibility property: if D, D′ ∈ D are two disks which intersect
nontrivially then D ⊂ D′ or D′ ⊂ D. We say that any set of disks with this
property is properly nested.

Note that if Σ is disjoint from σ then the empty set is the only admissible
gluing datum for Σ.

Lemma 5.2.5. If D is an admissible gluing datum for Σ then every sphere
obtained by capping off the boundary components of a sphere piece according
to D is embedded up to homotopy. Furthermore, the spheres obtained by
capping off the boundary components of all sphere pieces according to D can
be embedded disjointly.

Proof. If D is empty, there is nothing to show.

Otherwise, say that a disk D ∈ D is innermost if D ⊂ D′ for every D′ ∈ D
with D ∩ D′ 6= ∅. Since D is admissible, there is at least one innermost disk
D1 bounded by a curve α1.

In N , the curve α1 occurs twice as the boundary of a sphere piece, once
on each boundary component of N . Let C1 and C2 be the two sphere pieces
having a copy of α1 contained in their boundary.

The disk D1 also occurs on both boundary components of N , and both of
these disks have the property that they only intersect a single sphere piece
in N , namely one of the Cj . Let Dj be the copy of D1 intersecting Cj.

We glue Dj to the corresponding sphere piece Cj and then slightly push
Dj inside N with a homotopy to obtain a properly embedded bordered sphere
C ′j in N . Since D is innermost, this sphere is disjoint from all sphere pieces
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Ck 6= Cj , and has one less boundary component than Cj . We replace the
sphere piece Cj by the bordered sphere C ′j for j = 1, 2.

The collection of bordered spheres obtained in this way is a collection
of disjointly embedded sphere pieces, and D \ {D1} is an admissible gluing
datum for this collection. The lemma now follows by induction on the number
of elements in D.

For an admissible gluing datum D for Σ, let S(D) be the collection of
disjointly embedded spheres obtained by capping off the boundaries of each
sphere piece according to D. The set S(D) may contain inessential spheres
and parallel spheres in the same homotopy class. We denote by πσ(Σ,D)
the union of σ with one representative for each essential homotopy class of
spheres occurring in S(D).

To show that the sphere system obtained in this way from a simple sphere
system Σ is again simple, we require the following topological lemma.

Lemma 5.2.6. Let C be a sphere piece in N intersecting the boundary of N
in at least one curve α. Let D ⊂ ∂N be a disk with ∂D = α. Let C ′ be the
sphere piece obtained by gluing D to C and slightly pushing D into N (which
might be a sphere without boundary components).

Then every closed curve in N which can be homotoped to be disjoint from
C ′ can also be homotoped to be disjoint from C.

Proof. Pushing the disk D slightly inside of N with a homotopy traces out a
three-dimensional cylinder Q in N . The boundary of Q consists of two disks
(the disk D, and the image of D under the homotopy) and an annulus A
which can be chosen to lie in C (see Figure 5.1 for an example).

σ

D

Ci
β

Figure 5.1: Reducing the number of boundary components of a sphere piece.
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Suppose that β is a closed curve in N which is disjoint from C ′ but not
from C. Then any intersection point between β and C is contained in the
annulus A. Up to homotopy, the intersection between β and Q is a disjoint
union of arcs connecting A to itself. Since Q is simply connected, each
of these arcs can be moved by a homotopy relative to its endpoints to be
contained entirely in A. Slightly pushing each of these arcs off A then yields
the desired homotopy that makes β disjoint from C.

Lemma 5.2.7. Let Σ be a simple sphere system, and let D be an admissible
gluing datum for Σ. Then πσ(Σ,D) is a simple sphere system.

Proof. Let Σ be a simple sphere system, and let D be an admissible gluing
datum. As πσ(Σ,D) contains σ by construction, it suffices to show that the
spheres S ∈ πσ(Σ,D) which are distinct from σ decompose N into simply
connected regions.

Since the fundamental group of N injects into the fundamental group of
M and Σ is a simple sphere system, no essential simple closed curve in N is
disjoint from Σ∩N . In other words, no essential simple closed curve in N is
disjoint from all sphere pieces defined by Σ.

By Lemma 5.2.6, this property is preserved under capping off one bound-
ary component on a sphere piece. By induction, no essential simple closed
curve in N is disjoint from all spheres S ∈ S(D). Removing inessential
spheres and parallel copies of the same sphere from S(D) does not affect this
property.

This implies that πσ(Σ,D) is a simple sphere system as claimed.

It is not hard to show that for each Σ there is an admissible gluing datum
(e.g by considering the dual graph to the intersection of Σ with σ as in the
upcoming proof of Lemma 5.2.8). Since we do not need this statement in the
sequel, we do not give a proof here.

We do however need the following relative version of this statement, which
is the central ingredient for the proof of Theorem 5.2.4.

Lemma 5.2.8. Let Σ be a simple sphere system, and let D be an admissible
gluing datum for Σ. Suppose that Σ′ is a simple sphere system which is
disjoint from Σ up to homotopy. Then there is an admissible gluing datum
D′ for Σ′ such that πσ(Σ,D) and πσ(Σ′,D′) are disjoint up to homotopy.

Proof. As a first step, note that if Σ′ is obtained from Σ by removing some
spheres then the claim is immediate – one can simply take D′ as a subset of
D.
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Since Σ′ is disjoint from Σ, the union Σ ∪ Σ′ is a simple sphere system
(where we discard multiple copies of the same homotopy class of a sphere).
The sphere system Σ′ is then obtained from Σ∪Σ′ by removing some number
of spheres. Therefore, to show the lemma it suffices to consider the case that
Σ′ ⊃ Σ.

Let Σ = {σ1, . . . , σr} and let Σ′ = {σ1, . . . , σr, σ
′
1, . . . , σ

′
s}. We call the

sphere pieces defined by one of the σi old sphere pieces and those defined by
one of the σ′

j new sphere pieces.
The gluing datum D contains a disk for each boundary component of

every old sphere piece. We will construct D′ inductively as an extension of
D. The boundary components of new sphere pieces fall into two different
classes: those that are contained in some disk from the collection D and
those that are disjoint from any disk in D.

Let D1, . . . , Dk be the maximal disks in D with respect to the partial
order defined by inclusion (this makes sense as D is admissible). Let α be a
boundary component of a new sphere piece C ′ such that α ⊂ Dl for some l.
We then choose the closing disk D(α) to be the unique embedded disk in σ
bounded by α which is contained in Dl. Let D1 be the union of D with the
set of all disks obtained in this way. By construction, D1 is properly nested
in the sense defined before Lemma 5.2.5.

If D1 is a gluing datum for Σ′ then we are done. Otherwise, consider the
set of those boundary components α1, . . . , αk of new sphere pieces which are
disjoint from every disk in D and hence also from every disk in D1. If k = 0
there is nothing to show, so we may assume k ≥ 1.

Let I =
⋃k

i=1 αi ⊂ σ and let T be the dual graph to I. Explicitly, T is
the graph whose vertex set is the set of connected components of σ \ I. Two
such vertices corresponding to components U1, U2 are joined by an edge if
there is a component of I contained in the closure of both Ui. As every circle
on a sphere is separating, the graph T is in fact a tree (see Figure 5.2).

Let v be a leaf of T , corresponding to a complementary component whose
closure is a disk D(v). This disk D(v) intersects I in a single component α(v).

If k ≥ 2 then D(v) is the unique disk on σ bounded by α(v) which is
disjoint from all αi 6= α(v). If k = 1 then D(v) is one of the two embedded
disks in σ bounded by α1.

In both cases, if D(v) intersects a disk D ∈ D1, then D ⊂ D(v) since
otherwise α(v) ⊂ D.

Hence, the set of disks D2 = D1∪{D(v)} is properly nested. Furthermore,
the set of boundary components of new sphere pieces that are not contained
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Figure 5.2: An example of a collection of boundaries of sphere pieces and the
corresponding dual tree.

in any disk of D2 is {α1, . . . , αk} \ {α(v)}.

The lemma now follows by repeating this procedure, assigning a closing
disk to each αi.

Proof of Theorem 5.2.4. Let Σ, Σ′ be two simple sphere systems containing
σ. Choose an edge-path Σ = Σ1, . . . , ΣL = Σ′ of shortest length connecting
Σ to Σ′ in the sphere system graph S(Mn).

Since Σ1 is disjoint from σ by assumption, D1 = ∅ is an admissible gluing
datum for Σ1.

By Lemma 5.2.8 there is an admissible gluing datum D2 for Σ2 such that
Σ1 = πσ(Σ1,D1) is disjoint from πσ(Σ2,D2).

Inductively applying Lemma 5.2.8, one obtains admissible gluing data
Di for Σi such that πσ(Σi,Di) is disjoint from πσ(Σi+1,Di+1) for all i =
2, . . . , L − 1.

As ΣL is disjoint from σ, the only admissible gluing datum is the empty
set, and hence πσ(ΣL,DL) = ΣL.

By construction, the sequence πσ(Σi,Di) for 1 ≤ 1 ≤ L defines an edge-
path in S(Mn, σ) connecting Σ to Σ′. Thus the distance between Σ and Σ′ in
S(Mn) equals the distance between Σ and Σ′ in S(Mn, σ) and the theorem
is shown.
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5.3 Mapping class groups in Out(Fn)

In this section we study an embedding of a surface mapping class group into
Out(Fn). Let S1

g be a surface of genus g with one boundary component, and
let Sg,1 be the surface obtained by collapsing the boundary component of S1

g

to a marked point. We often view the marked point as a puncture of the
surface, so that the fundamental group of Sg,1 is the free group F2g on 2g
generators.

A simple closed curve on Sg,1 which bounds a disk containing the marked
point defines a distinguished conjugacy class in π1(Sg,1) called the cusp class.
The mapping class group of Sg,1 preserves the cusp class.

The following analog of the Dehn-Nielsen-Baer theorem for punctured
surfaces is well-known (see e.g. Theorem 8.8 of [FM11]).

Theorem 5.3.1. The homomorphism

ι : Map(Sg,1) → Out(F2g)

induced by the action on the fundamental group of Sg,1 is injective. Its image
consists of those outer automorphisms which preserve the cusp class.

The goal of this section is to prove

Theorem 5.3.2. The homomorphism ι is a quasi-isometric embedding.

We employ the following geometric model for the mapping class group of
Sg,1. A binding loop system for Sg,1 is defined to be a collection of embedded
loops {a1, . . . , an} based at the marked point of Sg,1 which intersect only at
the marked point and which decompose Sg,1 into a disjoint union of disks.

Let BL(Sg,1) be the graph whose vertex set is the set of isotopy classes
of binding loop systems. Here isotopies are required to fix the marked point.
Two such systems are connected by an edge if they intersect in at most K
points. As the mapping class group of Sg,1 acts with finite quotient on the set
of isotopy classes of binding loop systems, we can choose the number K > 0
such that the following lemma is true.

Lemma 5.3.3. The graph BL(Sg,1) is connected. The mapping class group
of Sg,1 acts on BL(Sg,1) with finite quotient and finite point stabilizers.

Instead of working with binding loop systems of Sg,1 directly we will
frequently use binding arc systems of S1

g . By this we mean a collection A of
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disjointly embedded arcs {a1, . . . , an} connecting the boundary component
of S1

g to itself which decompose S1
g into simply connected regions. We will

consider such binding arc systems up to isotopy of properly embedded arcs. A
binding arc system for S1

g defines a binding loop system for Sg,1 by collapsing
the boundary component of S1

g to the marked point. Note that if A1, A2 are
two disjoint binding arc systems for S1

g then the corresponding binding loop
systems for Sg,1 are uniformly close in BL(Sg,1). By this we mean that there
is a number K > 0 depending only on g such that the distance between the
two binding loop systems in BL(Sg,1) is at most K. The Dehn twist about
the boundary component of S1

g acts trivially on the isotopy class of any arc
system. Thus the action of the mapping class group of S1

g on binding arc
systems factors through an action of Map(Sg,1).

We can now describe the strategy of the proof of Theorem 5.3.2; details for
each step will be given below. As in Section 5.2, we use simple sphere systems
in M2g to build a graph S0(M2g) which is quasi-isometric to Out(F2g) (for
technical reasons we choose a subgraph of S(M2g) in this section, see below for
the definition). Let φ ∈ Map(Sg,1) be given and let F be a diffeomorphism of
M2g which represents the outer automorphism ι(φ) of the fundamental group
F2g. We may choose F in such a way that it preserves an embedded surface
S1

g ⊂ M2g and such that F restricts to a representative of φ on S1
g . Now

consider a shortest path Σ0, Σ1, . . . , ΣN = F (Σ0) connecting a base sphere
system to its image under F in S0(M2g). The intersections of Σi with the
surface S1

g ⊂ M2g then yield a sequence of binding arc systems A0, . . . , AN on
the surface S1

g and therefore a path of length coarsely bounded by N in the
graph of binding loop systems of Sg,1. Each of the Σi is only determined up
to homotopy and therefore the arc systems Ai are not defined canonically.
The main technical difficulty now consists in obtaining enough control on
the representatives of the homotopy classes to ensure that AN = ΣN ∩ S1

g

defines the homotopy class φ(A0). To this end we also have to successively
modify the surface S1

g by homotopies. Once this is done, the word norm of φ
is coarsely bounded by N , and hence by the word norm of ι(φ) in Out(F2g),
showing Theorem 5.3.2.

We now define the geometric model of Out(F2g) used in this section. Let
M = M2g be the connected sum of 2g copies of S2 × S1. Say that a simple
sphere system Σ for M is reduced if M \ Σ is connected. Let S0(M) be
the complete subgraph of S(M) whose vertices correspond to reduced sphere
systems. We call S0(M) the reduced sphere system graph.
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Lemma 5.3.4. The graph S0(M) is connected.

This lemma can be shown using a surgery argument which is well-known
in the analogous case of reduced disk systems for handlebodies (see e.g.
[HH11a, Lemma 5.2], [St99] or [M86, Lemma 3.2]) For convenience of the
reader we sketch a proof in the sphere system case here.

Proof. Let Σ, Σ′ be two reduced sphere systems. We may assume without loss
of generality that Σ and Σ′ are in general position and hence the intersection
is a disjoint union of finitely many circles. We prove the lemma by induction
on the number of such intersection circles.

Let σ′ ∈ Σ′ be a sphere which intersects Σ. The intersection σ′ ∩ Σ is
a disjoint union of finitely many circles α1, . . . , αk. There is at least one
such circle α = αi which bounds a disk D′ ⊂ σ′ whose interior contains no
other intersection circle αj, j 6= i. Suppose that α is contained in the sphere
σ ∈ Σ. Denote by D1, D2 the two embedded disks in σ bounded by α and
put σj = Dj ∪ D′ for j = 1, 2. Up to homotopy, the surface σj is a sphere
which is disjoint from Σ.

We claim that the sphere system Σj = Σ ∪ {σj} \ {σ} is reduced for a
suitable j. To prove the claim, note that a sphere system with 2g compo-
nents is reduced if it defines a basis of H2(M, Z). Since Σ is reduced, for
exactly one choice of j = 1, 2 the system Σj defines a basis of H2(M, Z) (the
corresponding sphere σj has to separate the two sides of σ in the complement
of Σ). This shows the lemma.

The graph S0(M) is Out(F2g)-invariant. Moreover, the action of Out(F2g)
on S0(M) is properly discontinuous and thus S0(M) is equivariantly quasi-
isometric to Out(F2g).

The advantage of using reduced sphere systems is that they make it easy
to encode free homotopy classes of curves in M . Namely, let Σ = {σ1, . . . , σn}
be a reduced sphere system. We choose a transverse orientation for each
sphere σi so we may speak of a positive and a negative side of σi.

Let p ∈ M be a base point in the complement of Σ. A basis dual to Σ
is a set of loops γ1, . . . , γn in M based at p such that the loop γi is disjoint
from σj for all j 6= i and intersects σi in a single point. We orient γi such
that it approaches σi from the positive side. Since the complement of Σ is
simply connected, the loops γi define a basis of π1(M, p).

Now let α be a closed curve in M . Choose an orientation of α. Up to
applying a homotopy to α we may assume that α and Σ are in general position
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and thus intersect in a finite set of points. Apply a homotopy to α in the
complement of Σ such that α passes through the basepoint p. The resulting
based loop α̂ is a representative of the free homotopy class defined by α.
Since the complement of Σ is simply connected, the sequence of (oriented)
spheres in Σ which are consecutively hit by α̂ (and hence α) defines a word
in the γ±

i representing α̂. In other words, the free homotopy class defined by
α is determined by the sequence of sides of spheres in Σ that α intersects.

We next put α in tight position with respect to Σ as follows. Let MΣ be
the complement of Σ in the sense described for a single sphere in Section 5.2 –
that is, MΣ is a compact connected three-manifold whose boundary consists
of 2n boundary spheres σ+

1 , σ−
1 , . . . , σ+

n , σ−
n . The boundary spheres σ+

i and
σ−

i correspond to the two sides of σi. If α is not disjoint from Σ then the
intersection of α with MΣ is a disjoint union of arcs connecting the boundary
components of MΣ. We call these arcs the Σ–arcs of α. An orientation of α
induces a cyclic order on the Σ–arcs of α.

We say that α intersects Σ minimally if no Σ-arc of α connects a boundary
component of MΣ to itself.

Lemma 5.3.5. Every closed curve α in M can be modified by a homotopy to
intersects Σ minimally. Let α and α′ be two simple closed curves which are
freely homotopic and which intersect Σ minimally. Then there is a bijection
f between the Σ–arcs of α and the Σ–arcs of α′ such that f(a) is homotopic to
a for each Σ–arc a of α. If orientations of α and α′ are chosen appropriately,
f may be chosen to respect the cyclic orders on the Σ–arcs.

Proof. Since MΣ is simply connected, an arc in MΣ connecting a boundary
component to itself is homotopic into that boundary component. This shows
the first claim.

To see the other claims, let p be a base point in the complement of Σ
and let γi be a basis of π1(M, p) dual to Σ. The sequence of oriented spheres
from Σ determined by the consecutive intersections of α defines a word in
the γi representing the conjugacy class of α.

If α intersects Σ minimally, this word representing the conjugacy class of
α is reduced and cyclically reduced. The analogous statements are also true
for α′. Since α and α′ are freely homotopic, they define the same conjugacy
class in π1(M, p). Up to cyclic permutation, a conjugacy class in a free group
contains a unique cyclically reduced word. Therefore, the words in γi defined
by α and α′ are equal up to cyclic permutation and possibly reversing the
orientation of α′. This implies the lemma.
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Now let V = S1
g × [0, 1] be the trivial oriented interval bundle over S1

g .
We identify M = M2g with the three-manifold obtained by doubling V along
its boundary. To simplify notation, we put n = 2g.

As can be seen from the description of M as the double of V , the surface
S1

g × {1
2
} is incompressible in M . Let ϕ0 : S1

g → M be the thus defined
embedding of S1

g into M . Let β be the boundary curve of S1
g . The image

ϕ0(β) is an embedded closed curve in M which maps to the cusp class in
π1(Sg,1) = π1(M).

Next we put ϕ0(S
1
g ) and ϕ0(β) in good position with respect to a given

reduced sphere system. Since for surfaces and curves in M homotopy is in
general not the same as isotopy, we need to take some care in defining these
notions.

Consider the more general case of a surface ϕ(S1
g ), where ϕ : S1

g → M
is any embedding of S1

g into M which is homotopic to ϕ0 (note that such
an embedding need not be isotopic to ϕ0). Up to modifying ϕ with a small
isotopy, we may assume that Σ intersects the surface ϕ(S1

g ) transversely.
Then the preimage ϕ−1(Σ) is a one-dimensional submanifold of S1

g , and hence
it is a disjoint union of simple closed curves and properly embedded arcs.

Definition 5.3.6. We say that ϕ is in ribbon position with respect to Σ if
each component of ϕ−1(Σ) is a properly embedded arc. It is said to be in
minimal position if in addition ϕ(β) is in minimal position with respect to
Σ. In either case, we call the preimage ϕ−1(Σ) the arc system induced by Σ
and ϕ.

Note that a priori the homotopy class of the arc system induced by Σ and
ϕ need not be determined by the isotopy class of Σ even if ϕ is in minimal
position with respect to Σ.

A main step towards the proof of Theorem 5.3.2 consists in establishing
some control over the homotopy class of the arc system induced by ϕ and a
sphere system associated to the an element in the image of Map(Sg,1). To
make this precise, fix an embedded binding arc system A0 = {a0

1, . . . , a
0
2g}

of S1
g consisting of precisely 2g arcs which cut Sg,1 into a single disc. We

require that β intersects each arc a0
i in two points, and that a subarc of β

defined by the intersection points with a0
i approaches a0

i from the same side
at both of its endpoints. Such a binding arc system can easily be obtained
from the standard description of S1

g as a one-holed 4g–gon with opposite
sides identified.
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The interval bundle over A0 is a disk system in the handlebody V which
cuts V into a ball. Doubling this disk system across the boundary of V , we
obtain a reduced simple sphere system Σ0 in M2g such that the arc system
induced by ϕ0 and Σ0 is the arc system A0. Similarly, any diffeomorphism f
of Sg,1 extends in this way to a diffeomorphism I(f) of M by first extending
f to a product map of Sg,1 and then extending further by doubling. The
action of I(f) on homotopy classes of sphere systems then coincides with the
action of the image of the projection of f to Map(S1

g ) under the inclusion
ι : Map(S1

g ) → Out(Fn). This observation is used in the following lemma
which gives control on some classes of arc systems.

Lemma 5.3.7. Let f be an orientation preserving diffeomorphism of S1
g and

let Σ be a simple sphere system which is homotopic to I(f)(Σ0). Suppose
that ϕ : S1

g → M is homotopic to ϕ0 and in minimal position with respect to
Σ. Then the arc system induced by ϕ and Σ is homotopic to f(A0).

Proof. Let f be an orientation preserving diffeomorphism of S1
g and let F =

I(f). The sphere system F (Σ0) is then in minimal position with respect to
ϕ0, and ϕ−1

0 (F (Σ0)) = f(A0) by construction. By applying an isotopy to
M which maps Σ to F (Σ0) we may assume without loss of generality that
Σ = F (Σ0). If we replace ϕ by its composition with this isotopy then this
does not change ϕ−1(Σ).

With respect to the sphere system Σ = F (Σ0), the curve ϕ0(β) is in
minimal position. Furthermore, by choice of the arc system A0, the curve
ϕ0(β) intersects each sphere σj in Σ in exactly two points x′

j and y′
j. Let β ′1

j

and β ′2
j be the two subarcs of ϕ0(β) defined by these intersection points.

By Lemma 5.3.5, minimal position of curves is unique and only depends
on the homotopy class of the curve and of the sphere system. Therefore the
curve ϕ(β) intersects each sphere σj ∈ Σ also in two points, say xj and yj.
Denote by β1

j and β2
j the two subarcs of ϕ(β) defined by these intersection

points. Again by uniqueness of minimal position of curves, the arc βr
j is

homotopic to β ′r
j with endpoints sliding on σj for r = 1, 2 (after possibly

exchanging β1
j and β2

j ).

Let aj ⊂ S1
g be the preimage of σj under ϕ and let a′

i be the preimage of
σj under ϕ0. The boundary of a regular neighborhood of β ∪ aj in S1

g is the
union of two simple closed curves d1

j , d
2
j and the boundary curve β, and the

boundary of a regular neighborhood of β ∪ a′
j consists of two simple closed

curves d′1
j , d′2

j and the boundary curve β.



5.3. MAPPING CLASS GROUPS IN OUT(FN) 99

Up to exchanging d1
j and d2

j , the curve ϕ(dk
j ) ⊂ M is freely homotopic to

a curve δk
j = βk

j ∗ αj obtained by concatenating βk
j and an embedded arc αj

on σj . Similarly, the curve ϕ0(d
′k
j ) is freely homotopic to a curve δ′kj = β ′k

j ∗α′
j

obtained by concatenating β ′k
j and an embedded arc α′

j on σi.
Since σj is simply connected and β ′k

j is homotopic to βk
j relative to σj ,

the curves δ′kj and δk
j are freely homotopic. Since ϕ and ϕ0 induce the same

isomorphism on the level of fundamental groups, this implies that also the
simple closed curves dk

j and d′k
j in S1

g are freely homotopic.
The curves β, d1

j and d2
j bound a pair of pants Pi on S1

g . The arc aj is
up to isotopy the unique essential embedded arc in Pj connecting β to itself.
Similarly, β, d′1

j and d′2
j bound a pair of pants P ′

j, which is isotopic to Pj.
As a′

j is the unique essential embedded arc in P ′
j connecting β to itself, it is

therefore isotopic to aj.
Hence we have shown that the arc system induced by a map ϕ and a

sphere system Σ as in the statement is isotopic to the arc system induced by
ϕ0 and Σ, hence isotopic to f(A0).

To apply Lemma 5.3.7 we have to keep ϕ in minimal position when chang-
ing the sphere system. For this we use an inductive method which is described
in the next lemma. For its proof, we need the following observation, which
also motivates the terminology “ribbon position”.

Suppose that ϕ is in ribbon position with respect to the reduced sphere
system Σ. Since ϕ is homotopic to ϕ0, it induces an isomorphism between
the fundamental groups of S1

g and M . The intersection of ϕ(S1
g ) with MΣ is a

union of surfaces P1, . . . , Pk. As Σ is a simple sphere system, the arc system
ϕ−1(Σ) on S1

g is binding and hence each of the surfaces Pi is a disk whose
boundary is not completely contained in a boundary component of MΣ.

Pick one such disk, say Pi, and consider its boundary curve δi. We can
write this curve in the form

δi = a1 ∗ b1 ∗ · · · ∗ ar ∗ br

where each ai is an arc contained in one of the boundary spheres of MΣ, and
each bi is a properly embedded arc in MΣ. Let Γi ⊂ Pi be an embedded
graph in Pi defined in the following way. The graph Γi has one distinguished
vertex v0 contained in the interior of Pi and one vertex vr contained in each
arc ar. Each vertex vr (r ≥ 1) is connected by an edge to the vertex v0.
The oriented surface Pi determines a ribbon structure on Γi. Here a ribbon
structure on Γi is simply a cyclic order of the half-edges at v0.
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To reconstruct ϕ(S1
g ) from the ribbon graphs Γi we equip Γi with a twist-

ing datum. Namely, fix the arcs ar and an orientation of each of the arcs ar,
so that we can refer to the left and right endpoint of each ar. A twisting
datum on Γi associates to each edge of Γi a sign + or −. We call the graph
Γi equipped with a twisting datum a decorated ribbon graph.

The surface associated to a decorated graph Γi is defined in the following
way. Put a small embedded oriented disk D at the central vertex v0 of
Γi containing a neighborhood of v0 so that the cyclic order of the edges
at v0 corresponds to the counterclockwise order on D. Connect each arc
ar to the disk D with a band, i.e. an embedded product of two intervals
[0, 1] × [0, 1] in M , as follows. One of the sides of Br is the arc ar, and
the opposite side is contained in ∂D. We call these sides the horizontal
sides. Correspondingly, the vertical sides are properly embedded arcs in M .
The orientation of ∂D determines a left and right endpoint of each of these
intervals. Up to homotopy, there are two ways to glue a band between two
prescribed horizontal sides which correspond to the two ways of pairing the
endpoints of these intervals. If the edge corresponding to the band Br is
decorated with a +, we match the left endpoint of ar with the left endpoint
of the interval on ∂D, otherwise we pair the left with the right endpoint. If
the twisting data on Γi is chosen appropriately, the surface associated to Γi

is homotopic to Ui relative to ∂MΣ to Ui.

Lemma 5.3.8. Suppose that ϕ is in minimal position with respect to Σ. Let
σ′ be an embedded sphere disjoint from Σ. Suppose that there is a sphere
σ ∈ Σ such that Σ′ = Σ ∪ {σ′} \ {σ} is a reduced sphere system.

Then there is an embedding ϕ′ : S1
g → M with the following properties.

i) ϕ′ is homotopic to ϕ.

ii) ϕ′ is in minimal position with respect to Σ′.

iii) The arc system induced by ϕ′ and Σ is the same as the arc system induced
by ϕ and Σ.

Proof. By assumption, ϕ is in ribbon position with respect to Σ. Denote
the components of ϕ(S1

g ) ∩ MΣ by P1, . . . , Pk. By applying an isotopy to ϕ
that does not change ϕ−1(Σ), we may assume that each Pi is the surface
associated to a decorated ribbon graph Γi as described after Definition 5.3.6.
We may choose Γi in such a way that no intersection point of σ′ with Γi is a
vertex of Γi and that σ′ intersects each Γi transversely. Hence the intersection
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between σ′ and Γi consists of a finite union of points, and the intersection
between Pi and σ′ consists of a disjoint union of arcs. Namely, the surface
associated to a decorated ribbon graph may be chosen to lie in an arbitrarily
small neighborhood of the graph.

As a consequence, the sphere σ′ intersects each component of ϕ(S1
g )∩MΣ

in a disjoint union of arcs. Each component of ϕ(S1
g ) ∩ MΣ∪{σ′} is a disk

whose boundary contains a subarc of β and hence ϕ is in ribbon position
with respect to Σ ∪ {σ′} and thus also with respect to Σ′.

It remains to show that ϕ can be changed by a homotopy as claimed in
the lemma.

Let b be a Σ′–arc of β. Assume first that b also is a Σ–arc. Then b has
both endpoints on a sphere distinct from σ. By assumption on Σ, the arc b
does not connect the same boundary component of MΣ to itself. This then
also holds true for b viewed as a Σ′-arc.

If b is not of this form, at least one of its endpoints is contained in the
sphere σ′. Suppose that both endpoints of b are contained on the same side
of σ′ (alternatively, on the same boundary component of MΣ′). We call such
subarcs of β problematic. A problematic subarc b does not intersect the
sphere σ. Namely, we observed in the proof of Lemma 5.3.4 that in MΣ,
the sphere σ′ separates the two boundary components corresponding to σ.
Thus if b intersected σ, a subarc of b would return to the same side of σ. By
assumption on Σ, this is not the case.

Let Pi be the component of ϕ(S1
g ) ∩ MΣ containing b in its boundary.

Choose small open tubular neighborhoods U1 ⊂ U2 of Σ so that U 1 ⊂ U2

and that U2 is disjoint from σ′. We also assume that ϕ(S1
g ) intersects U 2

in a union of disjoint embedded rectangles with two opposite sides on two
different boundary components of U2. Choose a homotopy H supported in
the complement of U1 such that in the complement of U2 the image of Pi

under this homotopy is Γi.

We compose this homotopy with ϕ such that the resulting map collapses
Pi to the graph Γi. Explicitly, this means that we modify ϕ with a homotopy
to obtain a map ϕ1 : S1

g → M in the following way. On the set ϕ−1((M \
Pi) ∪ U1), the maps ϕ and ϕ1 coincide. On ϕ−1(Pi \ U2) we set ϕ1 to be the
postcomposition of ϕ with the endpoint of the homotopy H .

The map ϕ1 is not an embedding of S1
g into M since it collapses the region

ϕ−1(Pi∩U2) to the graph Γi∩U2. However, by construction, ϕ1 is homotopic
to ϕ0 and the preimage ϕ−1

1 (Σ) is the same as ϕ−1(Σ).
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Since b is contained in a boundary arc of Pi and connects a side of σ′ to
itself, the same is true for the graph Γi. Since each complementary component
of σ′ in MΣ is simply connected, the graph Γi is therefore homotopic with
fixed endpoints to a graph Γ′

i in MΣ which intersects σ′ in fewer points than
Γi and which is disjoint from all other Γj, j 6= i. The graph Γ′

i inherits the
structure of a decorated ribbon graph from Γi.

We now modify ϕ1 using this homotopy (in the same way that we con-
structed ϕ1) to obtain a map ϕ2 : S1

g → M which maps ϕ−1(Pi ∩ U2) to
Γ′

i ∩ U2 and still agrees with ϕ on S1
g \ ϕ−1(Pi).

As a last step, we modify ϕ2 by a homotopy to make it again an embed-
ding. Namely, let P ′

i be the surface defined by the decorated graph Γ′
i as

described above. Then P ′
i is homeomorphic to the disk Pi with a homeomor-

phism that induces an isomorphism of the decorated graphs Γ′
i and Γi and

restricts to the identity on each component Pi ∩ ∂MΣ.
Hence we can apply a homotopy to the map ϕ2 (supported on ϕ−1(Pi\U1))

to obtain a embedding ϕ3 : S1
g → M with the following properties. On

ϕ−1(MΣ \ Pi), the maps ϕ3 and ϕ agree. Furthermore, the set ϕ−1(Pi ∩ U2)
is mapped to the surface P ′

i which can be chosen to be contained in a small
regular neighborhood of Γ′

i in M . Finally, ϕ−1(Σ) = ϕ−1
3 (Σ). We can choose

this homotopy such that ϕ3 is in ribbon position with respect to Σ′ by the
same argument as before.

By construction, the image of β under ϕ3 has fewer problematic arcs
than the image of β under ϕ. The existence of the desired ϕ′ follows then by
inductively applying this procedure (with ϕ3 in the place of ϕ).

We now have collected all the necessary tools to prove the main theorem
of this section.

Proof of Theorem 5.3.2. Let f ∈ Map(Sg,1) be given. To prove the theorem,
we need to show that the word norm of f as an element of the surface mapping
class group is coarsely bounded by the word norm of ι(f) in Out(F2g).

The word norm of ι(f) in Out(F2g) is coarsely equal to the distance
between Σ0 and ι(f)(Σ0) in the reduced sphere system graph.

Choose a shortest path connecting Σ0 to ι(f)(Σ0) in the reduced sphere
system graph, and denote by Σ0, Σ1, . . . , ΣN the corresponding sphere sys-
tems.

We now inductively define a sequence of binding arc systems. By con-
struction, ϕ0 is in minimal position with respect to Σ0. As Σ1 is connected
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to Σ0 by an edge in the reduced sphere system graph, Σ1 is obtained from
Σ0 by replacing a single sphere.

Thus Lemma 5.3.8 applies, and yields a reduced sphere system Σ′
1 which

is homotopic to Σ1 and disjoint from Σ0, and furthermore an embedding ϕ1.
This embedding is homotopic to ϕ0, in minimal position with respect to Σ1

and such that ϕ−1
1 (Σ0) = ϕ−1

0 (Σ0). Put A1 = ϕ−1
1 (Σ′

1). By the choice of ϕ1,
the arc system A1 is binding and disjoint from A0.

Inductively applying Lemma 5.3.8, we obtain a sequence of sphere systems
Σ′

i and embeddings ϕi : S1
g → M such that the following holds. Each Σ′

i is
homotopic to Σi and each ϕi is homotopic to ϕ0. Furthermore, the arc
systems Ai induced by Σ′

i and ϕi define a path in the graph BL(Sg,1) whose
length is coarsely bounded by N .

By Lemma 5.3.7 the arc system AN is homotopic to f(A0). Hence, as
the binding loop system graph is quasi-isometric to Map(Sg,1), the theorem
follows.

The method employed in the proof of Theorem 5.3.2 has another applica-
tion. For its formulation, recall that the arc graph of S1

g is the graph whose
vertex set is the set of isotopy classes of embedded essential arcs connecting
the boundary of S1

g to itself. Again, isotopies are only required to fix the
boundary component setwise. Two such vertices are joined by an edge if the
corresponding arcs can be embedded disjointly. Similarly, define the sphere
graph of M to be the graph whose vertex set is the set of isotopy classes of
essential 2-spheres in M . Two such vertices are connected by an edge if the
corresponding spheres can be realized disjointly.

Let a be an arc representing a vertex of the arc graph of S1
g . The interval

bundle over a is a disk D(a) in the handlebody V = S1
g × [0, 1]. The isotopy

class of this disk only depends on the isotopy class of a, since the Dehn twist
about the boundary of S1

g is contained in the kernel of the map Map(S1
g ) →

Map(V ). We let σ(a) be the essential sphere in M which is obtained by
doubling D(a) along ∂V .

Proposition 5.3.9. The map sending a to σ(a) induces a quasi-isometric
embedding of the arc graph of S1

g into the sphere graph of M .

In particular, this theorem immediately implies the following.

Corollary 5.3.10. For each g ≥ 1 the sphere graph of M2g has infinite
diameter.
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Proof of Proposition 5.3.9. Let a, a′ be two essential arcs in S1
g . Since the

mapping class group of S1
g acts transitively on the set of isotopy classes

of essential arcs in S1
g , there is a mapping class f such that f(a) = a′.

Furthermore, we may assume that a is contained in the standard arc system
A0.

A single arc in S1
g does not separate the surface S1

g . Thus the sphere σ(a)
is a nonseparating essential sphere in M .

Let σ(a) = σ1, σ2, . . . , σN = σ(a′) be a shortest path in the sphere graph
of M . We may assume without loss of generality that each σi is a nonsepa-
rating sphere. Namely, suppose that σi is separating and let M1, M2 be its
two complementary components. If σi−1 and σi+1 are contained in different
components, then they are connected by an edge in the sphere graph. In
this case, the sphere σi can be removed from the edge-path. If σi−1 and σi+1

are contained in the same component, say M1, then one can replace σi by a
nonseparating sphere σ′

i contained in M2.

Choose reduced sphere systems Σi containing σi. Let Σ
(1)
i , . . . , Σ

(Ni)
i be

a path in the reduced sphere system graph connecting Σi to Σi+1 such that

each Σ
(j)
i contains σi for each 1 ≤ j ≤ Ni − 1.

We now argue as in the proof of Theorem 5.3.2. Applying Lemma 5.3.8
inductively, we change the sphere systems Σ

(j)
i by isotopy and obtain a se-

quence of embeddings ϕ
(j)
i which intersect Σ

(j)
i minimally. Let A

(j)
i be the

arc systems induced by ϕ
(j)
i and Σ

(j)
i .

By construction, for 1 ≤ j ≤ Ni − 1 the arc systems A
(j)
i contain a

common arc ai. The sequence ai defines an edge-path in the arc graph of
length at most 2N . Furthermore, by Lemma 5.3.5, the arc aN is contained
in f(A0) and thus is adjacent to a′. This proves the theorem.

5.A Stabilizers of free factors and free split-

tings

In this appendix we identify the stabilizers of conjugacy classes of free split-
tings and corank one free factors of a free group topologically. To this end,
let Mn be the connected sum of n copies of S1 × S2. As explained in Sec-
tion 5.2, the mapping class group of Mn projects onto Out(Fn) with a finite
kernel. Our goal is to give an elementary topological proof of the following
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Lemma 5.A.1. i) Let σ be an essential separating sphere in Mn. Then the
stabilizer of σ in Map(Mn) projects onto the stabilizer of the conjugacy
class of a free splitting in Out(Fn). Furthermore, every stabilizer of a
conjugacy class of a free splitting arises in this way.

ii) Let σ be an essential nonseparating sphere in Mn. Then the stabilizer
of σ in Map(Mn) projects onto the stabilizer of the conjugacy class of
a corank 1 free factor in Out(Fn). Furthermore, every stabilizer of a
conjugacy class of a corank 1 free factor arises in this way.

Proof. Let σ be as in i), and denote by M1 and M2 the two complementary
components of σ in Mn. We let N i = M i∪σ. Since σ is simply connected, the
van-Kampen theorem yields that the fundamental group of Mn can be written
as a free product π1(Mn) = π1(N

1) ∗π1(N
2). The fundamental groups of N1

and N2 are thus free groups of rank n−i and i, respectively. A mapping class
of Mn that stabilizes σ (up to homotopy) induces an outer automorphism of
π1(Mn) that stabilizes the free splitting π1(Mn, x) = π1(N

1, x)∗π1(N
2, x) up

to conjugation (here, x is an arbitrary basepoint on σ).

Conversely, let [ϕ] ∈ Out(Fn) be an outer automorphism fixing the con-
jugacy class of the free splitting Fn = π1(N

1, x)∗π1(N
2, x). We can choose a

representative ϕ which fixes the free splitting itself. Such an automorphism
ϕ induces automorphisms of the groups π1(N

1, x) and π1(N
2, x). By the

pointed version of Theorem 5.2.2 ([L74, Théorème 4.3, part 1)]), there are
homeomorphisms fi of Ni which induce ϕ|π1(Ni,x) on the respective funda-
mental groups. By gluing f1 and f2 across σ we obtain a homeomorphism
of Mn which fixes S and which induces [ϕ] as desired. This shows that the
stabilizer of σ maps onto the stabilizer of the conjugacy class of the free
splitting π1(Mn, x) = π1(N1, x) ∗ π1(N2, x).

Let now Fn = G ∗ H be an arbitrary free splitting, where G has rank i
and H has rank n− i. Choose a sphere σi separating Mn into N1 and N2 as
above, such that the rank of π1(N

1, x) is i (and thus the rank of π1(N
2, x)

is n − i). Since the automorphism group of Fn acts transitively on the set
of free splittings with fixed ranks, the last sentence of part i) follows from
Theorem 5.2.2.

To prove part ii), let σ be a non-separating sphere. Choose a basepoint
p ∈ M \ σ. Then the subgroup G < π1(M, p) = Fn of all homotopy classes
of loops which do not intersect σ is a free factor of corank one. Any dif-
feomorphism of M which preserves σ also preserves the conjugacy class of
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G. Therefore the stabilizer of σ in Out(Fn) injects into the stabilizer of the
conjugacy class of G.

To show that it is equal to this stabilizer, let ϕ ∈ Out(Fn) be an outer
automorphism which preserves the conjugacy class of G. We may choose a
diffeomorphism f of M which fixes p and such that the induced isomorphism
f∗ of the fundamental group is contained in the conjugacy class defined by
ϕ and fixes G.

Let σ′ = f(σ) be the image of σ under f . Since f∗ preserves the group
G, the subgroup of all homotopy classes of loops which do not intersect σ′ is
equal to G.

By Lemma 2.2 of [HV98] the group G is thus the subgroup of π1(M, p)
defined by all homotopy classes of loops which do not intersect both σ and
σ′ simultaneously. We now argue by contradiction, supposing that σ and σ′

are not homotopic.
Suppose first that σ′ and σ are disjoint up to homotopy. Then the fun-

damental group of the complement of σ ∪ σ′ has rank at most n− 2. This is
a contradiction since G has rank n − 1.

If σ and σ′ intersect, we argue similarly. Namely, at least one connected
component of σ′\σ is an open disk. Let D be the closure of this component in
σ′. The surface D is a closed disk whose boundary curve ∂D is contained in
σ. Let D′ be a complementary component of ∂D on σ. The union S = D∪D′

is an essential sphere which, up to homotopy, is disjoint from σ.
Furthermore, every loop which is disjoint from both σ and σ′ is also

disjoint from S ′. Thus G can be identified with the subgroup of π1(M, p) of
those loops which are disjoint from σ, σ′ and S.

Since σ and S are disjoint, the fundamental group of the complement of
σ ∪ S has rank at most n − 2. Since removing σ′ as well decreases the rank
of the fundamental group further, this again contradicts the fact that G has
rank n − 1.

Thus, f preserves the homotopy class of σ.
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