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Introduction

The basic subject in stable homotopy theory is the investigation of the stable
homotopy category and its objects. This category can be thought of as the stabi-
lization of the homotopy category of topological spaces. But it lies in the nature
of the subject that working only inside the stable homotopy category is often not
sufficient. The reason basically is that one often cannot perform constructions in
the stable homotopy category itself since limits and colimits do not exist in general.
Therefore it is useful, if not absolutely necessary, to consider a model for the stable
homotopy category. By a model we mean a category in which limits and colimits
exist and to which we can associate a homotopy category which is equivalent to
the stable homotopy category. More precisely we mean a category equipped with
a model structure in the sense of Quillen [Qui67] such that the associated homo-
topy category is equivalent to the stable homotopy category. A nowadays standard
model for stable homotopy theory is the category of Bousfield-Friedlander spectra
[BF78]. The advantage of Bousfield-Friedlander spectra is that the objects in that
category are quite simple. A spectrum in this case is just a sequence of pointed
spaces X0, X1, . . . together with maps

ΣXn → Xn+1.

A map of spectra is just a map in each degree compatible with the structure maps.
The disadvantage of Bousfield-Friedlander spectra is that they do not admit a sym-
metric monoidal smash product which models the smash product on the homotopy
category. As a consequence it is not possible to consider ring spectra on the level
of the model which is necessary for most algebraic constructions. To circumvent
this problem several models for multiplicative stable homotopy theory have been in-
vented. The first published category of spectra with a symmetric monoidal product
the category of S-modules due to Elmendorf, Kriz, Mandell and May [EKMM97].
At roughly the same time symmetric spectra were invented by Smith but published
later by Hovey, Shipley and Smith in [HSS00]. There are also the simplicial functors
due to Lydakis and the diagram spectra from Mandell, May, Schwede and Shipley
[MMSS01].

Symmetric spectra are probably the model for spectra with smash product which
is the closest to Bousfield-Friedlander spectra. A symmetric spectrum is a Bousfield-
Friedlander spectrum X such that the nth symmetric group Σn acts on Xn and such
that the structure maps are required to satisfy certain equivariance conditions with
respect to symmetric group actions. Both symmetric and Bousfield-Friedlander
spectra can be described as modules over the sphere spectrum S which consists in
degree n of the n-sphere Sn. In the symmetric case S is a commutative monoid,
but in the case of Bousfield-Friedlander S is only an associative monoid. As con-
sequence, as in the case of modules over an ordinary ring, symmetric spectra can
be considered as left and right modules over the commutative sphere spectrum and
hence admit a “tensor product” over S whereas this is not possible for Bousfield-
Friedlander spectra. Note that the crucial property to define a tensor or smash
product over S is not the commutativity of S but to have a left and a right module
over S. Therefore the category of bimodules over the associative sphere spectrum
S has a monoidal, though not symmetric, smash product over S. In the first half of
this text we study the homotopy theory of S-bimodules and its monoidal product.
But before we start elaborating along these lines We recall the theory of model
categories, Bousfield-Friedlander spectra and symmetric spectra in Section 1.

We discuss S-bimodules and their stable homotopy theory in Section 2. The
two main results are that the category of S-bimodules admits a stable model struc-
ture with weak equivalences π∗-isomorphisms of underlying left S-modules (i.e. left
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Bousfield-Friedlander spectrum), see Theorem 2.2.4. The other result is Theorem
2.3.3 where we show that S-bimodules are Quillen equivalent to symmetric spectra
together with an endomorphism. This makes precise the way we actually think
about S-bimodules: They are left S-modules together with a right action of S
which up to homotopy correspond to an endomorphism of left S-bimodules. We
make emphasize that we therefore do not get a new model for stable homotopy
theory.

The monoidal structure on S-bimodules suffices to consider monoids in S-bi-
modules which we call naive ring spectra. The reason we call them “naive” is that
it turns out that explicitly to have an naive ring spectrum means to have a graded
space Rn, n ∈ N, together with unital and associative multiplication maps

Rp ∧Rq → Rp+q

and a unit map
S1 → R1

without any further assumptions.
Having established the model structures on S-bimodules we would like to lift

them to the category of monoids i.e. naive ring spectra. Unfortunately the model
structures we consider are not monoidal in the sense of [Hov99, 4.2.6] and so we
cannot apply the results from [SS00]. One could try to lift the model structure
anyway but for our purposes it suffices to prove enough homotopical properties to
replace a naive ring spectrum R by a symmetric ring spectrum R′ whose underlying
naive ring spectrum has the same stable homotopy type as R. This result appears
as Theorem 3.3.15 in Section 3 where the homotopy theory of naive ring spectra
is developed. There we also show that the category of modules over a naive ring
spectrum R admits a stable model structure under the assumption that R is right
stable, i.e. the right action of the underlying S-bimodule induces an isomorphism on
homotopy groups (see Theorem 3.2.1). As expected it is then true that the category
R-mod of modules over the naive ring spectrum R is Quillen equivalent to the
category R′-modΣ of modules over the symmetric ring spectrum R′. Therefore all
homotopy theory of modules over a symmetric ring spectrum can also be done with
modules over naive ring spectra. We should note that in Section 3 we also establish
an additional model structure on S-bimodules in which the weak equivalences are
the maps inducing isomorphisms on left and right homotopy groups.

We note again that we cannot consider commutative monoids in S-bimodules.
But for many algebraic considerations it suffices to consider associative monoids.
This is in particular true for Morita theory. The actual motivation to consider
S-bimodules and naive ring spectra comes from the idea to generalize the following
Morita like theorem due to Gabriel. Let A be an abelian category with a small
projective generator P . Then the canonical functor

Hom(P,−) : A → End(P )-mod

sending an object X to the abelian group Hom(P,X) of morphisms from P to X
in A which is a module over End(P ) = Hom(P, P ), is an equivalence of categories.
We prove the following analog to the result above. Let C be any stable model
category such that the homotopy category Ho(C) has a compact generator X. Then
there exists a (right stable) naive ring spectrum End(X) together with a Quillen
equivalence

X ∧End(X) (−) : End(X)-mod � C :Hom(X,−).

In particular there is an equivalence

Ho(C) ' Ho(End(X)-mod)
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of triangulated categories. This is all done in Section 4. First we prove an abstract
Morita theorem, 4.1.4 which states that given an adjunction as above, then we
already have an equivalence provided X is a compact generator. The major part
of work is to ensure the existence of such Quillen adjunctions and in particular the
existence of End(X).

We give constructions of End(X) and the adjoint functor pair in a axiomatic
setting starting with a given so called desuspension cospectrum of X (see Definition
4.2.2 for details). Then we prove that the naive ring spectrum End(X) is right
stable, or more precisely has an underlying S-module which is a left and right Ω-
spectrum (Proposition 4.2.11). Afterwards we ensure the existence of desuspension
cospectra from which End(X) and the adjoint pair are built. First we treat the case
of a simplicial stable model category in Theorem 4.4.2 and afterwards the general
case in Theorem 4.6.2 for where we need the theory of cosimplicial frames which is
also developed there.

We would like to mention that, as off-spin of our theory, we obtain a new proof
that Bousfield-Friedlander spectra are Quillen equivalent to symmetric spectra.
This is a special case of Corollary 4.1.5.

1. Preliminaries

In this section we recall standard results from model category theory and the
theory of sequential and symmetric spectra. We state the most important results
we will be using throughout this work.

1.1. Model categories. In this section we recall the most important facts from
the theory of model categories we need. For details we refer to the now standard
text books [Hov99] and [Hir03]. For definitiveness we give the definition of a model
category we use. Note that this definition differs from that given in [Hov99] in that
we do not require functorial factorizations.

Definition 1.1.1. A model category is a bicomplete category C together with three
subcategories

w C, cof C and fib C

each containing all identities and whose morphisms are called weak equivalences,
cofibrations and fibrations respectively and will be denoted by

∼ // , // // and // //

respectively, such that the following conditions hold:
MC1 If for two morphisms f, g ∈ C two of f, g, fg are in w C then so is the third.
MC2 The three categories w C, cof C and fib C are closed under retracts as sub

categories of ArC (the category of arrows of C).
MC3 There exist lifts in the following two situations:

1.) · //
��

∼
��

·
����·

AA

// ·

2.) · //
��

��

·
∼

����·

AA

// ·
MC5 Every map f in C can be factored in two ways:

1.) ·
��

∼
��

f

��
::

::

· // // ·

2.) ·
��

��

f

��
::

::

· ∼ // // ·
A model category is pointed if the initial and terminal object coincide.
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For a pointed model category we can define the suspension ΣX of an object X by
functorially factorizing the canonical map X ∨X → X into a cofibration followed
by an acyclic fibration,

X // // CX
∼ // // X,

and taking the cofiber of the first map:

X // // CX // ΣX.

There is a dual construction yielding the loop object ΩX of X. One can check that
these constructions give rise to an adjoint functor pair on the homotopy category
Ho(C) of C. Note that we do not have an adjoint pair on C itself nor are Σ and Ω
functorial constructions.

Definition 1.1.2. A pointed model category C is stable, if the suspension functor
on the homotopy category is an equivalence of categories.

Theorem 1.1.3. The homotopy category of a stable model category is triangulated.
A Quillen pair F : C � D :G between stable model categories C and D induces an
adjoint pair of exact functors of triangulated homotopy categories.

Proof. The shift functor is given by the suspension functor given above. For a
cofibration i : A → B between cofibrant objects in C define B → C(i) by the
pushout diagram

A

��

i // B

��

CA // C(i)

where A → CA comes from a factorization of ∗ → A into a cofibration followed
by a weak equivalence. Taking the cofiber of B → C(i) yields a map B → ΣA.
We define the exact triangles to be those sequences isomorphic in the homotopy
category the sequences

A
i−→ B → C(i)→ ΣA

as defined above. Dually one can define fiber sequences and it turns out that in the
homotopy category cofiber and fiber sequences coincide up to a sign.

As a left Quillen functor (in particular left adjoint) F preserves all structure
involved in the construction of cofiber sequences, so that F preserves suspension
and cofiber sequences. For G the dual arguments applies to fiber sequences. The
For more details we refer to [Hov99, Chapter 7]. �

Of course it is often desirable to have the suspension not only on the homotopy
category but already on the model category. The most important class of model cat-
egories having this feature are the simplicial model categories. Recall that pointed
simplicial sets together with the smash product of simplicial sets carry the structure
of a symmetric monoidal model category (see e.g. [GJ99, I.11]). A simplicial model
category is a pointed model category which is tensored, cotensored and enriched
over pointed simplicial sets in homotopically compatible way. For a pointed sim-
plicial set K and an objects X and Y in C we denote the tensor by K ∧ X, the
cotensor by Y K and the enrichment by mapC(X,Y ) which is a simplicial set and
will be referred to as the simplicial mapping space of X and Y .

Lemma 1.1.4. For a cofibrant object X in a simplicial model category C the object
S1 ∧X is a model for the suspension of X, i.e. there is an isomorphism

ΣX ∼= S1 ∧X
in the homotopy category of C. �
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Definition 1.1.5. Let f : X → Y be a map in a pointed simplicial model category
C and g : K → L a map of pointed simplicial sets. The pushout product f � g is
defined to be the map

f � g : X ∧ L ∪X∧K Y ∧K → Y ∧ L
The compatibility of the models structures is expressed in the following propo-

sition we refer to as the pushout product axiom.

Proposition 1.1.6. Let f : X → Y be a cofibration in a pointed simplicial model
category C and g : K → L a cofibration of pointed simplicial sets. Then the pushout
product f � g is a cofibration which is acyclic if f or g is.

A proof can be found in [Hov99]. We finish this section with some useful results
from simplicial model categories.

Lemma 1.1.7. Let A → B be a map between cofibrant objects in a pointed sim-
plicial model category. Then the inclusion ι : A → Cyl(f) of A into the mapping
cylinder Cyl(f) of f is a cofibration

Proof. Consider the commutative diagram

A ∨A //
i0∨i1 //

f∨id

��

A ∧∆1
+

��

A //
i1

// B ∨A // // Cyl(f)

in which the square is a pushout. The top horizontal map is a cofibration since
A is assumed to be cofibrant and the left bottom horizontal map is a cofibration
since B is also assumed to be cofibrant. The right bottom horizontal map is a
cofibration as the cobase change of the top horizontal map. Hence the bottom
horizontal composition is a cofibration. But this is the map in question. �

Finally we mention simplicial mapping spaces. For A,B in a simplicial model
category, we can define a simplicial set mapC(A,B) given in degree n by

mapC(A,B)n = mapC(A ∧∆n
+, B)

called the simplicial mapping space of maps from A to B. We have the following
useful lemma.

Lemma 1.1.8. If A is cofibrant and B fibrant, then map(A,B) is fibrant as sim-
plicial set and there is a natural isomorphism

π0 map(A,B) ∼= [A,B]C,

where [−,−]C denotes morphisms in the homotopy category of C.

1.2. Spectra. In this section we recall the most important results form Bousfield-
Friedlander spectra which will we used throughout this text.

Definition 1.2.1. A sequential spectrum X is a sequence of (pointed) simplicial
sets Xn, n ≥ 0 in C together with maps σn : S1 ∧Xn → Xn+1. A map f : X → Y
of spectra is a sequence of maps fn : Xn → Yn such that the diagram

ΣXn
Σfn //

σn

��

ΣYn
σn

��

Xn+1
fn+1

// Yn+1

commutes. We denote the category of sequential spectra by Sp.
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For a simplicial set K we can define the homotopy groups of K to be either
the homotopy groups πn|K| of the geometric realization or as the simplicial homo-
topy groups πnKf of an fibrant replacement in the category of simplicial sets (see
e.g. [Hov99, Chapter 3] for a discussion of the model structure on simplicial sets).
We remark that in the model category of simplicial set there is a functorial fibrant
replacement available. We will just write πnK for the rest in this work.

Definition 1.2.2. Let X be a sequential spectrum. For any integer q define the
qth homotopy group πqX of X to be the colimit of the sequence

· · · → πq+kXk
S1∧(−)−−−−−→ πq+k+1(S1 ∧Xk)

(σk)∗−−−→ πq+k+1Xq+k+1 → · · · .
Definition 1.2.3. Let X be a spectrum. We define the suspension spectrum ΣX
by (ΣX)n = Xn ∧ S1 with structure maps by applying (−) ∧ S1 to the structure
maps of X.

Further, we define the m-th shift spectrum shmX by (shmX)n = Xn+m and
structure maps σshm X

n = σXn+m.
Finally, denote by Fm the left adjoint to the evaluation at n functor which sends

a spectrum X to its mth space. In degree n we have (FmK)n = Sn−m ∧ K for
n ≥ m and ∗ else.

Before we state the stable model structure, we give the level model structure.
Define a map between spectra to be a weak equivalence respectively a fibration if
it is one of simplicial sets in each degree and a cofibration if it has the left lifting
property with respect to all maps which are acyclic fibrations of simplicial sets in
each degree. This equips the category of sequential spectra with a model structure
we refer to as the level model structure. We call weak equivalences and fibrations in
this model structure level equivalences and level fibrations respectively. Cofibrations
in the level structure are referred to as projective cofibrations. Note that the level
structure is cofibrantly generated with generating acyclic cofibrations the maps

FmΛnk+ → Fm∆n
+

and generating cofibrations
Fm∂∆n

+ → Fm∆n
+

with n,m ≥ 0, n ≥ k ≥ 0 and where Λnk+ → ∆n
+ and ∂∆n

+ → ∆n
+ are the usual

inclusions of simplicial sets.
A proof of the following fibration criterion can be found in [GJ99, Chapter X.4].

Theorem 1.2.4. The category of sequential spectra admits a proper stable sim-
plicial model structure in which a map f : X → Y is weak equivalences if it is a
π∗-isomorphisms, a cofibration if is one in the level structure and a fibration if it
is a fibration in each degree and for each n ≥ 0 the diagram

Xn
//

fn

��

ΩXn+1

Ωfn

��

Yn // ΩYn+1

is a homotopy pullback diagram.

Since we have a stable model category the homotopy category is triangulated
and we have cofiber sequences inducing long exact sequences on homotopy groups.
But the situation is actually a little better in that we do not require a cofibration
but just a map which is injective in each degree.
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Lemma 1.2.5. Let f : A→ B be a map of spectra which is injective in each degree.
Then there is a long exact sequence

· · · → πn(A)
f∗−→ πn(B)

p∗−→ πn(B/A) ∂−→ πn−1(A)→ · · · ,
where p is the projection onto the quotient.

Proof. The claim follows from [HSS00, Lemma 3.1.13]. There it is proved for sym-
metric spectra, but the proof only depends on the underlying sequential spectra. �

Note that X is a fibrant spectrum if and only if X is fibrant in each degree and
the adjoints of the structure maps

Xn → ΩXn+1

are weak equivalences.

Definition 1.2.6. A spectrum X is an Ω-spectrum if it is fibrant in each degree
and the adjoints of the strut rue maps are weak equivalences.

Note that in case of an Ω-spectrum X there is a natural isomorphism

πn−mX ∼= πnXm

for all m,n ≥ 0. From this we have the

Lemma 1.2.7. A map between Ω-spectra is a π∗-isomorphism if and only if it is
a level equivalence.

We finish this section with a discussion of generating (acyclic) cofibrations for
the stable model structure on spectra.

Definition 1.2.8. Define λn : Fn+1S
1 → FnS

0 to be the adjoint to the identity
S1 → (FnS0)n+1. Factor this map λn = rn ◦ cn into an inclusion followed by a
simplicial homotopy equivalence using the simplicial mapping cylinder construction.

Denote by Fn the left adjoint of the functor which takes a spectrum to its nth
space.

Proposition 1.2.9. The stable model structure on Sp is cofibrantly generated with
generating cofibrations given by the maps

Fn∂∆m
+ → Fn∆m

+

and acyclic cofibrations the maps

FnΛmk+ → Fn∆m
+ and cn � ιm,

where ιm denotes the inclusion ∂∆m → ∆m.

For a proof see [Sch01, Lemma A.3].

1.3. Symmetric Spectra. In this section we quickly recall the most important
things from the theory of symmetric spectra. We emphasize the construction of the
symmetric monoidal smash product since this is conceptually most important for
our understanding of the differences between sequential spectra, S-bimodules and
symmetric spectra.

Definition 1.3.1. Let Σ be the category with objects finite sets n = {1, . . . , n}
and morphisms Σ(n, n) = Σn and Σ(m,n) = ∅, if m 6= n. Here Σn denotes the
symmetric group on n letters. If C is any category then SΣ

∗ denotes the category of
functors Σ→ S∗ with morphisms natural transformations of functors. We call the
objects in SΣ

∗ symmetric sequences. By abuse of language we will write n instead
of n and Xn instead of X(n) for X ∈ SΣ

∗ .
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Lemma 1.3.2. The category Σ is symmetric monoidal.

Proof. For objects n and m in Σ define their product n � m to be m+ n. The
unit is 0 and all structure isomorphisms are given by identities except the twist
isomorphism τ : p � q → q � p which is given by block sum permutation χp,q,
i.e. χp,q(i) = i+ q for 1 ≤ i ≤ p and χp,q(i) = i− p for p < i ≤ q. �

Now the point is, that SΣ
∗ inherits a closed symmetric monoidal structure from

Σ and S∗.

Definition 1.3.3. For two symmetric sequences X and Y define their product
X ⊗ Y by

(X ⊗ Y )n =
∨

p+q=n

Σn ×Σp×Σq
(Xp ∧ Yq)

with the obvious action of Σn in degree n.

Definition 1.3.4. For n ≥ 0 the functor Evn : SΣ
∗ → S∗ evaluation at n is the

functor which takes a symmetric sequence X to Xn. The evaluation functor has an
adjoint Gn : S∗ → SΣ

∗ given by GnA = Σ(n,−)+ ∧ A, i.e. (GnA)k = Σn+ ∧ A for
k = n and ∗ else.

Now we can give the definition of a symmetric spectrum. First note that
the free commutative monoid Sym(K) (i.e. the symmetric algebra) generated by
the symmetric sequence (∗,K, ∗, . . . ) in SΣ

∗ for any object K ∈ S∗ is given by
(S,K,K∧2, . . . ,K∧n, . . . ), where Σn acts by permutation of factors off K∧n. Now
specialize to the case K = S1 and denote Sym(S1) by S. Note that we have
Sn = Sn.

Definition 1.3.5. A symmetric spectrum X is a (left) module in SΣ
∗ over the free

commutative monoid S = Sym(S1) in SΣ
∗ . The category of symmetric spectra

(i.e. S-modules) is denoted by SpΣ.

Theorem 1.3.6. The category of symmetric spectra is a closed symmetric monoidal
category.

Proof. This is completely formal and works as in case of the tensor product of
modules over a commutative ring. Suppose M is the category of (left) modules over
a commutative monoid in a closed symmetric monoidal category C with product
∧ and unit S. For modules M and N in M with products µ and λ define their
product M ∧R N by the coequalizer displayed in the diagram

M ∧R ∧N M∧λ //

µτ∧N
// M ∧N // M ∧R N.

Dually define the function R-module HomR(M,N) by the equalizer displayed in
the diagram

HomR(M,N) // HomC(M,N)
µ∗

//

λ∗
// HomC(R ∧M,N),

where the bottom map is actually given by the composite

HomC(M,N)
R∧(−)−−−−→ HomC(R ∧M,R ∧N) λ∗−→ HomC(R ∧M,N)

rather than by λ∗ itself. We omit checking the remaining details for a closed
symmetric monoidal category. �
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Explicitly a symmetric spectrum X is a sequential spectrum such that Σn acts
on Xn and the “composed structure maps”

Sp ∧Xq → Xp+q

are Σp × Σq-equivariant. So by forgetting the symmetric group actions we obtain
a sequential spectrum. For example the underlying sequential spectrum of S is S.

We define the level model structure on symmetric spectra analogous to the case
of sequential spectra. So a map is a weak equivalence, fibration if it is one of
underlying sequential spectra. Similarly a symmetric spectrum is an Ω-spectrum if
the underlying sequential spectrum is.

We would like to establish a stable model structure for symmetric spectra. But
it turns out, that we cannot take π∗-isomorphisms as weak equivalences for the
following reason. Let Fn denote the left adjoint to the functor which takes a sym-
metric spectrum to its nth space. We can then take the the adjoint F1S

1 → F0S
0 of

the identity S1 → (F0S
0)1 corresponding to the maps of Definition 1.2.8. But the

symmetric group actions which have to be build into F1S
1 “blows up” the spectrum

and as a result the map F1S
1 → S is not a π∗-isomorphism (see [HSS00, Example

3.1.10]).
The spirit of the following definition is that we want to have the Ω-spectra as

the fibrant objects.

Definition 1.3.7. A map f : X → Y is a stable equivalence if for every symmetric
Ω-spectrum E the induced map

f∗ : [Y,E]level → [X,E]level

on morphism sets in the homotopy category of the level model structure is a bijec-
tion.

We remark that this is not the original definition given in [HSS00] but is taken
from [MMSS01]. Of course both notions are equivalent.

Theorem 1.3.8. The category SpΣ of symmetric spectra admits a stable simplicial
cofibrantly generated model category structure in which the weak equivalences are
the stable equivalences and the cofibrations the cofibrations from the level model
structure. Fibrations are defined to be the maps which have the right lifting property
with respect to the acyclic fibrations.

See [HSS00, Theorem 3.4.4] for a proof.

Definition 1.3.9. A symmetric ring spectrum is a monoid in category SpΣ of
symmetric spectra.

Given a symmetric ring spectrum R, one can consider modules over it.

Definition 1.3.10. Let R be a symmetric ring spectrum. A (left) symmetric
R-module spectrum is a symmetric spectrum M together with an (left) action of
R, i.e. a map R ∧M → M of symmetric spectra, such that the usual diagrams
commute (see [ML98, Chapter VII.4]). We denote the category of (left) modules
over a symmetric spectrum by R-modΣ.

We now equip, for a given symmetric ring spectrum R, the category R-mod with
a model structure. By lifting the stable model structure an symmetric along the
adjunction

R ∧ (−) : SpΣ � R-modΣ :U,

where U the forgetful functor.
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Theorem 1.3.11. Let R be a symmetric ring spectrum. The category of (left)
module spectra over R admits the structure of a cofibrantly generated stable simpli-
cial model category in which a map f is a weak equivalence or fibration if and only
if the underlying map of symmetric spectra is one, and a cofibration if and only if
it has the left lifting property with respect to acyclic fibrations.

See [HSS00, Corollary 5.4.2] for a proof.

2. S-bimodules

In the last section we have seen that the definition of spectra as modules over a
commutative monoid allows one to obtain a symmetric monoidal product for spec-
tra. The price we had to pay was that we had to introduce actions of the symmetric
groups in order to make the sphere spectrum a commutative monoid in an appro-
priate category. For most purposes this is no problem. A lot of spectra occurring in
nature have these actions right away like for example the complex cobordism spec-
trum MU . Other spectra like Eilenberg-MacLane spectra have canonical models as
symmetric spectra. But we are interested in the construction of an endomorphism
ring spectrum for a given object in a stable model category. In this case it is a priori
absolutely unclear how to get the symmetric groups acting on the spectrum one
tries to construct. One solution to this problem is based on the observation that
the induced smash product of spectra does not really depend on the fact that one
has modules over a commutative monoid. The crucial point is that a left module
over a commutative monoid admits a right action. So instead of taking modules
over a commutative monoid we take the approach to use bimodules over an only
associative monoid and will end up with a category which is monoidal though not
symmetric monoidal. But this still suffices to define monoids.

2.1. Graded spaces and S-bimodules. We now define the category of graded
spaces and introduce a symmetric monoidal structure on it.

Definition 2.1.1. A graded space is a sequence Xn, n ≥ 0, of pointed simplicial
sets. A map of graded spaces between graded spaces X and Y is a is a simply a
sequence of maps f : Xn → Yn, n ≥ 0 of simplicial sets. We denote the category of
graded spaces by grS∗.

Note that the category grS∗ is a bicomplete category where (co)limits are com-
puted point-wise. Further, there is a the following monoidal structure on grS∗.
Definition 2.1.2. For graded spaces X and Y we define their tensor product X⊗Y
in degree n by

(X ⊗ Y )n =
∨

p+q=n

Xp ∧ Yq.

With this product the category of graded spaces becomes a symmetric monoidal
category with unit object (S0, ∗, ∗, . . . ). The associativity and twist isomorphisms
are induced by the associativity and twist isomorphism of the monoidal structure
of simplicial sets.

Example 2.1.3. The sequence of spheres S0, S1, . . . , Sn, . . . , which we denote by
S, is given in degree n by the n-sphere. The natural isomorphisms Sp ∧Sq ∼= Sp+q

for p, q ≥ 0 induce a map S ⊗ S → S of graded spaces and endow S with the
structure of an unital and associative monoid in graded spaces. We call S the
associative sphere spectrum. Note that S is definitively not commutative for this
would imply that the twist isomorphism S1 ∧S1 → S1 ∧S1 is the identity which it
is of course not.
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Definition 2.1.4. Let K be a pointed simplicial set. We denote by K[n] the graded
space with K in degree n and ∗ else. This construction is functorial and left adjoint
to the nth evaluation functor which sends a graded space X to the simplicial set
Xn.

Definition 2.1.5. A map f : X → Y of graded spaces is called a fibration (re-
spectively weak equivalence) if each fn is a fibration (resp. weak equivalence) of
simplicial sets. Further, f is a cofibration, if it has the the left lifting property with
respect to all maps which are fibrations and weak equivalences.

With the definition above graded spaces becomes a model category. We refer
to it as the level model structure and call a cofibration in the level structure a
projective cofibration.

Now that we have defined a symmetric monoidal structure on graded spaces, we
can consider monoids with respect to this structure. We already considered the
associative sphere spectrum S in Example 2.1.3. To see that have we in fact an
associative monoid note that S is actually the free associative monoid on the graded
space S1[1] = (∗, S1, ∗, ∗, . . . ), i.e. the tensor algebra on S1[1] with respect to ⊗.

Definition 2.1.6. Let R be an associative monoid in graded spaces. A left module
M over R is a graded space M together with a map R ⊗M → M satisfying the
usual associativity and unitality diagrams for a module. A right module over R is
defined similarly.

Example 2.1.7. Consider the sphere spectrum S and a left module X over it.
Having an action map S ⊗ X → X means to have in degree n associative maps
Sp ∧Xq → Xp+q for all p, q ≥ 0 with p + q = n. The associativity of these maps
implies that it suffices to have the maps S1 ∧Xn → Xn+1 which in turn means to
have a sequential spectrum. We conclude that sequential spectra and left S-modules
are isomorphic categories.

If we have a commutative monoid R we can, using the twist isomorphisms of
the monoidal structure, view a left module M also as a right module and define a
tensor product M ⊗R N of a two left modules M and N over R by the coequalizer

M ⊗R⊗N
M⊗λ

//

ρ⊗N
// M ⊗N // M ⊗R N

where we used the right modules structure ρ induced from the left module structure
of M . The resulting object is a left R-module in a canonical way. If R is not
commutative we still can apply the above construction given that M is a right and
N a left module over R. But the resulting object will be neither a left R-module
nor a right R-module. A way to circumvent this problem is to consider bimodules.

Definition 2.1.8. Let R be an associative monoid in grS∗. A bimodule M over R
is a graded space M together with a left and a right action map λ : R ⊗M → M
and ρ : M ⊗ R → M which, in addition to being associative and unital, commute
with each other, i.e. the diagram

R⊗M ⊗R id⊗ρ
//

λ⊗id
��

R⊗M
λ

��

M ⊗R ρ
// M

is commutative.

We also have a level model structure for modules over a monoid in graded spaces.
We omit the proof and refer to [BF78] where it is proved for the case of modules
over S but the proof easily generalizes to modules over a different monoid.
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Proposition 2.1.9. Let R be a monoid in graded spaces. The category of (left)
R-modules admits a cofibrantly generated simplicial model structure in which a map
is a weak equivalence or fibration if it a weak equivalence or fibration respectively
in each degree. Cofibrations are defined to be those maps which have the left lifting
property with respect to maps which are acyclic fibrations in each degree. Generating
acyclic cofibrations are the maps

R⊗ (Λnk+)[m]→ R⊗ (∆n
+)[m]

and generating cofibrations are

R⊗ (∂∆n
+)[m]→ R⊗ (∆n

+)[m]

with n,m ≥ 0 and 0 ≤ k ≤ n.

Note that the model structure above also applies to bimodules as an R-bimodule
is the same as a left module over R⊗Rop.

Having two bimodules over the same monoid, we can form their tensor product.
Since we are mainly interested in bimodules over the sphere spectrum we make the

Definition 2.1.10. Let X and Y be S-bimodules. Define their tensor product
X ⊗S Y by the coequalizer

X ⊗ S ⊗ Y
X⊗λ

//

ρ⊗Y
// X ⊗ Y // X ⊗S Y,

where ρ : X ⊗ S → X and λ : S ⊗ Y → Y denote the right and left action of S an
X and Y respectively.

Note that a left S-module is exactly the same thing as a sequential spectrum
in the sense of Definition 1.2.1. Of course a right S-module is also a sequential
spectrum though a right sequential spectrum. Having a S-bimodule X means that
we have a left and a right spectrum structure on X and we can form left and right
homotopy groups associated to X.

Definition 2.1.11. Let X be a S-bimodule. Define for any integer q the qth left
and right homotopy groups πL

qX and πR
q X by taking the colimits over the sequences

· · · −→ πq+n(Xn)
S1∧(−)−−−−−→ πq+n+1(S1 ∧Xn)

(λn)∗−−−→ πq+n+1(Xn+1) −→ · · ·
and

· · · −→ πq+n(Xn)
(−)∧S1

−−−−−→ πq+n+1(Xn ∧ S1)
(ρn)∗−−−→ πq+n+1(Xn+1) −→ · · ·

respectively.

To have a bimodule X over S explicitly just means that we have commutative
diagrams

S1 ∧Xn ∧ S1
id∧ρn //

λn∧id
��

S1 ∧Xn+1

λn+1
��

Xn+1 ∧ S1
ρn+1

// Xn+2

for every n ≥ 1. Denote the induced maps from the left and right action by

L : πkXi → πk+1Xi+1 and R : πkXi → πk+1Xi+1

respectively. These maps are compatible in the sense that RL = LR because
of the commutative diagram above. Therefore we obtain induced endomorphisms
L : πR

∗ X → πR
∗ X and R : πL

∗X → πL
∗X of right and left homotopy groups respec-

tively.
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More generally there is a functor

ΠqX : N× N→ Ab

for every q, where we use the partial order to endow N with the structures of a
category. It sends (k, l) to πq+k+lXk+l and a morphism (k1 ≤ k2, l1 ≤ l2) to the
map

Lk2−k1Rl2−l1 : πq+k1+l1Xk1+l1 → πq+k2+l2Xk2+l2

induced by the maps left and right structure maps of X. We recover the left and
right homotopy groups by taking the colimit over the subcategories N×0 and 0×N
respectively. But of course we can also take the colimit over the whole category.

Definition 2.1.12. The total homotopy groups πT
∗X of a S-bimodule X are defined

by taking the colimit of the functor Π∗X : N× N→ Ab:

πT
∗X = colimN×N Π∗X.

The left and right action of a S-bimodule also induce an action on the total
homotopy groups. If x̄ is a class at the spot k, l so an element in πq+k+lXk+l

represented by x, we can take the class represented by x at the spot l + 1, k −
1 or at the spot l − 1, k + 1 and obtain endomorphisms L : πT

q X → πT
q X and

R : πT
q X → πT

q X respectively of total homotopy groups. We see immediately
from the definitions that LR = id = RL, so L and R are automorphisms of total
homotopy groups.

The inclusions of N× 0 and 0×N into N×N induce maps ι : πL
∗X → πT

∗X and
ι : πR

∗ X → πT
∗X.

Lemma 2.1.13. Let X be a S-bimodule.

(i) There exist endomorphisms R of πL
∗ and L of πR

∗ induced by the right and
left action of X respectively.

(ii) There are automorphisms R and L of πT
∗ satisfying LR = id = LR.

(iii) The maps ι : πL
∗X → πT

∗X and ι : πR
∗ X → πT

∗X induce isomorphisms

(πL
∗X)[R−1] ∼= πT

∗X ∼= (πR
∗ X)[L−1].

In particular a morphism which induces an isomorphism on left or right
homotopy groups also induces an isomorphism on total homotopy groups.

Proof. For an element x̄ ∈ πL
i X represented by x ∈ πnXn+i the element ι(x̄)

is represented by x ∈ (ΠnX)(i, 0) = πn+iXi but also by R(x) ∈ (ΠnX)(i, 1) =
πn+i+1Xi+1 considered as an elements in πT

nX. Hence R(ι(x̄)) in πT
∗X is repre-

sented by R(x) ∈ (ΠnX)(i + 1, 0) and we conclude that R ◦ ι = ι ◦ R. But R acts
as an isomorphism, so the map πL

∗X → πT
∗X extends to a map

ῑ : πL
∗X ⊗Z[R] Z[R±1]→ πT

∗X.

Since a functor indexed over N×N can be computed by first taking the colimit over
the first and then over the second coordinate, the map ῑ is an isomorphism. Sim-
ilarly the other map ι : πR

∗ X → πT
∗X commutes with the operator L and extends

to an isomorphism ῑ : (πR
∗ X)[L−1]→ πT

∗X. �

Example 2.1.14. Let X be a left S-module (i.e. a sequential spectrum). Define a
right action of S by taking the maps Xn ∧S1 → Xn+1 to be trivial. Then the right
homotopy groups of X are trivial and the operator R on left homotopy groups acts
trivially. Therefore the total homotopy groups are trivial too.
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Example 2.1.15. Let X be again a left S-module. Now we consider the free S-
bimodule generated by X which is just X ⊗ S. As a left S-module it decomposes
as a wedge

X ⊗ S =
∨
n≥0

X ⊗ Sn[n],

where Sn[n] denotes the graded space with Sn concentrated in degree n. Hence
there is an isomorphism of homotopy groups

πL
∗ (X ⊗ S) ∼=

⊕
n≥0

πL∗ (X ⊗ Sn[n]).

The left homotopy groups of the left S-module X are isomorphic to the left homo-
topy groups of X ⊗ Sn[n] via the isomorphism πL

nX → πL
n(X ⊗ Sn[n]) sending a

homotopy class [f ] represented by a map f : Si+n → Xi to the class represented
by f ∧ Sj : Si+n+j → X ∧ Sj . The reader should be aware that this isomorphism
is not induced by a map of left S-modules. Using this isomorphism we can identify
the left homotopy groups of X ⊗ S as

πL
n(X ⊗ S) ∼=

⊕
j≥0

πL
nX

and the right operator R on πL
n(X ⊗ S) with the shift operator

R :
⊕
j≥0

πL
nX →

⊕
j≥0

πL
nX, (x0, x1, . . . ) 7→ (0, x0, x1, . . . ).

Therefore we have an isomorphism of Z[R]-modules

πL
n(X ⊗ S) ∼= (πL

nX)⊗ Z[R]

and an isomorphism of Z[R±1]-modules

πT
n (X ⊗ S) ∼= (πL

nX)⊗ Z[R±1].

Remark 2.1.16. Because of Lemma 2.1.13 we can consider left, right and total
homotopy groups together as the data constituting a quasi coherent module on the
projective line P1

Z over the integers and so taking homotopy groups as functor

S-bimod→ q.c.OP1-mod

lands in the category of quasi coherent sheaves over the projective line P1
Z. This

is the point of view taken in [HS06]. Since we are primarily not interested in this
structure we do not further elaborate on this aspect.

The following example will be important for our theory later though it is inter-
esting in its own right.

Example 2.1.17. Consider the category S-modules, i.e. symmetric spectra. There
is a forgetful functor U : S-mod → S-mod which maps S to S and a symmetric
spectrum to its underlying sequential spectrum. We can consider a left S-module
X as a right module by defining the the right action to be the composite

X ⊗Σ S τ−→ S⊗X σ−→ X,

where τ is the twist isomorphism and σ the structure map of X. We want to know
the right action on U(X) explicitly. Recall that the twist isomorphism A⊗Σ B

τ−→
B ⊗Σ A has the property that for all p, q ≥ 0 the diagram

Ap ∧Bq τ //

��

Bq ∧Ap

��

(A⊗Σ B)p+q τ
// (B ⊗Σ A)p+q χp,q

// (B ⊗Σ A)q+p
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commutes, where χp,q denotes the (p, q)-block permutation in Σp+q. Specializing
to the case A = X, B = S and q = 1 we obtain the commutative diagram

Xp ∧ S1 //

τ
��

(X ⊗Σ S)p+1

τp+1
// (S⊗Σ X)p+1

σp+1
//

χp,1

��

Xp+1

χp,1

��

S1 ∧Xp
// (S⊗Σ X)1+p σ1+p

// X1+p

in which the upper horizontal composite is the right action R : U(X)p ∧ S1 →
U(X)1+p and the lower horizontal composite the left action S1∧U(X)p → U(X)p+1

of the underlying S-bimodule X. We conclude that the right action can also be
written as the composite

Xp ∧ S1 τ // S1 ∧Xp

λ1,p
// X1+p

χ1,p
// Xp+1.

The following property will be important later when we try to establish stable
model structures on modules over a naive ring spectrum. To be more precise, a
naive ring spectrum has an underlying S-bimodule and the category of modules over
a naive ring spectrum admits a stable model structure if and only if the underlying
S-bimodule is right stable (see 3.2.1 for details).

Definition 2.1.18. An S-bimoduleX is right stable, if the right operator ρ : πL
∗X →

πL
∗X is an automorphism of left homotopy groups. Similarly one defines left stable.

If X is both left and right stable, we say X is bistable.

Example 2.1.19. Let X be a S-bimodule which is a right Ω-spectrum, i.e. the
adjoints of the right structure maps are weak equivalences. Then X is right stable.
To see this recall that the operator R on πL

∗X is induced by the right structure
maps from. But we can also use the adjoints of the right structure maps which are
weak equivalences by assumption. Hence R operates as an isomorphism. Similarly
L operates as an isomorphism on the right homotopy groups provided that X is a
left Ω-spectrum. Obviously X is bistable if the underlying left and right modules
are both Ω-spectra.

Lemma 2.1.20. Let X be a semi-stable symmetric spectrum. Then the underlying
S-bimodule U(X) is bistable. In particular the maps

πL
∗U(X)

∼= // πT
∗ U(X) πR

∗ U(X)
∼=oo

are isomorphisms.

Proof. We considerX as a left S-module and show that U(X) is left and right stable.
Since X is semi-stable a fibrant replacement X → X̄ is a (left) π∗-isomorphism.
Therefore X is left or right stable if and only if X̄ is. So without loss of generality
we may assume that X is in fact fibrant, i.e. an Ω-spectrum and by Example 2.1.19
left stable. From Example 2.1.17 we know that the right action, which is a map
ΣX → sh1X of left S modules, is given in degree n by

Xn ∧ S1 τ−→ S1 ∧Xn
σn−−→ X1+n

χ1,n−−−→ Xn+1,

where σn the structure map of the symmetric spectrum X. By abuse of notation
we will write X instead of U(X). Instead of showing that ΣX → sh1X induces
an isomorphism on left homotopy groups, it suffices to show that the adjoint map
X → Ω sh1X does so. But this adjoint is given by

Xn
σ\

n−−→ ΩX1+n
Ωχ1,n−−−−→ ΩXn+1.

The map σ\n is a weak equivalence as adjoint structure map of the Ω-spectrum
X and Ωχ1,n is a weak equivalence since it is in fact an isomorphism. Hence
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X → Ω sh1X is a level equivalence and in particular a πL
∗ -isomorphisms which

finishes the proof. �

Example 2.1.21. Using the multiplication on the sphere spectrum S we can con-
sider S as a S-bimodule. We can consider S as the underlying S-bimodule U(S) of
the symmetric sphere spectrum S which is well known to be semi-stable. Hence S
is bistable by Lemma 2.1.20 above.

One can also see more directly that S is right stable using the characterization
of right stable we give now. The compatibility of the left and the right action of a
S-module says that the right action maps

Xn ∧ S1 → Xn+1

assemble to a map
ΣX → sh1X

of left S-modules. The induced map on homotopy groups fits into the a commuta-
tive diagram

πL
n+1ΣX //

∼=
��

πL
n+1 sh1X

∼=
��

πL
nX

R // πL
nX

where the bottom map is the right operator on left homotopy groups. Therefore
we have

Lemma 2.1.22. A S-bimodule X is right stable if and only if the map

ΣX → sh1X

is a stable equivalence of left S-modules.

In case of S the map ΣS → sh1 S is in fact an isomorphism, so in particular a
stable equivalence and thus S is right stable.

2.2. Stable model structure for S-bimodules. We now give the category of
S-bimodules a stable model structure. If one views the category of S-bimodules
as the category of left S-modules with additional structure there is a canonical
forgetful functor to left S-modules along which one can try to lift the standard
model structure of Bousfield Friedlander spectra to S-bimodules.

Definition 2.2.1. Recall from Definition 1.2.8 that the map λn : S ⊗ S1[n+ 1]→
S⊗S0[n] is defined to be the adjoint of the identity map S1 → (S⊗S0[n])n+1. This
is a map of left S-modules and given in degree m by the isomorphism Sm−1 ∧S1 ∼=
Sm for m > n given by the right action of S. Define σL

n : S ⊗ S1[n + 1] ⊗ S →
S ⊗ S0[n]⊗ S to be λn ⊗ S. Symmetrically we define a right version of λn and σRn .

In fact λn is up to a shift the right action map ΣS → sh1 S. This shows two
things. First that the operator right operator R induces an isomorphism on left
homotopy groups and second, that the map σL

n is a πL
∗ -isomorphism. From Example

2.1.15 we conclude that σL
n also induces isomorphisms on left homotopy groups.

Definition 2.2.2. Denote by JL the set of mapping cylinder inclusions of the maps
σL
n for n ≥ 0.

Lemma 2.2.3. The maps in JL are projective cofibrations which induce isomor-
phisms on left and total homotopy groups.
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Proof. We have already seen that σL
n induces isomorphisms on left homotopy groups.

By 2.1.13 they also induce isomorphisms on total homotopy groups. Factoring a
map using the mapping cylinder construction gives an inclusion followed by a sim-
plicial homotopy equivalence. By 2-out-of-3 the inclusion also induces isomorphisms
on left and total homotopy groups. Both, source and target of the maps σL

n are
cofibrant in the level model structure as images of cofibrant simplicial sets under
the functor S⊗(−)⊗S. It suffices to show that the inclusions in the mapping cylin-
ders are cofibrations which then implies that the mapping cylinders themselves are
cofibrant. But this is a general fact in a simplicial model category proved in the
Lemma 1.1.7. �
Theorem 2.2.4. The category of S-bimodules admits a proper cofibrantly generated
simplicial stable model structure with the projective cofibrations as cofibrations and
weak equivalences the maps, that induce isomorphisms on left homotopy groups.

Proof. We lift the stable model structure along the functor (−) ⊗ S from left S-
modules, i.e. Bousfield-Friedlander spectra, using [Hir03, Theorem 11.3.2]. In order
to do so we have to check that every regular JL-cell complex is a πL

∗ -isomorphism.
But left homotopy groups are preserved by cobase changes along cofibrations (five
lemma) and commute with sequential colimits of cofibrations, and thus every JL-
cell complex is a πL

∗ -isomorphism. Finally note that the (co)domains of the maps in
JL are small in the category of S-bimodules. Tensor and cotensor for simplicial sets
are defined level-wise on underlying graded spaces. Since cofibrations are projective
cofibrations so cofibrations in the level model structure, the pushout product axiom
(Proposition 1.1.6) holds by Proposition 2.1.9. Hence the model structure is sim-
plicial. For left properness and stability note that stable equivalences, suspension
and loops are defined on underlying spectra and the forgetful functor commutes
with pushouts . �

We refer to the above model structure as the left stable model structure or simply
to the stable model structure. Note that the stably fibrant S-bimodules are the left
Ω-spectra. Recall that a S-bimodule is right stable if and only if the map

ΣX → sh1X

is a stable equivalence. But this is the case if and only if the adjoint

X → Ω sh1X

is a stable equivalence. If X is a left Ω-spectra, so is Ω sh1X. Hence the map
is stable equivalence if and only if it is a level equivalence or equivalently X is a
right Ω-spectrum. Hence we see that the stably fibrant right stable S-bimodules
are exactly the bi-Ω-spectra.

Remark 2.2.5. There are other stable model structures on S-bimodules than the
one we have established above. Of course on can use right homotopy groups instead
of left homotopy groups. But one can also take weak equivalences to be maps that
induce isomorphism on left and right homotopy groups as we will do later (see
Theorem 3.3.2). A third possibility is to take as weak equivalences maps inducing
isomorphisms on total homotopy groups. In this last case the fibrant objects are
the bi-Ω-spectra, i.e. spectra such that the adjoints of the left and right structure
maps are weak equivalences.

2.3. Spectra with an endomorphism. In the last section we endowed the cat-
egory of S-bimodules with a stable model structure in a way that the forgetful
functor form S-bimodules to left S-modules is a Quillen functor. This means that
from the homotopy theoretic view we consider S-bimodules as Bousfield-Friedlander
spectra with extra structure. We now make this point of view more precise and
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obtain a relationship to symmetric spectra which is very natural in this point of
view. Recall that having a S-bimodule explicitly means to have a commutative
diagram

S1 ∧Xn ∧ S1
id⊗ρn //

λn⊗id
��

S1 ∧Xn+1

λn+1
��

Xn+1 ∧ S1
ρn+1

// Xn+2

As already noted this data is exactly the same as to have a left S-module together
with a morphism

ΣX → sh1X

of left S-modules. Up to homotopy this means, that one has a spectrum (i.e. left
S-module) together with an endomorphism. This motivates our next result which
says that S-bimodules with the stable model structure are Quillen equivalent to
symmetric spectra together with an endomorphism. We will now make this state-
ment precise and prove that S-bimodules with the stable model structure from
Section 2.2 are Quillen equivalent to symmetric spectra together with an endomor-
phism. The category of symmetric spectra with an endomorphism has as objects
pairs (X, t) where X is a symmetric spectrum and t : X → X is a map of symmetric
spectra. Morphisms are maps of underlying symmetric spectra that commute with
the given endomorphism. A somewhat nicer description of this category is as the
category of S[t]-modules where

S[t] = F0(N+) ∼= S ∧ N+
∼=
∨
n≥0

S× n

is the monoid ring spectrum of the natural numbers, or in other words the free poly-
nomial algebra on one generator with coefficients in S which justifies the notation
S[t].

We can consider the commutative symmetric ring spectrum S[t] as an S-bimodule
in the following way. The left action induced by the monoid map S → S[t] given
by the inclusion of S in S[t] indexed by 0. The right action is given by a map of
monoids S→ S[t] which in degree k is given by the diagram

Sk
∼=−→ Sk × k ιk−→

∨
n≥0

Sk × n.

Given an S[t]-module X, we use the bimodule structure on S[t] and restrict to a
S-bimodule. Forgetting the symmetric group actions yields a S-bimodule U(X)
and so a functor U : S[t]-mod→ S-bimod.

If we take t = id to be the identity of X we recover Example 2.1.17. For general
t we can calculate as in the case where t = id and obtain as right structure maps
of U(X)

Xq ∧ Sp τ−→ Sp ∧Xq
λp,q−−→ Xp+q

χp,q−−−→ Xq+p

tpq+p−−−→ Xq+p.

For further reference we note the following lemma.

Lemma 2.3.1. Let X be a S[t]-module whose underlying symmetric spectrum is
semi-stable. Then there is an isomorphism

πL
∗U(X) ∼= π∗X

of the left homotopy groups of the underlying S-bimodule of X and the homotopy
groups of X itself.
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Proof. The underlying left S-module structure of X is just given by the underlying
symmetric spectrum. By assumption the underlying symmetric spectrum is semi-
stable, so its homotopy groups are given by the underlying left S-modules. But
the left homotopy groups of the underlying bimodule are by definition given by the
homotopy groups of the underlying left S-module. �

The functor U : S[t]-mod→ S-bimod described above sending a symmetric spec-
trum to the S-bimodule with left and right action coming from a S-bimodule struc-
ture of S[t] has a left adjoint W we describe now. Recall that the left adjoint
G : grS∗ → SΣ

∗ to the forgetful functor SΣ
∗ → grS∗ is given by G(X)n = (Σn)+∧Xn.

Now observe that G(S) is the free associative monoid on (∗, S1, ∗, ∗, . . . ) in SΣ
∗ with

respect to ⊗Σ. A free associative monoid always comes with a natural map to the
free commutative monoid. So there is a natural quotient map G(S) → S which is
a map of monoids in SΣ

∗ . A short computation shows that G is actually monoidal
so it extents to functor S-mod → G(S)-mod. Now, since there is a monoid map
G(S)→ S, we have an extension of scalars functor

S⊗Σ
G(S) (−) : G(S)-mod→ S-mod.

Altogether, a left S-module X is mapped to S⊗Σ
G(S)G(X). This gives a left adjoint

V : S-mod→ S-mod to the forgetful functor U : S-mod→ S-mod from symmetric
to sequential spectra.

Composing the functor U : S[t]-mod→ S-bimod with the forgetful functor from
S-bimodules to left S modules is obviously equal to the composite which first sends
a S[t]-module to its underlying (left) S-module and then to the underlying sequential
left spectrum. Therefore, if a left adjoint W exists, it must satisfy W (A ⊗ S) =
S[t] ∧ V (A) for any left S-module A. But an S-bimodule M is the same as the
underlying left S-module SM together with a map SM⊗S → SM of left S-modules
given by the right action. So if we define the underlying symmetric spectrum of
W (M) to be V (SM) then the right action would give a map

S[t] ∧ V (SM) = W (M ⊗ S)→W (M) = V (SM)

of symmetric spectra and equip V (SM) with the S[t]-module action. This construc-
tion is only well defined if V (S(M ⊗ S)) = S[t]∧V (SM) which is unfortunately not
the case. Indeed one can check that V (S(M ⊗ S)) ∼= FS ∧V (SM) where FS is the
symmetric spectrum given by the wedge

FS =
∨
n≥0

FnS
n.

The functors Fn are graded monoidal in the sense that FnK∧FmL ∼= Fn+m(K∧L)
and therefore endow FS with a multiplication. The discussion above implies that
the functor V on left S-modules N together with a map N ⊗ S → N of left S-
modules takes values in the category of left FS-modules.

Since taking the wedge over the canonical maps FnSn → S give a map FS → S[t]
of symmetric ring spectra, there is an extension of scalars functor

S[t] ∧FS (−) : FS-mod→ S[t]-mod.

Definition 2.3.2. For a S-bimodule M we define W (M) to be the S[t]-module

W (M) = S[t] ∧FS V (SM)

where the symmetric spectrum V (SM) carries the left FS action induced from the
right action on M .

It is immediate that the right adjoint to W is exactly U . We now investigate
the homotopical properties of this adjoint pair.
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Theorem 2.3.3. The adjoint pair

W : S-bimod � S[t]-mod :U

is a Quillen equivalence.

Proof. First we show that U and W form a Quillen adjoint functor pair. We use
the criterion of Dugger [Dug01, A.2] for which it suffices to show that U pre-
serves acyclic fibrations and fibrations between fibrant objects. Since in the stable
model structure of S-bimodules and S[t]-modules the acyclic fibrations are the maps
which are level fibrations and level equivalences, it is clear that U preserves these.
The fibrant objects in S[t]-modules are exactly the modules having underlying Ω-
spectra. The functor U takes these to left Ω-spectra which are the fibrant objects
in S-bimodules. Since every stable fibration of S[t]-modules is in particular a level
fibration by [HSS00, Lemma 3.4.12 and Corollary 3.4.16], U takes level fibrations
between fibrant S[t]-modules to level fibrations between left Ω-spectra. Given a
level fibration X → Y between Ω-spectra, we have for each n ≥ 0 a commutative
diagram

Xn

����

∼ // ΩXn+1

����

Yn
∼ // ΩYn+1

in which every object is fibrant. Taking the pullback P of the lower right part
gives in particular maps Xn → P and P → ΩXn+1 from which the latter is a weak
equivalence by right properness of simplicial sets. But then the first map is weak
equivalence too by 2-out-of-3 and we conclude that the diagram above is homotopy
pullback diagram. Therefore the map X → Y is a stable fibration by Theorem
1.2.4. This finishes the argument showing that U is a right Quillen functor.

It remains to show that U and W form a Quillen equivalence. A map between
fibrant S[t]-modules is a stable equivalence if and only if it induces isomorphisms on
homotopy groups. But by Lemma 2.3.1 the left homotopy groups of U(X) are iso-
morphic to the homotopy groups of the stably fibrant S[t]-module X. Consequently,
the right derived functor RU : Ho(S[t]-mod)→ Ho(S-bimod) detects isomorphisms
since it detects stable equivalences between stably fibrant S[t]-modules. In order
to show that RU and LW form an equivalence of categories, it then suffices to
show that for any object A in Ho(S-bimod) the adjunction unit A→ RU(LW (A))
is an isomorphism. From the description of W we gave above, it is immediately
clear that it takes the free rank one S-bimodule S ⊗ S to the free S[t]-module of
rank one which is of course S[t]. Both of theses two are cofibrant in the respective
model structure, so there in an isomorphism W (S ⊗ S)→ S[t] of S[t]-modules. We
now show that its adjoint S ⊗ S → RU(S[t]) is a π∗-isomorphism. Since S[t] is
semi-stable (see e.g. [Sch08, Example 4.6/4.7]), by Lemma 2.3.1 the left homotopy
groups of U(S[t]) are isomorphic to π∗S[t] ∼= π∗(S)⊗Z[t]. From Example 2.1.15 we
already know that the left homotopy groups of S ⊗S also have this structure. The
semi-stability of S[t] implies that in suffices to show that the map S⊗S → U(S[t]) is
a left stable equivalence. But this map splits into a countable wedge and we check
the claim on each summand. In wedge degree n the map is given by S⊗Sn[n]→ S
which is ultimately the isomorphism Sm−n ∧ Sn ∼= Sm for growing degree m and
hence induces an isomorphism on left homotopy groups.

Both homotopy categories are triangulated categories which are generated by
the compact objects S ⊗S and S[t] respectively. Therefore it suffices to show, that
the adjunction unit ηA : A → RU(LW (A)) is a natural transformation between
exact functor which commutes with direct sums. By Theorem 1.1.3 LW and RU
form an exact functor pair and LW commutes with sums as a left adjoint. But



22 ARNE WEINER

RU also commutes with sums, since U preserves homotopy groups between stably
fibrant objects. We already showed that η is an isomorphism on S ⊗ S, hence it
is one on every object of Ho(S-bimod). This shows that LW and RU are inverse
equivalences of categories and thus W and U form a Quillen equivalence. �

We remark that by 2-out-of-3 for Quillen equivalences the category of S-bimodules
is also Quillen equivalent to FS-modules since the map FS → S[t] is as wedge of
stable equivalences one and thus induces a Quillen equivalence between FS-mod
and S[t]-mod.

As corollary of the theorem above we give a characterization of right stable
S-bimodules in terms of S[t]-modules.

Corollary 2.3.4. Let M be a S-bimodule and X a S[t]-module.
(i) If X is stably fibrant as a S[t]-module, the underlying S-bimodule U(X) is

right stable if and only if the endomorphism t : X → X is a level equiva-
lence.

(ii) If M is cofibrant as S-bimodule, then M is right stable if and only if the
endomorphism t : W (M)→W (M) is a stable equivalence.

Proof. (i) Let X be a stably fibrant S[t]-module. This means that X has an un-
derlying (left) Ω-spectrum or that the underlying S-bimodule U(X) is a left Ω-
spectrum. For U(X) to be right stable means that the map U(X) → Ω sh1 U(X)
adjoint to the right action of U(X) is a π∗-isomorphisms of left S-modules. But
both U(X) and Ω sh1 U(X) are left Ω-spectra, hence U(X) is right stable if and
only if U(X)→ Ω sh1 U(X) is a level equivalence. But the right action of U(X) is
given in degree n by

Xn ∧ S1 τ−→ S1 ∧Xn
λ1,n−−−→ X1+n

χ1,n−−−→ Xn+1
tn+1−−−→ Xn+1

and so its adjoint by

Xn
(λ1,n)\

−−−−→ ΩX1+n
Ωχ1,n−−−−→ ΩXn+1

Ωtn+1−−−−→ ΩXn+1.

Therefore the map in question is a level equivalence if and only if the map Ωt : ΩX →
ΩX is a level equivalence. By stability this is the case if and only if t itself is a stable
equivalence between between Ω-spectra, so if and only if t is a level equivalence.

(ii) Let M be a cofibrant S-bimodule and W (M) → W (M)f a stably fibrant
replacement of W (M) in the stable model structure of S[t]-modules. The adjoint
M → U(W (M)f ) is a stable equivalence of S-bimodules by Theorem 2.3.3 above.
Hence M is right stable if and only if U(W (M)f ) is right stable. Since W (M)f is
stably fibrant as a S[t]-module and we can apply part (i) and see that this is the case
if and only if t : W (M)f → W (M)f is a level equivalence. But this is equivalent
to the condition that t : W (M) → W (M) is a stable equivalence on underlying
symmetric spectra. �

We finish this section with a result which says that the underlying symmetric
spectrum of W (M) is already determined by the left module structure on M for
cofibrant S-bimodule M . The adjunction unit M → U(W (M)) is a map of S-
bimodules, hence it restricts to a map SM → SU(W (M)). We obtain by adjoining
the map above a map of symmetric spectra

αM : V (SM)→W (M)

where W (M) denotes, by abuse of language, the underlying symmetric spectrum
of the S[t]-module W (M).

Lemma 2.3.5. For a cofibrant S-bimodules M the map αM : V (SM)→W (M) is
a stable equivalence of symmetric spectra.
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Proof. The target of the map is a left Quillen functor in M with respect to the
left model structure of S-bimodules. Since the forgetful functor form S-bimodules
to left S-modules preserves colimits, cofibrations and left homotopy groups, the
source of the map is also a left Quillen functor with respect to the left stable
model structure on S-bimodules. Therefore it suffices to verify the statement for
M = S ⊗ S, the free S-bimodule on the left module S. We know that

V (S ⊗ S) ∼=
∨
n≥0

FnS
n and W (S ⊗ S) ∼= S[t]

For each n ≥ 0 the canonical map FnS
n → tn · S is a stable equivalence, hence the

map αS⊗S is a stable equivalence of symmetric spectra. �

2.4. Tensor product of S-bimodules. The tensor product of S-bimodules de-
fined in Definition 2.1.10 is a monoidal though not symmetric monoidal product on
the category of S-bimodules with the S-bimodule S as unit object. We are now
interested in how far it is compatible with the model structures on S-bimodules
considered so far. We begin with the level model structure. We say that a map
of S-bimodule is a left cofibration if it is a cofibration of underlying left S-modules
and similarly right cofibrations. Note that a cofibration of S-bimodules is both, a
left and a right cofibration.

Lemma 2.4.1. Let i : K → L be a map of right S-modules and j : M → N be a
map of left S-modules.

(a) If i or j is a cofibration and the other map is injective then the pushout
product map

i� j : L⊗S ∪K⊗SMK ⊗S N → L⊗S N

is injective.
(b) If i or j is a cofibration, the other map is injective and one of the maps is a

level equivalence, then the pushout product map i� j is a level equivalence.
(c) If L is a cofibrant right S-module, then the functor L⊗S (−) preserves level

equivalences. If N is cofibrant as left S-module, then the functor (−)⊗S N
preserves level equivalences.

Proof. (a) We treat the case where j is a cofibration of left S-modules. It suffices
to show the case where j is a generating cofibration, i.e. of the form S⊗∂∆k

+[n]→
S ⊗∆k

+[n]. Then the pushout product map is isomorphic to

K ⊗∆k
+[n] ∪K⊗∂∆k

+[n] L⊗ ∂∆k
+[n]→ L⊗∆k

+[n],

which is injective by the pushout product axiom for pointed simplicial sets.
(b) Again we treat the case where j is a cofibration of left S-modules and i is

injective map of right S-modules. If i is a level equivalence then it suffices to show
the case where j is a generating cofibration. In this case the pushout product map
i�j is a level equivalence for the same reason as in part (a). If j is a level equivalence
then it suffices to show the case where i is a generating acyclic cofibration, i.e. a map
of the form S ⊗Λki+[n]→ S ⊗∆k

+[n]. Similar as before the pushout product axiom
for pointed simplicial sets implies that the map in question is a level equivalence.

(c) We consider the case where N is a cofibrant left S-module. Suppose the claim
holds for N and that the left S-module N ′ is obtained by cobase change along a
generating cofibration of the form S ⊗ ∂∆k

+[n] → S ⊗∆k
+[n]. We have a pushout
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square
K ⊗ ∂∆k

+[n] //

��

K ⊗∆k
+[n]

��

K ⊗S N // K ⊗S N ′
and a similar one with K replaced by L. Now let i : K → L be a level equivalence
of right S-modules. Then we have a commutative diagram

K ⊗S N

∼
��

K ⊗ ∂∆k
+[n]oo // //

∼
��

K ⊗∆k
+[n]

∼
��

L⊗S N K ⊗ ∂∆k
+[n]oo // // K ⊗∆k

+[n]

in which the left vertical map is a weak equivalence by assumption and the middle
and right vertical maps are weak equivalences by the pushout product axiom for
pointed simplicial sets. Hence by [GJ99, Chapter II Lemma 8.2] the induced map
K⊗SN ′ → L⊗SN ′ is a level equivalence. Therefore the class of right S-modules for
which the claim holds is closed under cobase change along generating cofibrations.
Since it is also closed under retracts and colimits over a sequence of cofibrations, it
contains all cofibrant right S-modules. �

Lemma 2.4.2. Let M be a right cofibrant S-bimodule. If M is right stable, then
the functor M ⊗S (−) preserves πL

∗ -isomorphisms. Similarly for left cofibrant and
left stable S-bimodule M the functor (−)⊗S M preserves πR

∗ -isomorphisms.

Proof. Let j be a map of left S-modules which induces isomorphisms on left homo-
topy groups. We can factor j as a cofibration followed by an equivalence in the level
model structure of left S-modules. By Lemma 2.4.1 (c), M ⊗S (−) preserves level
equivalences. So we may assume that j is a πL

∗ -isomorphism and a cofibration of left
S-modules. It suffices to check the case where j is a generating acyclic cofibration of
the stable model structure. The level equivalences among these are taken care of by
Lemma 2.4.1 (c) again, so it remains to check the case where j is σL

n . This follows
if we show that the claim is true for λn : S ⊗ S1[n+ 1]→ S ⊗ S0[n]. But the map
M ⊗S λn is isomorphic to the left S-module map R : M ⊗ S1[n+ 1]→M ⊗ S0[n]
given by the right S-action of M . But this map induces an isomorphism of left
homotopy groups since M was assumed to be right stable. �

Lemma 2.4.3. The classes of cofibrant left stable, cofibrant right stable and cofi-
brant bistable S-bimodules is closed under ⊗S
Proof. If N is right stable and M right cofibrant and right stable, then the right
action map N ⊗ S1[1]→ N induces on isomorphism on left homotopy groups. By
Lemma 2.4.2 above the map M ⊗S (N ⊗S1[1])→M ⊗SN induces an isomorphism
of left homotopy groups. But this means that M ⊗S N is right stable. �

We finish this section with remarking that the left (or right) stable model struc-
ture on S-bimodules together with the monoidal product ⊗S is not a monoidal
model structure.

Remark 2.4.4. Consider the S-bimodule trS which is equal to the sphere bimodule
S as a right S-bimodule but has trivial left action. Let trS

c → trS be a cofibrant
replacement in the level model structure of S-bimodules. Now the left and hence
the total homotopy groups of trS

c are trivial, but the left and total homotopy
groups of (S⊗S)⊗S trS

c ∼= S⊗ trS
c are non-trivial. Therefore the pushout product
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axioms fails for the left (and of course also for the right) model structure. We also
see that we do not have a chance to get a monoidal model structure if we take
πT
∗ -isomorphisms as weak equivalences for a model structure.

3. Naive ring spectra

Having set up a monoidal product on S-bimodules we now turn to monoids with
respect to this monoidal structure. First we will give an explicit and surprisingly
simple characterization of monoids in S-bimodules. Then we consider modules over
these monoids and equip them with a stable model structure. Having described S-
bimodules as symmetric spectra together with an endomorphism up to homotopy
raises the question if one can characterize monoids in S-bimodules as monoids in
S[t]-modules, i.e. S[t]-algebras. Unfortunately we are not able to lift the left stable
model structure to monoids. But we will develop enough homotopy theory so that
we can always replace an naive ring spectrum by a S[t]-algebra (see Theorem 3.3.15).

3.1. Monoids in S-bimodules. For our treatment of Morita theory of stable
model categories, monoids in S-bimodules are of essential importance and they get
their own name.

Definition 3.1.1. A naive ring spectrum is a monoid R in S-bimodules with re-
spect to tensor product ⊗S of S-bimodules.

It is tempting to call theses monoids “S-algebras”, but this could be misleading
since this would suggest a centrality condition, which is not the case. The name
naive ring spectrum might be justified by the following characterization.

Lemma 3.1.2. A naive ring spectrum is the same as a monoid in graded spaces
with respect to the tensor product together with a monoid map S → R. Explicitly
this means R is a graded space equipped with associative and unital “multiplication
maps”

µp,q : Rp ∧Rq → Rp+q

and a “unit map”
S1 → R1

without any further compatibility conditions.

Proof. Given a monoid R in S-bimodules, we have a unit map S → R and a
multiplication map R ⊗S R → R. Precomposing the multiplication map with the
quotient map R ⊗ R → R ⊗S R gives a monoid in graded spaces. Using the unit
isomorphism S ⊗S S ∼= S one checks that the unit S → R is in fact a map of
monoids. Such a map is determines and is uniquely determined by a map S1 → R1

because S is by definition the free associative monoid on S1[1]. Conversely, given a
map S → R of monoids in graded spaces, we give R the structure of a S-bimodule
using the composites

S ⊗R→ R⊗R→ R and R⊗ S → R⊗R→ R

and observe that the associativity isomorphisms of the monoidal product ⊗ imply
that the multiplication map R ⊗ R → R factors over R ⊗S R → R. To check that
S → R is in fact the unit of a monoid R in S-bimodules uses that the map in
question is is a map of monoids in graded spaces. �

Definition 3.1.3. A naive ring spectrum is right stable, left stable or bistable if
the underlying S-bimodule is.
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In the next section we will consider modules over a naive ring spectrum R.
We choose to work over left modules. These will have underlying left spectra and
therefore we mostly consider left homotopy groups. Therefore we have the following
convention.

Definition 3.1.4. Let R be an naive ring spectrum. Define the homotopy groups
of R to be

πnR = πL
nR

the left homotopy groups of the underlying S-bimodule.

3.2. Modules over naive ring spectra. Given a naive ring spectrum R one can
consider the category of (naive) module spectra over R. We give necessary and
sufficient conditions to lift the stable model structure from Bousfield-Friedlander
spectra to module spectra over a naive ring spectrum.

Theorem 3.2.1. Let R be a naive ring spectrum. Then the category of left R-
modules has the structure of a model category with weak equivalences and fibrations
defined on underlying spectra if and only R is right stable. Is this the case, the
model structure is simplicial, proper, stable and cofibrantly generated. Further, for
any R-module M , there is a natural isomorphism

π∗M ∼= [R,M ]Ho(R-mod)
∗

of abelian groups and R is a compact generator of the triangulated homotopy cate-
gory Ho(R-mod).

Proof. Suppose that (left) R-modules admit a model category structure with fibra-
tions and weak equivalences defined on underlying (left) spectra. Then the forgetful
functor R-mod → S-mod is a right Quillen functor. Therefore its left adjoint, the
free R-module functor,

R⊗S (−) : S-mod→ R-mod

preserves weak equivalences between cofibrant objects. The map λ1 : S⊗S1[1]→ S
(the adjoint of the identity map S1 → S1) induces an isomorphism on left homotopy
groups. Under the free functor λ1 is sent to R ⊗ S1[1] → R and hence a weak
equivalence since it is a stable equivalence between cofibrant left S-modules. Now
observe that the resulting map R⊗S1[1]→ R is given by the right action R: ΣR→
sh1R of R and so R is right stable as a S-bimodule.

To conversely establish the model structure on R-mod we use [SS00, Lemma
2.3]. We verify condition (2) of that lemma. Let J level

R the set of maps of the form

R⊗ (Λik+)[n]→ R⊗ (∆i)+[n]

for n, i ≥ 0 and i ≥ k ≥ 0. These maps are point-wise injective and induce
isomorphism on left homotopy groups. Now let J stable

R be the set of simplicial
mapping cylinder inclusions associated to the R-module maps of the form

R⊗ (∂∆i
+)[n] ∪R⊗(S1∧∂∆i

+)[n+1] R⊗ (S1 ∧ ∂∆i
+)→ R⊗ (∆i

+)[n]

for i, n ≥ 0. We assumed R to be right stable so the map R ⊗ S1[n + 1] → R ⊗
S0[n] inducing the operator R on left homotopy groups is a point-wise injective π∗-
isomorphism. Hence the maps in J stable

R are point-wise injective π∗-isomorphisms.
Therefore all maps in JR = J level

R ∪J stable
R are point-wise injective π∗-isomorphisms

and Lemma 2.3 of [SS00] applies. Tensors and cotensors of R-modules and simplicial
sets are defined on underlying graded spaces. The simplicial compatibility axiom
(Proposition 1.1.6) since holds. To see this, let K → L be a cofibration of pointed
simplicial sets and M → N a fibration of R-modules. We can view M → N as a
fibration between left S-modules. Since cotensors are defined on underlying graded
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spaces, we can take the cotensor on underlying spectra and apply the pushout
product axiom for spectra to see that the map

mapR(L,M)→ mapR(L,N)×mapR(K,N) mapR(K,M)

is a fibration of simplicial sets which is acyclic if K → L or M → N is.
Next we show properness. A cofibration of R-modules is a retract of a map

obtained from maps of the form

R⊗ ∂∆i
+[n]→ R⊗∆i

+[n]

by pushout and colimits. Thus every cofibration of R-modules is point-wise injec-
tive. Therefore a cofibrationM → N gives rise to a long exact sequence of homotopy
groups by Lemma 1.2.5. Hence left properness follows from the five lemma. Fibra-
tions and weak equivalences are defined on underlying spectra, so right properness
of R-modules follows from right properness of spectra (see Theorem 1.2.4).

To see that we have indeed a stable model structure, we consider the adjoint
M → Ω(ΣM)f of a fibrant replacement ΣM → (ΣM)f of ΣM . This map is a model
for the derived adjunction unit. To see that this is indeed a stable equivalence of
R-modules note that it suffices to show that it is a stable equivalence of underlying
spectra. But tensor and cotensor are defined on underlying graded spaces, so we
can equally consider ΣM → (ΣM)f as a stable equivalence of spectra and then take
the adjoint yielding a stable equivalence by stability of the stable model structure
on spectra. Similarly we can show that the adjunction counit is an isomorphism in
the homotopy category.

Now we show that there is a natural isomorphism of graded abelian groups

πL
∗M ∼= [R,M ]R∗ .

Choose a fibrant replacement M → Mf of M in R-mod and note that we have
πL
∗M ∼= πL

∗M
f and we may assume that M is fibrant. Let q be any integer and

write q = m−n with n,m ≥ 0. Note that there is an isomorphism Sm[n]⊗Sn[0] ∼=
Sm+n[n]. From this follows that S ⊗ Sm[n] is a model for Σm−nS. To see this
we take the n-fold suspension of S ⊗ Sm[n] by applying (−) ⊗ Sn[0] and obtain
S ⊗ Sm+n[n]. The canonical map S ⊗ Sm+n[n] → ΣmS is an isomorphism on left
homotopy groups since it is an isomorphisms from degree ≥ n. Now we can, since
M is an Ω-spectrum, calculate

πL
m−nM ∼= πmXn = [Sm,Mn]Ho(S∗)

and using derived adjunctions

[Sm,Mn]Ho(S∗) ∼= [S ⊗ Sm[n],M ]Ho(Sp) ∼= [Σm−nR,M ]Ho(R-mod).

which shows the formula.
Finally note that the formula above implies that if the graded abelian group

[R,M ]R∗ vanishes, then M is stably contractible, i.e. trivial in Ho(R-mod). Thus
the free R-module of rank one R is a weak generator in the homotopy category of
R-modules. To show that R is in fact small, we must show that the canonical map⊕

I

[R,M ]R → [R,
∐
I

Mi]

for any family Mi, i ∈ I, of R-modules. Again by the formula for homotopy groups
of R-modules the source of the map above is isomorphic to⊕

I

π0Mi
∼= π0(

∨
I

Mi).

Similarly the target is isomorphic to π0(
∨
IMi) and hence the map in question is

an isomorphism since coproducts are formed point-wise. �
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Now we show that under the right stability condition the homotopy groups of a
naive ring spectrum have additional structure: as expected they have the structure
of a graded ring.

Lemma 3.2.2. Let R be a right stable naive ring spectrum. Then the homotopy
groups π∗R form an graded ring.

Proof. Since we assumed R to be right stable, the category of left R-modules admits
a stable model structure such that we can identify

πnR ∼= [ΣnR,R]R

for all integers n. Now we the right hand side forms a graded ring using (graded)
composition as the self maps of an object in a triangulated category always do. �

Remark 3.2.3. Let R be a right stable naive ring spectrum.

(1) Of course one can give a more direct and explicit description of the homo-
topy ring π∗R of R using the multiplication maps µp,q : Rp ∧ Rq → Rp+q.
For the sake of simplicity and without loss of generality we assume that R is
fibrant as a (left) R-module, i.e. an Ω-spectrum. Using the identifications

πnR ∼= [Sn, R0]S∗ ∼= [Sn, R]Sp ∼= [ΣnR,R]R

and similarly

π−nR ∼= [R,ΣnR]R

for n ≥ 0 one can trace back that the composition on the right hand side
translates to smashing maps and composing with the appropriate µp,q on
the left hand side.

(2) For a R-bimodule M the formula π∗M = [R,M ]R∗ is actually not just an
isomorphism of abelian groups but one of graded π∗R-modules.

We finish the section with showing the following homotopy invariance property
for modules over naive ring spectra.

Theorem 3.2.4. Suppose ϕ : R → R′ is a stable equivalence of right stable naive
ring spectra. Then restriction an extension of scalars

R′ ⊗R (−) : R-mod � R′-mod : f∗

forms a Quillen equivalence.

Proof. Let ϕ : R→ R′ be stable equivalence between right stable naive ring spectra.
Since fibrations and stable equivalences are defined on underlying spectra both are
preserved by the right adjoint which preserves the underlying spectra. Hence we
have a Quillen pair. The left Quillen functor (−)∧RR′ takes the free R-module R to
the free R′-module R′ and so does its left derived functor (−)∧L

RR
′ : Ho(R-mod)→

Ho(R′-mod). The map

(−) ∧L
R R

′ : [R,R]R∗ → [R ∧L
R R

′, R ∧L
R R

′]R
′
∗

is isomorphic to the map induced by ϕ : R → R′ on left homotopy groups by
the formula from Theorem 3.2.1 above. Since this is a bijection by assumption,
the total left derived functor (−) ∧L

R R
′ is faithfully full and the discussion above

implies that it is also essentially surjective and thus an equivalence of categories.
Hence (−) ∧R R′ is a left Quillen equivalence. �
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3.3. Symmetric S[t]-algebras. In this section we develop the necessary properties
needed to replace a right stable naive ring spectrum by symmetric ring spectrum
whose underlying naive ring has the same stable homotopy type to the give one.
We actually construct a S[t]-algebra rather than a symmetric ring spectrum.

Consider symmetric S[t]-modules X and Y having tX and tY as their endo-
morphisms respectively. Define their smash product X ∧ Y to the smash product
X ∧S Y of underlying symmetric spectra together with the endomorphism tX ∧S tY .
This gives a symmetric monoidal product on the category of S[t]-modules having
the symmetric sphere spectrum endowed with the identity endomorphism as unit
object.

The monoids in the symmetric monoidal category of S[t]-modules are of course
S[t]-algebras which can be described as symmetric ring spectra together with a mul-
tiplicative and unital self map, i.e. an endomorphism in the category of symmetric
ring spectra.

Lemma 3.3.1. The smash product of S[t]-modules satisfies the pushout product
axiom with respect to the stable model structure. Further the category S[t]-alg of
symmetric ring spectra endowed with an endomorphism admits a stable model struc-
ture with weak equivalences and fibrations defined in the stable model structure of
underlying symmetric spectra.

Proof. To prove the first claim we must check that for cofibrations i : A → B and
j : C → D of S[t]-modules the pushout product map

A ∧D ∪A∧C B ∧ C → B ∧D
is a cofibration too. It suffices to check this for generating cofibrations, so we show
this a little more general that for i = S[t] ∧ i′ and S[t] ∧ j′ with i′ : A′ → B′ and
j′ : C ′ → D′ cofibrations of symmetric spectra. In this case the pushout product
has the form

S[t] ∧ S[t] ∧ (A′ ∧D′ ∪A′∧C′ B′ ∧ C ′) S[t]∧S[t]∧(i′∧j′)−−−−−−−−−−→ S[t] ∧ S[t] ∧ (B′ ∧D′).
The pushout product axiom for holds for symmetric spectra, so the map in question
will be a cofibration of S[t]-modules, if S[t] ∧ S[t] endowed with the endomorphism
t∧t is cofibrant as a S[t]-module. But this smash product decomposes as a wedge of
countably many copies of S[t] indexed by the set {. . . , t2∧1, t∧1, 1∧1, 1∧t, 1∧t2, . . . }
and therefore is cofibrant as the wedge of cofibrant S[t]-modules.

Every cofibration of S[t]-modules is also a cofibration on underlying symmetric
spectra. So if in addition i or j is a stable equivalences on underlying symmetric
spectra, then so is the pushout product map i∧ j since the pushout product axiom
holds for the smash product of symmetric spectra.

The monoid axiom ([SS00, Definition 3.3]) holds since the forgetful functor from
S[t]-modules to symmetric spectra preserves colimits, cofibrations, the smash prod-
uct and stable equivalences. Now [SS00, Theorem 4.1] applies and endows the
category of monoids of S[t]-modules with respect to the smash product with a
model structure created by the forgetful functor. �

In order to build a S[t]-algebra from a right stable naive ring spectrum, we need
to understand how right stable S-bimodules are built from elementary pieces. Here
it is useful to consider the stable P1-model structure. The discussion of the P1-
model structure is essentially taken from [HS06] and we include the proofs only to
make the text as self contained as possible.
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Theorem 3.3.2. The category of S-bimodules admits a cofibrantly generated sim-
plicial stable model structure with weak equivalences the maps inducing isomor-
phisms on left and right homotopy groups and acyclic fibrations the level acyclic
fibrations. We refer to weak equivalences in this model structure as P1-equivalences.

Definition 3.3.3. The maps σL
n and σR

n from Definition 2.2.1 are the adjoints of the
two inclusions S1 → S1∨S1 = (S⊗S)1. Similarly there are maps F2(S2)→ F1(S1)
adjoint to the two inclusions S2 → S2∨S2 = (F1S

1)2. These fit into a commutative
diagram

F2(S2)

��

// F1(S1)

��

F1(S1) // S ⊗ S
Denote by g the induced map

F1(S1) ∨hF2(S2) F1(S1)→ S ⊗ S
from the simplicial homotopy pushout to S ⊗ S. The simplicial mapping cylinder
gives a factorization

shn(F1(S1) ∨hF2(S2) F1(S1)) cn //

g[−n]
))SSSSSSSSSSSSSS

Zn

rn

��

shn(S ⊗ S)

for every n ∈ N. Let Kn set set of maps consisting of the maps cn � in for n ∈ N
where in denotes the inclusion ∂∆n

+ → ∆n
+. Further let K be the union of all Kn

and JP1 = FJ ∪K.

Lemma 3.3.4. All maps in JP1 are P1-equivalences.

Proof. The maps in FJ are already known to be levelwise weak equivalences. A
map in K is a P1-equivalence if and only if it is a π∗-isomorphism on underlying
left and right modules. We show the left statement; the other is symmetric. It
suffices to show that the maps cn are π∗-isomorphisms of left S-modules since left
S-modules have a simplicial model structure which implies that cn � im is a π∗-
isomorphism. We can assume n = 0 since otherwise the homotopy groups are only
shifted. By definition r0 is a simplicial homotopy equivalence, so we can reduce
to the case to show that g is a π∗ isomorphism. The two maps F2(S2) → F1(S1)
occurring in the homotopy pushout defining g are level-wise injective. Hence the
induced map

F1(S1)
h∨

F2(S2)
F1(S1)→ F1(S1) ∨F2(S2) F1(S1)

is a level equivalence. But g factors through the map above and a map

β : F1(S1) ∨F2(S2) F1(S1)→ S ⊗ S
so we may assume that g is defined on the honest pushout. As a left module there
are splittings

S ⊗ S ∼= S ⊗ ∨
∨
n≥1

(S ⊗ Sn[n])

and
F1(S1) ∨F2(S2) F1(S1) ∼= (S ⊗ S1[1]) ∨

∨
n≥1

(S ⊗ Sn[n])
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as left S-modules. Under these splittings β is the inclusion on the first summand
and the identity else. Since the map S ⊗ S1[1] → S induces isomorphisms on left
homotopy groups, so does β. Hence g is a left π∗-isomorphism as required. �
Lemma 3.3.5. All maps in JP1 are cofibrations of underlying left and right S-
modules.

Proof. Because of symmetry it suffices to consider the left case. The S-bimodule
F1(S1) = S⊗S1[1]⊗S splits as a left module into an infinite wedge of free S-modules
and hence is cofibrant as a left module. Similarly the other objects occurring in the
definition of the maps in JP are cofibrant as left modules. Since left S-modules form
a simplicial model category, the mapping cylinder construction yields cofibrations
when applied to maps between cofibrant objects by Lemma 1.1.7. �
Proof of Theorem 3.3.2. We use the recognition theorem [Hov99, Theorem 2.1.19].
First we show that any map in JP1 -cell is a cofibration of S-bimodules. Using
the fact that the level model structure of S-bimodules is simplicial we see that all
constructions used for defining the maps in JP1 preserve cofibrations we conclude
that JP1 consists of cofibrations.

Next we show that a map is an acyclic P1-fibration if and only if it is a level
acyclic fibration. The maps in JP1 are P1-equivalences by Lemma 3.3.4 and hence
are stable equivalences of underlying left and right S-modules as well. From Lemma
3.3.5 we know that these maps are also cofibrations of underlying left and right S-
modules. Since cobase changes and sequential colimits preserve acyclic cofibrations
of left and right modules the maps in JP1-cell induce isomorphisms on left and right
homotopy groups and are thus P1-equivalences.

Now we show that a map is an acyclic P1-fibration if and only if it is a level
acyclic fibration on underlying graded spaces. Suppose p is a level acyclic fibration.
By definition every P-cofibration has the left lifting property with respect to p and
in particular every acyclic P1-cofibration has the left lifting property with respect
to p. Hence p is a P1-fibration which is an equivalence in each level and thus a
P1-equivalence. Altogether p is an acyclic P1-fibration.

Conversely, suppose p is an acyclic P1-fibration. By the small object argument
[Hov99, Theorem 2.1.14] p can be factored as p = qi where i is an FI-cofibration
and q a FI-injective map. Since q is a level equivalence it is a P1-equivalence and
2-out-of-3 for P1-equivalences implies that i is also a P1-equivalence. Therefore i is
an acyclic P1-cofibration and has the left lifting property with respect to p. Such a
lift implies that p is a retract of q and hence a level acyclic fibration.

It remains to show that the P1-model structure is stable. Let X be a cofibrant
S-bimodule and ΣX → Y be a P1-fibrant replacement. The adjunction unit of sus-
pension and loop functor on the homotopy category is modeled by the composition

X → ΩΣX → ΩY

which we have to show to be a P1-equivalence. This means we have to show that it
is a stable equivalence of underlying left and right modules. We show the left case
the other being completely symmetric. Let Y → Z be a stable replacement in the
stable model structure of left S-modules. Then the composite

X → ΩY → ΩZ

models the adjunction unit of the loop and suspension functor on the homotopy
category of S-modules. Since the loop functor only shifts left homotopy groups the
map ΩY → ΩZ is an isomorphism on left homotopy groups so a stable equivalence
of left S-modules. Stability of the stable model structure of left S-modules ensures
that the above composite is a stable equivalence of left S-modules and by 2-out-of-3
so is the map X → ΩY . This finishes the proof. �
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We want to know how the P1-model structure relates to the left an right model
structure. Since a P1-equivalence is in particular a left and a right stable equiva-
lence, the identity functor descends to derived functors

HoP1
(S-bimod)→ HoL(S-bimod) and HoP1

(S-bimod)→ HoR(S-bimod)

respectively. In case of the right model structure we have the following result.

Lemma 3.3.6. The functor

HoP1
(S-bimod)→ HoR(S-bimod)

restricts to an equivalence between the full subcategory of right stable S-bimodules
in HoP1

(S-bimod) and the right homotopy category HoR(S-bimod).

Proof. A stable equivalence in the right stable structure between fibrant objects
is a level equivalence and hence a P1-equivalence. So the identity on S-bimodules
derives to a functor from HoR(S-bimod) to HoP1

(S-bimod) giving a derived right
adjoint. A fibrant object in the right stable model structure is a right Ω-spectrum
and so by Example 2.1.19 right stable. So the right derived functor takes values
in right stable S-bimodules. Given a right stable S-bimodule and take a fibrant
replacement f : M → Mrf in the right stable structure. Then f induces isomor-
phisms on πR

∗ by definition. By Lemma 2.1.13 it also induces an isomorphism on
total homotopy groups. But both M and Mrf are right stable, so by the same
lemma the left homotopy groups coincide with the total homotopy groups. Hence
f also induces isomorphisms on left homotopy groups and therefore it is a P1-
equivalence. This shows that the derived adjunction unit is an isomorphism on
right stable S-bimodules. The derived adjunction counit is an isomorphism on all
S-bimodules since a P1-equivalence is in particular a right stable equivalence. �

There is a fundamental right stable S-bimodule defined as follows.

Definition 3.3.7. Let (S ⊗ S)rst be the S-bimodule which is given as right S-
module by the wedge

(S ⊗ S)rst =
∨
N
S

with left action

S1[1]⊗
(∨

N
S

)
→
∨
N
S

the map that takes the j-th copy of S1[1]⊗S to the (j+ 1)-st first copy of S by the
left action on the sphere. Further let (S⊗S)rst

c → (S⊗S)rst a cofibrant replacement
in the level model structure of S-bimodules and denote by H the union of the set
JP1 of generating acyclic cofibrations of the P1-model structure and the maps

∂∆i
+[n]⊗ (S ⊗ S)rst → ∆i

+[n]⊗ (S ⊗ S)rst

for i, n ≥ 0.

Lemma 3.3.8. The S-bimodule (S ⊗ S)rst is right stable.

Proof. As a left S-module, (S ⊗ S)rst is isomorphic to

(S ⊗ S)rst ∼=
∨
j∈N

Sj [j]⊗ S
 ∨

∨
j>0

S

 ,

hence the left homotopy groups are isomorphic to direct sum

πL
∗ (S ⊗ S)rst =

⊕
Z
πL
∗S
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under the same identifications as we used in Example 2.1.15. We also see that the
right action R is again given by shifting elements one degree up, so as a Z[R]-module
we have an isomorphism

πL
∗ (S ⊗ S)rst ∼= πL

∗S ⊗ Z[R±1]

and (S ⊗ S)rst is in particular right stable. �

Note that:
• all maps in H are cofibrations between cofibrant S-modules;
• the cofiber of every map in JP has trivial left and right homotopy groups,

hence is in particular right stable;
• the cofiber of a maps ∂∆i

+[n] ⊗ (S ⊗ S)rst
c → ∆i

+[n] ⊗ (S ⊗ S)rst
c is right

stable since (S ⊗ S)rst
c is.

It follows that the cofiber of every H-cell complex is right stable. Now we show
that conversely every right stable S-bimodule is equivalent to a retract of a H-cell
complex.

Definition 3.3.9. For a S-bimodule M we denote by MH the H-cell complex
obtained by applying the small object argument ([Hov99, Theorem 2.1.14]) to the
map ∗ → M with respect to H. Then MH is functorial in M and comes with a
natural map MH →M . We call MH the H-approximation of M .

Definition 3.3.10. We call a naive ring spectrum R cofibrant, if the map ∗ → R
has the left lifting property with respect to all maps of naive ring spectra which are
acyclic fibrations on underlying graded spaces.

Denote by T the tensor algebra functor from S-bimodules to naive ring spectra
which is left adjoint to the forgetful functor. Denote by T (H) the set of maps
obtained from H by applying T to each map. Further denote by RH → R the
T (H)-approximation obtained by applying the small object argument with with
respect to T (H) to the unit map S → R.

Lemma 3.3.11. (a) Let f be a map between right stable S-bimodules which has
the left lifting property for the set H. Then f is a level acyclic fibration.

(b) Every cofibrant and right stable S-bimodule is a retract of an H-cell complex.
(c) Every T (H)-cell complex is cofibrant right stable as an S-bimodule.
(d) Every cofibrant and right stable naive ring spectrum is a retract of a T (H)-

cell complex.

Proof. (a) Since H contains the acyclic generating cofibrations of the P1-model
structure, the map f is in particular a fibration in the P-model structure. Then
F , denoting the fiber of the P-fibration f , is fibrant in the P-model structure. The
right lifting property for the maps ∂∆i

+[n] ⊗ (S ⊗ S)rst
c → ∆i

+[n] ⊗ (S ⊗ S)rst
c

give by adjunction the right lifting property for the map map((S ⊗ S)rst
c , F ) → ∗

with respect to the maps ∂∆i
+ → ∆i

+ implying that the mapping space is weakly
contractible. Using stability we conclude that the groups

[(S ⊗ S)rst, F ]HoP1
(S-bimod)

n

vanish for all integers n. The source and the target of f are right stable and so is
F . By Lemma 3.3.6 these groups are isomorphic to the groups

[(S ⊗ S)rst, F ]HoR(S-mod)
n .

Since the map S⊗S → (S⊗S)rst is a weak equivalence in the right model structure,
it induces an isomorphism

[(S ⊗ S)rst, F ]HoR(S-bimod) ∼= [S ⊗ S, F ]HoR(S-bimod)
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and by adjunction the left group is isomorphic to πR
∗ F . Since F is right stable the

left homotopy groups of F also vanish. Therefore the fiber F is weakly contractible
in the P1-model structure and so f an acyclic fibration, hence a level acyclic fibra-
tion.

(b) The H-approximation map has the right lifting property for H. Since both
MH and M are right stable, the approximation map p is a level acyclic fibration
by part (a). Since M is cofibrant, it is a retract of the H-cell complex MH.

(c) It suffices to show that right stability and the property of having cofibrant
underlying bimodules is inherited when attaching T (H)-cells. Suppose R is a naive
ring spectrum with these two properties and P is obtained from R by a pushout in
the category of naive ring spectra

T (A) //

��

T (B)

��

R // P

,

where A → B is a wedge of maps in H. By [SS00, Proof of Lemma 6.2] the
underlying bimodule of P can be written as the colimit of a sequence of cofibrations
of bimodules

R = P0 → P1 → · · · → Pn → · · ·
with sub-quotients of the form

Pn/Pn−1
∼= (R⊗S B/A)⊗Sn ⊗S R.

Since R and B/A are cofibrant and right stable as bimodules, so is the sub-quotient
by Lemma 2.4.3. Therefore by induction all the S-bimodules Pn are right stable
and hence so is the colimit P .

(d) Since the approximation map RH → R has the right lifting property for
T (H), the underlying S-bimodule map has the right lifting property for H. By part
(c) the naive ring spectrum RT (H) is right stable and since R is also right stable,
the approximation map is a level acyclic fibration of underlying S-bimodules by
part (a). Since R is cofibrant it follows that it is a retract of the T (H)-cell complex
RH. �

Let X and Y be S[t]-modules. Then the maps

Xp ∧ Yq → (X ∧ Y )p+q

assemble to a map
UX ⊗S UY → U(X ∧ Y )

of S-bimodules. For S-bimodules M and N the adjoint of the composition

M ⊗S N → U(WM)⊗S U(WN)→ U((WM) ∧ (WN))

yields a map
λ : W (M ⊗S N)→ (WM) ∧ (WN)

of S[t]-modules.

Proposition 3.3.12. If M and N are cofibrant S-bimodules such that M is right
stable, then the map

λ : W (M ⊗S N)→ (WM) ∧ (WN)

is a stable equivalence of S[t]-modules.
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Proof. If we fix a cofibrant bimodule M , then the target of the map λ is a left
Quillen functor in N from the left model structure of S-bimodules to the category
of S[t]-modules. If M is also right stable, then M⊗S (−) preserves πL

∗ -isomorphisms
by Lemma 2.4.2. Using the small object argument it suffices to show the case where
N = S ⊗ S. Then the map in question has the form

W (M ⊗S (S ⊗ S))
∼=−→W (M ⊗ S)→ S[t] ∧ (WM)

and there is a natural isomorphism W (M ⊗ S) ∼= V (SM) ∧ S[t]. The composite
map

S[t] ∧ V (SM)
∼=−→W (M ⊗ S) λ−→ (WM) ∧ S[t]

is the S[t]-linear extension of the map αM ∧ η : V (SM) → (WM) ∧ S[t] where η
denotes the unit of the symmetric ring spectrum S[t]. The underlying symmetric
spectrum of he source of the map λ is a countable wedge of V (SM) whereas the
target is a countable wedge of W (M). The nth component of this decomposition
is given by

V (SM) αM−−→W (M) t∧n

−−→W (M).
By Lemma 2.3.5 the map αM is a stable equivalence since M was assumed to be
cofibrant. But the the composite above is a stable equivalence if t : W (M) →
W (M) is one which is indeed the case by Corollary 2.3.4 �

The functor U from S[t]-modules to S-bimodules is (lax) monoidal and therefore
takes monoids to monoids. Since U preserves limits as a functor from S[t]-algebras
to naive ring spectra, there exists a left adjoint functor

Λ: (naive ring spectra)→ S[t]-mod

from S[t]-algebras to naive ring spectra.

Definition 3.3.13. For a naive ring spectrum R let

β : W (R)→ Λ(R)

be the S[t]-module map adjoint to the underlying S-bimodule map of the adjunction
unit R→ U(Λ(R)).

Lemma 3.3.14. If R is a cofibrant ring spectrum whose underlying S-bimodule is
right stable, then the map β : W (R) → Λ(R) is a stable equivalence of symmetric
spectra.

Proof. By Lemma 3.3.11 (d), every right stable cofibrant ring spectrum is a retract
of a T (H)-cell complex. So it suffices to show the statement for T (H)-cell complexes.
We will prove this by showing that the property of the map β being a stable
equivalence is inherited by attaching T (H)-cells. Let R be a cofibrant and right
stable naive ring spectrum for which the lemma has already been established. As
in the proof of Lemma 3.3.11 (c), let P be the pushout of a diagram of naive ring
spectra

T (A) //

��

T (B)

��

R // P

where A→ B is a wedge of maps in H and the underlying S-bimodule of P can be
written as the colimit of sequence of cofibrations of S-bimodules

R = P0 → P1 → · · · → Pn → · · ·
with sub-quotients of the form

Pn/Pn−1
∼= (R⊗S B/A)⊗Sn ⊗S R.
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Since W is a left adjoint it takes this filtration of S-bimodules to a filtration of
S[t]-modules. But Λ is a left adjoint as well, so it obtain a pushout diagram of
S[t]-algebras

Λ(T (A)) //

��

Λ(T (B))

��

Λ(R) // Λ(P ).

Moreover, Λ(T (A)) is isomorphic to T (W (A)), the tensor algebra with respect to
the smash product ∧ on the S[t]-module W (A). Again, as above, we can write Λ(P )
as the colimit of a sequence

Λ(R) = Q0 → Q1 → · · · → Qn → · · ·
of S[t]-modules with sub-quotients of the form

Qn/Qn−1
∼= (Λ(R) ∧W (B)/W (A))∧n ∧ Λ(R)
∼= (Λ(R) ∧W (B/A))∧n ∧ Λ(R).

The natural map W (P ) → Λ(P ) restricts to maps W (Pn) → Λ(Pn) which we will
prove to be weak equivalences by induction on n. For n = 0 the statement is true
by assumption. Now consider the commutative diagram

W (Pn−1)

��

// W (Pn)

��

// W ((R⊗S B/A)⊗Sn ⊗S R)

��

Qn−1
// Qn // (Λ(R) ∧W (B/A))∧n ∧ Λ(R)

in which both rows are cofibrations sequences between cofibrant S[t]-modules. The
right vertical map factors as the composite

W ((R⊗SB/A)⊗SnR)→ (W (R)∧W (B/A))∧n∧W (R)→ (Λ(R)∧W (B/A))∧n∧Λ(R).

The first map is a stable equivalence by an iterated application of Proposition 3.3.12
since all objects involved are cofibrant right stable S-bimodules. The second map
is a stable equivalence since the map W (R) → Λ(R) is a stable equivalence (by
assumption) between cofibrant symmetric spectra and since W (B/A) is cofibrant.
Applying [−, E]∗ for any symmetric spectrum E to the diagram above together with
the five-lemma shows that W (Qn) → Qn is a stable equivalence if W (Qn−1) →
Qn−1 is one, but this we assumed by induction. Now the colimit of a sequence of
cofibrations between cofibrant object models the homotopy colimit of the diagram.
Since homotopy colimits are designed to preserve weak equivalences, the map on
colimits is a stable equivalence. �

Theorem 3.3.15. Let R be a naive ring spectrum whose underlying S-bimodule
is right stable. Then there exists a fibrant symmetric ring spectrum T and a chain
of left π∗-isomorphisms of naive ring spectra between R and U(T ), the underlying
naive ring spectrum of T .

Proof. Let R be a naive ring spectrum whose underlying S-bimodule is right stable.
Lemma 3.3.11 (a) shows that the T (H)-cell approximation map RT (H) → R is a
level acyclic fibration, and by part (c) of the same lemma the approximation is
cofibrant and we may assume that R itself is cofibrant. Now let Λ(R) → Λ(R)f

be a stably fibrant replacement of Λ(R) in the stable model category structure of
S[t]-algebras. We claim that then the adjoint

R→ U(Λ(R)f)
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of the fibrant replacement map induces isomorphisms of left homotopy groups which
then finishes the proof of the theorem. We have to show that the map of underlying
S-bimodules is a left stable equivalence. By Theorem 2.3.3 the functor U is a right
Quillen equivalence when viewed as a functor from S[t]-modules to S-bimodules with
respect to the left model structure. Therefore the map is a left π∗-isomorphism if
and only if its adjoint W (R)→ Λ(R)f is a stable equivalence of S[t]-modules. But
this last map is the composite of β : W (R) → Λ(R) and the fibrant replacement
map Λ(R)→ Λ(R)f . The first map is a stable equivalence by Lemma 3.3.14 since
R was assumed to be cofibrant, and the second map is a fibrant replacement map
which is a stable equivalence by definition. �

4. Morita theory for stable model categories

In this section we apply the theory of S-bimodules and naive ring spectra to
Morita theory of stable model categories. Our main result is a generalization of a
theorem due to Schwede and Shipley. Their theorem states that a model category
whose homotopy category admits a compact generator (in the sense of triangulated
categories) is Quillen equivalent to a category of modules of a certain symmetric
ring spectrum. This is proved by replacing the model category in question Quillen
equivalently by a model category which is enriched over symmetric spectra in ho-
motopically compatible way. The symmetric ring spectrum is then obtained by
taking the enriched endomorphism object which is by definition a symmetric ring
spectrum. The process of replacing the model category by one enriched over sym-
metric spectra requires technical prerequisites: Schwede and Shipley assume the
model category to be simplicial and cofibrantly generated. Our aim is to remove
the assumptions by avoiding the replacement process and directly construct the
endomorphism ring spectrum. If one tries to construct a symmetric ring spectrum
directly, it is not a priori clear where the symmetric group actions should come
from. We therefore construct a naive endomorphism spectrum and replace it after-
wards with a symmetric one. We like to remark that even though our result is not
only a generalization of Schwede’s and Shipley’s result, it also uses a completely
different approach.

4.1. The abstract Morita theorem. In this section we give an axiomatic ap-
proach to Morita theory. We will define the notion of a Morita context for a given
object X in a stable model category and prove a Morita like theorem for the case
where X is compact in the homotopy category.

Definition 4.1.1. A Morita context for a bifibrant object X in a stable model
category consist of an Quillen adjunction

X ∧E (−) : E-mod � C : Hom(X,−)

where E is a naive ring spectrum with underlying bi-Ω-spectrum such that
(i) Hom(X,X) is stably equivalent to E as a E-module spectrum and

(ii) the natural map

[X,Y ]C
RHom(X,−)−−−−−−−−→ [RHom(X,X),RHom(X,Y )]E

is an isomorphism for all Y in Ho(C).
We call a Morita context a Morita equivalence, if the underlying Quillen pair is in
fact a Quillen equivalence.

Note that a Morita equivalence for X in particular means that homotopy cate-
gories Ho(C) and Ho(E-mod) are equivalent as triangulated categories.



38 ARNE WEINER

Remark 4.1.2. Given a Morita context for X there is an isomorphism of abelian
groups

[X,Y ]C ∼= [RHom(X,X),RHom(X,Y )]E ∼= [E,RHom(X,Y )]E ∼= π0 RHom(X,Y )

resulting from condition (ii), a choice of a stable equivalence E ' RHom(X,X)
from condition (i) and adjunction isomorphisms. Using appropriate suspensions of
Y , we obtain a natural isomorphism

π∗RHom(X,Y ) ∼= [X,Y ]C∗
of graded abelian groups. This justifies the notation Hom(X,−). When setting
Y = X it is straightforward to check that the isomorphism above is compatible
with composition in C so that we obtain an isomorphism

π∗E ∼= [X,X]C∗
of graded rings which is well defined up to inner automorphisms. Therefore we often
refer to E as the endomorphism ring spectrum of X. Under the identification of
π∗E with [X,X]∗, the isomorphism π∗RHom(X,Y ) is one of graded π∗E modules.

Before we can state the our version of the Morita theorem, we have to recall
some notions from triangulated categories.

Definition 4.1.3. Let T be a triangulated category with arbitrary coproducts. A
full triangulated subcategory of T is called localizing, if it is closed under arbitrary
coproducts. An object X in T is compact, if for any family Ai, i ∈ I, of objects in
T the natural map ⊕

i∈I
[X,Ai]→ [X,

∐
i∈I

Ai]

is an isomorphism. An object is called a generator, if the smallest localizing sub-
category containing the object is the whole category.

Now we give the main theorem of this section.

Theorem 4.1.4. Let C be a stable model category and X a bifibrant object in C

and
X ∧E (−) : E-mod � C : Hom(X,−)

a Morita context for X.
(i) If X is compact, then the localizing subcategory of Ho(C) generated by X

is triangulated equivalent the Ho(E-mod), the homotopy category of E-
modules.

(ii) If X is a compact generator of Ho(C), the Quillen adjunction between C

and E-mod is in fact a Quillen equivalence, so in particular Ho(C) and
Ho(E-mod) are triangulated equivalent.

Proof. The Quillen adjoint pair gives rise to a derived adjunction whose functors we
denote by X∧L

E (−) and RHom(X,−). By assumption RHom(X,X) = Hom(X,X)
is fibrant and E is cofibrant in E-mod, so a fixed choice of an isomorphism E ∼=
Hom(X,X) can be represented by a map ϕ : E → Hom(X,X). We show that the
adjoint map ϕ\ : X∧L

EE → X is an isomorphism as well. Consider the commutative
diagram

[Hom(X,X),Hom(X,Y )]

∼=
��

ϕ∗
// [E,Hom(X,Y )]

∼=
��

[X,Y ]
(ϕ\)∗

// [X ∧L
E E, Y ]
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where Y is an arbitrary fibrant object in C. The right vertical map is an adjunction
isomorphism, the left vertical map is an isomorphism by condition (ii) of a Morita
context, and the top horizontal map is an isomorphisms since ϕ is one by condition
(i) of the Morita context. Hence the bottom map is an isomorphism for any fibrant
Y and thus ϕ\ is an isomorphism in Ho(C). Our strategy is to show that the
adjunction unit

ε : M → RHom(X,X ∧L
E M)

is an isomorphism for all E-modules M and the counit

η : X ∧L
E RHom(X,Y )

is an isomorphism for all Y in the localizing subcategory generated by X. To do
so, it will suffice to show that ε and η are isomorphisms on E and X respectively
and both functors X ∧L

E (−) and RHom(X,−) are exact functors which preserve
coproducts. It is in general true that the derived functors of a Quillen pair of
stable model categories descend to an exact pair between the triangulated homotopy
categories. Of course X ∧L

E (−) preserves coproducts as a left adjoint. To see that
RHom(X,−) also preserves coproduct, note that X∧L

EE is compact in Ho(C) being
isomorphic to X, so that we have isomorphisms

[E,RHom(X,
∨
i

Yi)]E ∼= [X ∧L
E E,

∨
i

Yi]C

∼=
⊕
i

[X ∧L
E E, Yi]

∼=
⊕
i

[E,RHom(X,Yi)]E

∼= [E,
∨
i

RHom(X,Yi)]E

natural in E. Since E is a generator, Yoneda tells us, that there is an isomorphism

RHom(X,
∨
i

Yi) ∼=
∨
i

RHom(X,Yi)

in Ho(E-mod). Now we show that the derived adjunction counit η is an isomor-
phism on X. Consider the commutative triangle

[X,Y ]C
RHom(X,−)

//

η∗X ++WWWWWWWWWWWWWWWWWWWWWWW [Hom(X,X),RHom(X,Y )]E

∼=
��

[X ∧L
E RHom(X,X), Y ]C

in which the top horizontal map is an isomorphism by condition (ii) of a Morita
context and the right vertical by adjunction. Hence ηX induces an isomorphism for
all Y in Ho(C), so is an isomorphism itself. As already said this implies that η is an
isomorphism for all objects in the localizing subcategory generated by X, because
X ∧L

E (−) and RHom(X,−) are both exact functors that preserve sums. Finally
consider the commutative diagram

[E,RHom(X,X ∧L
E E)]E

RHom(X,ϕ\)

**UUUUUUUUUUUUUUUU

[E,E]E

(εE)∗

OO

ϕ
// [E,RHom(X,X)]E

in which the diagonal and bottom horizontal maps are isomorphisms since ϕ and
ϕ\ are. But E is a generator of Ho(E-mod) and thus εE is an isomorphism. As
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above, since X ∧L
E (−) and RHom(X,−) are exact and preserve coproducts, ε is an

isomorphism on all objects in the localizing subcategory generated by E which is
the whole category in this case. �

Now we give an examples where the Morita theorem applies.

Corollary 4.1.5. Let R be a semi-stable symmetric ring spectrum. Then there is
a Quillen equivalence

R-modΣ ' UR-mod
between the model category of symmetric R-module spectra and the category of naive
modules over the underlying naive ring spectrum U(R) of R.

Proof. Take a fibrant replacement R → R̄ which is a π∗-isomorphism since R is
assumed to be semi-stable. This implies that UR → UR̄ is a stable equivalence of
naive ring spectra. There are Quillen equivalences R-modΣ ' R̄-modΣ by [HSS00,
Theorem 5.4.5] and UR-mod → UR̄-mod by Theorem 3.2.4. Note that the model
structures on UR-mod and UR̄-mod exist since UR and UR̄ are right stable by
Lemma 2.1.20. Hence we can assume that R has an underlying Ω-spectrum. Now
let E = UR, the underlying naive ring spectrum, X = R and Hom(X,Y ) = UY .
Since fibrations and stable equivalences are in both cases defined on underlying
spectra, Hom(X,−) is a right Quillen functor. To check that we indeed have a
Morita context it remains to show that that the map [R, Y ]R∗

U−→ [UR,UY ]UR∗ is an
isomorphism for all fibrant symmetric R-modules Y . In the commutative diagram

[R, Y ]R

U

��

∼= // [S, Y ]Sp
Σ

U

��

∼= // [S0, Y0]S∗

U

��

[UR,UY ]UR ∼=
// [S,UY ]Sp ∼=

// [S0, (UY )0]S∗

all vertical maps are derived adjunction isomorphisms. Obviously we have U(Y0) =
(UY )0 so the rightmost vertical map is an isomorphisms being actually the identity.
It is well known, that R is a compact generator in R-modΣ, so the Morita Theorem
4.1.4 applies which finishes the proof. �

As another example we could use the abstract Morita theorem to reprove The-
orem 3.2.4.

4.2. Endomorphism ring spectra. Suppose that C is a stable simplicial model
category. Given a bifibrant object X we can set ω0X = X and take simplicial
loops Ωω0X which gives a fibrant though not cofibrant object. Therefore we take a
cofibrant replacement ω1X → Ωω0X. Inductively we get a sequence ωnX together
with maps ωn+1X → ΩωnX, i.e. desuspensions of X. Note that the adjoint maps
Σωn+1X → ωnX form a spectrum except that the degree is lowered rather than
raised. Formally we can consider ωX as a spectrum in the opposite category Cop

and refer to such an object as a cospectrum. For a cospectrum X we refer to the
maps Xn+1 → ΩXn as the structure maps rather than their adjoints. The dual
concept of an Ω-spectrum is therefore called an Σ-spectrum, i.e. a cospectrum such
that the adjoints ΣXn+1 → Xn of the structure maps are weak equivalences and
each ωnX is cofibrant. Given a cospectrum X and any object Y in C gives rise to
an spectrum Hom(X,Y ) given in level n by mapC(Xn, Y ) with adjoint structure
maps

map(Xn, Y )→ map(ΣXn+1, Y ) ∼= Ω map(Xn+1)
induced from the structure maps ΣXn+1 → Xn. Note that Hom(X,Y ) is an Ω-
spectrum provided Y is fibrant. This yields a functor Hom(X,−) : C → Sp as it
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is given in [SS02]. Our approach is to modify this construction to give a functor
which takes values in End(X)-modules rather than S-modules where End(X) is a
naive ring spectrum built out of ωX.

Since we do not restrict ourselves to the case of simplicial model categories we
take an axiomatic approach and assume that we have a model category with some
additional data and some properties.

Axioms 4.2.1. Let C be a closed simplicial category, i.e. (co)tensored and en-
riched over S∗, which has a model structure and a full subcategory L in which every
object is cofibrant.

(A1) The subcategory L is closed under tensors, i.e. K ∧ L ∈ L for all L ∈ L
and K ∈ S∗.

(A2) The adjoint pairs

L ∧ (−) : S∗ � C : map(L,−),

(−) ∧K : C � C : (−)K

are Quillen pairs for K ∈ S∗ and L ∈ L, and

map(−, L) : C � Sop
∗ : L(−)

is a Quillen pairs all fibrant L ∈ L.
(A3) The suspension functor Σ = (−) ∧ S1 detects weak equivalences in L.

For the rest of this section we assume that C is a model category together with
a full subcategory L which in addition is a simplicial category satisfying Axioms
4.2.1 above.

There are two cases we are interested in. The first case is that of a simplicial
model category C where L = Cc is the full sub category of cofibrant objects (this is
the example one should have in mind, see section 4.4 for details). The other example
is the case of cosimplicial objects in any model category where L is the class of so
called cosimplicial frames which we need to construct desuspension cospectra for
arbitrary model categories. See section 4.5 and 4.6 for details. By desuspension
spectrum we shall mean the following:

Definition 4.2.2. A desuspension cospectrum for a bifibrant object X in L is a
Σ-cospectrum ωX in C such that

(i) ω0X = X,
(ii) ωnX is an object in L and bifibrant for all n ≥ 0
(iii) and the structure maps ωn+1X → ΩωnX, n ≥ 0 is a fibration in C which

is a colocal equivalence with respect to L, which means that the induced
maps on mapping spaces

mapC(L, ωn+1X) ∼−→ mapC(L,ΩωnX)

are weak equivalence of simplicial sets for all L ∈ L.

Condition (iii) should be thought of a colocal version of desuspensions of X.

Remark 4.2.3. Given a cospectrum Y such that each Y n is fibrant and the struc-
ture maps Y n+1 → ΩY n of induce a weak equivalence on map(L,−) for some
L ∈ L and all n ≥ 0. This already implies that the “iterated” structure maps
Y p+q → ΩqY p do so as well. We prove this by induction on q. For q = 1 we have as-
sumed this for all p. If the claim is true for some q > 1. The map Y p+q+1 → Ωq+1Y p
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factors as Y p+q+1 → ΩY p+q → Ωq+1Y p so we have a commutative diagram

map(L, Y p+q+1) ∼ // map(L,ΩY p+q) //

∼= ��

map(L,Ωq+1Y p)
∼=��

Ω map(L, Y p+q) ∼ // Ω map(L,ΩqY p).

The left top horizontal map is a weak equivalence by the case q = 1 and the
bottom horizontal is one by induction hypotheses. So the top composite is a weak
equivalence for all p. �

In the following construction we make use of the simplicial mapping space in
cospectra. We denote the category of cospectra in C by cSp and define the simplicial
tensor of a cospectrum X and a simplicial set K in S∗ point-wise by (X ∧K)n =
Xn ∧K using the simplicial tensor on C. Then mapcSp(X,Y ) in degree n is given
by

mapcSp(X,Y )n = cSp(X ∧∆n
+, Y ).

Note that we do note require a model structure on cSp nor do we claim any homo-
topically properties of the mapping space at this point.

Construction 4.2.4. Suppose we have a bifibrant object X in C together with
a choice of a desuspension cospectrum ωX for it. We now define a graded space
End(X) by setting

End(X)n = mapcSp(shn ωX,ωX)

where shn is the usual shift, i.e. (shn Z)m = Zn+m for any cospectrum Z. In order
to endow End(X) with the structure of a naive ring spectrum, we have to define
associative multiplication maps

µp,q : End(X)p ∧ End(X)q → End(X)p+q
and a unit map

S1 → End(X)1.

First we construct the multiplication maps. For non-negative integers p and q define
µp,q as the composite

End(X)p ∧ End(X)q → mapcSp(shp+q ωX, shq ωX) ∧ End(X)q → End(X)p+q,

where the first map is the q-th shift functor on the first and the identity on the
second smash factor, and the second map the enriched composition. Now we come
to the unit map. Let ϕ : S1 → mapC(ω1X,ω0X) be the adjoint of the first structure
map S1 ∧ ω1X → ω0X of the cospectrum ωX. We have a canonical map

ev0 : mapcSp(sh1 ωX,ωX)→ mapC(ω1X,ω0X)

which is given by sending a map of cospectra to the map in degree zero. We would
like to lift the map ϕ to a map φ : S1 → mapcSp(sh1 ωX,ωX) = End(X)1 as
indicated in the diagram

mapcSp(sh1 ωX,ωX)

ev0
��

S1

φ
77

ϕ
// mapC(ω1X,ω0X).

Such a lift exists provided that the map ev0 is an acyclic fibration of simplicial sets.
This is actually the case and is proved in Corollary 4.2.7 below.

In order to prove that the evaluation map in construction 4.2.4 above is an acyclic
fibration we prove a slightly more general result.
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Proposition 4.2.5. Let X and Y be desuspension cospectra (for X0 and Y 0) in
C. Then the evaluation map

evm : mapcSp(X,Y )→ mapC(Xm, Y m)

is weak equivalence for all m ≥ 0 and a fibration for m = 0.

Proof. We first show that the statement is true for m = 0. For a cospectrum Z we
can consider the truncated cospectrum Z≤n which is given in degree k by Zk for
k ≤ n and ∗ otherwise. There is a pullback diagram

mapcSp(X≤n+1, Y≤n+1)
evn+1

//

��

mapC(Xn+1, Y n+1)

σn

��

mapcSp(X≤n, Y≤n) // mapC(Xn+1,ΩY n)

which explains how one gets from maps between cospectra truncated at n to cospec-
tra truncated at n + 1 by adding maps in degree n + 1 in a compatible way. The
right vertical map is induced by the nth structure map σn : Y n+1 → ΩY n and the
bottom map is given by the composite

mapcSp(X≤n, Y≤n) evn // map(Xn, Y n) Ω // map(ΩXn,ΩY n) // map(Xn+1,ΩY n),

where the last map is induced by the nth structure map of X. The left vertical
map is given on 0-simplices by forgetting the degree n+ 1 part of a map. From the
diagram above we see that there is an isomorphism

mapcSp(X,Y ) ∼= lim
n≥0

mapcSp(X≤n, Y≤n).

By assumption the map Yn+1 → ΩY n is a fibration, hence the right vertical map
in the diagram above is a fibration since Xn+1 is assumed to be in L. Also by
assumption the induced map is a weak equivalence, hence it is an acyclic fibration.
Since pullback preserves such maps, the left vertical map is an acyclic fibration as
well. It follows that the projection to the degree zero part

lim
n≥0

mapcSp(X≤n, Y≤n)→ mapcSp(X≤0, Y≤0)

is an acyclic fibration of simplicial sets. This map can be identified up to isomor-
phism with the evaluation at degree zero map. Now let m be any non-negative
integer. There is a commutative diagram

mapcSp(X,Y )

ev0 ∼
��

shm
//

evm

**VVVVVVVVVVVVV
mapcSp(shmX, shm Y )

ev0 ∼
��

map(X0, Y 0)

∼
��

map(Xm, Y m)

��

map(ΣmXm, Y 0) map(Xm,ΩmY 0)
∼=oo

in which the left and right lower vertical maps are induced by the canonical maps
ΣmXm → X0 and Y m → ΩmY 0 respectively. The first map is a weak equivalence
between cofibrant objects by the assumption that X is a Σ-cospectrum, hence
induces a weak equivalence on map(−, Y 0) as indicated in the diagram. If we show
that the second map induces a weak equivalence, then we know that top vertical
map is one too, since the upper left and right vertical maps are weak equivalences
by the first part of our proof. Then we can conclude, that evaluation at m is a
weak equivalence as required. So far we have reduced our problem to the task to
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show, that the lower right vertical map induced by Y m → ΩmY 0 induces a weak
equivalence on map(Xm,−) which follows from Remark 4.2.3 for p = 0 and q = m
when we set L = Xm. �

Remark 4.2.6. The cautioned reader may have noticed that in the proof above we
did not use that Y is a Σ-cospectrum as it is not needed. For the sake of simplicity
of the statement of the above Proposition we assumed that both X and Y are
desuspension cospectra, so in particular Σ-cospectra.

The following corollary completes Construction 4.2.4.

Corollary 4.2.7. The evaluation map at zero map from construction 4.2.4 is an
acyclic fibration.

Proof. Just take ωX = ωY in the Proposition above. �

Now having finished the Construction 4.2.4, it is worth to inspect the multipli-
cation on End(X) explicitly. This is done in the following

Remark 4.2.8. Let End(X) be a the ring spectrum obtained from Construction
4.2.4 for some X. Recall that the multiplication µp,q : End(X)p ∧ End(X)q →
End(X)p+q is given by

End(X)p ∧ End(X)q → mapcSp(shp+q ωX, shq ωX) ∧ End(X)q → End(X)p+q.

where the first map is essentially the shift functor shq and the second map (enriched)
composition. The evaluation at zero map relates End(X)n = map(shn ωX,ωX)
with map(ωqX,ω0X) by a weak equivalence and we want to know how multi-
plication on End(X) relates then “multiplication” on map(ω(−)X,ω0X). For the
composition part of the multiplication this is easy. There is a commutative diagram

mapcSp(shp+q ωX, shq ωX) ∧mapcSp(shq ωX,ωX) ◦ //

ev0 ∧ ev0
��

mapcSp(shp+q ωX,ωX)

ev0
��

map(ωp+qX,ωqX) ∧map(ωqX,ω0X) ◦ // map(ωp+qX,ω0X).

The shift part of the multiplication is more interesting. Consider the commutative
diagram

(4.2.1)

End(X)p ∧ End(X)q
shq

//

ev0 ∧ ev0
��

(shp+q ωX, shq ωX) ∧ End(X)q

ev0 ∧ ev0
��

map(ωpX,X) ∧map(ωqX,X)

∼
��

map(ωp+qX,ωqX) ∧map(ωqX,X)

∼
��

map(Σqωp+qX,X) ∧map(ωqX,X)
∼= // map(ωp+qX,ΩqX) ∧map(ωqX,X)

in which the lower left and right vertical maps are induced by the canonical maps
Σqωp+q → ωpX and ωqX → Ωqω0X = ΩqX and therefore are weak equiv-
alences. Taking π0 of the lower half of the square and using the isomorphism
π0 map(ωmX,ωnX) ∼= [ωmX,ωnX] we see that starting with two maps f : ωpX →
ω0X and g : ωqX → ω0X in the homotopy category, we can compose f with the
map Σqωp+qX → ωpX and adjoin it to a map ωp+qX → ΩqωpX → Ωqω0X. But
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the lower right vertical maps in the diagram above gets invertible under taking π0.
Therefore there exists a map ωp+qX → ωqX such that the resulting diagram

ωp+qX //

��

ωqX

��

g
// ω0X

ΩqωpX
Ωqf

// Ωqω0X

(4.2.2)

commutes in the homotopy category. The top row of the diagram is then the
product of f and g. As this discussion indicates, trying to define End(X)n =
map(ωnX,X) does not work, since when it comes to multiplication on End(X),
one has to invert a certain map. In fact the map in question is a fibration between
Kan sets and hence surjective. This means, that multiplication involves the choice
of a certain map. Passing to the cospectrum ωX means in this context that we fix
compatible choices for the various degrees.

We want to prove that the underlying S-module of End(X) is bistable, i.e. is a
bi-Ω-spectrum, We begin with a little lemma.

Lemma 4.2.9. The adjoint φ\ : sh1 ωX ∧S1 → ωX of the map φ of Construction
4.2.4 is a weak equivalence in each degree.

Proof. By definition of φ, we have a commutative diagram

mapcSp(sh1 ωX,ωX)

∼
��

S1

ϕ
))TTTTTTTTTTTTTT

ϕ̄
//

φ
55kkkkkkkkkkkkkk

mapcSp(sh1 ωX,Ω∞ω0X)

∼=
��

mapC(ω1X,ω0X)

so that the composite of the two right vertical map is evaluation in degree 0 map
ev0. By adjunction of the top triangle we obtain the commutative diagram

ωX

��

sh1 ωX ∧ S1
ϕ̄\

//

φ\
55kkkkkkkkkkk

Ω∞ω0X

having the adjoint of the identity ω0X → Ev0 Ω∞ω0X as right vertical map given
in degree n by the canonical map ωnX → Ωnω0X coming from the structure maps
of ωX. By definition of ϕ̄ we obtain (using the fact that Ev0 is left adjoint to Ω∞)
a commutative diagram

ωn+1X ∧ S1 τ //

��

S1 ∧ ωn+1X
φ\

n // ωnX

��

Ωn(ω1X ∧ S1) Ωnτ // Ωn(S1 ∧ ωnX)
Ωn(σ1)\

// Ωn(ω0X).

By adjoining again we get that Sn ∧ φ\n is weakly equivalent to (σ1)\ since both
sh1 ωX ∧ S1 and ωX are Σ-cospectra, so the adjoints of their structure maps, oc-
curring as vertical maps in the diagram above, are weak equivalences. In particular
(σ1)\ is a weak equivalence and so is Sn ∧ φ\n by 2-out-of-3. But the latter map
is a map in L and we assumed in Axioms 4.2.1 (A3) that suspension detects weak
equivalences in L. Hence φ\n is itself a weak equivalence. �
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We want to show that the naive ring spectrum End(X) has a bi-Ω-spectrum as
underlying S-bimodule. When working out the adjoints of the structure maps we
will make frequent use of the following simple result from enriched category theory.

Suppose D be a closed C-module category, where C is a closed symmetric monoidal
category with product ∧ and internal function object Hom(A,B) for A and B in C,
cotensor Hom(A,X) and tensor A∧X for X in D. Also denote by Hom(X,Y ) the
enriched function object in C for X and Y in D. Given a map λ : A ∧X → Y , we
can form the two adjoints λ\ : A → Hom(X,Y ) and λ[ : X → Hom(A, Y ). Then
we have the

Lemma 4.2.10. In the situation above

(a) the adjoint of the map

A ∧Hom(Y,Z) λ\∧id−−−−→ Hom(X,Y ) ∧Hom(Y, Z) ◦−→ Hom(X,Z)

fits into the commutative diagram

Hom(Y,Z) //

λ∗ ))SSSSSSSSS
Hom(A,Hom(X,Z))

∼=
��

Hom(A ∧X,Z),

(b) and the adjoint of the composite

Hom(Z,X) ∧A id∧λ\

−−−−→ Hom(Z,X) ∧Hom(X,Y ) ◦−→ Hom(Z, Y )

fits into the commutative diagram

Hom(Z,X) //

λ[
∗ ��

Hom(A,Hom(Z, Y ))

∼=
��

Hom(Z,Hom(A, Y ))
∼= // Hom(Z ∧A,X).

Proposition 4.2.11. Given a desuspension spectrum ωX for a bifibrant object X
in L, the endomorphism spectrum End(X) obtained from ωX by Construction 4.2.4
has an underlying bi-Ω-spectrum.

Proof. We start with the right action on End(X). Consider the following diagram

End(X)n ∧ S1

id∧φ
��

∼
ev1 ∧ id

// map(ωn+1X,ω1X) ∧ S1

id∧ϕ
��

End(X)n ∧ End(X)1

µn,1
��

∼
ev1 ∧ ev0 // mapC(ωn+1X,ω1X) ∧mapC(ω1X,ω0X)

◦
��

End(X)n+1 ∼
ev0 // mapC(ωn+1X,ω0X)

in which the upper square commutes by the construction of φ and ϕ and the lower
square by the definition of the multiplication map µn,1 of End(X). Note that the
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horizontal maps are all weak equivalences since the evaluation maps are acyclic fi-
brations by Corollary 4.2.7 and smashing with simplicial sets preserves weak equiva-
lences. By adjunction we obtain from the outer square another commutative square

End(X)n

��

ev1

∼ // mapC(ωn+1X,ω1X)

��

Ω End(X)n+1
Ω ev0

∼ // Ω mapC(ωn+1X,ω0X)

in which the horizontal maps are still weak equivalences since Ω preserves acyclic
fibrations. Our task is to prove that the left vertical map is a weak equivalence
which is the case if and only if the right vertical map is one. The right vertical map
is given by the composite

map(ωn+1X,ω1X)
map(−,ω0X)

// map
(

map(ω1X,ω0X),map(ωn+1X,ω0X)
)

ϕ∗
��

Ω map(ωn+1X,ω0X).

A short diagram chase shows that the map above fits into the following commutative
square

map(ωn+1X,ω1X)

σ1
∗

��

// Ω map(ω1X,ω0X)

∼=
��

map(ωn+1X,Ωω0X)
∼= // map(S1 ∧ ωn+1X,ω0X),

where σ1 : ω1X → Ωω0X is the first structure map of ωX (from which ϕ is ob-
tained by two adjunctions), and two remaining maps in the diagrams are adjunction
isomorphisms. Part (ii) of Definition 4.2.2 of a desuspension cospectrum ensures
that σ1 induces a weak equivalence on map(ωn+1X,−). We conclude that the map
in question is a weak equivalence which completes the proof that End(X) is a right
Ω-spectrum.

Now we turn to the left S-module structure of End(X). For this we consider the
diagram

S1 ∧ End(X)n

φ∧id
��

∼
id∧ ev0 // S1 ∧map(ωnX,ω0X)

φ∧id
��

End(X)1 ∧ End(X)n

µ1,n

��

∼
id∧ ev0 // mapcSp(sh1 ωX,ωX) ∧mapC(ωnX,ω0X)

��

End(X)n+1 ∼
ev0 // mapC(ωn+1X,ω0X),

in which the lower right vertical map is given by composing

End(X)n ∧mapC(ωnX,ω0X)
evn ∧ id

// mapC(ωn+1X,ωnX) ∧mapC(ωnX,ω0X)

with the enriched composition map. Note that the left vertical composite is actually
(evn φ∧ id) composed with enriched composition and the adjoint of evn φ is (φ\)n,
the degree n part of the adjoint of φ. Since we consider, as in case of the right
structure, the adjoint of the outer square, the resulting map on the right hand side,
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by Lemma 4.2.10, turns out to be the composite

mapC(ωnX,ω0X)
(φ\

n)∗
// mapC(S1 ∧ ω1+nX,ω0X) ∼= Ω mapC(ω1+nX,ω0X).

By Lemma 4.2.9 the degree n part of the adjoint φ\ : S1 ∧ sh1 ωX → ωX of φ is a
weak equivalence. Therefore the adjoints of the left structure maps of End(X) are
weak equivalences as well, which completes the proof. �

4.3. Morita contexts. We now construct a Morita context for a (bifibrant) object
X in L. As in case of the construction of endomorphism ring spectra we take an
axiomatic point of view. More precisely we assume that we are given a desuspension
cospectrum ωX for X and then define Hom(X,−) in a quite similar fashion as we
did with End(X).

Construction 4.3.1. Suppose we are given a desuspension cospectrum ωX for a
bifibrant object X in C. Using Construction 4.2.4 we obtain an naive ring spectrum
End(X). First we construct the functor Hom(X,−) : C → End(X)-mod. For any
object Y we define Hom(X,Y ) in degree n by

Hom(X,Y )n = mapC(ωnX,Y )

obtaining a graded space. We have to show that Hom(X,Y ) is in fact a (left)
module over End(X) for which we have to provide a associative and unital maps

αp,q : End(X)p ∧Hom(X,Y )q → Hom(X,Y )p+q.

These are obtained by composing the map

End(X)q ∧Hom(X,Y )q
evq ∧ id

// mapC(ωp+qX,ωqX) ∧mapC(ωqX,Y )

with the enriched composition. It is clear from the definition of the multiplication
of End(X) that these maps are associative and unital. For the behavior on maps we
just note that mapC(ωnX,−) is a functor by birthright. The functor Hom(X,−)
has a left adjoint, denoted by X ∧End(X) (−), and which is given by coequalizer of
the diagram ∨

p,q≥0

ωp+qX ∧ End(X)p ∧ Yq ⇒
∨
n≥0

ωnX ∧ Yn

in which the upper map is induced by the left action of E on Y and the lower by
composing

ωp+qX ∧ End(X)p ∧ Yq shq

−−→ mapcSp(shp+q ωX, shq ωX) ∧ Yq
with

ωp+qX ∧mapcSp(shp+q ωX, shq ωX) ∧ Yq ev0−−→ ωp+qX ∧mapC(ωp+qX,ωqX) ∧ Yq
and the formal evaluation map

ωp+qX ∧mapC(ωp+qX,ωqX) ∧ Yq → ωqX ∧ Yq.
As expected we obtain a Quillen pair. Note that the stable model structure on

End(X)-mod exists since End(X) is right stable by Proposition 4.2.11.

Lemma 4.3.2. The adjoint pair X ∧ (−) : End(X)-mod � C : Hom(X,−) ob-
tained from Construction 4.3.1 applied to a desuspension spectrum is a Quillen
adjoint pair.
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Proof. Each ωnX is in L and hence mapC(ωnX,−) preserves (acyclic) fibrations.
Since the stable acyclic fibrations in the stable model structure of End(X)-modules
are level acyclic fibrations, the functor Hom(X,−) preserves acyclic fibrations. By a
criterion of Dugger (see [Dug01, A.2]) it remains to show that it preserves fibrations
between fibrant objects. In order to show this we first show that Hom(X,−) maps
fibrant objects to Ω-spectra. Again since ωnX is cofibrant, mapC(ωnX,Y ) is fibrant
for each X. To see this note, that the adjoint mapC(ωnX,Y )→ Ω mapC(ωn+1X,Y )
of the n-th structure map

S1 ∧Hom(X,Y )n
φ∧id

// End(X)1 ∧Hom(X,Y )n
α1,n

// Hom(X,Y )1+n

is up to the adjunction isomorphism Ω mapC(ωn+1X,Y ) ∼= mapC(S1 ∧ ωn+1X)
induced by the degree n part of φ\ which is a weak equivalence by Lemma 4.2.9.
Hence the induced map is a weak equivalence too and Hom(X,Y ) is an Ω-spectrum
and therefore fibrant in the stable model structure of End(X)-modules. Now sup-
pose Y → Z is a fibration between fibrant objects in C. We know that the induced
map on Hom(X,−) = mapC(X,−) is a level fibration. We factor it into a acyclic
stable cofibration i : Hom(X,Y )→W and a stable fibration p : W → Hom(X,Z).
As we showed above Hom(X,Z) is fibrant and hence W is fibrant too. Therefore i is
an acyclic cofibration between Ω-spectra, thus a level equivalence. But this means
that i is an acyclic cofibration in the level model structure and therefore has the
right lifting property with respect to the level fibration Hom(X,Y )→ Hom(X,Z).
From this we see that Hom(X,Y ) → Hom(X,Z) is a stable fibration as retract of
the stable fibration p which finishes the proof. �

Theorem 4.3.3. Given a desuspension spectrum ωX for a bifibrant object X in
L, there exists a Morita context.

Proof. From Construction 4.2.4 we obtain a naive ring spectrum E = End(X) which
has an underlying bi-Ω-spectrum by Proposition 4.2.11. Construction 4.3.1 gives
us an adjunction with right adjoint Hom(X,−) : C→ E-mod with Hom(X,Y )n =
mapC(ωnX,Y ) and End(X)n = mapcSp(shn ωX,ωX). We know from 4.2.5 that
the evaluation map

ev0 : mapcSp(shn ωX,ωX) ∼−→ mapC(ωnX,X)

gives a level equivalence End(X) → Hom(X,X) of graded spaces. It is immediate
from the definitions that this map is compatible with the End(X)-module structure
so that we have a stable equivalence of End(X)-modules as required by part (i) of
the definition of a Morita context. For part (ii) we consider the composite

[X,Y ]C → [Hom(X,X),Hom(X,Y )] ∼= [E,Hom(X,Y )]E ∼= [S,Hom(X,Y )]Sp

sending the class of a map f : X → Y to the class of the composite

S
ι−→ E

ϕ−→ Hom(X,X)
f∗−→ Hom(X,Y ),

where we wrote E for End(X) and assumed, for the sake of simplicity and without
loss of generality, that Y is fibrant. Here ι : S → E is the unit of the naive ring
spectrum E and ϕ the evaluation at 0 map. The composition of these two should
be though of as “selecting the identity” in Hom(X,X). Indeed, if one considers
this map in spectrum level zero, the resulting composite

S0 → mapcSp(sh0 ωX,ωX)→ mapC(ω0X,X)

is the map adjoint to the 0th structure map of the cospectrum ωX, which is, up
to coherence unit isomorphism, the identity on ω0X = X. The upshot of this



50 ARNE WEINER

discussion is that, using the adjunction isomorphism, evaluation at level zero of a
spectrum gives isomorphisms

[S,Hom(X,Y )]Sp
∼=−→ [S0,mapC(ω0X,Y )]S∗

∼=−→ [X,Y ]C

sending the composite S ι−→ E
ϕ−→ Hom(X,X)

f∗−→ Hom(X,Y ) given above back to
f . Now the 2-out-of-3 property for isomorphisms shows that

[X,Y ]C
RHom(X,−)−−−−−−−−→ [RHom(X,X),RHom(X,Y )]

is in fact an isomorphism as required. �

4.4. The simplicial case. As promised in Section 4.2 we ensure the existence of
desuspension spectra in a stable simplicial model category C. For the rest of this
section we fix a stable simplicial model category C and set L = Cc to be the full
subcategory of cofibrant objects. Being a simplicial model category, it is immediate
that C satisfies (A1) and (A2) from Axioms 4.2.1. Axiom (A3) follows from the
stability of the model structure on C.

Lemma 4.4.1. Given a bifibrant object X in a simplicial stable model category C.
Then there exists a desuspension spectrum ωX for X.

Proof. We define a cospectrum ωX by setting ω0X = X and inductively ωnX by
the factorization

∗ // // ωn+1X
∼ // // ΩωnX

of the unique map from the zero object to the loop object of ωnX by a cofibration
followed by an acyclic fibration. We claim that we have constructed a desuspension
cospectrum in the sense of Definition 4.2.2. By definition we have ω0X = X so
condition (i) holds. We assumed X to be bifibrant. By definition ωnX is cofibrant.
If ωnX is fibrant, so is ΩωnX and hence is ωn+1X since the map ωn+1X → ΩωnX
is a fibration which proves part (ii) and the first statement of part (iii). The
second half of part (iii) holds since the above mentioned map is actually an acyclic
fibration which induces an acyclic fibration on the mapping spaces in question of
our simplicial model category since ωnX is cofibrant. By stability of C the adjoints
of the structure maps of ωX are weak equivalences and so ωX is in fact a Σ-
cospectrum. �

Putting everything together we have proved the following Morita theorem for
compactly generated stable simplicial model categories.

Theorem 4.4.2. For any stable simplicial model category C with a compact gen-
erator X, there exist a Morita equivalence

X ∧E (−) : E-mod � C : Hom(X,−)

and thus C is Quillen equivalent to a category of modules over a symmetric ring
spectrum.

Proof. Under our assumptions there exists by Proposition 4.6.1 a desuspension
cospectrum for X. By Theorem 4.3.3 we have a Morita context for X. Since X
is assumed to be compact we can apply Theorem 4.1.4 to see that we actually
have a Morita equivalence. Finally there exist a fibrant symmetric ring spectrum
R together with a weak equivalence E → U(R) by Theorem 3.3.15. Therefore the
invariance Theorem 3.2.4 implies that E-mod is Quillen equivalent to U(R)-mod
which is in turn Quillen equivalent to R-modΣ by Corollary 4.1.5. �
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4.5. Frames and stable frames. Now we turn to the case of an arbitrary model
category. In order to have mapping spaces available we have to discuss cosimplicial
(stable) frames.

Suppose C is any pointed model category. Given a cosimplicial object X in C we
can consider the simplicial set

n 7→ C(Xn, Y )

for any Y ∈ C. This construction is natural in Y , so we have a functor

C(X,−) : C→ S∗

and we can ask under which circumstances this is a right Quillen functor. First of
all we need a left adjoint. Since X is itself a functor ∆→ C, we can define a functor

X(−) : S∗ → C

to be the left Kan extension (see [ML98, X.3]) of X along the standard cosimplicial
space ∆: ∆ → S∗ ( sending n to the simplicial set ∆n

+). A way to describe X(−)
evaluated on a simplicial set K is the coend

X(K) =
∫ n∈∆

Xn ∧Kn.

This functor turns out to be left adjoint to the one we described above. We ask
under which conditions this is a Quillen functor. Assuming that it is a Quillen
functor it must preserve weak equivalences between cofibrant objects. In particular
the weak equivalences ∆n

+ → ∆0
+ must be mapped to weak equivalences Xn → X0

and each Xn must be cofibrant. From this we see that all structure maps of X must
be weak equivalences. Further the map X ∧∂∆n

+ → X ∧∆n
+ must be a cofibration.

It turns out that these conditions are not only necessary but in fact sufficient.

Definition 4.5.1. A cosimplicial object X in a model category C is Reedy cofibrant
if each Xn is cofibrant and the map X ∧ ∂∆n

+ → X ∧∆n
+ is a cofibration. A map

f : X → Y of cosimplicial objects is a Reedy cofibration if the map

X ∧∆n
+ ∪X∧∂∆n

+
Y ∧ ∂∆n

+ → Y ∧∆n
+

is a cofibration in C for all n ≥ 0. A cosimplicial frame X is a Reedy cofibrant cosim-
plicial object X which is homotopically constant in the sense that every structure
map Xm → Xn is a weak equivalence.

Example 4.5.2. Let K be a pointed simplicial set. Then K ∧∆n
+ is a cosimplicial

object in simplicial sets for varying n. This is always a cosimplicial frame in S∗
since S∗ is a simplicial model category and therefore K∧(−) is a left Quillen functor
since every simplicial set is cofibrant.

Theorem 4.5.3. Let C be a model category. The category C∆ of cosimplicial
objects in C admits a model structure with weak equivalences the level equivalences,
cofibrations the Reedy cofibrations and fibrations the maps with the right lifting
property with respect to acyclic Reedy cofibrations.

Proof. For a proof see [Hov99, Theorem 5.2.5]. �

The advantage of C∆ compared to C is, that we have a closed simplicial category.

Definition 4.5.4. If X is a cosimplicial object in C and K a pointed simplicial set,
we define a cosimplicial object X ∧K by setting

(X ∧K)n = X ∧ (K ∧∆n
+)
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with the structure maps induced by ∆(−). In the special case where K = S1 we
denote X ∧ S1 by ΣX and call it the suspension of X. For cosimplicial objects X
and Y in C we define mapC∆(X,Y ) to be the simplicial set given in degree n by

mapC∆(X,Y ) = C∆(X ∧∆n
+, Y )

and refer to it as the simplicial mapping space of X and Y .

Lemma 4.5.5. Let C be a pointed model category.

(i) For any simplicial set K the functor (−) ∧ K preserves (acyclic) Reedy
cofibrations and level equivalences between Reedy cofibrant objects. In par-
ticular so does the suspension functor Σ = (−) ∧ S1.

(ii) If X is a cosimplicial frame, then C(X,−) takes (acyclic) fibrations to
(acyclic) fibrations in S∗.

(iii) If Y is a fibrant object in C, then the functor C(−, Y ) takes (acyclic) Reedy
cofibrations to (acyclic) fibrations of simplicial sets and level equivalences
between Reedy cofibrant objects to weak equivalences of simplicial sets.

Proof. (i) For a map f : X → Y of cosimplicial objects the map

(X ∧K) ∧∆n
+ ∪(X∧K)∧∂∆n

+
(Y ∧K) ∧ ∂∆n

+ → (Y ∧K) ∧∆n
+

in C is isomorphic to the pushout product f� i where i is the inclusion K∧∂∆n
+ →

K ∧∆n
+. If f is a Reedy cofibration, f � i is one in C. Hence X ∧K → Y ∧K is

a cofibration by [Hov99, 5.7.1]. In cosimplicial degree n the map f ∧K is given by
f ∧ (K∧∆n

+). So if f is a Reedy acyclic cofibration, then f ∧ (K∧∆n
+) is an acyclic

cofibration in C. Thus f ∧K is also a level equivalence. By Ken Browns Lemma
[Hov99, 1.1.12] suspension preserves level equivalences between Reedy cofibrant
objects. If X is a cosimplicial frame, X ∧ (−) preserves acyclic cofibrations by
[Hov99, 5.7.2] so in particular the acyclic cofibration K ∧∆n

+ → K ∧∆0
+ and hence

(X ∧K)n → (X ∧K)0 is a weak equivalence and X homotopically constant. Since
K is cofibrant we know that X ∧K is Reedy cofibrant from what we have already
proved above.

(ii) and (iii) This follows from [Hov99, Proposition 5.7.1] and adjointness and
Ken Browns Lemma as above. �

We would like to have that the constant object functor from C to C∆ is a Quillen
equivalence, so we could apply Construction 4.2.4 to obtain our endomorphism
ring spectrum. But one can only expect that the full subcategory of homotopically
constant objects in the homotopy category of C∆ is equivalent to the homotopy
category of C itself. One could of course try to localize the Reedy model structure
of C∆ such that the fibrant objects are exactly the homotopically constant Reedy
fibrant objects which is the approach in [RSS01]. But to do so one needs again
technical assumptions, which is for localization at least cofibrantly generated, we
are trying to get rid of. But even if this localized model structure does not exists
as a honest model structure, part of the axioms are true. And since we are always
starting with homotopically constant objects (in fact honestly constant objects) all
properties we need are satisfied.

For the next result note that evaluating a cosimplicial object in degree zero is
right adjoint to taking constant simplicial objects. To see this recall that taking
colimit is left adjoint to the constant diagram functor and since ∆ has [0] as terminal
object taking colimit equals evaluation at 0.

Proposition 4.5.6. The adjoint pair

ev0 : D∆ � D : c(−)
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is a Quillen functor between the Reedy model structure on D and D itself. More-
over the derived adjunction restricts to an equivalence between Ho(D) and the full
subcategory of homotopically constant objects in Ho(D∆).

Proof. Since Reedy cofibrations are in particular level cofibrations and Reedy weak
equivalences are level equivalences by definition, it is immediate that ev0 preserves
(acyclic) cofibrations. Hence we have a Quillen functor.

We consider the derived adjunction counit. For this let X be Reedy cofibrant
and take a fibrant replacement X0 → X0

f of X0 in D. The adjoint X → c(X0
f )

is a model for the derived adjunction unit and a weak equivalence if and only if
X is homotopically constant. So the derived adjunction unit is an isomorphism
only on homotopically constant object. Now let Y be a fibrant object in D and
take a Reedy cofibrant replacement (cY )c → cY . The adjoint modeling the derived
adjunction counit is just a cofibrant replacement (cY )0

c → Y of Y in D so always a
weak equivalence. �

It turns out that the suspension functor is compatible with the equivalence be-
tween homotopically constant objects and objects in D.

Lemma 4.5.7. The derived suspension functor LΣ on cosimplicial objects in a
stable model category is fully faithful on homotopically constant objects, i.e. for
homotopically constant objects X and Y the map

LΣ: [X,Y ]→ [LΣX,LΣY ]

is an isomorphism.

Proof. We may assume that X is Reedy cofibrant and Y Reedy fibrant. Denote by
(ΣY )f a Reedy fibrant replacement of ΣY . There is a commutative diagram

[X,Y ] LΣ //

ev0
��

[ΣX, (ΣY )f ]

ev0
��

[X0, Y 0] LΣ // [ΣX0, (ΣY )0
f ],

where we used that (ΣZ)0 = Σ(Z0) and so (ΣY )0
f is a fibrant replacement for Σ(Y 0).

By the stability assumption on C the bottom horizontal map is an isomorphism.
By Proposition 4.5.6 above the vertical maps are isomorphisms. Hence the top
horizontal map is an isomorphism as required. �

Recall from the discussion at the beginning of this section that given a cosim-
plicial object X in C there is an associated functor X ∧ (−) : S∗ → C. Evaluating
such a functor on the standard simplices ∆n on the other hand gives a cosimplicial
object. Recall that the functor X(−) is a left Quillen functor if and only if X is a
cosimplicial frame.

Proposition 4.5.8. The category C∆ of cosimplicial objects in a stable model cat-
egory C equipped with the Reedy model structure satisfies Axioms 4.2.1 where L is
defined to be the class of cosimplicial frames, i.e. the Reedy cofibrant and homotopi-
cally constant objects.

Proof. In order to not get confused let us denote the category of cosimplicial objects
C∆ in C by D. For a simplicial set K we have defined a cosimplicial object X∧K in
Definition 4.5.4 above. In order to prove Axiom (A1) we have to show that X ∧K
is a cosimplicial frame. But this is the case if and only if the associated functor
(X ∧K)(−) : S∗ → C is a left Quillen functor. But we can write (X ∧K)(−) as the
composite X(K ∧ (−)) of the left Quillen functors X(−) and K ∧ (−).
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For (A2) assume that X is a cosimplicial frame in C. Consider the cosimplicial
object in D obtained by sending n toX∧∆n

+ (a bicosimplicial object in C). We claim
that the associated functor (X ∧∆+)(−) : S∗ → D is a Quillen functor and hence
X ∧∆+ a cosimplicial frame in D. But there is an isomorphisms (X ∧∆+)(K)) ∼=
X(∆+(K)) which is natural in K and the functor ∆+(−) is the identity functor on
simplicial sets. Now the claim follows from the fact that X(−) is a Quillen functor.
Recall that for cosimplicial objects in X and Y in C the simplicial mapping space
map(X,Y ) is given by

mapD(X,Y ) = D(X ∧∆+, Y )

and so Lemma 4.5.5 (ii) applies to show that mapD(X,−) is a right Quillen functor
on the Reedy model structure on D = C∆. Part (iii) of the same lemma ensures
that for Reedy fibrant Y the functor mapD(−, Y ) is a right Quillen functor and for
the functor (−) ∧K we use part (i).

Finally for (A3) note that a map between cosimplicial frames lives in the full
subcategory of homotopically constant objects in the homotopy category of cosim-
plicial objects in C. But this subcategory is equivalent to the homotopy category of
the stable model category C by Proposition 4.5.6. In the first part of the proof we
saw that ΣX = X ∧ S1 is a cosimplicial frame if X is. So the suspension functor
on D restricts to homotopically constant objects and the degree 0 part of ΣX is
a model for the suspension of the object X0. Hence by stability of C a map be-
tween cosimplicial frames is a weak equivalence if and only if the suspended map is
one. �

Lemma 4.5.9. Let X be a Reedy fibrant cosimplicial frame and ϕ : ΣX → Y be
a Reedy fibrant replacement of the cosimplicial frame ΣX. Then the adjoint map
ϕ\ : X → ΩY induces a weak equivalence of simplicial sets

map(Z,X)→ map(Z,ΩY )

for any cosimplicial frame Z.

Proof. Consider the commutative diagram

map(Z,X)
(ϕ\)

//

Σ
��

map(Z,ΩY )
∼=

��

map(ΣZ,ΣX)
ϕ

// map(ΣZ, Y )

in which the right vertical map is an adjunction isomorphism. If we apply π0 to
the above diagram, we obtain that the resulting composite of the left vertical map
with the bottom map models the derived suspension functor

LΣ: [Z,X]→ [ΣZ,ΣX] = [ΣZ, Y ]

which is an isomorphism by Lemma 4.5.7. The left vertical maps of course remains
an isomorphism under application of π0 and hence the map (ϕ\)∗ : map(Z,X) →
map(Z,ΩY ) induces an isomorphism on π0 for any cosimplicial frame Z. Hence for
any suspension of Z. Using the the isomorphism π0 map(ΣnZ,X) ∼= πn map(Z,X)
we conclude that map(Z,X)→ map(Z,ΩY ) induces isomorphisms on πn for n ≥ 0
and so is a weak equivalence of simplicial sets as required. �

The following result is essentially taken from [SS02, Lemma 6.4] where a slightly
stronger result is given. We give it in the version sufficient for our purposes and
give the proof for the sake of completeness of our treatment.
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Lemma 4.5.10. For any Reedy fibrant cosimplicial frame Y in a stable model
category C there exists a Reedy fibrant cosimplicial frame X and a weak equivalence
ΣX → Y such that its adjoint X → ΩY is a Reedy fibration.

Proof. Since C is stable, there exists a cofibrant object Z0 in C such that Σ(Z0) ∼=
Y 0 in Ho(C). Let Z be Reedy cofibrant replacement of cZ0 the constant cosimplicial
object on Z0. By [Hov99, Chapter 5.2] this can be done by a map having the
identity in degree zero which justifies our notation. Note that (ΣZ)0 is a model for
the suspension of Z0, so we have an isomorphism (ΣZ)0 ∼= Σ(Z0) ∼= Y 0 in Ho(C).
Because (ΣZ)0 is cofibrant in C and Y 0 fibrant in C (for Y was assumed to be Reedy
fibrant), this isomorphism can be realized by a weak equivalence (ΣZ)0 ∼−→ Y 0. By
adjunction we obtain a map ΣZ ∼−→ cY 0 which is a level equivalence since ΣZ
is homotopically constant. Recall that for the homotopically constant and Reedy
fibrant Y the canonical map Y → cY 0 adjoint to the identity on Y 0 is an acyclic
Reedy fibration. Now ΣZ is Reedy cofibrant and thus we can find a lift in the
diagram

Y

∼
����

ΣZ

ϕ̄
;;

∼ // cY 0

as indicated. By 2-out-of-3 we know that ϕ̄ is also a Reedy weak equivalence. But
we do not know whether the adjoint Z → ΩY is a Reedy fibration. We factor this
map

Z // ∼ // X // // ΩY

by an acyclic cofibration followed by a fibration. Since Σ preserves acyclic cofibra-
tions, adjoining back yields

ΣZ // ∼ // ΣX
ϕ

// // Y.

The composite is of course ϕ̄, so by 2-out-of-3 ϕ is a weak equivalence and we found
a map as required. To finish the proof note that ΩY is Reedy fibrant, which implies
that X is Reedy fibrant, too. �
4.6. The general case. To prove the Morita theorem in general, i.e. for an arbi-
trary stable model category (which is not simplicial) we consider cosimplicial frames
and desuspension cospectra of those which might be called stable frames. In order
to avoid confusion we fix an arbitrary model category D. We set C to be D∆ the
category of cosimplicial objects in D. This was shown to be closed simplicial cat-
egory admiting a model structure which with L as the class of cosimplicial frames
satisfies Axioms 4.2.1. Now it remains to take a cosimplicial frame on the com-
pact object X in D and build a desuspension cospectrum on a chosen cosimplicial
frame and apply our axiomatic theory of Morita contexts. We begin ensuring the
existence of desuspension cospectra for cosimplicial frames.

Proposition 4.6.1. For any bifibrant cosimplicial frame X in D∆ there exists a
desuspension spectrum ωX.

Proof. Inductively, using Lemma 4.5.10, we obtain Reedy fibrant cosimplicial frames
ωnX together with weak equivalences Σωn+1X → ωnX such that the adjoints
ωn+1X → ΩωnX are fibrations. In this way we obtain a fibrant Σ-cospectrum
in cosimplicial objects such that each ωnX is a fibrant cosimplicial frame. By
Lemma 4.5.9 the structure map ωnX → Ωωn+1X induces a weak equivalence
map(Z, ωnX) ∼−→ map(Z,Ωωn+1X) for any cosimplicial frame Z. Altogether we
have constructed a desuspension cospectrum for X. �
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Theorem 4.6.2. Let D be any stable model category and X a bifibrant compact
object in it. Then there exists a Morita context for X.

Proof. Let ω0X be a fibrant choice of a cosimplicial frame on X. Then there exists
a desuspension cospectrum ωX for ω0X by Proposition 4.6.1. Now by Theorem
4.3.3 applied to ωX and the category D∆, there exist a Morita context for ω0X
with a naive ring spectrum which we denote End(X) rather than by End(ω0X) or
even by E for the sake of simplicity of notation. There is a natural isomorphism

mapD∆(ωnX, cY ) ∼= mapD(ωnX0, Y )

of simplicial sets for any Y in D. The adjoint pair

(−)0 : D∆ � D : c(−)

composed with the Morita context

X ∧End(X) (−) : End(X)-mod � D∆ : Hom(X,−) = mapD∆(ω∗X,−)

from Construction 4.3.1 gives a Morita context for X between D and End(X)-
mod, where we used Proposition 4.5.6 to verify conditions (i) and (ii) for a Morita
context. This finishes the proof. �

Theorem 4.6.3. For any stable model category D with a compact generator X,
there exist a Morita equivalence

X ∧E (−) : E-mod � D : Hom(X,−)

and thus D is Quillen equivalent to a category of modules over a symmetric ring
spectrum.

Proof. Of course we apply the abstract Morita theorem 4.1.4 to the Morita context
just obtained in Theorem 4.6.2 above. Now we can replace the obtained naive
endomorphism ring spectrum End(X) by a symmetric one as done in the proof of
Theorem 4.4.2. �
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