
THE SELBERG TRACE FORMULA

EDGAR ASSING

Abstract. In this course, taught at the University of Bonn in the winter term
24/25, we discussed Selberg’s trace formula. Note that these notes may contain
typos and misunderstandings, for which I take full responsibility. For personal
use only!

1. Introduction

Selberg developed his trace formula in [Se] as a natural non-commutative gen-
eralization of the Poisson summation formula. More than seventy years after its
invention there exists a vast amount of literature on Selberg’s trace formula (and
probably even more on its generalizations). In these lectures we will mostly rely
on the following:

• A extensive account that also includes some of Selberg’s unpublished results
is given in [He76,He83].
• A nice survey containing many interesting results is given in [Ve].
• For background on the spectral theory of automorphic forms we will often

refer to [Iw].

But what is the trace formula all about? It is impossible to summarize this in a
view words, but classically we can paint the following picture. Let X be compact
Riemannian surface of (constant) negative curvature. The geometry of this space
gives rise to the geodesic flow. This is a (physical) dynamical system describing
the classical world and many interesting questions are connected with it. On the
other hand we have the Laplace-Beltrami operator ∆X acting on functions on X.
The spectral data of this operator describes the quantum world. Many difficult
problems surround the eigenvalues and eigenfunctions of ∆X . The trace formula
can be seen as a bridge between classical and quantum world. One side of the
formula sees the spectral data of ∆X , while the other one sees the geometry of X.
Applications go both ways.

In these lectures we plan to cover the following topics:

• The trace formula for compact quotients of the upper half plane.
This part of the course includes the necessary background concerning hy-
perbolic geometry and Fuchsian groups, spectral theory of the Laplace-
Beltrami operator and a careful development of the trace formula.
• First applications. We will discuss Weyl laws, the prime geodesic theo-

rem and the Selberg zeta function.
1
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• The trace formula for SL2(Z)\H. This space is non-compact so that
we have to revisit the spectral theory, which now features Eisenstein series.
Also the development of the trace formula is more complicated and requires
some regularization (or truncation).

We will not cover the trace formula beyond SL2(R). In particular, we will not
discuss any form of Arthur’s trace formula and we can also not cover applications
that rely on the comparison of different trace formulae. Furthermore, we will
stick to the classical set-up and not talk about the adelic formulation of the trace
formula.

We will end this introduction by discussing three examples.

1.1. Example A: The abstract trace formula. Let H be a unimodular locally
compact group.1 Further, let Γ ⊆ H be a discrete subgroup.2 We consider the
Hilbert space L2(Γ\H) with respect to the Haar measure. We define the action

[Rhφ](x) = φ(xg) for h ∈ H, x ∈ Γ\H and φ ∈ L2(Γ\H).

Note that by invariance of the measure the inner product satisfies

〈Rhφ,Rhψ〉 =

∫
Γ\H

φ(xh)ψ(xh)dx =

∫
Γ\H

φ(x)ψ(x)dx = 〈φ, ψ〉.

In other words, R is a unitary representation of H on L2(Γ\H).3 A fundamental
problem in harmonic analysis (or representation theory) is to decompose R into
irreducible components. This can be done by studying convolution operators (i.e.
operators that arise when integrating R against suitable test functions). More
precisely, given f ∈ Cc(H) we define

R(f) =

∫
H

f(y)Rydy.

1This means that H is a locally compact topological space such that the maps H × H 3
(x, y) 7→ xy ∈ H and H 3 x → x−1 ∈ H are continuous. It is well known that a locally
compact group has (up to scaling) unique left and right Haar measure, See [vN]. We say that H
is unimodular if the left and the right Haar measure agree. (The Haar measure is named after
Alfréd Haar and has nothing to do with hair.)

2A subgroup of a topological group is discrete if the subspace topology is the discrete topology.
3We also require that the map H 3 h 7→ Rhφ ∈ L2(Γ\H) is continuous, but this is true in our

current setting.
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This operator valued integral is to be understood as follows

[R(f)φ](x) =

∫
H

f(y)[Ryφ](x)dy

=

∫
H

f(y)φ(xy)dy =

∫
H

f(x−1y)φ(y)dy

=

∫
Γ\H

(∑
γ∈Γ

f(x−1γy)

)
︸ ︷︷ ︸

Kf (x,y)

φ(y)dy,

for φ ∈ L2(Γ\H) and x ∈ Γ\H. In particular, R(f) is an integral operator (i.e.
an operator that can be represented by integration against a suitable automorphic
kernel function). Let us remark that

• Because we are assuming that f is compactly supported, the sum defining
K(x, y) is finite.
• We have Kf (γx, y) = Kf (x, y) = Kf (x, γy).

From now on we will assume that Γ\H is compact. In this case we record the
following two facts.

• The representation R decomposes discretely into irreducible representa-
tions with finite multiplicities:

R ∼=
⊕

π⊕m(π,R). (1)

Note that usually the representations π will be infinite dimensional.
• Under mild conditions on f the operator R(f) is of trace class and the

trace can be computed via

trR(f) =

∫
Γ\H

Kf (x, x)dx. (2)

We can now compute the trace of R(f) in two ways. First, using the spectral
expansion given in (1) we can decompose the trace

trR(f) =
∑
π

m(π,R) · trπ(f),

where the operator π(f) is defined by

π(f) =

∫
H

f(y)π(y)dy.

On the other hand we can use (2) and insert the definition of Kf . We obtain

trR(f) =

∫
Γ\H

K(x, x)dx =

∫
Γ\H

∑
γ∈Γ

f(x−1γx)dx.
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We now write {Γ} for a set of representatives of conjugacy classes in Γ. Further-
more, given any set Ω ⊆ H we write

Ωγ = {δ ∈ Ω: δ−1γδ}

for the centralizer of γ in Ω. This allows us to massage the expression as follows

trR(f) =

∫
Γ\H

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

f((δx)−1γδx)dx

=
∑
γ∈{Γ}

∫
Γγ\H

f(x−1γx)dx

=
∑
γ∈{γ}

Vol(Γγ\Hγ)

∫
Hγ\H

f(x−1γx)dx.

Combining everything we obtain the abstract trace formula for compact quo-
tients ∑

π

m(π,R) · trπ(f) =
∑
γ∈{Γ}

Vol(Γγ\Hγ) ·
∫
Hγ\H

f(x−1γx)dx.

The left hand side of this equality is the so called spectral side featuring irre-
ducible characters weighted by multiplicities. On the right hand side, the so called
geometric side, we have orbital integrals weighted by certain volumes. Note that,
without further information on the terms in these sums, the trace formula is rather
useless.

Exercise 1.1. Take H = Rn and Γ = Zn and interpret the Poisson summation
formula ∑

n∈Zn
f(n) =

∑
n∈Zn

f̂(n) for f ∈ C∞c (Rn)

as trace formula.

Exercise 1.2. Take H to be a finite group and let Γ be any proper subgroup. Use
the trace formula to derive the Frobenius reciprocity formula.

1.2. Example B: The round sphere. This example, taken from [Ma] is more
concrete. Let X = S2 denote the round sphere. The Laplace-Beltrami operator is
given by

∆S2 = − 1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin(θ)2

∂2

∂φ2

in spherical coordinates θ ∈ [0, π) and φ ∈ [0, 2π). In this case the spectral theory
is well known. See for example [Tr, Satz 31.1]. We give a brief summary.

The eigenvalue problem

∆S2f = λf (3)
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has solutions precisely when λl = l(l+1) for l ∈ Z≥0. It turns out to be convenient

to write ρl =
√
λl + 1

4
= l + 1

2
. The corresponding eigenspace has dimension

m(λl) = m(ρl) = 2l + 1 with eigenfunctions given by spherical harmonics

Y m
l (θ, φ) = (−1)m

[
2l + 1

4π
· (l −m)!

(l +m)!

] 1
2

Pm
l (cos(θ))eimφ,

for m = −l, . . . , l. Here Pm
l are so called Legendre polynomials of the first kind.

See Figure 1 for an example.
We now choose a test function h ∈ C2(R) satisfying

(1) h is even (i.e. h(x) = h(−x));
(2) h extends to an analytic function on the strip −σ < Im(ρ) < σ; and
(3) For i = 0, 1, 2 we have |h(i)(x)| ≤ Ci(1 + |Re(x)|)−2−δ for some δ > 0.

This allows us to compute
∞∑
j=0

m(ρj)h(ρj) =
∞∑
l=0

(2l + 1)h(l +
1

2
) =

∑
l∈Z

|l +
1

2
|h(l +

1

2
).

Put g(x) = |x+ 1
2
|h(x+ 1

2
) and take the Fourier transform

ĝ(y) =

∫
R
g(x)e2πiyxdx = e−πiy

∫ ∞
−∞
|x|h(x)e2πxydx

= e−πiy
∫ ∞

0

xh(x)e2πxydx− e−πiy
∫ 0

−∞
xh(x)e2πixydx.

Note that g is not in C∞c (R). Nonetheless, there is a sufficiently general version of
the Poisson summation formula that we are allowed to apply. We obtain
∞∑
j=0

m(ρj)h(ρj) =
∑
l∈Z

(−1)l
∫ ∞

0

xh(x)e−2πxi|l|dx−
∑
l∈Z

(−1)l
∫ 0

−∞
xh(x)e−2πix|l|dx

(4)
After applying partial integration twice and using the assumption on h one verifies
that the right hand side converges absolutely. We now consider the paths given in
Figure 2.

We take the integral from 0 to infinity and deform it to the path C1. It can be
seen that on this path of integration we can exchange sum and integration. We
arrive at ∑

l∈Z

(−1)l
∫ ∞

0

xh(x)e2πix|l|dx =

∫
C1
zh(z)

∑
l∈Z

(−1)le−2πi|l|zdz.

At this point we recall the well known expansion

tan(z) =
1

i

∑
l∈Z

(−1)le−2i|l|z
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Figure 1. Picture of spherical harmonic. (Created by Dr. R. Toma.)
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Re(z)

Im(z)

Figure 2. Integration paths C1 and C2.

and get ∑
l∈Z

(−1)l
∫ ∞

0

xh(x)e2πix|l|dx =

∫
C1
zh(z) tan(πz)dz.

Similarly we obtain

−
∑
l∈Z

(−1)l
∫ 0

−∞
xh(x)e−2πix|l|dx = −i

∫
C2
zh(z) tan(πz)dz = i

∫
C−1

2

zh(z) tan(πz)dz,

where C−1
2 is the path C2 but with reversed direction. If we put

C = C1 ∪ (−C1) ∪ C−1
2 ∪ (−C2)−1, (5)

then we obtain the formula
∞∑
j=0

m(ρj)h(ρj) =
i

2

∫
C
zh(z) tan(πz)dz.

Let us summarize this in form of a theorem.

Theorem 1.1 (Trace formula for the sphere). Let h ∈ C2(R) be a test function
satisfying

(1) h is even (i.e. h(x) = h(−x));
(2) h extends to an analytic function on the strip −σ < Im(ρ) < σ; and
(3) For i = 0, 1, 2 we have |h(i)(x)| ≤ Ci(1 + |Re(x)|)−2−δ for some δ > 0.

Then we have
∞∑
j=0

m(ρj)h(ρj) =
i

2

∫
C
zh(z) tan(πz)dz,

for the path C as defined in (5).
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Exercise 1.3. Give a direct proof of the Weyl law∑
ρj≤X

m(ρj) =
Vol(S2)

4π
X2 +O(X)

for the sphere and show that the error term is essentially sharp. What can be said
using the trace formula?

1.3. Example C: The flat torus. Let T2 = R2/Z2 be the flat two dimensional
torus. It will be useful to identify R2 = C and view Z2 as the lattice generated by
1 and i. We consider the Laplace operator on L2(T2) given by

∆ = −
(
∂2

∂x2
+

∂2

∂y2

)
(6)

on C∞(T2), where we write z = x+ iy. Write e(x) = e2πix and note that fm,n(z) =
e(mx+ ny) satisfies

∆fm,n(z) = 4π2(m2 + n2)fm,n(z). (7)

The multiplicity of an eigenvalue 4π2k is given by

r(k) = ]{m,n ∈ Z : k = m2 + n2}.
Further, recall that ∆ is essentially self adjoint and consider its self adjoint ex-
tension A.4 It should be clear from (7) that expansion in eigenfunctions of A is
nothing but Fourier expansion.

Next, we consider the resolvent

R(λ) = (A− λ)−1 (8)

of A. This is an integral operator and we denote its kernel by r(z, z′;λ). We can
easily write down the spectral expansion:

r(z, z′;λ) =
∑
m,n∈Z

(4π2(m2 + n2)− λ)−1fm,n(z)fm,n(z′). (9)

On the other hand we can compute the Green’s function gC(z, z′; s) of the equa-
tion ∆u− s2u = 0. It turns out that

gC(z, z′; s) =
i

4
H2

0 (|z − z′|s).

We arrive at
r(z, z′;λ) =

∑
γ∈Z2

gC(z, z′ + γ; s), (10)

4Recall that we call an (unbounded) operator essentially self adjoint if its closure is self-
adjoint. See [Tr, Definition 21.2]. To see that ∆ is essentially self adjoint, one first shows that
the unbounded operator ∆ with domain C∞(T2) is symmetric and non-negative. This is due
to Green’s theorem. Now we can construct a self adjoint extension using Friedrich’s theorem.
See [Tr, Satz 17.11& 17.12].
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for λ = s2. Note that a standard asymptotic formula for H2
0 (|x|s) implies that the

right hand side of (10) converges absolutely if Im(s) > 0. For other s it is to be
understood by analytic continuation otherwise.

We are now ready to prove the following trace formula like identity.

Theorem 1.2 (Hardy-Voronöı formula). Let h : R≥0 → C be a function that
analytic in a neighborhood of R≥0 and rapidly decreasing there (i.e. h(λ) �A

|Re(λ)|−A for A ≥ 2). Then we have
∞∑
n=0

r(k)h(k) = π
∞∑
l=0

r(l)

∫ ∞
0

h(x)J0(2π
√
lx)dx, (11)

where J0(·) is the classical J-Bessel function of index 0.

Proof. We consider the integral operator h(A) obtained from h. Recall that

h(A) = − 1

2πi

∫
Ω

h(λ)R(λ)dλ,

where Ω is a contour enclosing the spectrum and lying in the region where h is
analytic. Such a contour exists, by our assumption on h.

We compute the trace of h(A) as

trh(A) =
∑
m,n∈Z

〈h(A)fm,n, fm,n〉 =
∑
k∈Z≥0

r(k) · h(4π2k).

In particular, the assumption that h is rapidly decaying ensures that the sum is
defined and h(A) is of trace class.

On the other hand we can compute the trace by integrating the kernel corre-
sponding to h(A) over the diagonal. One can justify the following computation

trh(A) = − 1

2πi

∫
T2

∫
Ω

h(λ)r(z, z, λ)dλ = − 1

8π

∑
γ∈Z2

∫
Ω

h(λ)H2
0 (|γ|
√
λ)dλ.

Note that we cross the branchcut of
√
λ. So that on the lower half of the contour

we integrate over H2
0 (−|γ|

√
λ). Here we use the formula

H2
0 (−z) = H2

0 (eπiz) = H2
0 (z) + 2J0(z).

After deforming the contour to consist of the two pieces (∞, i0) and (−i0,∞) we
find that the H2

0 (z)-parts cancel out and we are left with

trh(A) = − 1

4π

∑
γ∈Z2

∫
(∞,i0)

h(λ)J0(|γ|
√
λ)dλ.

Arranging the γ sum according to |γ| =
√
k and making a change of variables

yields

trh(A) = π
∑
k∈Z≥0

r(k)

∫ ∞
0

h(4π2λ)J0(2π
√
kλ)dλ.
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Combining the two expressions for the trace completes the proof up to re-scaling
h. �

Remark 1.3. This proof, taken from [Ve], is a bit convoluted. However, it gave
us the opportunity to introduce some important ideas that will play a role later
on. The biggest issue is the strong restrictions on h that we inherit from our
strategy. Note that these are not necessary. Indeed, the equality (11) holds also
for h ∈ C∞c (R) (and even functions that can be nicely approximated by such
functions).

The following corollary can be interpreted as the Weyl law for the torus. How-
ever, it is probably better known as the Gaußcircle problem.

Corollary 1.4. We have

]{(m,n) ∈ Z2 : m2 + n2 ≤ X} = πX +R(X)

with R(X)� X
3
8 .

Proof. We choose h(x) = max(X − x, 0). Plugging this into the formula above we
obtain∑

0≤k≤X

(X − k)r(k) = π
∞∑
l=0

r(l)

∫ X

0

(X − x)J0(2π
√
lx)dx

=
π

2
X2 · r(0) +

∞∑
l=1

r(l)

∫ X

0

(X − x)J0(2π
√
lx)dx (12)

=
π

2
X2 +

X

π

∞∑
l=1

r(l)

l
J2(2π

√
lX).

To compute the integrals for l 6= 0 one needs to know some formulae for J-Bessel
functions or one can look up the integral.

We continue by observing that J2(z)� z−
1
2 as z →∞. Thus we can estimate

∞∑
l=1

r(l)

l
J2(2π

√
lX)� X−

1
4

∞∑
l=1

r(l)

l
5
4

� X−
1
4 . (13)

We conclude that ∑
0≤k≤X

(X − k)r(k) =
π

2
X2 + R̃(X),

for R̃(X)� X
3
4 .

In order to deduce the desired statement we observe that

R̃(X) =

∫ X

0

R(t)dt.
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From the simple estimate

O(h) +
1

h

∫ X

X−h
R(t)dt ≤ R(X) ≤ O(h) +

1

h

∫ X+h

X

R(t)dt

we deduce that

R(X)� h+
X

3
4

h
(14)

Choosing h = X
3
8 gives the desired result. �

Remark 1.5. Note that the main term πX is nothing but the volume of the disc
with radius

√
X. An easy bound, due to Gauß, for the remainder is R(X)�

√
X.

This estimate comes by observing that R(X) is bounded by the circumference

of the disc, which is 2π
√
X. Using the Voronöı-formula as given above one can

actually show that R(X) �ε X
1
3

+ε. We refer to [IK, Corolarry 4.9] for a proof.
The current record is

R(X)� X
131
416 .

This estimate is due to Huxley, see [Hu]. Note that it is conjectured that R(X)�ε

X
1
4

+ε for all ε > 0. This is far out of reach of current technology and essentially
best possible. The latter was demonstrated by Hardy and Landau (independently).

Exercise 1.4. Give an alternative proof of the Voronöı summation formula using
Poisson summation.

2. The hyperbolic plane

The upper half plane is given by

H = {z = x+ iy : x ∈ R, y ∈ R>0}.
The boundary is given by

∂H = R ∪ {∞},
and we set H = H ∪ ∂H.

We will start by describing some basic structural properties of H. Here we will
follow the nice exposition in [EW]. Then we turn towards the relevant global
spectral theory mostly relying on [Iw].

2.1. Basic hyperbolic geometry. Let us briefly talk about the structure of H.
To do so we have to consider the tangent bundle

TH = H× C.

We equip TzH = {z} × C with the vector space structure inherited from C = R2.
The hyperbolic Riemannian metric is given by

〈·, ·〉z : TzH× TzH→ C, ((z, w), (z, u)) 7→ 1

y2
w · u.
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In particular we have the norms ‖(z, v)‖2
z = 〈(z, v), (z, v)〉z = ‖v‖

y2 . This allows us

to define a metric on H. Given φ : [0, 1]→ H we set

Dφ(t) = (φ(t), φ′(t)) ∈ Tφ(t)H
and

L(φ) =

∫ 1

0

‖Dφ(t)‖φ(t)dt.

Finally, for z0, z1 ∈ H we set

d(z0, z1) = inf
φ
L(φ),

where the infimum is taken over all continuous piecewise differentiable curves φ
with φ(0) = z0 and φ(1) = z1.

Remark 2.1. Note that this metric introduces the same topology as the euclidean
metric.

Remark 2.2. We can extend the metric to H in the obvious way. Practically this
means that the distance between any point z ∈ H and any point α ∈ ∂H is infinite.

We now introduce a group that nicely acts on H. Indeed, this group is nothing
but

SL2(R) =

{
g =

(
a b
c d

)
: det(g) = ad− bc = 1

}
and also PSL2(R) = {±I2}\ SL2(R). Here I2 is the identity matrix. We will need
the following important matrices

n(x) =

(
1 x
0 1

)
, a(y) =

(
y

1
2 0

0 y−
1
2

)
and kθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

We obtain the corresponding subgroups

N(R) = {n(x) : x ∈ R}, A(R) = {a(y) : y ∈ R>0} and SO2(R) = {kθ : θ[0, 2π)}.
The action on z ∈ H is given by

g.z =
az + b

cz + d
where g =

(
a b
c d

)
∈ SL2(R).

Let us first convince ourselves that this is well defined. Indeed, cz + d = 0 would
contradict z ∈ H or g ∈ SL2(R). Furthermore, we compute

Im(g.z) =
Im(z)

|cz + d|2
,

so that g.z ∈ H.

Remark 2.3. The action can be easily extended to H. For example we have(
0 −1
1 0

)
.∞ = 0.
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Lemma 2.4. We have the following important properties:

(1) The action satisfies

d(g.z0, g.z1) = d(z0, z1) for all g ∈ SL2(R) and z0, z1 ∈ H.
(2) The action is transitive (i.e. for any two points z0, z1 ∈ H there is g ∈

SL2(R) with g.z0 = z1).
(3) The stabilizer of i ∈ H is SO2(R).

Proof. To see (1) we take g ∈ SL2(R) and consider the resulting map

g : H→ H, z 7→ g.z.

Differentiating this yields Dg : TH→ TH given by

Dg(z, v) = (g.z, g′(z)v) =

(
az + b

cz + d
,

v

(cz + d)2

)
.

Write (Dg)z for the map TzH → Tg.zH obtained by projection on the second
component. We claim that Dg preserves the Riemann metric. This is a simple
computation:

〈(Dg)zv, (Dg)zw〉g.z =

(
y

|cz + d|2

)−2(
v

(cz + d)2

)(
w

(cz + d)2

)
= y−2vw = 〈v, w〉z.

With this at hand one uses the chain rule to compute L(g ◦ φ) = L(φ) and we are
done with this part of the proof.

For (2) we define gz = n(x)n(y), for z = x+ iy ∈ H. Observe that gz.i = z.
Finally, in order to compute the stabilizer of i we take g.i = i. By looking at

the imaginary parts we find |cz + d| = 1. Thus there is θ with c = sin(θ) and
d = cos(θ). Further solving (ai+ b)/(sin(θ)i+ cos(θ)) = i we find that a = cos(θ)
and b = − sin(θ). This completes the proof. �

Corollary 2.5. We have

H ∼= SL2(R)/ SO2(R) ∼= PSL2(R)/PSO2(R).

Proof. The first isomorphism is given by z 7→ gz. Everything else is easy to
check. �

Remark 2.6. If we define

T 1H = {(z, v) ∈ TH : ‖v‖z = 1},
then this is preserved by the action of Dg. Even more, it turns out that

T 1H ∼= PSL2(R).

The first isomorphism is given by

PSL2(R) 3 g 7→ Dg(i, i) ∈ T 1H. (15)
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Exercise 2.1. Show that the map given in (15) is really an isomorphism. Fur-
thermore, check that the action of PSL2(R) on T 1H is conjugate to the action of
PSL2(R) on PSL2(R) by left multiplication.

Our goal is now to compute the distance function in more detail. To do so we
will use the following important fact.

Lemma 2.7. For any two points z, w ∈ H there is g such that g.z = i and g.w = iy
for some y ≥ 1.

Proof. Without loss of generality we can assume that z = i. Now we consider
the orbit kθ.w for θ ∈ [0, π). Since this is compact set there is an element with
maximal imaginary part. Lets call it w′ = kθ0 .w. One can easily check that w′

must be of the desired shape. �

Lemma 2.8. We have

d(z0, z1) = log

[
|z − w|+ |z − w|
|z − w| − |z − w|

]
. (16)

Proof. We know that the left hand side of (16) is invariant under the action of
SL2(R). A brute force computation shows that the same is true for the right hand
side. Thus, by Lemma 2.7, it is sufficient to check equality for z0 = i and z1 = iy
for y ≥ 1. It is easy to see that in this case

log

[
|i+ iy|+ |i− iy|
|i+ iy| − |i− iy|

]
= log(y).

On the other hand we can take a path φ(t) = φ1(t)+ iφ2(t)dt with φ1(0) = φ1(1) =
0, φ2(0) = 1 and φ2(1) = y. We compute

L(φ) =

∫ 1

0

‖φ′(t)‖ dt

φ2(t)
≥
∫ 1

0

|φ′2(t)| dt
φ2(t)

≥
∫ 1

0

φ′2(t)
dt

φ2(t)
= log(y).

We see that the lower bound is obtained when taking φ1(t) = 0 and φ2(t) = yt.
This shows that

d(i, iy) = L(φ) = log(y)

and the proof is complete. �

It is often better to work with the SL2(R)-invariant function u defined by

cosh(d(z, w)) = 1 + 2u(z, w),

One easily checks that

u(z, w) =
|z − w|2

4 Im(z) Im(w)
.
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Indeed, we have

cosh(d(i, iy)) = cosh(log(y)) =
y

2
+

1

2y

= 1 + 2
(y − 1)2

4y
= 1 + 2

|i− iy|2

4 Im(i) Im(iy)
= 1 + 2u(i, iy).

After verifying invariance once again we are done.
Next we define the measure µ on H by∫

H
f(z)dµ(z) =

∫ ∞
0

∫ ∞
−∞

f(x+ iy)
dxdy

y2
.

It is straight forward to see that this measure is SL2(R)-invariant. Indeed one only
computes the Jacobian of z 7→ g.z.

Remark 2.9. With suitable normalizations the measure µ arises from the Haar
measure of SL2(R) under the identification H ∼= SL2(R)/ SO2(R).

So far we have only worked in standard rectangular coordinates. However, we
can also define (geodesic) polar coordinates. Indeed, we can write

x+ iy = kϕe
−ri,

for ϕ ∈ [0, π) and r ≥ 0. One can compute that

y = (cosh(r) + sinh(r) cos(2ϕ))−1 and x = y sinh(r) sin(2ϕ). (17)

dµ(z) = 2 sinh(r) · drdϕ. (18)

If we further write cosh(r) = 1 + 2u, then

dµ(z) = 4dudϕ.

We turn towards studying the motions generated by elements of SL2(R). An
important feature is the fixed point structure. For g 6= ±I2 we have g.z = z if and
only if

cz2 + (d− a)z − b = 0.

Solving this shows that the fixed points are given by b/(d− a) ∈ ∂H if c = 0 and
by

1

2c

[
a− d±

√
(a+ d)2 − 4

]
.

We read of the following classification:

• g has one fixed point in ∂H. This happens exactly when |Tr(g)| = 2. We
say that g is parabolic.
• g has two distinct fixed points in ∂H. This happens exactly when |Tr(g)| >

2. We say that g is hyperbolic.
• g has one fixed point in H (and one in the negative half plane). This

happens exactly when Tr(g) < 2. We say that g is elliptic.



THE SELBERG TRACE FORMULA 16

This is obviously invariant under conjugation, so that it makes sense to say that
a conjugacy class is parabolic, hyperbolic or elliptic.

Note that each conjugacy class

{g} = {hgh−1 : h ∈ SL2(R)}
meets one of the groups N(R), A(R) or SO2(R). It is easy to see that elements
in N(R) are parabolic. Their action is nothing but (horizontal) translation. The
elements in A(R) are hyperbolic and they act by dilation. Finally, elements in
SO2(R) are elliptic and they act by rotations.

Exercise 2.2. Let ±I2 6= g, h ∈ SL2(R). Show that g and h commute if and only
if they have the same set of fixed points. Conclude that, up to the central elements
±I2, the centralizer Cg = {h ∈ SL2(R) : gh = hg} of g in SL2(R) is given by all

elements h with the same fixed points (in H).

2.2. Global spectral theory. We turn towards the global spectral theory (i.e.
the spectral theory on H). The Laplace-Beltrami operator on H is given by

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

One can that ∆ is invariant. More precisely, for all g ∈ SL2(R) we have

[∆gf ](z) = ∆f(g.z), where [gf ](z) = f(g.z).

In (geodesic) polar coordinates we have

∆ = −
[
∂2

∂r2
+

1

tanh(r)

∂

∂r
+

1

4 sinh(r)2

∂2

∂ϕ2

]
.

If we further insert cosh(r) = 1 + 2u we obtain

∆ = −
[
u(u+ 1)

∂2

∂u2
+ (2u+ 1)

∂

∂u
+

1

16u(u+ 1)

∂2

∂ϕ2

]
.

We first consider the equation ∆f = λf with λ ∈ C and f : H → C. We can
guess the following pairs of solutions

f(z) = Im(z)s and f(z) = Im(z)1−s

for λ = s(1 − s) and s 6= 1
2
. Note that for s = 1

2
(i.e. λ = 1

4
) one has to replace

the second solution by Im(z)
1
2 log(Im(z)).

Next we consider functions f that depend only on the variable u. As above we
put λ = s(1− s). We can write the equation ∆f = s(1− s)f as

u(u+ 1)f ′′ + (2u+ 1)f ′ + s(1− s)f = 0 (19)

We define

Gs(u) =
1

4π

∫ 1

0

ts−1(1− t)s−1(t+ u)−sdt (20)
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Note that in view of the integral representation

2F1(α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−αdt

we can express Gs(u) as the Gauß hypergeometric function5

Gs(u) =
Γ(s)2

4πΓ(2s)
u−s2F1(s, s; 2s;

1

u
).

Remark 2.10. That Gs solves the required eigenvalue equation can be seen in a
variety of ways. For example, we can put σ = cosh(r/2)2. If we view Gs as a
function of σ, then the eigenvalue equation gets

σ(1− σ)G′′s + (1− 2σ)G′s − s(1− s) = 0.

This looks like the defining equation for the Gauß hypergeometric function. How-
ever, we need a solution that is regular at ∞ (and not at 1). We choose the
Kummer solution given by

Csσ
−s

2F1(s, s; 2s;
1

σ
).

At this point we recall the identity 2 cosh(x/2)2 − 1 = cosh(x). In particular, we
find

σ = u+ 1.

Taking Cs = Γ(s)2

4πΓ(2s)
and using identities between hypergeometric functions pro-

duces the solution Gs(u) given above. Below we will see that we have chosen the
correct solution and normalized it correctly.

Lemma 2.11. The integral defining Gs(u) converges absolutely for Re(s) = σ > 0
and it defines a function for u ∈ R+ which solves (19). Moreover we have

Gs(u) =
1

4π
log(

1

u
) +Os(1) as u→ 0, (21)

G′s(u) = −(4πu)−1 +Os(1) as u→ 0 and (22)

Gs(u)� u−σ as u→∞. (23)

Proof. We establish the first asymptotic as follows. Put

ν = (|s|+ 1)−1u and η = (|s|+ 1)−1.

We can assume that u is sufficiently small so that 0 < ν < η < 1. We split the
integral in ranges and estimate∫ ν

0

ts−1(1− t)s−1(t+ u)−sdt� uσ
∫ ν

0

tσ−1dt� 1.

5The Gauß hypergeometric function 2F1(α, β; γ, z) is one solution of the differential equation

z(1− z)F ′′ − ((α+ β + 1)z − γ)F ′ − αβF = 0.
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Similarly we have∫ 1

η

ts−1(1−t)s−1(t+u)−sdt�
∫ 1

η

t−1(1−t)σ−1(1+
u

t
)−σdt�

∫ 1

η

(1−t)σ−1dt� 1.

The main term will come from the remaining piece of the integral. Here we will
use the expansion(

t(1− t)
t+ u

)s−1

=

(
1− u+ t2

u+ t

)s−1

= 1 +Os

(
u+ t2

u+ t

)
.

With this at hand we compute∫ η

ν

ts−1(1− t)s−1(t+ u)−sdt =

∫ η

ν

dt

t+ u
+O

(∫ η

ν

u+ t2

(u+ t)2
dt

)
= log

(
u+ η

u+ ν

)
+O(1) = log(1/u) +O(1).

The asymptotic for the derivative is obtained similarly and we omit the details.
The last claim follows after trivially estimating

|Gs(u)| = u−σ
1

4π

∫ 1

0

(t(1− t))σ−1 (t/u+ 1)−σdt

≤ u−σ
1

4π

∫ 1

0

tσ−1(1− t)σ−1dt = u−σ
Γ(σ)2

4πΓ(2σ)
,

for u > 0. Here we have recognized the Beta-integral. �

Working more carefully (or alternatively using the series expansion of 2F1(s, s; 2s;u−1)))
one can obtain the refined expansion

Gs(u) =
1

4π
log(

1

u
)− 1

2π
(Ψ(s) + γ) + o(1), (24)

where Ψ(s) is the digamma function and γ is Euler’s constant.6

Remark 2.12. One verifies by partial integration that the function

Fs(u) =
1

π

∫ π

0

(2u+ 1 + 2
√
u(u+ 1) cos(θ))−sdθ (25)

also solves (19). This solution can be written as

Fs(u) = F (s, 1− s; 1;u).

Note that analogously one can find Fs as solution to a (19) which is regular at 0.
From the integral we directly see that Fs(u) = 1. In particular, Fs and Gs form a
complete system of linearly independent solutions to (19).

6One compares this to [Bo, (4.14)]. Doing so one should remember that σ = u+ 1.
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For Re(s) > 1 we define the integral operator

[Rsf ](z) =

∫
H
Gs(u(z, w))f(w)dµ(w).

We claim that Rs is the resolvent, so that Gs(u(z, w)) is the Green function on H.
This will follow from the following theorem.

Theorem 2.13. For f : H→ C smooth and bounded we have

(∆− s(1− s))Rsf = f.

Proof. A crucial ingredient in the proof is the identity

(∆− s(1− s))Rsf(z) =

∫
H
Gs(u(z, w))(∆− s(1− s))f(w)dµ(w). (26)

We will not prove this here.7

Let Uε be a small euclidean disc around z and let Vε be its exterior in H. Using
(26) we write

(∆− s(1− s))Rsf(z) =

∫
Uε

Gs(u(z, w))(∆− s(1− s))f(w)dµ(w)

+

∫
Vε

Gs(u(z, w))(∆− s(1− s))f(w)dµ(w).

We need to show that this equals f(z) and we do so by considering the limit of
the right hand side as ε → 0. We will frequently use the asymptotic behavior of
Gs at 0. First, note that

lim
ε→0

∫
Uε

Gs(u(z, w))(∆− s(1− s))f(w)dµ(w) = 0.

We still need to consider the remaining integral over Vε. To treat this we recall
Green’s formula:∫

Vε

(g∆eucf − f∆eucg)dµeuc =

∫
∂V

(g
∂f

∂n
− f ∂g

∂n
)dl (27)

where ∂
∂n

is the outer normal derivative. Since [∆w − s(1− s)]Gs(u(z, w)) = 0 we
get ∫

Vε

Gs(u(z, w))(∆− s(1− s))f(w)dµ(w) =

∫
∂Uε

(
Gs
∂f

∂n
− f ∂Gs

∂n

)
dl.

We now take the limit ε→ 0 and find

lim
ε→0

∫
Vε

Gs(u(z, w))(∆− s(1− s))f(w)dµ(w) = − 1

2π
lim
ε→0

∫
∂Uε

f(w)
∂ log(|z − w|)

∂n
dl.

7For regular kernels this is a formal consequence of the symmetry of ∆. However Gs is singular
on the diagonal, so that this argument does not work. Instead one has to use differential operators
coming from the Lie-algebra of SL2(R). This enables one to use invariance of ∆.
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The remaining integral can be written in euclidean polar coordinates as

− 1

2π
lim
ε→0

∫
∂Uε

f(w)
∂ log(|z − w|)

∂n
dl = lim

ε→0

1

2πε

∫
∂Uε

f(w)dl = f(z).

This completes the argument. �

On the other hand we can consider integral operators associated to a kernel
k : H×H→ C defined by

[Tkf ](z) =

∫
H
k(z, w)f(w)dµ(w).

It turns out that Tk is invariant (i.e. [Tk(gf)](z) = Tkf(g.z)) if and only if
k(gz, gw) = k(z, w). A function with this property will be called a point-pair
invariant. By abuse of notation we can write a point-pair invariant as8

k(z, w) = k(u(z, w)).

We start by proving some basic results concerning invariant integral operators.

Lemma 2.14. Let k(z, w) be a smooth point-pair invariant on H×H. Then

∆zk(z, w) = ∆wk(z, w).

Proof. We work in geodesic polar coordinates with origin w and compute

∆zk(z, w) = u(u+ 1)k′′(u) + (2u+ 1)k′(u).

Using geodesic coordinates with origin z to compute ∆wk(z, w) gives the same
result and we are done. �

Theorem 2.15. Let Tk be an integral operator associated to a smooth point-pair
invariant k(z, w). Then the invariant integral operator Tk commutes with ∆.

Proof. Let f ∈ C∞0 (H).9 We have

[∆Tkf ](z) =

∫
H

∆zk(z, w)f(w)dµ(w) =

∫
H

∆wk(z, w)f(w)dµ(w)

=

∫
H
k(z, w)∆wf(w)dµ(w) = [Tk∆f ](z).

Here we used partial integration to move ∆w from k to f . �

Definition 2.1. We call a function f(z, w) radial at w, if as a function in z it
depends only on the distance of z to w.

8We use the letter k for the point-pair invariant k : H×H→ C as well as for the corresponding
function k ≥ R≥0 → C. It should always be clear from the context what is meant.

9The subscript 0 indicates that f vanishes on the boundary of H.
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Note that point-pair invariants are radial at all points. But this is not necessarily
the case in general. We define the stabilizer of w in SL2(R) as

Gw = {g ∈ SL2(R) : g.w = w}. (28)

This is a compact group, which we equip with the Haar measure. For f : H → C
we define

fw(z) =
1

Vol(Gw)

∫
Gw

f(g.z)dg.

If σ.i = w, then we have Gw = σ SO2(R)σ−1. In particular, we can write

fw(z) =
1

2π

∫ 2π

0

f(σkθσ
−1.z)dθ.

We call the operator f 7→ fw the mean-value operator.

Lemma 2.16. The function fw(z) is radial at w and satisfies

fz(z) = f(z).

Furthermore, we have

[Tkf ](z) = [Tkfz](z) (29)

for an invariant integral operator Tk.

Proof. Clearly we have fz(z) = f(z). To see that fw(z) is radial at w we take z0

and z1 with u(z1, w) = u(z0, w). We need to show that fw(z0) = fw(z1). To do so
we take g1 ∈ Gw with g1.z0 = z1. The existence of g1 follows from (the proof of)
Lemma 2.7. Now we simply compute

fw(z0) =
1

Vol(Gw)

∫
Gw

f(g.z0)dg =
1

Vol(Gw)

∫
Gw

f(gg1.z)dg

=
1

Vol(Gw)

∫
Gw

f(g.z1)dg = fw(z1).
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To see the final property we compute

[Tkfz](z) =

∫
H
k(z, w)fz(w) (30)

=
1

Vol(Gw)

∫
H

∫
Gz

k(z, w)f(g.w)dgdµ(w)

=
1

Vol(Gw)

∫
Gz

∫
H
k(z, w)f(g.w)dµ(w)dg

=
1

Vol(Gw)

∫
Gz

∫
H
k(z, g−1.w)f(w)dµ(w)dg

=
1

Vol(Gw)

∫
Gz

∫
H
k(g.z, w)f(w)dµ(w)dg

=

∫
H
k(z, w)f(w)dµ(w) = Tkf(z).

This is exactly what we wanted and the proof is complete. �

Lemma 2.17. Let λ = s(1− s) ∈ C and w ∈ H be fixed. Then there is a unique
function

H 3 z 7→ ωs(z, w) ∈ C (31)

such that

(1) ωs(z, w) is radial at w;
(2) We have ∆zωs(z, w) = λωs(z, w); and
(3) ωs(w,w) = 1.

This function is given by

ωs(z, w) = Fs(u(z, w))

where Fs(u) = 2F1(s, 1− s; 1;u).

Proof. By (1) we can write ω(z, w) = φ(u(z, w)) for some function φ. Computing
(2) in polar coordinates leads to the second order ODE given in (19). As discussed
in Remark 2.12 we can thus express φ as a linear combination of Fs and Gs. Finally,
we note that (3) implies φ(0) = 1, so that we must have φ = Fs as desired. �

Corollary 2.18. Suppose f : H→ C satisfies ∆f = s(1− s)f , then we have

fw(z) = ωs(z, w)f(w).

Proof. We note that fw satisfies properties (1) and (2) from Lemma 2.17. Unique-
ness then implies that fw must be a scalar multiple of ωs(·, w). �

Theorem 2.19. Let f : H → C satisfy ∆f = s(1 − s)f and let k ∈ C∞c (R≥0).
Then there is Λ = Λ(k, s) with

Tkf = Λf.
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Proof. Using Lemma 2.16 and the definition of Tk we compute

[Tkf ](z) = [Tkfz](z) =

∫
H
k(z, w)fz(w)dµ(w) =

∫
H
k(z, w)ωs(w, z)dµ(w)︸ ︷︷ ︸

=Λ

f(z).

This completes the proof. �

Remark 2.20. The theorem above is very important. It states that an eigenfunction
of ∆ is automatically an eigenfunction of all (sufficient regular) invariant integral
operators.

Exercise 2.3. Prove the contrary of Theorem 2.19. More precisely, show that if
Tkf = Λkf for all k ∈ C∞c (R≥0), then there is λ ∈ C with ∆f = λf .

A key point in Theorem 2.19 is that Λ depends on the ∆-eigenvalue s(1−s) and
on k but not on f . This allows us to test our integral operators against suitable
f ’s. This allows us to establish the following result.

Definition 2.2 (Selberg–Harish-Chandra Transform). Given k ∈ C∞c (R≥0) we
define the Selberg–Harish-Chandra transform h of k using three steps:

q(v) =

∫ ∞
v

k(u)(u− v)−
1
2du,

g(r) = 2q
(
sinh(r/2)2

)
, and

h(t) =

∫ ∞
−∞

g(r)eirtdr.

Theorem 2.21. Let k ∈ C∞c (R≥0) and let f : H→ C be such that ∆f = s(1−s)f .
Then we have

Tkf = h(t)f for t = − i
2
− is

(i.e. s = 1
2

+ it ∈ C), where h is the Selberg–Harish-Chandra transform of k.

Proof. We take f(z) = Im(z)s. Recall that ∆f = s(1− s)f . By Theorem 2.19 we
have Tkf = Λf . We need to show that Λ = h(t). To do so we observe that

Λ = Λf(i) = [Tkf ](i) =

∫
H
f(w)k(i, w)dµ(w)

= 2

∫ ∞
0

∫ ∞
0

ys−2k

(
x2 + (y − 1)2

4y

)
dxdy.

After making the change of variables x = 2
√
uy we have

Λ = 2

∫ ∞
0

∫ ∞
0

ys−
3
2k

(
u+

(y − 1)2

4y

)
du√
u
dy

= 2

∫ ∞
0

q

(
(y − 1)2

4y

)
ys−

1
2
dy

y
.
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We now change y = er and recall s = 1
2

+ it to obtain

Λ = 2

∫ ∞
−∞

q

(
(er − 1)2

4er

)
eirtdr

=

∫ ∞
−∞

g(r)eirtdr = h(t).

This completes the proof. �

Another handy incarnation of the Selberg–Harish-Chandra transform is given
by

h(t) = 4π

∫ ∞
0

k(u)Fs(u)du. (32)

To see this we test our integral operator as follows

h(t) = h(t)ωs(i, i) = [Tkω(·, i)](i)

=

∫
H
k(u(i, z))Fs(u(z, i))dµ(z) = 4π

∫ ∞
0

k(u)Fs(u)du.

In the last step we have computed the integral in polar coordinates.
The integral transform in (32) is related to the the Mehler–Fock transform and

it can be inverted. The inversion formula is given by

k(u) =
1

4π

∫ ∞
−∞

F 1
2

+it(u)h(t) tanh(πt)tdt. (33)

We can also invert this transformation step

g(r) =
1

2π

∫ ∞
−∞

e−irth(t)dt,

q(v) =
1

2
g(2 log(

√
v + 1 +

√
v)) and (34)

k(u) = − 1

π

∫ ∞
u

(v − u)−
1
2dq(v). (35)

The first two steps are relatively simple. We first apply Fourier inversion and then
we reverse the substitution. To see that the final Riemann-Stieltjes integral inverts
the transform k  q requires a little argument.

Lemma 2.22. For k ∈ C∞c (R≥0) the inversion formula given in (35) holds.

Proof. Suppose that the support of k is contained in the interval [0, A]. In partic-
ular q(v) = 0 for v > A. It is sufficient to consider 0 ≤ u ≤ A. Note that

q′(v) =

∫ ∞
v

k′(u)

(u− v)
1
2

du = −2

∫ A

v

(u− v)
1
2k′′(u)du.

The first step follows from the Leibniz rule and the second equality is integration
by parts.
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We will now consider the integral

Iε = − 1

π

∫ ∞
u+ε

(v − u)−
1
2dq(v) = − 1

π

∫ A

u+ε

q′(v)

(v − u)
1
2

dv.

Using the formula for the derivative above we compute

Iε =
2

π

∫ A

u+ε

∫ A

v

(x− v)
1
2

(v − u)
1
2

k′′(x)dxdv

=
2

π

∫ A

u+ε

∫ x

u+ε

(x− v)
1
2

(v − u)
1
2

k′′(x)dvdx

=
2

π

∫ A

u+ε

k′′(x)

∫ x

u+ε

(x− v)
1
2

(v − u)
1
2

dvdx.

Now we use the formula∫ x

u

(v−u)−
1
2 (x−v)

1
2dv = (x−u)

∫ 1

0

t−
1
2 (1−t)

1
2dt = (x−u)B(1/2, 3/2) =

π

2
(x−u).

In particular, we can take the limit ε→ 0 and obtain

− 1

π

∫ ∞
u

(v − u)−
1
2dq(v) = lim

ε→0
Iε =

∫ A

u

k′′(x)(x− u)dx = −
∫ A

u

k′(x)dx = k(u).

This completes the argument. �

It will be useful to get a feeling for the regularity properties of the functions
involved in this transforms. We start with an easy lemma.

Lemma 2.23. Let k ∈ C2
c (R≥0). Then we have

(1) q ∈ C2
c (R≥0);

(2) g ∈ C2
c (R≥0) even; and

(3) h ∈ C∞(R) even with h(t)� t−2.

One sees that h actually defines a holomorphic function on C. This is because
k is compactly supported.

Proof. That q is compactly supported is clear. Furthermore, by the Leibniz rule
for parameter integrals we compute

q′(v) =

∫ ∞
v

k′(u)

(u− v)
1
2

du and q′′(v) =

∫ ∞
v

k′′(u)

(u− v)
1
2

du.

This implies that q ∈ C2
c (R≥0). The second statement concerning g is clear. The

properties of h are also easy to see. For example, the growth condition is obtained
by applying integration by parts twice:

h(t) = − 1

t2

∫
R
eirtg′′(r)dr �g t

−2.

This completes the proof. �
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Remark 2.24. The inversion formula holds for a wider class of functions h. Indeed
it is sufficient to assume

• h(t) is even;
• h(t) is holomorphic in the strip | Im(t)| ≤ 1

2
+ ε; and

• In the above strip we have h(t)� (|t|+ 1)−2−ε.

This also gives rise to a bigger class of admissible kernel functions k(u).

Exercise 2.4. Show that if k ∈ C2
c (R≥0), then the Selberg–Harish-Chandra trans-

form h of k even satisfies

h(t)� t−
5
2 .

To do so one should first prove that for 0 < α < 1 and f ∈ Cc(R) with |f(x1) −
f(x2)| � |x1 − x2|α one has

∫
R f(x)eirxdx� r−α as r →∞.

3. Fuchsian groups

We now turn towards the theory of Fuchsian groups. There are many good
references for this. We use [Bo,Si].

We first note that Mat2×2(R) ∼= R4 carries an inner product given by

〈g, h〉 = Tr(gh>).

The corresponding norm ‖g‖2 = 〈g, g〉 is the Frobenius norm and satisfies ‖gh‖ ≤
‖g‖ · ‖h‖. The group SL2(R) inherits a metric topology using the embedding
SL2(R) ⊆ Mat2×2(R).

Definition 3.1. A group Γ ⊆ SL2(R) is called discrete if the induced topology on
Γ is discrete.

Remark 3.1. Similarly we define discrete groups of PSL2(R). These are called
Fuchsian groups.

Given Γ ∈ SL2(R) we define Γ to be its image in PSL2(R). Note that Γ is
discrete if and only if Γ is discrete.

Definition 3.2. Let X be a Hausdorff topological space (e.g. X = H) and let Γ
be a group of homeomorphisms acting on X (e.g. Γ ⊆ PSL2(R)). We say that Γ
acts discontinuously on X if for any point z ∈ X and any compact set Y ⊆ X we
have

]{γ ∈ Γ: γ.z ∈ Y } <∞.
Remark 3.2. If Γ ⊆ PSL2(R) acts discontinuously on H, then the quotient Γ\H is
a well defined metric space. We call Γ\H an orbifold. Note that the quotient is
only smooth if Γ acts without fixed points. Recall that only elliptic elements have
fixed points in H.

Proposition 3.3. A subgroup Γ ⊆ SL2(R) is discrete if and only if Γ acts discon-
tinuously on H. (We can also say Γ is Fuchsian if and only if Γ acts discontinu-
ously.)
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Proof. If Γ is discrete, then the orbit Γ.z is discrete. Since the intersection of a
discrete and compact set finite the group Γ must act discontinuously.

To see the opposite direction we first claim that there is z0 ∈ H which is not
fixed by any non-trivial element in Γ. To see this we take γ0 6= ±1 and suppose
that γ0.w = w for w ∈ H. We compute

d(γ0.z, z) ≤ d(γ0.z, γ0.w) + d(γ0.w, z) = 2d(z, w).

This shows is that, if w ∈ Br(z) is fixed by some non-trivial element γ0 ∈ Γ, then
γ0.z ∈ B2r(z). Thus we have

]{w ∈ Br(z) : w is fixed by some non-trivial element in Γ}
≤ ](Γ.z ∩B2r(z)) <∞.

After excluding these finitely many fixed points we easily pick a point z0 with the
desired property. This shows the claim.

Returning to the actual proof we assume that Γ is not discrete. Then there exists
a sequence γn → 1 consisting of distinct elements. This ensures that (γn.z0)n∈N
has only distinct elements. Since γn.z0 → z0, we obtain a contradiction to the
discontinuity of the action. �

While we will usually start with a discrete subgroup Γ ⊆ SL2(R) and then work
with the quotient Γ\H, the following important theorem of Hopf tells us that we
could similarly work with hyperbolic surfaces X. The place of Γ is then taken by
the fundamental group of X.

Theorem 3.4. For any hyperbolic surface X there is a Fuchsian group Γ with no
elliptic elements and a Γ-invariant Riemannian covering map π : H→ X realizing
the isometry X ∼= Γ\H.

In order to practically work (and visualize) the quotients Γ\H we have to intro-
duce the concept of a fundamental domain. We do so in two steps.

Definition 3.3. A (Borel) measurable set G ⊆ H such that ](G ∩ Γ.z) = 1 for all
z ∈ H is called a fundamental set. We define

Vol(Γ\H) = µ(G), (36)

where µ is the hyperbolic measure on H.

Note that the fundamental sets exist and that the volume Vol(Γ\H) is well
defined (i.e. independent of the choice of G).

Definition 3.4. A fundamental domain FΓ ⊆ H for a discrete subgroup Γ ⊆
SL2(R) is a closed region such that

(1) ΓFΓ =
⋃
γ∈Γ γ.FΓ = H;

(2) For each γ ∈ Γ \ {±1} the interiors of FΓ and γ.FΓ do not intersect;
(3) FΓ differs from a fundamental set by a set of measure 0 (i.e. a null set).
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Remark 3.5. The final condition ensures that Vol(Γ\H) = µ(FΓ).

To see that (nice) fundamental regions exist we introduce the Dirichlet domain

Dw = {z ∈ H : d(z, w) ≤ d(z, γw) for all γ ∈ Γ}.
We have the following result.

Lemma 3.6. Let w be not the fixed point of an elliptic element in Γ. Then we
have the following:

(1) Dw is convex and bounded by a union of geodesics.
(2) Dw is a fundamental domain for Γ.

Proof. We first ketch the proof of (1). Note that we can write

Dw =
⋂
γ∈Γ

{z ∈ H : d(z, w) ≤ d(z, γw)}︸ ︷︷ ︸
=Hγ(w)

.

We claim that Hγ(w) are (hyperbolic) half planes and this will directly give the
first statement. To see this we can use Lemma 2.7 to find g ∈ SL2(R) such that
g.w = i and gγ.i = yi with y ≥ 1. We find that

g−1Hγ(w) = Ha(y)(i).

One easily checks that

∂Ha(y)(i) = {z ∈ H : |z| = √y}. (37)

This is a typical geodesic as desired.
We turn towards (2). Let z0 ∈ H and choose γmin ∈ Γ such that

d(γminz0, w) = min
γ∈Γ

d(γ.z0, w).

We then obviously have γmin.z0 ∈ Dw. This shows that

H =
⋃
γ∈Γ

γ.Dw.

On the other hand suppose that z ∈ Dw and γ.z ∈ Dw for γ 6= ±1. Then we have

d(γ.z, w) ≤ d(γz, γw) = d(z, w) ≤ d(z, γ−1.w) = d(γz, w) (38)

Thus we obtain d(z, w) = d(z, γ−1w). This implies that z must be on the boundary
of Dw.

Finally, that Dw differs from a fundamental set by a null set follows from (1). �

Definition 3.5. For a Fuchsian group Γ ⊆ PSL2(R) we define the limit set Λ(Γ) ⊆
∂H to be the set of limit points of all orbits Γ.z for z ∈ H.

Remark 3.7. One can show that if w ∈ H is not an elliptic fixed point of Γ, then
Λ(Γ) is equal to the set of limit points of the single orbit Γ.w. In particular, Λ(Γ)
is Γ-invariant.
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We combine the following important theorem with a definition.

Theorem 3.8 (Poincaré, Fricke–Klein). If Γ is a Fuchsian group, then there are
the following three possibilities for its limit sets:

(1) ]Λ(Γ) ∈ {0, 1, 2}. In this case we say that Γ is elementary.
(2) Λ(Γ) = ∂H. In this case we say that Γ is of the first kind.
(3) Λ(Γ) is a perfect10 nowhere dense subset of ∂H. In this case we say that Γ

is of the second kind.

We are interested in a more restricted class of Fuchsian groups. The following
definition turns out to be crucial.

Definition 3.6. A Fuchsian group is said to be geometrically finite if there exists
a fundamental domain that is a finite sided (hyperbolic) polygon.

The following important theorem puts this definition into perspective.

Theorem 3.9. Let Γ be a Fuchsian group. The following are equivalent:

(1) Γ\H is topologically finite (i.e. has finite Euler characteristic);
(2) Γ is finitely generated;
(3) Γ is geometrically finite.

We will not prove this here. However let us mention that the implication
(1) =⇒ (2) is due to the fact that topological finite spaces have finitely gen-
erated fundamental groups. On the other hand one can obtain (3) =⇒ (1) by
observing that Γ\H can be constructed from the fundamental domain, which is
now a finite sided polygon, by identifying (i.e. gluing) equivalent edges. The hard
part is to show that (2) =⇒ (3). This follows from a careful analysis of the
Dirichlet domain Dw and its relation to generators of the group Γ.

Definition 3.7. A discrete subgroup Γ ⊆ SL2(R) (resp. a Fuchsian group Γ ⊆
PSL2) is called co-compact if FΓ is compact. We say that Γ (resp. Γ) is co-finite
if Vol(FΓ) <∞. (A discrete co-finite subgroup of SL2(R) is often called a lattice.)

Of course, if Γ is co-compact, then it is automatically co-finite. On the other
hand it is a theorem of Siegel that co-finite groups Γ are geometrically finite and
of the first kind. It is also true that geometrically finite groups of the first kind
are co-finite.11

We will almost exclusively focus on co-finite or even co-compact groups. The
following results turn out to be very useful for us.

10A set is perfect if it is closed and has no isolated points.
11One needs to be a bit careful here, since there are examples of Fuchsian groups of the first

kind that are non co-finite. These are then of course not geometrically finite. One can also
easily construct geometricall finite Γ with infinite co-volume. These will be of the second kind
or elementary.
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Theorem 3.10. A co-finite Fuchsian group is co-finite if and only if it contains
no parabolic elements.

Theorem 3.11 (Nielsen). A non-abelian group Γ ⊆ PSL2(R) with only hyperbolic
elements acts discontinuously.

Theorem 3.12. Any co-finite Fuchsian group Γ ⊆ PSL2(R) can be generated by
elements

A1, . . . , Ag, B1, . . . , Bq, E1, . . . , El, P1, . . . , Ph
where

(1) The elements A1, . . . , Ag and B1, . . . , Bg are hyperbolic and g is the genus
of Γ\H;

(2) The elements E1, . . . , El are elliptic and there are mj ∈ N with E
mj
j = 1;

(3) The elements P1, . . . , Ph are parabolic and h is the number of cusps;12

(4) We have the relation

[A1, B1] · . . . · [Ag, Bg] · E1 · . . . El · P1 · . . . · Ph = 1.

By the Gauß-Bonnet formula we have

2g − 2 +
l∑

j=1

(1− 1

mj

) + h =
1

2π
Vol(Γ\H). (39)

We turn towards an example. The arguably most famous co-finite Fuchsian
group is Γ = PSL2(Z) (resp. Γ = SL2(Z)). Let us look at some properties.

Lemma 3.13. We have

(1) SL2(Z) is generated by T = n(1) and S = kπ/2.
(2) A fundamental domain is given by

FΓ = D2i = {z ∈ H : |Re(z)| ≤ 1

2
and |z| ≥ 1}.

Proof. We will only proof (1). We first compute

T n
(
a b
c d

)
=

(
1 n
0 1

)(
a b
c d

)
=

(
a+ cn b+ dn
c d

)
and

S

(
a b
c d

)
=

(
0 −1
1 0

)(
a b
c d

)
=

(
−c −d
a b

)
.

Further observe that S2 = −1.

Now take g =

(
a b
c d

)
∈ SL2(Z). First, if c = 0, then we have a = d = ±1. We

have

g =

{
S2T−b if a = −1,

T b if a = 1.

12The notion of a cusp will be introduced a little bit later.
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Thus we can assume c 6= 0 and after multiplying with S2 if necessary we even have
c > 0. Now we write

g′ = Tmg =

(
a′ b′

c d

)
,

where m is chosen such that 0 ≤ a′ < c. Now we note that the matrix Sg′ has left
lower entry strictly smaller than c. Thus repeating this process leads to the case
c = 0 after finitely many steps. �

Corollary 3.14. We have Vol(SL2(Z)\H) = π
3
. In particular, SL2(Z) is co-finite

but not co-compact.

Proof. We compute

Vol(SL2(Z)\H) = µ(FΓ) =

∫ 1
2

− 1
2

∫ ∞
√

1−x2

y−2dydx

=

∫ 1
2

− 1
2

1√
1− x2

dx =

∫ π/6

−π/6

cos(t)√
1− sin(t)2

dt =

∫ π/6

−π/6
dt = π/3.

To see that SL2(Z) is not co-compact we can either just look at the fundamental
domain or we can observe that T is parabolic and apply Theorem 3.10. �

Exercise 3.1. Let Γ be a Fuchsian group and let z ∈ H. Show that the stabilizer

Γz = {γ ∈ Γ: γ.z = z}
is cyclic.

This exercise can be nicely illustrated by the following example.

Example 3.15. The stabilizer of ∞ in SL2(R) is given by{(
a b
0 d

)
∈ SL2(R)

}
= {±1} ·N(R) · A(R).

Taking the intersection with Γ = SL2(Z) we see that

Γ∞ = 〈−1, T 〉 =

{(
±1 m
0 ±1

)
: m ∈ Z

}
.

This is not cyclic. However, once we are passing to Γ = PSL2(Z) we have Γ∞ =
〈T 〉.

Given a general co-finite Fuchsian group Γ (resp. a discrete group Γ) we say
that the cusps of Γ (resp. Γ) are equivalence classes of parabolic fixed points of Γ.
These will be denoted by a, b, . . .. One can choose a fundamental domain FΓ whose
cuspidal vertices are inequivalent parabolic fixed points. Once such a fundamental
domain is fixed these cuspidal vertices become canonical representatives of the
cusps. We then sometimes abuse notation and call them the cusps of Γ.
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Example 3.16. The parabolic fixed points of SL2(Z) are given by Q ∪ ∞. But
these are all equivalent. Thus there is only one cusp. In the standard fundamental
domain FSL2(Z) = D2i the cuspidal vertex is ∞. Thus we often say ∞ is the cusp
of SL2(Z).

We return to some more geometric properties of the quotients Γ\H. Recall
that the hyperbolic distance between i and iy was realized by the vertical path
connecting these two points. We extend this path to infinity and obtain the vertical
geodesic l◦ = iR>0. We view this as an oriented geodesic, where we imagine the
orientation as traveling from 0 to ∞.13 All other geodesics are of the form g.l◦
with g ∈ PSL2(R). These are all vertical lines or half circles orthogonal to the real
axis.

Given two distinct points a, b ∈ ∂H, there is a unique oriented geodesic con-
necting a and b. Indeed, if a = 0 and b = ∞, then this geodesic is l◦. In general,
we can find a matrix g ∈ PSL2(R) such that g.a = 0 and g.b = ∞. The desired
geodesic is then given by g−1.l◦.

Given a hyperbolic matrix h ∈ PSL2(R), then it is conjugate to an element in
A(R). More precisely,

ghg−1 = a(el) for l ≥ 0. (40)

The two fixed points a, b of h are mapped to 0,∞. We call the fixed point mapped
to 0 repelling and the one mapped to ∞ attracting. Applying our observation
above there is a unique geodesic connecting a and b oriented so that it travels
from repelling fixed point to attracting fixed point:

α(h) = g−1.l◦.

The oriented geodesic α(h) ⊆ H is called the axis of h. We further define the
displacement length l(γ) = l for l as in (40). Note that we have

tr(γ) = 2 cosh(
l(γ)

2
).

One also checks that

l(γ) = min
z∈H

d(z, γz).

This minimum is achieved by any element z ∈ α(h).
We now take a Fuchsian group Γ and consider the projection

π : H→ Γ\H.

Given an oriented geodesic l ⊆ H we obtain an oriented geodesic π(l) ⊆ Γ\H.
These are paths that locally minimize the hyperbolic distance on the quotient
space. These can behave very differently. For now we single out closed oriented
geodesics. The following classifying result is very important.

13Note that as a set S.l◦ = iR<0, but has opposite orientation.
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Lemma 3.17. There is a one to one correspondence between closed oriented
geodesics on Γ\H and hyperbolic conjugacy classes in Γ. Under this correspon-
dence the length of the close oriented geodesic corresponds to the displacement
length of elements in the conjugacy class.

Proof. Suppose γ ∈ Γ is hyperbolic. We claim that l = π(α(γ)) is a closed oriented
geodesic of length l(γ). By construction l is oriented. If we write t 7→ l(t) for the
parametrization of l with unit speed, then we observe that l(t + l(γ)) = γ.l(t).
This shows that l is closed. Now take T ∈ Γ. We observe that

α(TγT−1) = Tα(γ).

Thus we obtain

π(α(TγT−1)) = π(T.α(γ)) = π(α(γ)) = l.

This shows that our construction depends only on the conjugacy class of γ.
Let t 7→ l(t) be a oriented closed geodesic of length l. We parametrize with unit

speed so that l(t + l) = l(t). We lift l to a geodesic l̃ on H. It is easy to see that

there is a unique element γ ∈ PSL2(R) with α(γ) = l̃ and l(γ) = l. We claim that
γ ∈ Γ. To see this we observe that since l(t0) = l(t0 + l) there is κ ∈ Γ so that

l̃(t0) = κ.̃l(t0 + l) = κγ.̃l(t0).

Thus κγ fixed the point l̃(t0). After suitably choosing t0 this implies that γ =
κ−1 ∈ Γ. Note that we made a choice when lifting l to H. It can be seen that

a different choice l̃′ produces a hyperbolic element γ′, which is conjugate to γ (in
Γ). �

Definition 3.8. A primitive closed oriented geodesic in Γ\H is a closed oriented
geodesic that is not an iterate of a shorter closed geodesic. Similarly we call an
element γ ∈ Γ (resp. the conjugacy class generated by γ) primitive if it is not a
positive power of another element.

Lemma 3.18. Let Γ be Fuchsian. Each γ ∈ Γ can be written uniquely as

γ = γk0

for γ0 primitive and k ≥ 1. Furthermore, the centralizer Γγ of γ in Γ is given by
〈γ0〉.

Proof. We prove this for hyperbolic γ. The proof for parabolic and elliptic elements
is similar.

After conjugating with an element in PSL2(R) we can assume that γ = a(el)
with l > 0. We can solve the equation gγ = γg directly one obtains that g ∈ A(R),
so that Γγ ⊆ A(R). We restrict logarithm

log : A(R) 7→ R, a(eh) 7→ h,
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to Γγ. The image is discrete. Thus, we have

log(Γγ) = l0Z ⊆ R.
Now we must have l = l0k and we get γ = a(el0)k. �

Definition 3.9. The length spectrum of a hyperbolic orbifold Γ\H is defined to
be the set

LΓ\H = {l(γ) : {γ} primitve hyperbolic conjugacy class in Γ}.
In other words, LΓ\H is the set of all lengths of primitive closed oriented geodesics.

Remark 3.19. Note that because we chose to work with oriented geodesics we have
l ∈ LΓ\H if and only if −l ∈ LΓ\H.

We define the counting function

πΓ\H(t) = ]{l ∈ LΓ\H : |l| ≤ t}.
One of our first applications of the trace formula will be to show an asymptotic
formula for this counting function. This will be the so called Prime Geodesic
Theorem. For now we can only show the following easy upper bound.

Proposition 3.20. Let Γ be a geometrically finite Fuchsian group. Then we have

πΓ\H(t) = OΓ(et).

Proof. We prove this for co-compact Γ.14 Let FΓ = Dw be a fundamental domain
for Γ. Recall in the case at hand this is a compact convex set with finitely many
sides. Let d > 0 be the diameter of FΓ.

Let l be a primitive closed oriented geodesic and write it as l = π(α(κ)) for a
hyperbolic element κ ∈ Γ. Let z ∈ α(κ) ∩ FΓ. We compute

d(w, κw) ≤ 2d(w, z) + d(z, κz) ≤ 2d+ l(κ).

This allows us to count

πΓ\H(t) ≤ ]{κ ∈ Γ: d(w, κw) ≤ t+ 2d}
≤ ]{κ ∈ Γ: κFΓ ∩Bt+2d(w) 6= ∅}
≤ {κ ∈ Γ: κFγ ⊆ Bt+3d(w) 6= ∅}

≤ Vol(Bt+3d(w))

Vol(FΓ)
.

The volume of the hyperbolic disc Bt+3d(w) of radius t+ 3d and center w is easily
computed using polar coordinates and the desired upper bound follows directly. �

The same argument actually also gives the following counting result.

14The general proof uses the classification of hyperbolic ends of geometrically finite Fuchsian
groups and the resulting definition of the compact core. We refer to [Bo, Proposition 2.19] for
details.
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Proposition 3.21. For a geometrically finite Fuchsian group Γ and z, w ∈ H we
have

]{γ ∈ Γ: d(z, γw) ≤ t} = OΓ(et).

Definition 3.10. The exponent of convergence of a Fuchsian group Γ is

δΓ = inf{s ≥ 0:
∑
γ∈Γ

e−sd(z,γw) <∞},

for some z, w ∈ H.

Remark 3.22. The definition of δΓ is independent of the choice of z and w. Fur-
thermore, Proposition 3.21 shows that for geometrically finite Γ we have δΓ ≤ 1.
It turns out that for co-finite Γ we have δΓ = 1.15

Finally we define the Selberg-Zeta function

ZΓ\H(s) =
∏

l∈LΓ\H

∞∏
k=0

(1− e−(s+k)l),

for Re(s) > δ. A major application of Selberg’s trace formula will be the mero-
morphic continuation of this function.

4. Spectral theory for compact quotients

Throughout this section let Γ ⊆ SL2(R) be a co-compact discrete subgroup
and let FΓ be a fundamental domain. Note that FΓ is compact. We canonically
identify

L2(Γ\H) = L2(FΓ).

In particular, we write the inner product on L2(Γ\H) as

〈f, g〉 =

∫
FΓ

f(z)g(z)dµ(z).

We can also easily make sense of the spaces

Ck(Γ\H) = Ck(FΓ).

We write ∆: L2(Γ\H) → L2(Γ\H) for the unbounded operator given by ∆ =

−y2( ∂2

∂x2 + ∂2

∂y2 ) with domain C∞(Γ\H).

Lemma 4.1. The operator ∆ is symmetric and non-negative.

15One can also show that δΓ = 0 for elementary Fuchsian groups and 0 < δΓ < 1 for geomet-
rically finite Fuchsian groups of the second kind.
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Proof. We use Stokes’ Theorem to write∫
FΓ

∆fgdµ =

∫
FΓ

∇f∇gdµeuc −
∫
∂FΓ

∂f

∂n
gdl.

Here ∂n is the outer normal derivative and dl is the euclidean length. By identifying
sides of FΓ that are equivalent under the Γ-action one verifies that the boundary
integral vanishes. This shows that

〈∆f, g〉 =

∫
FΓ

∇f∇gdµeuc

and completes the proof. �

As a result we find that ∆ has a unique self-adjoint extension. This is the
so called Friedrichs extensions. We will slightly abuse notation and denote this
extension also by ∆. Our goal in this section is to study the spectrum (and in
particular the eigenvalues) of this unbounded self-adjoint operator. We start with
some easy observations.

Corollary 4.2. The following statements hold.

(1) The eigenvalues of ∆ are non-negative.
(2) If ∆f = 0, then f is constant.
(3) Two eigenfunctions with distinct eigenvalues are orthogonal.

We define the automorphic Green function for Γ as

GΓ,s(z, w) =
∑
γ∈Γ

Gs(u(γz, w)),

for z 6∈ Γ.w and Re(s) > 1. Note that absolute convergence follows from Proposi-
tion 3.21. We record the following properties:

(1) We have GΓ,s(z, w) = GΓ,s(z, w) and GΓ,s(z, w) = GΓ,s(w, z).
(2) For γ1, γ2 ∈ Γ we have GΓ,s(γ1.z, γ2.w) = GΓ,s(z, w). In particular, we

can view GΓ,s as a function G : Γ\H× Γ\H→ C with singularities on the
diagonal. (In view of our usual identification this is also interpreted as a
function on FΓ ×FΓ.)

(3) Away from the diagonal (i.e. from (z, w) with Γ.z = Γ.w) the function GΓ,s

is smooth.
(4) As w → z we have

GΓ,s(z, w) = −]Γz
4π

log(u(z, w)) +OΓ,s(1). (41)

This follows directly from Lemma 2.11 and Proposition 3.21.
(5) For z ∈ FΓ we have∫

FΓ

|GΓ,s(z, w)|2dµ(w)�Γ,s 1. (42)
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To see this it is sufficient to show that the integral over a small (hyperbolic)
ball Br(z) is uniformly bounded. The resulting integral is estimated using
(41).

Lemma 4.3. For all f ∈ C∞(Γ\H) we have

(∆− s(1− s))RΓ,sf = f for [RΓ,sf ](z) =

∫
FΓ

GΓ,s(z, w)f(w)dµ(w).

Proof. This will directly follow from Theorem 2.13 and the unfolding trick. Indeed
we compute

[RΓ,sf ](z) =
∑
γ∈Γ

∫
FΓ

Gs((uγ.z, w))f(w)dµ(w)

=
∑
γ∈Γ

∫
γ−1FΓ

Gs(u(z, w))f(γ.w)dµ(w)

=
∑
γ∈Γ

∫
γ−1FΓ

Gs(u(z, w))f(w)dµ(w)

=

∫
H
Gs(u(z, w))f(w)dµ(w) = [Fsf ](z).

This shows that

Rs|C∞(Γ\H) = RΓ,s

and the result is immediate. �

We now turn to the analysis of invariant integral operators. We start with some
general remarks concerning integral operators on L2(Γ\H). Note that we can view
FΓ as a domain in R2, so that in view of our identification L2(Γ\H) = L2(FΓ) the
theory is very well represented in the classical literature. We will only give the
(relevant) highlights.

Recall that an integral operator on L2(Γ\H) is given by

[Kf ](z) =

∫
Γ\H

K(z, w)f(w)dµ(w) =

∫
FΓ

K(z, w)f(w)dµ(w), ,

where K : Γ\H × Γ\H → C is a suitable kernel function. As usual we may think
of K as a function on FΓ ×FΓ.

Lemma 4.4. Let K ∈ L2(Γ\H×Γ\H), then the associated operator K is a bounded
compact linear operator on L2(Γ\H). The adjoint operator is given by the kernel

K∗(z, w) = K(w, z).
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Proof. We compute

‖Kf‖2 =

∫
FΓ

∣∣∣∣∫
FΓ

K(z, w)f(w)dµ(w)

∣∣∣∣2 dµ(z)

≤
∫
FΓ

∫
FΓ

|K(z, w)|2dµ(z)dµ(w) · ‖f‖2.

By assumption on K this shows that the operator is bounded. More precisely,

‖K‖Op ≤ ‖K‖L2(FΓ×FΓ).

To see compactness we argue as follows. We first approximate K by a sequence
of smooth kernel K ∈ C∞(FΓ × FΓ) (i.e. Kn → K in L2-norm topology). Using
Hölder one easily shows that

|[Knf ](z1)− [Knf ](z2)| ≤ Vol(FΓ)
1
2 · sup

w∈FΓ

|Kn(z1, w)−Kn(z2, w)| · ‖f‖L2(FΓ
.

With this at hand one can apply Arzelá-Ascoli to show that the operator

Kn : L2(FΓ)→ C(FΓ)

is compact. Since the embedding C(FΓ) → L2(FΓ) is continuous we see that
Kn : L2(FΓ)→ L2(FΓ) is compact. Compactness ofK follows, since ‖K−Kn‖Op →
0 as n→∞.

Finally, we have to compute the adjoint operator. We do so directly

〈Kf, g〉 =

∫
Γ\H

∫
Γ\H

K(z, w)f(w)g(z)dµ(w)dµ(z) = 〈f,K∗g〉.

This completes the proof. �

In particular, if the Kernel is square integrable and satisfies K(z, w) = K(w, z),
then it defines a self-adjoint operator compact operator.

Lemma 4.5 (Bessel inequality). Let K ∈ L2(Γ\H × Γ\H) and let φ1, . . . , φn be
orthonormal eigenfunctions with eigenvalues λi. Then we have∫

Γ\H

∣∣∣∣∣K(z, w)−
n∑
i=1

λiφ(z)φi(w)

∣∣∣∣∣
2

dµ(w) =

∫
Γ\H
|K(z, w)|2 −

n∑
i=1

|λi|2|φi(z)|2.

for almost all z. Furthermore,∫
Γ\H

∫
Γ\H

∣∣∣∣∣K(z, w)−
n∑
i=1

λiφ(z)φi(w)

∣∣∣∣∣
2

dµ(w)dµ(z)

=

∫
Γ\H

∫
Γ\H
|K(z, w)|2dµ(w)dµ(z)−

n∑
i=1

|λi|2.
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Proof. We open | · |2 and simply compute∫
Γ\H

∣∣∣∣∣K(z, w)−
n∑
i=1

λiφ(z)φi(w)

∣∣∣∣∣
2

dµ(w)

=

∫
Γ\H
|K(z, w)|2dµ(w)−

n∑
i=1

λiφi(z) · [Kφi](z)−
n∑
i=1

λiφi(z) · [Kφi](z)

+
n∑
i=1

n∑
j=1

λiλjφi(z)φj(z)〈φi, φj〉.

We are done since Kφi = λiφi and 〈φi, φj〉 = δi,j by assumption. The second
identity now follows by integrating the first one. �

Corollary 4.6. Let K ∈ L2(Γ\H × Γ\H) and let λ1, . . . , λn be eigenvalues (that
may occur with multiplicity). Then we have

n∑
j=1

|λj|2 ≤
∫

Γ\H

∫
Γ\H
|K(z, w)|2dµ(z)dµ(w).

To conclude this interlude we recall the spectral theorem for compact self-adjoint
operators.16

Theorem 4.7. Let T be a compact self-adjoint operator on a Hilbert space H.
Then the following statement hold.

• The spectrum of T consists of countably many eigenvalues.
• All non-zero eigenvalues have finite multiplicities and can accumulate only

at 0.
• If |λ1| ≥ |λ2| ≥ . . .→ 0 is a complete list of non-trivial eigenvalues (listed

with multiplicity) and x1, x2, . . . is a corresponding system of (orthonormal)
eigenvectors, then we have

Tx =
∞∑
i=1

λi〈x, xi〉 · xi.

Let us return to the automorphic Green function GΓ,s for Γ and the correspond-
ing integral operator RΓ, s. We take s = 2 and observe that RΓ,2 is a bounded,
compact and self-adjoint operator. Compactness follows from (42) and Lemma 4.4.
Using Lemma 4.3 it is easy to see that RΓ,s has dense range and shares eigenfunc-
tions with ∆. This leads to the following important result.

Theorem 4.8 (Spectral theorem for compact quotients). Let Γ ⊆ SL2(R) be a
co-compact discrete subgroup. Then the operator ∆ has discrete spectrum

0 = λ0 < λ1 ≤ λ2 ≤ . . .→∞ (43)

16See for example [Tr, Theorem 18.4].
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and the corresponding orthonormal system of eigenfunctions φ0, φ1, . . . forms a
basis of L2(Γ\H). If f is in the domain of ∆, then

f(z) =
∞∑
i=0

〈f, φi〉 · φi(z)

converges pointwise absolutely and uniformly on compacta.17

Note that whenever we list the eigenvalues λ0, λ1, . . . of ∆ this list is ordered
(i.e. λ0 = 0) and each eigenvalues appears with the appropriate multiplicity. The
corresponding eigenfunctions φ0, φ1, . . . (i.e. ∆φi = λiφi) will always be assumed
to be orthonormal. Note that since ∆ is an elliptic operator the eigenfunctions are
smooth. (This is the celebrated elliptic regularity theorem.)

Corollary 4.9. Let Γ ⊆ SL2(R) be co-compact and let λ0, λ1, . . . be a list of eigen-
values of ∆ on L2(Γ\H). We have

NΓ(T ) = {i ∈ Z≥0 : λi ≤ T} = OΓ(T 2)

as T →∞.

Proof. Note that

RΓ,2φi =
1

λi + 2
· φi.

In particular, by Corollary 4.6 we have

S : =
∞∑
i=0

1

(λi + 2)2
<∞. (44)

Because

NΓ(T ) ≤ (T + 2)2 · S, (45)

we are done. �

Later we will use Selberg’s trace formula to prove an asymptotic formula, a so
called Weyl law, for NΓ(T ).

Let k : R≥0 → C be a function such that its Selberg - Harish–Chandra trans-
form h satisfies the properties in Remark 2.24. (This is for example guaranteed
if k is smooth and compactly supported.) Recall that Tk is the corresponding
invariant integral operator acting on functions from H to C. When applied to the
eigenfunctions φi of ∆ we find that

Tkφi = h(tj)φi,

17This convergence statement does not follow directly from the spectral theorem for RΓ,2 and
we will use it as a black box.
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for λi = 1
4

+ t2i (or similarly λi = si(1 − si) and si = 1
2

+ iti). This follows from
Theorem 2.21. We define the automorphic kernel by

kΓ(z, w) =
∑
γ∈Γ

k(u(γ.z, w)). (46)

It can be seen that the γ-sum converges absolutely for the k’s in question.18 By
the unfolding trick we find that

[Tkf ](z) =

∫
FΓ

kΓ(z, w)f(w)dµ(w),

for f ∈ L2(Γ\H). We see that Tk : L2(Γ\H) → L2(Γ\H) is an integral operator.
As observed earlier the operators Tk commute with ∆ and are all simultaneously
diagonalized by the eigenfunctions φi of ∆. We have the following important
expansion, which is sometimes called pretrace equality.

Theorem 4.10. Let k : R≥0 → C be such that its Selberg-Harish–Chandra trans-
form h satisfies the conditions from Remark 2.24. Then we have

kΓ(z, w) =
∞∑
i=0

h(ti) · φi(z)φj(w).

Here 0 = λ0 < λ1 ≤ λ2 ≤ . . . is a list of eigenvalues of the Laplacian written as
λi = 1

4
+t2i and φ0, φ1, . . . is a corresponding orthonormal system of eigenfunctions.

The expansion converges absolutely and uniformly on compacta.

Remark 4.11. Note that sometimes the automorphic kernel (46) is defined by
summing over Γ instead of Γ. We have∑

γ∈Γ

k(u(γ.z, w)) = cΓ · kΓ(z, w),

where cΓ = 1 if −1 6∈ Γ and cΓ = 2 if −1 ∈ Γ. Note that when applying the
unfolding trick it is more natural if the sum is taken over Γ. Otherwise one needs
to account for the multiplicity cΓ with which the translates of the fundamental
domain occur.

5. The trace formula for compact quotients

As the section title suggests we will now develop the trace formula for compact
quotients. Doing so we will mostly follow [He76, Chapter One].

Throughout this section Γ ⊆ SL2(R) will denote a co-compact discrete group and
we let Γ be its image in PSL2(R). Furthermore, we fix a convenient fundamental
domain FΓ ⊆ H. We let

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞
18In particular, if k is compactly supported, then the sum is finite for fixed z and w. This is

a direct consequence of the discontinuity of the action of Γ on H.



THE SELBERG TRACE FORMULA 42

denote a full list (with multiplicities) of eigenvalues of ∆. These eigenvalues will
also be written as

λi = si(1− si) =
1

4
+ t2i and si =

1

2
+ iti.

A corresponding orthonormal system of eigenfunctions is denoted by φ0, φ1, . . ..
We start by developing the trace formula for k ∈ C∞0 (R≥0), but the same rea-

soning works as soon as k ∈ C2
0(R≥0). Our goal is to compute the trace of the

associated invariant integral operator Tk : L2(Γ\H) → L2(Γ\H) in two ways. We
start with the spectral expansion.

Lemma 5.1 (Spectral trace). Let k ∈ C∞c (R≥1), then we have

Tr(Tk) =
∞∑
i=0

h(ti).

and the right hand side is absolutely convergent.

Proof. We first sow absolute convergence. To do so we recall that by standard
argument (see Lemma 2.23) one shows that

|h(t)| �k,A (|t|+ 1)−A (47)

for A ∈ N arbitrarily large. After choosing A sufficiently large absolutely conver-
gence follows from Corollary 4.6 and the observation that |tj| �

√
λj.

Once convergence is established we can compute the trace according to its defi-
nition:

Tr(Tk) =
∞∑
j=0

〈Tkφj, φj〉 =
∞∑
j=0

h(tj).

This completes the proof. �

On the other hand, we can use Theorem 4.10 with w = z. Integrating over FΓ

yields

Tr(Tk) =

∫
FΓ

kΓ(z, z)dµ(z).

Starting from this we compute the following unrefined formula for the geometric
trace.

Lemma 5.2 (Unrefined geometric expansion). For k ∈ C∞c (R≥0) we have

Tr(Tk) =
∑
{γ}

∫
Fγ
k(u(γ.z, z))dµ(z),

where the {γ}-sum ranges over distinct conjugacy classes in Γ and Fγ is a funda-
mental domain for the centralizer Γγ of γ in Γ. In particular, the expression on
the right is independent of the choice of Fγ.
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Proof. Inserting the definition of the automorphic kernel in our expression for the
trace yields

Tr(Tk) =
∑
γ∈Γ

∫
FΓ

k(u(γ.z, z))dµ(z)

=
∑
{γ}

∑
σ∈{γ}

∫
FΓ

k(u(σ.z, z))dµ(z).

An element σ ∈ {γ} can be written as σ = T−1γT for T ∈ Γ. Note that T−1γT =
R−1γR if and only if R ∈ ΓγT . Thus, we get

Tr(Tk) =
∑
{γ}

∑
T∈Γγ\Γ

∫
FΓ

k(u(T−1γT.z, z))dµ(z) =
∑
{γ}

∑
T∈Γγ\Γ

∫
T.FΓ

k(u(γz, z))dµ(z).

We put

Dγ =
⋃

T∈Γγ\Γ

T.FΓ,

so that

Tr(Tk) =
∑
{γ}

∫
Dγ
k(u(γz, z))dµ(z).

We claim that Dγ is a fundamental domain for Γγ. To see we check:

• Let z ∈ H. Then we write z = σ.w for w ∈ FΓ and σ ∈ Γ. Further, put
σ = Tδ for δ ∈ Γγ\Γ and T ∈ Γγ. Then we have z = Tδ.w ∈ T.Dγ.
• Now suppose z1, z2 ∈ DΓ and Tz1 = z2 for T ∈ Γγ. We rewrite this as
σ−1

2 Tσ1w1 = w2 for w1, w2 ∈ FΓ and σ1, σ2 ∈ Γγ\Γ. Thus w1, w2 ∈ ∂FΓ

and one concludes that z1, z2 are not in the interior of Dγ.
• Finally, we note that the difference to a (measurable) fundamental set is

contained in the union of the boundaries of the tiles T.FΓ. Thus it must
be a set of measure zero.

Finally, since z 7→ k(u(γ.z, z)) is Γγ-invariant, we find that the choice of the
fundamental domain is irrelevant. �

The integrals

I({γ}) =

∫
Fγ
k(u(γz, z))dµ(z),

where Fγ is a fundamental domain for the centralizer Γγ, are called orbital inte-
grals. We are no going to compute convenient expressions for them. This is best
done by distinguishing different types of conjugacy classes.

Remark 5.3. Since Γ is assumed to be co-compact we do not have to consider
parabolic conjugacy classes. This is due to Theorem 3.10.

The easiest, but very important, contribution comes from the identity element.
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Lemma 5.4 (The identity contribution). We have

I({1}) = k(0) Vol(Γ\H) = Vol(Γ\H) · 1

4π

∫
R
th(t) tanh(πt)dt.

Proof. For γ = 1 we have Γγ = Γ and Fγ = FΓ. We compute

I({1}) =

∫
FΓ

k(u(z, z))dµ(z) = k(0) Vol(FΓ).

The second expression follows from (33) and Fs(0) = 1. �

Exercise 5.1. Prove the identity

k(0) =
1

4π

∫
R
th(t) tanh(πt)dt

using the 3-step (inverse) Selberg-Harish–Chandra transform (i.e. h  g  q  
k).

We turn towards hyperbolic conjugacy classes. Recall that by Lemma 3.18 every
hyperbolic conjugacy class can be written as

{γ} = {γk0}

for γ0 primitive and k ≥ 0. With this in mind we prove the following lemma.

Lemma 5.5 (Hyperbolic contributions). Let γ0 ∈ Γ be a primitive hyperbolic
element with (signed) displacement length l(γ0). For k ≥ 1 we have

I({γk0}) =
l(γ0)

2 sinh(kl(γ0)/2)
g(kl(γ0)).

Proof. We start by writing p = e|l(γ0)| > 1 and note that there is g ∈ PSL2(R) such
that

g−1γ0g = a(p) = diag(
√
p, 1/
√
p).

Also recall that the centralizer of γk0 is the cyclic group Γγ0 = 〈γ0〉 generated by
γ0. Put

Λ = 〈a(p)〉 ⊆ gΓg−1.

In particular, Λ is the centralizer of a(p) in gΓg−1 and g−1Λg = Γγ0 . Since a(p).z =
p · z and p > 1 it is easy to see that

FΛ = {z ∈ H : 1 ≤ Im(z) ≤ p}

is a fundamental domain for Λ. We see that g.FΛ is a fundamental domain for
Γγ0 .



THE SELBERG TRACE FORMULA 45

Choosing this particular domain in the definition of the orbital integral allows
us to compute

I({γk0}) =

∫
g.FΛ

k(u(γk0 .z, z))dµ(z)

=

∫
FΛ

k(u(γk0gz, gz))dµ(z)

=

∫
FΛ

k(u(pk · z, z))dµ(z).

Now we recall that

u(pk · z, z) =
|pkz − z|2

4pk · Im(z)2
=

(pk − 1)2

4pk︸ ︷︷ ︸
=N2

|z|2

Im(z)2
.

We can proceed by calculating the integral directly. Changing x→ yx yields

I({γk0}) =

∫ p

1

∫
R
k

(
N2x

2 + y2

y2

)
dxdy

y2

=

∫
R
k
(
N2(x2 + 1)

) ∫ p

1

dy

y
dx

= 2 log(p)

∫ ∞
0

k
(
N2(x2 + 1)

)
dx.

At this point we change variables u = N2(x2 + 1) (e.g. x = ( u
N2 − 1)

1
2 ). We arrive

at

I({γk0}) =
log(p)

N

∫ ∞
N2

k(u)√
u−N2

du =
log(p)

N
q(N2).

Here we have recalled the transform from k to q given in Definition 2.2. We
conclude the argument by replacing q with g using (34). To do so we observe that

2 log(
√
N2 +

√
N2 + 1) = k log(p). (48)

We get

I({γk0}) =
log(p)

2N
g(k log(p)).

After recalling that N = 1
2
(pk/2 − p−k/2) and p = e|l(γ0)| we find that

I({γk0}) =
|l(γ0)|

2 sinh(k|l(γ0)|/2)
g(k|l(γ0)|).

After recalling that g is even we see that we can drop the absolute values around
the signed displacement length l(γ0). This concludes the proof. �
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Note that Lemma 5.4 and Lemma 5.5 are sufficient for the trace formula of
compact Riemann surfaces. This is because the corresponding Fuchsian groups
do not have elliptic elements. However, since we do not want to exclude elliptic
elements we have to compute their contribution.

Note that there are only finitely many elliptic conjugacy classes and these can be
written as powers of primitive classes. Indeed, a primitive elliptic element γ0 ∈ Γ
has finite order m(γ0) and all elements in Γ with the same fixed point in H is given
by γl0 for 1 ≤ l < m(γ0). Thus the following result is sufficient to cover the elliptic
contribution.

Lemma 5.6 (Elliptic contributions). Let γ0 be a primitive elliptic element of order
m(γ0) and let 1 ≤ k ≤ m(γ0). Then we have

I({γk0}) =
1

m(γ0)

∫ ∞
0

g(r) cosh(r/2)

cosh(r)− cos(2πk/m(γ0))
dr

= (2m(γ0) sin(πk/m(γ0)))−1

∫
R
h(r)

cosh(π(1− 2k/m(γ0))r)

cosh(πr)
dr.

Proof. First we take g ∈ PGL2(R) such that g−1γ0g = kθ ∈ SO2 with θ = π/m(γ0).
Let Λ = 〈kθ〉 and note that kθ acts on H by rotation with angle 2θ around i. We
choose FΛ to be a corresponding sector. Arguing as in the hyperbolic case we need
to compute

I({γk0}) =

∫
FΛ

k(u(kkθ .z, z))dµ(z) =
1

m(γ0)

∫
H
k(u(kkθ .z, z))dµ(z).

In the second step we have used that it takes exactly m(γ0) copies of FΛ to cover
the full upper half plane.

From here we can compute the desired expression using polar coordinates as in
(18). We obtain

I({γk0}) =
2

m(γ0)

∫ π

0

∫ ∞
0

k(u(kkθkϕa(e−r).i, kϕa(e−r).i)) sinh(r)drdϕ

=
2π

m(γ0)

∫ ∞
0

k(u(kkθa(e−r).i, a(e−r).i)) sinh(r)dr.

We compute

u(kkθz, z) =
sin(kθ)2

4y2
|z2 + 1|2.

If z = e−ri, then this becomes

u(kkθe
−ri, e−ri) = sinh(r)2 sin(kθ)2.
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Inserting this above and putting u = sinh(r)2 yields

I({γk0}) =
π

m(γ0)

∫ ∞
0

k(u · sin(kθ)2)
du√
u+ 1

=
π

m(γ0) sin(kθ)

∫ ∞
0

k(u)√
u+ sin(kθ)2

du.

For notational simplicity we temporarily write a = sin(kθ). In view of (35) we can
compute

I({γk0}) = − 1

m(γ0)a

∫ ∞
0

∫ ∞
u

q′(v)(v − u)−
1
2 (u+ a2)−

1
2dvdu

= − 1

m(γ0)a

∫ ∞
0

q′(v)

∫ v

0

((v − u)(u+ a2))−
1
2dudv

= − 1

m(γ0)a

∫ ∞
0

q′(v)

∫ v/(v+a2)

0

(u(1− u))−
1
2dudv

=
1

m(γ0)

∫ ∞
0

q(v)(v + a2)−1v−
1
2dv

=
1

2m(γ0)

∫ ∞
0

g(r) cosh(r/2)

sinh(r/2)2 + a2
dr.

One directly verifies that, for a = sin(kθ), we have

sinh(r/2)2 + a2 =
1

2
(cosh(r)− cos(2kθ)).

Inserting this above yields

I({γk0}) =
1

m(γ0)

∫ ∞
0

g(r) cosh(r/2)

cosh(r)− cos(2kθ)
dr

as desired. We omit the proof of the second identity for the integral. �

We can now summarize everything and arrive at the first form of the trace
formula.

Theorem 5.7. Let Γ ∈ SL2(R) be a co-compact discrete subgroup and let k ∈
C∞c (R≥0) and let h denote its Selberg-Harish–Chandra transform. We write the
eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ . . . of ∆ as λj = 1

4
+ t2j . Recall that g is the
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(inverse) Fourier transform of h. Then we have
∞∑
j=0

h(tj) =
Vol(Γ\H)

4π

∫
R
th(t) tanh(πt)dt

+
1

2

∑
{γ0}

primitive
hyperbolic

l(γ0)
∞∑
k=1

g(kl(γ0))

sinh(kl(γ0)/2)

+
∑
{γ0}

primitive
elliptic

1

m(γ0)

m(γ0)−1∑
k=1

∫ ∞
0

g(r) cosh(r/2)

cosh(r)− cos(2πk/m(γ0))
dr,

where l(γ0) is the displacement length of hyperbolic γ0 and m(γ0) is the order of
elliptic γ0. The infinite sums in this expressions are absolutely convergent.

Proof. We compute the trace of Tk on L2(Γ\H) in two ways. First, spectrally
using Lemma 5.1. This gives the left hand side of our formula. Next we use the
unrefined geometric expansion from Lemma 5.2. The conjugacy classes are split
up according to their type. The identity contribution is computed in Lemma 5.4.
The remaining conjugacy classes are sorted according to the underlying primitive
class. The expression for hyperbolic classes is then given in Lemma 5.5, while for
the elliptic case we refer to Lemma 5.6.

Absolute convergence on the spectral side (i.e. the left hand side) is part of
Lemma 5.1. On the geometric side (i.e. the right hand side) the only potentially
infinite sum is the sum involving hyperbolic terms. However, since g is compactly
supported this sum is actually finite. �

We now want to extend the trace formula to a wider class of functions. We
define

δ̃ = inf{σ ≥ 1:
∞∑
j=1

λ−σj <∞}.

By Corollary 4.6 we have δ̃ ≤ 2. We define the following class of functions.19

Definition 5.1 (Sufficiently regular h). We say a function h is sufficiently regular
if, for some fixed ε0 > 0, we have

(1) h is even;
(2) h(t) is holomorphic in the strip | Im(t)| ≤ 1

2
+ ε0; and

(3) h(t)� (|Re(t)|+ 1)−2δ̃−ε0 .

Later we will see that δ̃ = 1, so that sufficiently regular functions are precisely
those described in Remark 2.24.

19Disclaimer: The following definition is not standard terminology.
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Lemma 5.8. If h is sufficiently regular, then its Fourier transform g = ĥ satisfies

g(u)� e−( 1
2

+ε0)|u|.

Proof. Without loss of generality we can assume that u < 0. Shifting contour in
the definition of the Fourier transform leads to

g(u) =
1

2π

∫ ∞
−∞

h(t)e−itudt =

∫ ( 1
2

+ε0)i+∞

( 1
2

+ε0)i−∞
h(t)e−itudt.

We bound the right hand side trivially by∫ ∞
−∞
|h(x+ i(

1

2
+ ε0))|e( 1

2
+ε0)udx� e−( 1

2
+ε0)|u|

∫ ∞
−∞

(1 + |x|)−2δ̃−ε0dx� e−( 1
2

+ε0)|u|.

This proves the statement. �

Corollary 5.9. Suppose h is sufficiently regular, then the sum∑
{γ0}

primitive
hyperbolic

l(γ0)
∞∑
k=1

g(kl(γ0))

sinh(kl(γ0)/2)

is absolutely convergent.

Proof. Note that there is a minimal length lΓ > 0 so that |l(γ0)| ≥ lΓ for all
primitive hyperbolic elements γ0. First, let us fix a primitive hyperbolic element
γ0. Without loss of generality we can take l(γ0) > 0. Then we can estimate the
k-sum as

∞∑
k=1

g(kl(γ0))

sinh(kl(γ0)/2)
�

∞∑
k=1

e−(1+ε0)kl(γ0) � e−(1+ε0)l(γ0)

1− e−(1+ε0)l(γ0)
�Γ e

−(1+ε0)l(γ0).

Thus we are left with estimating∑
{γ0}

primitive
hyperbolic

|l(γ0)|e−(1+ε0)|l(γ0)|.

In view of Proposition 3.21 this is easily seen to be absolutely convergent. �

We can now state the main theorem of this chapter.

Theorem 5.10 (Selberg trace formula I). Let Γ ∈ SL2(R) be a co-compact discrete
subgroup and let h be a sufficiently regular function. We write the eigenvalues
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0 = λ0 < λ1 ≤ λ2 ≤ . . . of ∆ as λj = 1
4

+ t2j . Then we have

∞∑
j=0

h(tj) =
Vol(Γ\H)

4π

∫
R
th(t) tanh(πt)dt

+
1

2

∑
{γ0}

primitive
hyperbolic

l(γ0)
∞∑
k=1

g(kl(γ0))

sinh(kl(γ0)/2)

+
1

2

∑
{γ0}

primitive
elliptic

1

m(γ0)

m(γ0)−1∑
k=1

sin(πk/m(γ0))−1

∫
R
h(r)

cosh(π(1− 2k/m(γ0))r)

cosh(πr)
dr,

where d(γ0) is the displacement length of hyperbolic γ0 and m(γ0) is the order
of elliptic γ0. The integrals and series involved in this formula are all absolutely
convergent.

Proof. We first assume that

h(t)� e−c|Re(t)| for some c > 0. (49)

For such h, the proof of Lemma 5.8 is easily modified to yield

g(k)(u)�k e
−( 1

2
+ε0)|u| for k ∈ Z≥0.

Fix a smooth, monotonically decreasing function ϕ : R≥0 → R with support in
[0, 2] and such that ϕ|[0,1] = 1. We define

ϕm(x) =

{
1 if |x| ≤ m,

ϕ(|x| −m) for |x| > m.

We define
gm(u) = g(u)ϕm(u)

and we let hm, qm, km denote the transforms obtained from gm via (35).20 We check
that

gkm(u)�k e
−( 1

2
+ε0)|u|

uniformly in m. On the other hand we compute

hm = ϕ̂m ∗ h.
This can be used to show that hm(t)� (1 + |t|)−5 for t ∈ R and limm→∞ hm(t) =
h(t) uniformly for Im(t) ≤ 1

2
. We can thus apply Theorem 5.7 and take the limit

m → ∞ on both sides of the formula. This establishes the desired formula for
functions h satisfying (49).

20Note that one has to be carefully when defining derivatives of qm at 0, but this is only a
little technicality.
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Finally lets take h sufficiently regular. We define

hε(t) = h(t)e−εt
2

.

This is now a function for which (49) holds. After applying the trace formula for
hε it is easy to justify, that one can take the limit ε → 0. This completes the
proof. �

6. Applications I

We now turn towards basic applications of the trace formula. We are doing so
following the beginning of [He76, Chapter Two].

Throughout this section we will fix a co-compact discrete subgroup Γ ⊆ SL2(R).
We enumerate the eigenvalues of ∆ on L2(Γ\H) by

0 = λ0 < λ1 ≤ λ2 ≤ . . .→∞
and write λj = 1

4
+ t2j . Important invariants of Γ are the co-volume Vol(Γ\H) and

the length of the shortest closed geodesic

lΓ = minLΓ\H.

Our first goal is to establish a Weyl-law. This is an asymptotic formula for

NΓ(T ) = ]{j ∈ Z≥0 : λj ≤ T}.
Next we will prove the Prime geodesic theorem, which captures the asymptotic
growth of

πΓ\H(t) = {l ∈ LΓ\H : |l| ≤ t}.
Finally, we will study analytic properties of the Selberg-Zeta function.

6.1. The Weyl law for co-compact quotients. Two very nice surveys on
Weyl’s law are [Iv,Mü]. We have seen the Weyl law for the sphere in Exercise 1.3
and the Weyl law for the torus in Corollary 1.4. We now turn towards the Weyl
law for compact Riemann surfaces of constant negative curvature.

We start with an easy estimate.

Proposition 6.1. For T > 0 we have
∞∑
j=0

e−t
2
jT =

Vol(Γ\H)

4πT
+OΓ(1) (50)

as T approaches 0.

Proof. We take

h(t) = e−r
2T .

Note that the Fourier transform is given by

g(r) = ĥ(r) =
1√
4πT

e−
r2

4T .
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Applying the trace formula to h we obtain

∞∑
j=0

e−Tt
2
j =

Vol(Γ\H)

4π

∫ ∞
−∞

te−t
2T tanh(πt)dt+ Hyperbolic Terms + Elliptic Terms.

We first handle the identity contribution. Here we will use that tanh(πt) =
1 +O(e−2πt) for t ≥ 0. This allows us to write∫ ∞

−∞
te−t

2T tanh(πt)dt = 2

∫ ∞
0

te−t
2Tdt+O

(∫ ∞
0

te−t
2T−2πt

)
=

1

T
+O(1).

The elliptic contribution can be estimated trivially and is seen to be OΓ(1).
Thus, it remains to treat the hyperbolic contribution. We first estimate

Hyperbolic Terms =
1

2

∑
l∈LΓ\H

l
∞∑
k=1

1√
4πT

e−
k2l2

4T sinh(kl/2)−1

�Γ
1√
T

∑
l∈LΓ\H,
l>0

le
−l2
4T

∞∑
k=1

e−klΓ/2 �Γ
1√
T

∑
l∈LΓ\H,
l>0

le
−l2
4T .

The function x 7→ x · e− x
2

4T has a global maximum
√

2Te at x =
√

2T . Thus we
can estimate

Hyperbolic Terms�Γ πΓ\H(100
√
T ) +

1√
T

∑
l∈LΓ\H,

l>100
√
T

le
−l2
4T .

Estimating the remaining sum trivially yields

Hyperbolic Terms�Γ πΓ\H(100
√
T ) + 1.

Recall that, for T sufficiently small, we have πΓ\H(100
√
T ) = 0. This completes

the proof. �

This proposition allows us to deduce Weyl’s law in asymptotic form, but without
a meaningful error term.

Theorem 6.2 (Weyl law I). Let Γ ⊆ SL2(R) be a co-compact discrete subgroup.
Then we have

NΓ(T ) =
Vol(Γ\H)

4π
T (1 + oΓ(1)).
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Proof. This follows at once from a classical Tauberian theorem.21 We temporarily
write

ÑΓ(T ) = ]{j ∈ Z≥0 : t2j ≤ T}.

Clearly we have NΓ(T ) = ÑΓ(T ) +O(1). We write the result from Proposition 6.1
as ∫ ∞

0

e−TtdÑΓ(T ) ∼ Vol(Γ\H)

4π
T−1,

for T → 0. Using the Tauberian theorem we conclude that ÑΓ(T ) ∼ Vol(Γ\H)
4π

T as
T →∞ and are done. �

Remark 6.3. In particular, we have δ̃ = 1. Thus our notion of sufficiently regular
functions coincides with the functions described in Remark 2.24.

We will directly give a direct (arguably more modern) proof of Weyl’s law. This
time we also get a reasonable error term.

Theorem 6.4 (Weyl law II). Let Γ be a co-compact discrete subgroup of SL2(R).
Then we have

NΓ(T ) =
Vol(Γ\H)

4π
T +OΓ(

√
T ).

In the proof we will assume that Γ has no elliptic elements. This assumption is
for convenience only. It is left as an exercise for the reader to handle the general
case.

Proof. We start with some preparations. Choose g ∈ C∞c (R) and let h = ĝ. We

assume that the support of g is contained in (−lΓ, lΓ) and that g(0) = ĥ(0) = 1.
That such a function exists is easy to verify.

For a parameter T we define

hT (z) = h(T − z) + h(T + z).

We have

ĥT (r) = e−iT rg(r) + eiT rg(−r).
Since the support of g is contained in the interval (−lΓ, lΓ) and we are assuming
that there are no elliptic elements the trace formula reads

∞∑
j=−∞

h(T − tj) =
Vol(Γ\H)

2π

∫
R
h(T − t)t tanh(πt)dt. (51)

Here we have doubled the spectrum by setting t−j = −tj.

21More precisely we will use the Hardy-Littlewood Tauberian theorem, which can be formu-
lated as follows. Let F : [0,∞) → R be a real valued function and define w(s) =

∫∞
0
e−stdF (t).

Then, for ρ > 0 and a constant C, we have w(s) ∼ Cs−ρ as s→ 0 if and only if F (t) ∼ C
Γ(ρ+1) t

ρ

as t→∞.
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We now additionally assume that h(t) ≥ 0 for t ∈ R and h(t) > 0 for t ∈
[−a, a].22 We now observe that

]{j ∈ Z : |tj − µ ≤ a, tj ∈ R} · min
u∈[−a,a]

h(u) ≤
∑
j∈Z

h(µ− tj).

We estimate the right hand side using (51). One easily sees that∑
j∈Z

h(µ− tj)�h 1 + |µ|.

Since there are only finitely many eigenvalues with tj 6∈ R we conclude that

]{j ∈ Z : |tj − µ| ≤ a} �a,Γ 1 + |µ| (52)

After having established this intermediate counting result we return to the main
argument. Integrating (51) over T ∈ [−λ, λ] yields∫ λ

−λ

∞∑
j=−∞

h(T − tj)dT =
Vol(Γ\H)

2π
λ2 +OΓ(λ). (53)

To see this we write p(t) = t tanh(πt) and compute∫ λ

−λ

∫
R
h(T−t)p(t)dtdT =

∫ λ

−λ

∫
R
h(T−r)dTp(t)dt+

∫ λ

−λ

∫
R\[−λ,λ]

h(T−t)p(t)dtdT

−
∫ λ

−λ

∫
R\[−λ,λ]

h(T − t)dTp(t)dt.

The first integral is easily seen to give the main term:∫ λ

−λ

∫
R
h(T − r)dT︸ ︷︷ ︸

=ĥ(0)=1

p(t)dt =

∫ λ

−λ
p(t)dt = λ2 +O(λ).

The remaining two integrals are easily handled using the rapid decay of h and we
obtain ∫ λ

−λ

∫
R
h(T − t)p(t)dtdT = λ2 +O(λ).

The identity (53) is a direct consequence of these considerations.
Further, we claim that∑

|tj |≤λ

∣∣∣∣∫
R\[−λ,λ]

h(T − tj)dT
∣∣∣∣� λ (54)

22Such a choice is possible by choosing h0 ∈ S(R) such that g0 has the desired properties.
The desired h is then obtained by appropriately re-scaling h0 · h0.
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and ∑
|tj |>λ

∣∣∣∣∫ λ

−λ
h(T − tj)dT

∣∣∣∣� λ (55)

These are again shown by using the rapid decay of h together with (52). Indeed,
we can estimate∑
|tj |≤λ

∣∣∣∣∫ ∞
λ

h(T − tj)dT
∣∣∣∣� ∑

|tj |≤λ

∫ ∞
λ−tj
|h(t)|dt�

∑
|tj |≤λ

(1 + λ− tj)−5

�
∑

−λ≤k<λ

]{j ∈ Z : |tj − k| ≤ 1}
(1 + λ− k)5

�
∑

−λ≤k<λ

1 + |k|
(1 + λ− k)5

� λ.

The lower piece of the integral (i.e. from −λ to −∞) is handled similarly yielding
(54). The proof for (55) is analogous.

We are now ready to finish the proof. We compute

]{j ∈ Z : |tj| ≤ λ} =
∑
|tj |≤λ

ĥ(0) =
∑
|tj |≤λ

∫
R
h(T − tj)dT

=

∫ λ

−λ

∞∑
j=−∞

h(T − tj)dT +
∑
|tj |≤λ

∫
R\[−λ,λ]

h(T − tj)dT +
∑
|tj |>λ

∫ λ

−λ
h(T − tj)dT.

This is estimated using (53), (54) and (55). We arrive at

]{j ∈ Z : |tj| ≤ λ} =
Vol(Γ\H)

2π
λ2 +OΓ(λ).

Converting this count to NΓ(T ) concludes the proof. �

Remark 6.5. One can even show that

NΓ(T ) =
Vol(Γ\H)

4π
T + oΓ(

√
T ).

However, the saving is only logarithmic. Note that such a result is true in much
greater generality. Indeed one only needs mild dynamical conditions to exclude
surfaces like the sphere. We refer to [Iv] for a more exhaustive discussion.

6.2. The prime geodesic theorem. It will make sense to introduce the counting
function

π̃Γ\H(T ) = ]{closed geodesic of length ≤ T}.
Here we are counting all closed geodesics not just primitive ones.

Lemma 6.6. We have

π̃Γ\H(T ) = πΓ\H(T ) +OΓ(eT/2).
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Proof. We simply observe that every geodesic is obtained as iterations of primitive
geodesics. Thus we have

π̃Γ\H(T ) =
∑

1≤k≤T/lΓ

πΓ\H(T/k) = πΓ\H(T ) +O(π̃Γ\H(T/2)).

We are done after using the trivial bound

π̃Γ\H(T/2)� e
T
2

from Proposition 3.20. �

We will need too following result concerning the eigenvalues.

Lemma 6.7. As T →∞ we have
∞∑
j=1

e−λjT �Γ e
−λ1T .

Proof. For a parameter U we can write
∞∑
j=1

e−λjT =
∑

0<λj<U

e−λjT +

∫ ∞
U

e−TxdNΓ(x)︸ ︷︷ ︸
�ΓUe−UT

.

We are done after choosing U = λ1. �

Proposition 6.8. We have πΓ\H(T )� eT√
T

.

This improves the trivial bound from Proposition 3.20, but is still not optimal.
Note that one should read this as

πΓ\H(T )� eT√
log(eT )

.

Proof. We start by reading the trace formula for

h(t) = e−T (t2+ 1
4

) and g(u) =
1

4πT
e−

u2

4T
−T

4

backwards. This leads to

Vol(Γ\H)

2π

∫ ∞
0

te−(t2+ 1
4

)T tanh(πt)dt+
1

2

∑
l∈LΓ\H

l

∞∑
k=1

1√
4πT

e−
k2l2

4T
−T

4 sinh(kl/2)−1

+ Elliptic Terms = 1 +O(e−λ1T ).

The identity contribution as well as the elliptic terms are easily seen to beOΓ(T
1
2 e−

T
4 ).

Thus we find that

1

2

∑
l∈LΓ\H

l

∞∑
k=1

1√
4πT

e−
k2l2

4T
−T

4 sinh(kl/2)−1 = 1 +O(e−aT ),



THE SELBERG TRACE FORMULA 57

for 0 < a < min(λ1,
1
4
). Since at the moment we are only interest in upper bounds

we only record the resulting estimate

1√
T

∑
l∈LΓ\H

le−
l2

4T
−l/2−T

4 �Γ 1.

Here we have estimated sinh(kl/2) ≤ 1
2
ekl/2 and the terms for k > 1 are absorbed

in the error. This is easily rewritten as∫ ∞
0

ue−(u+T )2/4TdπΓ\H(u)� T
1
2 .

By partially integrating the Riemann-Stieljes integral we find∫ ∞
0

πΓ\H(u)e−(T+u)2/4T

(
u2

2T
+
u

2
− 1

)
du =

∫ ∞
0

ue−(u+T )2/4TdπΓ\H(u)� T
1
2 .

We can now estimate

Te−TπΓ\H(T )�
∫ T+1

T

πΓ\H(u)e−(T+u)2/4T

(
u2

2T
+
u

2
− 1

)
du� T

1
2 .

The claimed upper bound is immediate. �

Unfortunately it turns out that the test function h(t) = e−T (t2+ 1
4

) is not sufficient
to derive the prime geodesic theorem. Nonetheless, we can still push our estimate
to obtain some useful results.

First, we note that in the above computations we have often passed between
sums over all hyperbolic conjugacy classes (i.e. closed geodesics) as they appear
in the trace formula and the contribution from primitive conjugacy classes. We
record a precise version of this argument in the following lemma.

Lemma 6.9. For a = min(lΓ, log(100)) we have

e−
T
4

2
√

4πT

∑
l∈LΓ\H

l
∞∑
k=1

e−
k2l2

4T sinh(kl/2)−1 =
e−

T
4

√
4πT

∑
l∈LΓ\H

l

el/2
e−

l2

4T

+O
(

(T
1
2 + T−

1
2 )e−a

2/4T−T
4

)
.

Furthermore, we have

Elliptic Terms� T
1
2 e−

T
4 .

This allows us to write
∞∑
j=0

e−λjT =
e−

T
4

√
4πT

∫ ∞
0

u

eu/2
e−

u2

4T dπΓ\H(u) +O(T
1
2 e−

T
4 ). (56)

Using Lemma 6.7 we can replace the right hand side by 1 + O(e−ηT ) for any
0 < η < min(λ1,

1
4
). The so created O-term obviously absorbs the error term
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on the right hand side. Integrating everything against a non-negative function
f : [1,∞)→ R we obtain∫ ∞

1

f(T )(1 +O(e−ηT ))dT =

∫ ∞
1

∫ ∞
0

e−
T
4

√
4πT

u

eu/2
e−

u2

4T dπΓ\H(u)f(T )dT

=

∫ ∞
0

u

eu/2

∫ ∞
1

e−
T
4

√
4πT

e−
u2

4T f(T )dTdπΓ\H(u)

We take f(T ) = e−βT for β = α− 1
4
. Note that we have the tail bound∫ ∞

0

ue−
u
2

∫ 1

0

e−αT√
4πT

e−u
2/4TdTdπΓ\H(u)� 1.

This leads us to

1

β
+O(1) =

∫ ∞
0

ue−
u
2

∫ ∞
0

e−αT√
4πT

e−u
2/4TdTdπΓ\H(u).

evaluating the inner integral gives

1

β
+O(1) =

1

2
√
α

∫ ∞
0

ue−
u
2
−u
√
αdπΓ\H(u).

We note that

2
√
β + 1/4

β
=

1

β
+O(1) and

1

2
+

√
β +

1

4
= 1 + β +O(β2).

Thus, as t→ 0 we arrive at∫ ∞
0

e−tuue−udπΓ\H(u) =
1

t
+O(1). (57)

We record the following consequences.

Proposition 6.10. We have

(1) As t→ 0 we have ∑
l∈LΓ\H

l · e−(1+t)l =
1

t
+O(1).

(2) As X →∞ we have ∑
l∈LΓ\H,
|l|≤X

le−l = X(1 + o(1)).

(3) As X →∞ we have∑
l∈LΓ\H,
|l|≤X

e−l = log(X)(1 + o(1)).
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Proof. The first point is simply a reformulation of (57). The second identity is
a direct consequence of a classical Tauberian Theorem. Finally, the third claim
follows from the second one by partial summation. �

We conclude here by giving some (essentially trivial) lower bounds.

Proposition 6.11. For any 0 < α < 1
4

we have

lim inf
t→∞

πΓ\H(t)e−αt =∞.

Proof. We start from (56) together with Lemma 6.7. Truncating the integral at

S = T + 2
√
T log(T ) yields

e−T/4√
4πT

∫ S

0

ue−
u
2 e−u

2/4TdπΓ\H(u) = 1 + o(1).

As before we can rewrite this as

1 + o(1) =
e−T/4√

4πT

∫ S

0

πΓ\H(u)e−
u
2
− u

2

4T

(
u2

2T
+
u

2
− 1

)
du

≤ πΓ\H(S)
e−T/4√

4πT

∫ S

0

e−
u
2
− u

2

4T T (1 + o(1))du.

The integral can be evaluated explicitly. We obtain

π(S) ≥ (1 + o(1))
√
π
e
T
4

√
T
.

Since S � T we are done. �

Our so far failed attempt to prove the prime geodesic theorem leads us naturally
to the definition of the following Dirichlet series.23 For Re(s) > 1 we set

E(s) = 2
∑

l∈LΓ\H,
l>0

l

esl
.

According to Proposition 6.10 this is absolutely convergence for Re(s) > 1. Our
goal is to find a suitable analytic continuation of E(s).

Remark 6.12. We would like to choose g(u) = e−α|u| in the trace formula. This
would lead to

Hyperbolic Terms ∼ E(
1

2
+ α).

Thus in order to obtain new analytic information we need to take α with Re(α) ≤
1
2
.

23Here I am assuming that we are classically trained analytic number theorists.
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However, if we compute

h(t) =

∫
R
e−α|u|+itudu =

1

α + it
+

1

α− it
=

2α

α2 + t2
.

From this we can read of the location of the poles and observe that they occur at
Im(t) = ±Re(α). Since we need h to be sufficiently regular, we can not use this
particular test function to obtain any new analytic information.

We will use the test function

g(u) =
1

2α
e−α|u| − 1

2β
e−β|u|, (58)

for 1
2
< Re(α) < Re(β). One computes that

h(t) =
1

t2 + α2
− 1

t2 + β2
=

β2 − α2

(t2 + α2)(t2 + β2)
.

We see with bare eyes that this function is analytic for | Im(t)| < Re(α). Further-
more, we have

h(t)� (1 + |Re(t)|)−4

in an appropriate strip Im(t) ≤ 1
2

+ ε, where ε > 0 depends on α. From now on we
will fix β ≥ 2.

The trace formula for this choice of h reads
∞∑
j=0

(
1

t2j + α2
− 1

t2j + β2

)
=

Vol(Γ\H)

4π

∫ ∞
−∞

t

(
1

t2 + α2
− 1

t2 + β2

)
tanh(πt)dt

+ Elliptic Terms

+
1

2α

∑
l∈LΓ\H,
l>0

∞∑
k=1

l

sinh(kl/2)
e−αl

− 1

2β

∑
l∈LΓ\H,
l>0

∞∑
k=1

l

sinh(kl/2)
e−βl.

We will first rewrite the hyperbolic terms. To simplify notation we first define

c1(β) =
1

2β

∑
l∈LΓ\H,
l>0

∞∑
k=1

l

sinh(kl/2)
e−βl. (59)

Next we write α = s− 1
2

for Re(s) > 1. We compute

e−(s− 1
2

)lk sinh(kl/2)−1 =
2

(e
kl
2 − e− kl2 )ekl(s−

1
2

)
=

2

ekls
+

2

ekls(ekl − 1)
.



THE SELBERG TRACE FORMULA 61

This leads us to the definition of the Dirichlet series

A1(s) =
∑

l∈LΓ\H,
l>0

∞∑
k=1

l

ekls(ekl − 1)
for Re(s) > 0. (60)

Note that this is absolutely convergent in the region of definition. Furthermore, it
is easy to see that A1(s) is uniformly bounded on each half plane Re(s) ≥ ε > 0.

Next we observe that
∞∑
k=2

e−kls =
e−2ls

1− e−ls
.

Here we have simply summed the geometric series. This leads us to set

A2(s) =
∑

l∈LΓ\H,
l>0

l · e−2ls

1− e−ls
, for Re(s) >

1

2
. (61)

Note that the series converges absolutely and the resulting function is uniformly
bounded in half planes of the form Re(s) ≥ 1

2
+ ε > 1

2
.

All together we obtain that

Hyperbolic Terms =
1

2α

∑
l∈LΓ\H,
l>0

∞∑
k=1

l

sinh(kl/2)
e−αl − 1

2β

∑
l∈LΓ\H,
l>0

∞∑
k=1

l

sinh(kl/2)
e−βl

=
1

2s− 1
E(s) +

2

2s− 1
A2(s) +

2

2s− 1
A1(s)− c(β).

Next we compute the identity contribution. This is done with a trick. Indeed,
we recall the automorphic resolvent operator RΓ,s and note that

RΓ,sφj =
1

(t2j + (s− 1
2
)2)
· φj.

Therefore, we recognize the spectral side as the trace ofRΓ,s−RΓ,β+ 1
2
. In particular,

the corresponding integral kernel is the automorphic Green function. We conclude
that

k(u) = Gs(u)−Gβ+ 1
2
(u).

We can now compute the identity contribution from Lemma 5.4 as

Identity Term = Vol(Γ\H)k(0) = Vol(Γ\H) lim
u→0

(Gs(u)−Gβ+ 1
2
(u))

In view of (24) we arrive at

Identity Term =
Vol(Γ\H)

2π
(ψ(β +

1

2
)− ψ(s)).
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Recall that ψ is the digamma function satisfying

ψ(z) =
Γ′(z)

Γ(z)
= −γ −

∞∑
n=0

(
1

n+ z
− 1

n+ 1

)
. (62)

Remark 6.13. This contribution is also computed in [Iw, (10.24)]. However, the
formula in loc. cit. seems to have a wrong power of 2. Since we were unable to
locate where this inconsistency comes from we will give an alternative evaluation
of the identity contribution.

We start from

Identity Term =
Vol(Γ\H)

4π

∫
R
t ·
(

1

t2 + (s− 1
2
)2
− 1

t2 + β2

)
tanh(πt)dt.

Recall that the poles of tanh(πt) is odd with period i. Furthermore, its poles are
simple and located at (k + 1

2
)i with k ∈ Z. These poles all have residue 1

π
. Let

K ∈ N be a large parameter and shift the contour to the horizontal line R + iK.
By the residue theorem we obtain∫

R
t ·
(

1

t2 + (s− 1
2
)2
− 1

t2 + β2

)
tanh(πt)dt

= 2πi

(
1

2
tanh(πi(s− 1

2
))− 1

2
tanh(πiβ)

)
+ 2πi

∑
0≤k<K

i(k + 1/2)

π

(
1

(s− 1
2
)2 − (k + 1

2
)2
− 1

β2 − (k + 1
2
)2

)

+

∫ ∞+iK

−∞+iK

t ·
(

1

t2 + (s− 1
2
)2
− 1

t2 + β2

)
tanh(πt)dt.

Here we are picking up the poles at t = i(s − 1
2
) and t = iβ, which we assume

to lie in the upper half plane as well as the poles of tanh(πt). We check that the
remaining integral tends to 0 as K →∞. Thus we end up with

Identity Term =
Vol(Γ\H)

4π

(
π tan(πβ)− π tan(π(s− 1

2
))

−
∞∑
k=0

(
2k + 1

(s− 1
2
)2 − (k + 1

2
)2
− 2k + 1

β2 − (k + 1
2
)2

))
.

We have to play a bit with the sum. First one checks that

2k + 1

(s− 1
2
)2 − (k + 1

2
)2
− 2k + 1

β2 − (k + 1
2
)2

=
1

s− k − 1
− 1

s+ k
− 1

β − k − 1
2

+
1

β + k + 1
2

.

At this point we recall that

π tan(πz) = −
∞∑
k=0

(
1

z − k − 1
2

+
1

z + k + 1
2

)
.
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Inserting this above yields

Identity Term =
Vol(Γ\H)

2π

( ∞∑
k=0

(
1

s+ k
− 1

β + k + 1
2

))
.

Comparing the k-sum to (62) allows us to conclude that

Identity Term =
Vol(Γ\H)

2π
(Ψ(β +

1

2
)−Ψ(s))

as desired.

The next step is to analyze the elliptic terms. We first write the elliptic contri-
bution using Lemma 5.6 as

Elliptic Terms =
1

2s− 1

∑
{γ0}

primitive
elliptic

1

m(γ0)

m(γ0)−1∑
k=1

∫ ∞
0

e−(s− 1
2

)r cosh(r/2)

cosh(r)− cos(2πk/m(γ0))
dr

− 1

2β

∑
{γ0}

primitive
elliptic

1

m(γ0)

m(γ0)−1∑
k=1

∫ ∞
0

e−βr cosh(r/2)

cosh(r)− cos(2πk/m(γ0))
dr.

We define

c2(β) =
1

2β

∑
{γ0}

primitive
elliptic

1

m(γ0)

m(γ0)−1∑
k=1

∫ ∞
0

e−βr cosh(r/2)

cosh(r)− cos(2πk/m(γ0))
dr. (63)

Computing the remaining integral is a bit cumbersome. We start by recalling the
identity∫ ∞

0

e−(µ± 1
2

)x(cosh(x)−cos(t))−1dx =
2

sin(t)

∞∑
k=1

sin(kt)

µ± 1
2

+ k
for Re(µ) > −1

2
and t 6∈ 2πZ.

Summing over the choice of sign ± leads us to the formula∫ ∞
0

e−µr
cosh(r/2)

cosh(r)− cos(2α)
dr =

1

sin(α)

∞∑
k=0

sin((2k + 1)α)

k + µ+ 1
2

.

We thus obtain

1

(2s− 1)m(γ0)

∫ ∞
0

e−(s− 1
2

)r cosh(r/2)

cosh(r)− cos(2πk/m(γ0))
dr

= ((2s− 1)m(γ0) sin(2πk/m(γ0)))−1
∞∑
l=0

(s+ l)−1 sin

(
(2l + 1)

πk

m(γ0)

)
.



THE SELBERG TRACE FORMULA 64

This is already a good expression, but we can do better. We do so by reworking
the l-sum. First, we write

∞∑
l=0

(s+ l)−1 sin

(
(2l + 1)

πk

m(γ0)

)

=
∑

0≤l<m(γ0)

sin

(
(2l + 1)

πk

m(γ0)

) ∞∑
n=0

(
(s+ l +m(γ0)n)−1 − (m(γ0) +m(γ0)n)−1

)
.

Here we have simply split the sum into residue classes modulo m(γ0) and included
the convergence terms m(γ0)+m(γ0)n using character orthogonality. We recognize
this as
∞∑
l=0

(s+l)−1 sin

(
(2l + 1)

πk

m(γ0)

)
= − 1

m(γ0)

∑
0≤l<m(γ0)

ψ(
s+ l

m(γ0)
) sin

(
(2l + 1)

πk

m(γ0)

)
.

Inserting this above allows us to express the elliptic contribution as

Elliptic Terms + c2(β)

=
−1

2s− 1

∑
{γ0}

primitive
elliptic

1

m(γ0)2

m(γ0)−1∑
k=1

∑
0≤l<m(γ0)

ψ(
s+ l

m(γ0)
)
sin
(

(2l + 1) πk
m(γ0)

)
sin(2πk/m(γ0))

.

This can be simplified by observing that

sin
(

(2l + 1) πk
m(γ0)

)
sin(2πk/m(γ0))

=
∑
|n|≤l

e

(
kn

m(γ0)

)
,

so that ∑
0<k<m(γ0)

sin
(

(2l + 1) πk
m(γ0)

)
sin(2πk/m(γ0))

= m(γ0)− 2l − 1.

We arrive at

Elliptic Terms + c2(β)

=
1

2s− 1

∑
{γ0}

primitive
elliptic

1

m(γ0)

m(γ0)−1∑
l=0

(
2l + 1

m(γ0)
− 1

)
ψ

(
s+ l

m(γ0)

)
.

All together we obtain the following result.
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Proposition 6.14 (Resolvent Trace Formula I). For s with Re(s) > 1 and β ≥ 2
we have

∞∑
j=0

(
1

t2j + (s− 1
2
)2
− 1

t2j + β2

)
=

Vol(Γ\H)

2π

(
ψ

(
β +

1

2

)
− ψ(s)

)

+
1

2s− 1

∑
{γ0}

primitive
elliptic

1

m(γ0)

m(γ0)−1∑
l=0

(
2l + 1

m(γ0)
− 1

)
ψ

(
s+ l

m(γ0)

)

+
1

2s− 1
E(s) +

2

2s− 1
A2(s) +

2

2s− 1
A1(s)− c1(β)− c2(β).

The Dirichlet series A1(s) and A2(s) are defined in (60) and (61) respectively and
c1(β), c2(β) are given in (59), (63).

On the spectral side a special role is played by potentially small eigenvalues.
This motivates the following definition.

Definition 6.1. We define MΓ ∈ Z≥0 so that

λMΓ
<

1

4
≤ λMΓ+1

.

For the eigenvalues λ0, . . . , λMΓ
the corresponding parameters tj are purely imag-

inary and we can assume that their imaginary part is negative. We set

sj =
1

2
+ itj and s∨j =

1

2
− itj.

Thus we have sj ∈ (1
2
, 1] and s∨j ∈ [0, 1

2
) In particular, s0 = 1 and s∨0 = 0.

Note that we can write

1

t2j + (s− 1
2
)2

=
1

2s− 1

(
1

s− sj
+

1

s− s∨j

)
.

We arrive at the following theorem.

Theorem 6.15. The function E(s) has a meromorphic extension to Re(s) > 1
2

with simple poles of residue 1 at the points s0, . . . , sMΓ
.

Proof. According to our discussion above the trace formula allows us to write

E(s) =

MΓ∑
j=0

(
1

s− sj
+

1

s− s∨j

)
+ Ψ(s)

for Re(s) > 1 and some function Ψ(s). We have seen that Ψ(s), which is explic-
itly given by the trace formula, is holomorphic for Re(s) > 1

2
. The result is a

consequence of the principle of analytic continuation. �
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We also need some control on the growth of E(s). This is supplied by the
following result.

Theorem 6.16. For ε > 0 sufficiently small and t ∈ R sufficiently far away from
0 (i.e. |t| ≥ 1000) we have

E(σ + it)� |t|
2

ε
, for

1

2
+ ε ≤ σ ≤ 2.

Proof. We look at the resolvent trace formula. First, a version of Stirling’s formula
for the digamma function tells us that the contribution of the identity and the
elliptic terms is OΓ(log(|t|)) in the region under consideration. Similarly, since β ≥
2 is considered fixed we have c1(β) + c2(β)� 1. Furthermore, by Proposition 6.10
we have

A1(σ + it)� 1 and A2(σ + it)� 1

ε
.

Thus, we obtain

E(s)

2s− 1
=
∞∑
j=0

(
1

t2j + (s− 1
2
)2
− 1

t2j + β2

)
+OΓ

(
1

|t|ε
+ log(|t|)

)
for s = σ + it.

We have to estimate the spectral contribution. First, note that since t is
sufficiently large we can trivially bound the contribution from the eigenvalues
λ0, . . . , λMΓ

. For the record:

MΓ∑
j=0

(
1

t2j + (s− 1
2
)2
− 1

t2j + β2

)
�Γ 1.

Thus, we only need to carefully treat the piece of the sum where the t′js are real.
Let us temporarily write

ÑΓ(y) = ]{j > MΓ : 0 ≤ tj ≤ y}.
We first handle the contribution from 0 ≤ tj ≤ 2|t| by estimating∑

0≤tj≤2|t|

∣∣∣∣∣ 1

t2j + (s− 1
2
)2
− 1

t2j + β2

∣∣∣∣∣
≤

∑
0≤tj≤2|t|

1

|(σ − 1
2
) + i(t− tj)| · |(σ − 1

2
) + i(t+ tj)|

+
∑

0≤tj≤2|t|

1

t2j + 1

≤
∑

0≤tj≤2|t|

1

ε(|t|+ tj)
+

∑
0≤tj≤2|t|

1

t2j + 1

�Γ 1 +
Ñγ(2|t|)
ε|t|

+

∫ 2|t|

1

x−2dÑΓ(x)� |t|
ε
.
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In the last step we have used that ÑΓ(y) �Γ y
2 via the Weyl law. On the other

hand we have ∑
2|t|<tj

∣∣∣∣∣ 1

t2j + (s− 1
2
)2
− 1

t2j + β2

∣∣∣∣∣
=
∑

2|t|<tj

∣∣∣∣∣ β2 − (σ − 1
2

+ it)2

(t2j + (σ − 1
2

+ it)2)(t2j + β2)

∣∣∣∣∣
�

∑
2|t|<tj

T 2

(tj + t)(tj − t)t2j
�

∑
2|t|<tj

T 2

t4j

� T 2

∫ ∞
2|t|

x−4dÑΓ(x)� 1.

The final estimate again follows from Weyl’s law. Combining all the bounds com-
pletes the proof. �

Using the Phragmén-Lindelöf principle we arrive at the following result.

Theorem 6.17. For s = σ + it with σ ≥ 1
2

+ ε and |t| ≥ 1000, we have

E(s)�Γ,ε |t|4·max(0,1+ε−σ).

Proof. The result is an interpolation between the bounds

E(s)�ε |t|2 for
1

2
+ ε ≤ σ ≤ 1 + ε

and
E(s)�ε 1 for 1 + ε ≤ σ.

�

We define
θ(x) = 2

∑
log(L)∈LΓ\H,

1<L≤x

log(L).

and

θ1(x) =

∫ x

1

θ(t)dt.

Note that θ(x) = θ1(x) = 0 for x < elΓ . The exponential re-scaling will make it
easier to refer to tools from classical analytic number theory. In particular,

E(s) = 2
∑

log(L)∈L,
1<L

log(L)

Ls

reads (essentially) like a classical Dirichlet series. We first proof the following
result.
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Proposition 6.18. For each ε > 0 we have

θ1(x) =

MΓ∑
j=0

t1+sj

sj(sj + 1)
+OΓ,ε(t

7
4

+ε).

Proof. Our starting point is the formula

θ1(x) =
1

2πi

∫
(2)

x1+s

s(s+ 1)
E(s)ds+O(1).

This is a version of Perron’s formula. Let η > 0 be such that 3
4

+ η 6= sj. We can

shift the line of integration to Re(s) = 3
4

+ η picking up the residues at the poles
we are crossing. We arrive at

θ1(x) =
∑

3
4

+η≤sj≤1

x1+sj

sj(sj + 1)
+

1

2πi

∫
( 3

4
+η)

xs+1

s(s+ 1)
E(s)ds+O(1).

By Theorem 6.17 (with ε = 3
4
η) we have

E(s)� (1 + | Im(s)|)1−η

on the line of integration Re(s) = 3
4
+η. Estimating the remaining integral trivially

and choosing η sufficiently small gives the desired error term. �

Theorem 6.19 (Prime Geodesic Theorem I). We have

πΓ\H(t) = li(et) +

MΓ∑
j=1

li(esjt) +O(e( 7
8

+ε)t),

where li(x) =
∫ x

2
log(t)−1dt.

Proof. We start by proving an asymptotic formula for θ. Note that we can write
the formula from Proposition 6.18 as∫ t

0

θ(x)dx =

MΓ∑
j=0

∫ t

0

xsj

sj
dx+O(t

7
4

+ε).

For 0 < h < t/2 we have

θ(t) ≤ 1

h

∫ t+h

t

θ(x)dx =

MΓ∑
j=0

1

h

∫ t+h

t

xsj

sj
dx+O(

1

h
e( 7

4
+ε)t)

≤
MΓ∑
j=0

(t+ h)sj

sj
+O(

1

h
t

7
4

+ε).

Here we have used the mean value theorem for integrals. We now use the Taylor
expansion

(t+ h)sj = tsj +O(h).
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Note that this is sharp for j = 0, when sj = 1. Thus we have obtained

θ(t) ≤
MΓ∑
j=0

tsj

sj
+O

(
h+

1

h
t

7
4

+ε

)
.

One similarly obtains a lower bound of the same shape. Thus, after choosing
h = t

7
8 , we arrive at

θ(t) =

MΓ∑
j=0

tsj

sj
+O

(
t

7
8

+ε
)
.

To conclude the proof we note that

πΓ\H(log(t)) =

∫ t

2

1

log(x)
dθ(x) +O(1).

The desired result follows from rather elementary computations. �

Remark 6.20. With more work it is even possible to show that

πΓ\H(t) = li(et) +

MΓ∑
j=1

li(esjt) +OΓ

(
e

3
4
t
√
t
)
.

We note the presence of the exceptional eigenvalues λ1, . . . , λMΓ
as secondary

terms. With our current technology the bottleneck is that our bound for E(s)
close to the line Re(s) = 1

2
is too weak. This does not allow us to shift the contour

beyond Re(s) = 3
4

+ η in the proof Proposition 6.18.

6.3. Selberg’s zeta function. In the previous section we have used analytic
information on the Dirichlet series E(s) to prove the prime geodesic theorem.
It however turns out that it is beneficial to study a slightly different generating
function.

Recall that the full hyperbolic contribution to the resolvent trace formula was
given by

∑
l∈LΓ\H,
l>0

∞∑
k=1

l

sinh(kl/2)
e−(s− 1

2
)l = 2

∑
l∈LΓ\H,
l>0

∞∑
k=1

l

ekls − ekl(s−1)
.
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We will rearrange this as follows

2
∑

l∈LΓ\H,
l>0

∞∑
k=1

l

ekls − ekl(s−1)
= 2

∑
l∈LΓ\H,
l>0

l

∞∑
k=1

e−kls

1− e−kl

= 2
∑

l∈LΓ\H,
l>0

l
∞∑
k=1

∞∑
n=0

e−klse−kln

= 2
∑

l∈LΓ\H,
l>0

l
∞∑
n=0

e−sl−nl

1− e−sl−nl

= 2
∑

l∈LΓ\H,
l>0

∞∑
n=0

d

ds

[
log(1− e−sl−nl)

]

=
d

ds
log

 ∏
l∈LΓ\H

∞∏
n=0

(1− e−(s+k)|l|)

 .
Recall the following definition.

Definition 6.2. For Re(s) > 1 we define the Selberg Zeta function of Γ by

ZΓ(s) =
∏

l∈LΓ\H

∞∏
n=0

(1− e−(s+k)|l|).

Thus, our computation above shows that

Z ′Γ(s)

Z(s)
=
∑

l∈LΓ\H,
l>0

∞∑
k=1

l

sinh(kl/2)
e−(s− 1

2
)l = E(s) + 2A1(s) + 2A2(s),

where A1(s) and A2(s) were defined in (60) and (61) respectively. We can thus
write the Resolvent trace formula in the following much nicer form.
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Theorem 6.21 (Resolvent trace formula II). Let Γ ⊆ SL2(R) be a discrete co-
compact subgroup. For s, z ∈ C with 1 < Re(s) < Re(z) we have

∞∑
j=0

(
1

t2j + (s− 1
2
)2
− 1

t2j + (z − 1
2
)2

)

=
1

2s− 1

Z ′Γ(s)

ZΓ(s)
− 1

2z − 1

Z ′Γ(z)

ZΓ(z)
+ χ(Γ) · (ψ (z)− ψ(s))

+
∑
{γ0}

primitive
elliptic

(
1

2s− 1
Rm(γ0)(s)−

1

2z − 1
Rm(γ0)(z)

)
.

for

Rm(s) = m−2
∑

0≤l<m

(2s+2k−m)ψ

(
s+ l

m

)
and χ(Γ) =

Vol(Γ\H)

2π
+
∑
{γ0},

prim. ell.

1

m(γ0)
.

Proof. This follows by rearranging the expression in Proposition 6.14 with β =
z− 1

2
. Note that the terms c1(β) and c2(β), which previously were simply constants,

are computed as their α = s− 1
2

counterparts. We will only slightly rearrange the
elliptic contribution, which currently reads

∑
{γ0}

primitive
elliptic

1

m(γ0)

m(γ0)−1∑
l=0

(
2l + 1

m(γ0)
− 1

)(
1

2s− 1
ψ

(
s+ l

m(γ0)

)
− 1

2z − 1
ψ

(
z + l

m(γ0)

))
.

To do so we recall the curious identities

1

m

∑
0≤l<m

ψ

(
s+ l

m

)
= ψ(s)− log(m).

and

2l + 1

m
− 1 =

2s+ 2l −m
m

− 2s− 1

m
.

With this in mind we define

Rm(s) = m−2
∑

0≤l<m

(2s+ 2k −m)ψ

(
s+ l

m

)
. (64)
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The upshot is that we can write

1

m(γ0)

m(γ0)−1∑
l=0

(
2l + 1

m(γ0)
− 1

)
1

2s− 1
ψ

(
s+ l

m(γ0)

)
=

1

m(γ0)
(log(m(γ0))− ψ(s)) +

1

2s− 1
Rm(γ0)(s).

Inserting this for the elliptic contribution gives the desired result. �

Remark 6.22. The functions Rm(z) are meromorphic functions on the complex
plane with simple poles at the non-negative integers −d (i.e. d ∈ Z≥0). The
residues are positive integers. Furthermore, by the Gauß- Bonnet formula given
in (39), we have

χ(Γ) = 2g − 2 + ]{prim. ell. conj. cl.} ∈ N.

Since
Z′Γ(s)

ZΓ(s)
= E(s) + 2A1(s) + 2A2(s), we can directly infer the following prop-

erties:

• The function
Z′Γ(s)

ZΓ(s)
has a meromorphic continuation to the half plane Re(s) >

1
2

with poles at s0, . . . , sMΓ
with residue 1. (This follows from Theo-

rem 6.15.)

• For 1
2

+ ε ≤ σ ≤ 1 + ε and |t| ≥ 2024 we have
Z′Γ(σ+it)

ZΓ(σ+it)
�Γ

|t|2
ε
. (This is

Theorem 6.16.)

• For 1
2

+ ε ≤ σ ≤ 1 + ε and |t| ≥ 2024 we have
Z′Γ(σ+it)

ZΓ(σ+it)
�Γ,ε |t|4(1−σ)+ε. (This

is essentially Theorem 6.17.)

However, we can obtain much more information now.

Theorem 6.23. Let Γ ⊆ SL2(R) be discrete and co-compact. The Selberg Zeta
function ZΓ(s) defined in Definition 6.2 for Re(s) > 1 has an analytic continuation
to the complex plane and the identity given in Theorem 6.21 remains true for all
s ∈ C. Furthermore, we have the functional equation

Z ′Γ(s)

ZΓ(s)
+
Z ′Γ(1− s)
ZΓ(1− s)

= −(2s−1)χ(Γ) ·π cot(πs)−
∑
{γ0}

primitive
elliptic

(Rm(γ0)(s)+Rm(γ0)(1−s)).

Proof. Using Theorem 6.21 we can meromorphically continue
Z′Γ(s)

Z(s)
to all C. Look-

ing at the poles allows shows holomorphicity of Z(s).
To see the functional equation we look at the resolvent trace formula with z =

1− s. Note that for this choice the spectral side vanishes. Furthermore, we recall
the identity

ψ(1− s)− ψ(s) = π cot(πs).
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The resolvent trace formula therefore reads

1

2s− 1

(
Z ′Γ(s)

ZΓ(s)
+
Z ′Γ(1− s)
ZΓ(1− s)

)
= −χ(Γ) · π cot(πs)− 1

2s− 1

∑
{γ0}

primitive
elliptic

(Rm(γ0)(s) +Rm(γ0)(1− s)),

which is the desired formula. �

Remark 6.24. One can reformulate the functional equation in terms of ZΓ(s) with
auxiliary factors involving the Barnes G-function.

6.4. Odds and ends. We will now sketch some interesting results that can be
derived by refining the analysis carried out in the previous section. Doing so we will
pick some interesting results from [He76, Chapter Two]. Note Hejhal’s approach
is strongly motivated by classical analytic number theory. This means that the
results are usually derived from a careful analysis of the Selberg-Zeta function,
which takes the place of the Riemann zeta function.

Throughout we will assume that Γ has no elliptic elements. This assumption is
only for technical convenience and in accordance with the set-up from [He76].

We start by defining

Λ(L) =
log(L)

1− L−1
.

This function is defined such that
Z ′Γ(s)

ZΓ(s)
= 2

∑
L>1,

log(L)∈LΓ\H

Λ(L)

Ls
for Re(s) > 1.

We define the counting functions

ψ(x) = 2
∑

1<L≤x,
log(L)∈LΓ\H

Λ(L) and ψ1(x) =

∫ x

1

ψ(t)dt. (65)

Note that these functions are closely related to the counting functions θ(x) and
θ1(x) that we encountered earlier.

Theorem 6.25 (Explicit formula). There are number α0, α1, β0 and β1 depending
only on Γ such that we have

ψ1(x) = α0x+ β0x log(x) + α1 + β1 log(x) + χ(Γ)
∞∑
k=2

2k + 1

k(k − 1)
x1−k

+

MΓ∑
j=1

(
x1+sj

sj(1 + sj)
+

x1+s∨j

s∨j (1 + s∨j )

)
+
∑
tj≥0

x1+sj

sj(1 + sj)
+
∑
tj≥0

x1+s∨j

s∨j (1 + s∨j )
.
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The tj-sums converge uniformly for x in a fixed interval, but not absolutely.

Proof. This is [He76, Theorem 5.12]. We will only sketch the idea of the proof and
skip the details. One starts from the formula

ψ1(x) =
1

2πi

∫
(2)

xs+1

s(s+ 1)
· Z
′
Γ(s)

ZΓ(s)
ds.

One now carefully shifts the contour to −A− iR with A→∞. Doing so one picks

up the residues at all poles of
Z′Γ(s)

ZΓ(s)
. These come from the negative integers as well

as from the eigenvalues of ∆. The numbers α0, α1, β0, β1 are arise from the poles
at s = 0 and s = −1, whose treatment requires some special care. �

As a corollary of the proof of this formula one obtains the following strengthened
error term in the prime geodesic theorem. For more details we refer to [He76,
Theorem 5.14].

Theorem 6.26 (Prime Geodesic Theorem II). We have

πΓ\H(t) = li(et) +

MΓ∑
j=1

li(esjt) +O(e( 3
4

+ε)t).

We will now revisit Weyl’s law. First note that for Re(s) > 1 the Selberg zeta
function ZΓ(s) is non-zero, so that we have no problem in defining log(ZΓ(s)). We
then analytically continue log(ZΓ(s)) to the plane Re(s) ≥ 1

2
where we remove the

poles.
Recall that we had studied

NΓ(x) = ]{j ≥ 0: λj ≤ x}.

It is convenient to introduce the variant

ÑΓ(x) = ]{j > MΓ : tj ≤ x}.

of this counting function. It turns out that this is closely related to the argument
of the Selberg-zeta function.

Theorem 6.27 (Theorem 7.1, [He76]). Let T ≥ 1 be a parameter with T 6= tj for
all j > MΓ. Then we have

ÑΓ(T ) =
Vol(Γ\H)

4π
T 2 + S(T ) + E(T ),

where

S(T ) =
1

π
arg

(
ZΓ(

1

2
+ iT )

)
and

E(T ) =
Vol(Γ\H)

2π

∫ T

0

t[tanh(πt)− 1]dt− (MΓ + 1).
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Proof. We consider the rectangle

RA(T ) = [1− A,A]× i[−T × T ] for 1 < A < 2.

Integrating over the boundary of this rectangle gives

2ÑΓ(T ) + (MΓ + 1) +MΓ + (2g − 1) =

∫
∂RA(T )

Z ′Γ(s)

ZΓ(s)
ds.

This is a simple consequence of the residue theorem. Note that, since we are
assuming that there are no elliptic elements the formula is particularly nice. In
particular we have 2g − 2 = χ(Γ). We write the functional equation as

Z ′Γ(s)

ZΓ(s)
+
Z ′Γ(1− s)
ZΓ(1− s)

= −Vol(Γ\H)(s− 1

2
) cot(πs) =

B′(s)

B(s)
.

Let ∂rightRA(T ) denote the part of ∂RA(T ) lying on the right hand side of the
vertical line (1

2
). The functional equation allows us to write

2ÑΓ(T ) + 2MΓ + 2g =
1

πi

∫
∂rightRA(T )

Z ′Γ(s)

ZΓ(s)
ds− 1

2πi

∫
∂rightRA(T )

B′(s)

B(s)
ds.

We define

Vol(Γ\H)

4π
T 2 + E(T ) = − 1

4πi

∫
∂rightRA(T )

B′(s)

B(s)
ds−MΓ − g (66)

The function B(s) is explicit enough, so that the desired formula for E(T ) is easily
derived. We are left with

S(T ) =
1

2πi

∫
∂rightRA(T )

Z ′Γ(s)

ZΓ(s)
ds.

To evaluate this we note that the contour ∂rightRA(T ) is in the part of the domain
where log(ZΓ(s)) is defined and analytic. One computes the desired formula for

S(T ) after recalling that
Z′Γ(s)

ZΓ(s)
= d

ds
log(ZΓ(s)). This concludes our sketch of this

proof. �

Using standard techniques one can show that E(T ) = O(1) and S(T ) = O(T ).
This gives an alternative proof of Theorem 6.4. A refined analysis of S(T ), see
[He76, Theorem 8.1], will lead to

Theorem 6.28 (Weyl law III). We have

NΓ(T ) =
Vol(Γ\H)

4π
T +OΓ

( √
T

log(T )

)
.
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We will conclude this section by giving an example for co-compact Γ (without
elliptic elements). To do so we fix a prime p ≡ 1 mod 4 and a positive integer a,
which is not a quadratic residue modulo p (i.e. a 6≡ x2 mod p). We define

Γ(a, p) =

{(
y0 + y1

√
a (y2 + y3

√
a)
√
p

(y2 − y3

√
a)
√
p y0 − y1

√
a

)
∈ SL2(R) : y0, y1, y2, y3 ∈ Z

}
.

If γ ∈ Γ(a, p), then Tr(γ) = 2y0. Thus, potential elliptic elements must have
y0 = 0. In this case we write det(γ) = 1 as

1 + y2
1a = −p(y2

2 − y2
3a).

In particular we obtain
y2

1a ≡ −1 mod p.

Since p ≡ 1 mod 4 we have that −1 is a quadratic residue modulo 4. Thus, the
above congruence implies that a is a quadratic residue modulo p. This contradicts
our assumption and we conclude that there are no elliptic elements.

Similarly, if γ is parabolic, then we must have y0 = ±1. Using the determinant
equation we arrive at

y2
1a = −p(y2

2 − y2
3a).

This implies that p | y1, so that

y2
2 − y2

3a ≡ 0 mod p.

Using the fact that a is no quadratic residue modulo p we arrive at y2 = y3 = 0,
so that ±1 is the only element with trace ±2.

We can now summarize properties of Γ(a, p):

• Γ(a, p) is a non-commutative subgroup of SL2(R) with only hyperbolic
elements. In particular, by Theorem 3.11, we deduce that Γ(a, p) is discrete.
• One can show that Γ(a, p) has finite co-volume. This is not trivial and we

use this as a fact. As a consequence we see that Γ(a, p) is co-compact. This
is due to Theorem 3.10.

We have thus seen a concrete example of a co-compact Fuchsian group with no
elliptic elements.

Remark 6.29. The construction of Γ(a, p) might appear to come put of thin air.
However it is quite natural. Indeed it is obtained from an order in the (rational)
quaternion division algebra H(Q) = Q + Qi + Qj + Qk where i2 = a and j2 = p.
This connection can also be used to establish the fact that Γ(a, p) has finite co-
volume.

7. Spectral theory for the modular curve

In Section 4 we have developed the spectral theory for compact quotients Γ\H.
We now turn our attention to the case of non-compact quotients with finite volume,
where the theory is very different. Instead of considering general Fuchsian groups
we will focus on Γ = SL2(Z). This group has many special features which simplify
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the theory considerably. However, we still encounter (essentially) all features that
one finds for general non-compact quotients of finite co-volume.

Throughout this section we write

Γ = SL2(Z) and Γ = PSL2(Z).

Once and for all we fix the standard fundamental domain

F = {z = x+ iy ∈ H : |x| ≤ 1

2
, |z| ≥ 1}.

We have a parabolic element given by

T =

(
1 1
0 1

)
= n(1).

It stabilizes ∞, which is a vertex of our fundamental domain. We have

Γ∞ = {±Tm : m ∈ Z} and Γ∞ = 〈T 〉.
The set of parabolic fixed points is Q∪{∞}, but all these are Γ-equivalent. Thus,
the modular curve Γ\H has only one cusp a. We choose ∞ as a canonical repre-
sentative for the cusp a.

Recall that our goal is to obtain a suitable spectral decomposition of L2(Γ\H)
for ∆. Given f ∈ L2(Γ\H) we observe that

f(z + 1) = f(T.z) = f(z).

Thus, such a function f is one-periodic in the x-direction, so that we obtain a
Fourier expansion of the form

f(x+ iy) =
∑
n∈Z

fn(y)e(nx) for fn(y) =

∫ 1

0

f(iy + x)e(−nx)dx.

If f is smooth this series converges absolutely and uniformly on compacta. The
following general result will turn out to be useful.

Proposition 7.1. Let f : H→ C be a function such that

(1) f(z +m) = f(z) for all m ∈ Z;
(2) ∆f = λf for λ = s(1− s); and
(3) f(z) = o(e2πy) as y →∞.

Then we can write f as

f(z) = f0(y) +
∑
n 6=0

af (n) ·Ws(nz)

for

Ws(nz) =2
√
|n|yKs− 1

2
(2π|n|y)e(nx) and

f0(y) =
Af
2

(ys + y1−s) +
Bf

2s− 1
(ys − y1−s).
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Proof. Due to (1) we have a Fourier expansion for f . For n 6= 0 we make the
Ansatz fn(y) = g(2πny). This allows us to write (2) as

g′′(y) + (
λ

y
− 1)g(y) = 0.

This second order ODE is well known to have the following two linear independent
solutions √

2πyKs− 1
2
(y) ∼ e−y and

√
2πyIs− 1

2
(y) ∼ ey.

The second solution is excluded by the growth condition (3). This shows that
fn(y) must have the predicted shape (as a function of y). The zeroth coefficient is
determined similarly. �

We will now turn towards the construction of certain Γ-invariant functions. As
in earlier situations we do so using an averaging argument. However, the presence
of the cusp allows us a slightly different construction. Indeed, given ψ : R>0 → C
we define

E∞(z|ψ) =
∑

γ∈Γ∞\Γ

ψ(Im(γ.z)) =
1

2

∑
c,d∈Z,
(c,d)=1

ψ

(
Im(y)

|cz + d|2

)
.

The second expression allows us to deduce that the sum converges absolutely as
soon as

ψ(y)� y log(y)−2 as y → 0.

Before further studying E∞(z|ψ) we make the following important definition.

Definition 7.1 (Eisenstein series). Given s ∈ C with Re(s) > 1 we define the
Eisenstein series as

E(z, s) = E∞(z|(·)s) = Im(z)s · 1

2

∑
c,d∈Z,
(c,d)=1

|cz + d|−2s.

We make the following two important observations

• The function E(·, s) is Γ-invariant and satisfies ∆E(·, s) = λE(·, s) for
λ = s(1− s).
• E(·, s) is not in L2(Γ\H).

Our goal is to compute the Fourier expansion of E(z, s). To do so we have to
recall the Riemann zeta function:

ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1 for Re(s) > 1.

The product is taken over all prime numbers p and is the so called Euler product of
ζ(s). More generally, given coefficients a(n) with a(nm) = a(n)a(m) for (n,m) = 1
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we have
∞∑
n=1

a(n)n−s =
∏
p

(
∞∑
k=0

a(pk)p−ks

)
whenever the sum is absolutely convergent. This is essentially equivalent to the
fundamental theorem of arithmetic. We will use these Euler product for several
computations in the proof of the following important theorem.

Theorem 7.2. For Re(s) > 1 we have

E(z, s) = Im(z)s + ϕ(s) Im(z)1−s +
1

ζ∗(2s)

∑
m 6=0

|m|−
1
2ηs(m)Ws(mz).

for

ζ∗(s) = π−
s
2 Γ(s/2)ζ(s), ϕ(s) =

ζ∗(2s− 1)

ζ∗(2s)
and

ηs(n) =
∑
ab=n

(a
b

)s
.

Proof. We start from the expression

E(z, s) =
1

2

∑
c,d∈Z,
(c,d)=1

|cz + d|−2s.

We first sum over c and observe that if c = 0 we can only have d = ±1. For c 6= 0
we write d as d+ ct for t ∈ Z and d mod c with (c, d) = 1. We obtain

E(x+ iy, s) = ys + ys
∑
c>0

∑
d mod c
(c,d)=1

∑
t∈Z

(c2y2 + (cx+ d+ ct)2)−s.

Applying Poisson summation in the t-sum yields

E(x+ iy, s) = ys + ys
∑
c>0

∑
d mod c
(c,d)=1

∑
m∈Z

Im(c, d, x, y, s),

for

Im(c, d, x, y, s) =

∫
R
(c2y2 + (cx+ d+ ct)2)−se(−mt)dt.

After some simple changes of variables we obtain

Im(c, d, x, y, s) = c−2sy1−2se(mx+m
d

c
)

∫
R
(1 + x2)−se(−myt)dt.

If m = 0, we easily recognize this integral as

I0(c, d, x, y, s) = y1−2sc−2s
√
π

Γ(s− 1/2)

Γ(s)
.
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For m 6= 0 we further write this as

Im(c, d, x, y, s) = 2c−2sy1−2se(mx+m
d

c
)

∫ ∞
0

(1 + x2)−s cos(2πmyt)dt.

The remaining integral is the Basset-integral for the K-Bessel function. Indeed we
find that

Im(c, d, x, y, s) = 2c−2sy1−2se(mx+m
d

c
)
√
πΓ(s)−1

(
2π|m|y

2

)2− 1
2

Ks− 1
2
(2π|m|y)

= e(m
d

c
)c−2sπ

s|m|s−1

Γ(s)
Ws(m(x+ iy)).

Inserting this in our expression for E(x+ iy, s) leaves us with

E(x+ iy, s) = ys + y1−s√πΓ(s− 1/2)

Γ(s)

∑
c>0

∑
d mod c
(c,d)=1

c−2s

+
πs

Γ(s)

∑
m6=0

|m|s−1
∑
c>0

∑
d mod c
(c,d)=1

c−2se(m
d

c
)Ws(m(x+ iy)).

Our remaining job is to compute the c-sum.
We first note that

ϕ(c) =
∑

d mod c
(c,d)=1

= ](Z/cZ)×. (67)

This is Euler’s phi-function. By the Chinese Remainder Theorem we obtain that

ϕ(c) = ϕ(c1)ϕ(c2) for c = c1c2 with (c1, c2) = 1.

One easily checks that ϕ(pk) = (1− 1/p)pk for prime powers pk with k > 0. Thus
we can write ∑

c>0

∑
d mod c
(c,d)=1

c−2s =
∑
c>0

ϕ(c)c−2s =
∏
p

(
∞∑
k=0

ϕ(pk)p−2ks

)

=
∏
p

(
1 + (1− 1/p)

∞∑
k=1

p−(2s−1)k

)

=
∏
p

(
1 + (1− 1/p)p−(2s−1)k 1

1− p−(2s−1)

)
=
∏
p

1− p−2s

1− p−(2s−1)
=
ζ(2s− 1)

ζ(2s)
.
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Thus we have obtained

E(x+ iy, s) = ys +
ζ∗(2s− 1)

ζ∗(2s)
y1−s

+
πs

Γ(s)

∑
m 6=0

|m|s−1
∑
c>0

c−2s
∑

d mod c
(c,d)=1

e(m
d

c
)Ws(m(x+ iy)).

To compute the final sum we define

Rc(m) =
∑

d mod c
(c,d)=1

e(m
d

c
).

These are so called Ramanujan sums. Again one can use the Chinese Remainder
Theorem to show that Rc(m) = Rc1(m) ·Rc2(m) for c = c1c2 with (c1, c2) = 1. We
obtain

∑
c>0

c−2s
∑

d mod c
(c,d)=1

e(m
d

c
) =

∑
c>0

c−2sRc(m) =
∏
p

(
∞∑
k=0

Rpk(m)p−2sk

)
.

We thus need to understand the Ramanujan sums on prime powers. To evaluate
this we let vp(m) denote the exact power of p that divides m (i.e. pvp(m) | m and
pvp(m)+1 - m). We make the following observations:

• If 0 ≤ k ≤ vp(m) (i.e. pk | m), then we have Rpk(m) = ϕ(pk).

• If vp(m) ≤ k (i.e. (pk,m) = pvp(m)), then we haveRpk(m) = pvp(m)Rpk−vp(m)(m).
• If vp(m) = 0 and k = 1, then

Rp(m) =
∑

d mod p

e

(
m
d

p

)
− 1 = −1 (68)

by character orthogonality.
• If vp(m) = 0 and k > 1, then

Rpk(m) =
∑

d mod pk

e

(
m
d

pk

)
−

∑
d mod pk−1

e

(
m

d

pk−1

)
= 0.
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These facts lead to a complete evaluation of Rc(m). We can now compute the
Euler factors

∞∑
k=0

Rpk(m)p−2sk = 1 +

vp(m)∑
k=1

p−2ksϕ(pk)− p−2s(vp(m)+1)+vp(m)

= 1 + (1− 1/p)p−(2s−1) 1− p−vp(m)(2s−1)

1− p−(2s−1)
− p−2s(vp(m)+1)+vp(m)

= (1− p−2s)
1− p−(2s−1)(vp(m)+1)

1− p−(2s−1)
= (1− p−2s)

∑
d|pvp(m)

d1−2s.

We conclude that ∑
c>0

c−2s
∑

d mod c
(c,d)=1

e(m
d

c
) = ζ(2s)−1

∑
d|m

d1−2s.

Inserting this above yields

E(x+ iy, s) = ys +
ζ∗(2s− 1)

ζ∗(2s)
y1−s +

1

ζ∗(2s)

∑
m 6=0

|m|s−1
∑
d|m

d1−2sWs(m(x+ iy)).

This completes the proof. �

Remark 7.3. A similar computation shows that the constant term of E(·|ψ) ∈
E(Γ\H) is given by

ψ(y) +
∑
c>0

ϕ(c)

∫
R
ψ

(
y

c2(t2 + y2)

)
dt.

We recall some sets about the completed Riemann zeta function ζ∗(s):

• The function ζ∗(s) has a meromrphic continuation to s ∈ C with a simple
pole at s = 1 and functional equation

ζ∗(s) = ζ∗(1− s).
We also record that Ress=1 ζ

∗(s) = 1.
• ζ∗(s) has obviously no zeros in the (open) half plane Re(s) > 1. It is even

known that ζ∗(s) 6= 0 for Re(s) ≥ 1. The latter is a relatively deep result,
which is equivalent to the prime number theorem.

These facts allows us to draw the following conclusion from the Fourier expansion
of E(z, s).

Corollary 7.4. The function s 7→ E(·, s) has a meromorphic continuation to
s ∈ C. In the half plane Re(s) ≥ 1

2
there is exactly one simple pole at s = 1 with

Ress=1E(z, s) =
3

π
.
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Furthermore, we have the functional equation

ζ∗(2s)E(z, s) = ζ∗(2(1− s))E(z, 1− s).

Proof. The meromorphic continuation follows directly from the analytic properties
of ζ∗(s), ηs(n) and Ks(y). To verify the functional equation we only note that
Ws(nz) = W−s(nz) and ηs(n) = η−s(n). Finally, we need to compute the residuum

Ress=1E(z, s) =
π

ζ(2)
Ress=1 ζ

∗(2s− 1) =
3

π
.

This completes the proof. �

We return to our study of the space L2(Γ\H). We define the following subspace

E(Γ\H) = {E∞(z|ψ) : ψ ∈ C∞c (R>0)}.

This is the space of so called incomplete Poincaré series. Recall that C∞b (Γ\H)
is the original domain of ∆ before taking the self-adjoint extension. We have the
inclusion

E(Γ\H) ⊆ C∞b (Γ\H) ⊆ L2(Γ\H).

We further denote the orthogonal complement of E(Γ\H) in L2(Γ\H) by L2
0(Γ\H).

More precisely

L2
0(Γ\H) = {f ∈ L2(Γ\H) : 〈f, E(·|ψ)〉 = 0 for all ψ ∈ C∞c (R>0)}.

We have the decomposition

L2(Γ\H) = L2
0(Γ\H)⊕ E(Γ\H).

We define the space of cusp forms as

C(Γ\H) = L2
0(Γ\H) ∩ C∞b (Γ\H).

Note that the Laplace-Beltrami operator ∆ maps E(Γ\H) (resp. C(Γ\H)) into
itself.

Remark 7.5. At this point we do not know if C(Γ\H) is non-zero. The next result
will show that the constant function is not in this space.

Proposition 7.6. We have f ∈ L2
0(Γ\H) if and only it f0(y) = 0 for almost all

y ∈ R>0.
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Proof. We will simply compute the inner product

〈f, E∞(·|ψ)〉 =

∫
F
f(z)

∑
Γ∞\Γ

ψ(Im(γz))dµ(z)

=

∫
Γ∞\H

f(z)ψ(Im(z))dµ(z)

=

∫ ∞
0

(∫ 1

0

f(x+ iy)dx

)
ψ(y)y−2dy

=

∫ ∞
0

f0(y)ψ(y)y−2dy.

We see that f0(y) = 0 implies that 〈f, E∞(·|ψ)〉 = 0 for all ψ. On the other hand,
if f ∈ L2

0(Γ\H), then∫ ∞
0

f0(y)ψ(y)y−2dy = 0 for all ψ ∈ C∞c (R>0). (69)

It is a standard fact that this implies f0(y) = 0 for almost all y. �

Corollary 7.7. Let f ∈ C(Γ\H) be such that ∆f = s(1− s)f . Then we have

f(z) =
∑
n6=0

af (n)Ws(nz).

To analyze the space CΓ\H we will use invariant integral operators

[Tkf ](z) =

∫
F
kΓ(z, w)f(w)dµ(w),

for k(u) ∈ C∞c (R≥0) and

kγ(z, w) =
∑
γ∈Γ

k(z, γw).

In contrast to the compact case the automorphic kernel kΓ(z, w) is not bounded
on F × F . The reason is that points close to the cusp are approximately fixed
under the action of Γ∞. Thus, even if k has very small support the γ-sum in the
definition of kΓ can have arbitrary many non-trivial terms.

Lemma 7.8. Invariant integral operators Tk map the space C(Γ\H) into itself.

Proof. Let g = Tkf . We simply compute the constant term

g0(Im(z)) =

∫ 1

0

g(z + t)dt =

∫ 1

0

∫
H
k(n(t)z, w)f(w)dµ(w)dt

=

∫
H
k(z, w)

∫ 1

0

f(n(t)w)dtdµ(w) =

∫
H
k(z, w)fp(Im(w))dµ(w) = 0.

�
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Definition 7.2 (Principal Part). We define the principal part of kΓ as

Hk(z, w) =
∑

γ∈Γ∞\Γ

∫
R
k(z, n(t)γw)dt.

It is easy to see that the principal is a well defined function which is Γ-invariant
in the second variable.

Lemma 7.9. We have
Hk(z, w)�k 1 + Im(z).

Proof. Without loss of generality we can assume that w ∈ F . We start from the
definition

Hk(z, w) =
∑

γ∈Γ∞\Γ

∫
R
k(z, t+ γw)dt.

Suppose that the support of k(u) is in [0, A]. Then the t-integral is supported on
the set of t’s with

|z − t− γw|2 ≤ 4A Im(z) Im(γw).

By looking at the imaginary part of z − t − γw we observe that we must have
Im(z) � Im(γw) in order for this set to be non-empty. If this is the case, then t
lies in an interval of length � Im(z). This leads to the bound

Hk(z, w)�k Im(z) · ]{γ ∈ Γ∞\Γ: Im(γw) � Im(z)}.
To finish the proof we need to count the possible choices for γ. Since elements in
Γ∞\Γ are parametrized by their bottom row, we can instead estimate

]{(c, d) ∈ Z2 : (c, d) = 1 and
Im(w)

|cz + d|2
� Im(z)}.

Since w ∈ F we must have |cz + d| ≥ 1. We obtain the following inequalities

Im(z)� Im(w),

c� (Im(w) Im(z))−
1
2 and

|cRe(z) + d| �
(

Im(w)

Im(z)

) 1
2

.

If c = 0, there is only one choice for d. On the other hand, for c 6= 0 we have

� (Im(w) Im(z))
1
2 choices. Finally, if c 6= 0 is fixed, then we have� 1+

(
Im(w)
Im(z)

)− 1
2

choices for d. Thus we have

]{(c, d) ∈ Z2 : (c, d) = 1 and
Im(w)

|cz + d|2
� Im(z)}

� 1 + (Im(w) Im(z))−
1
2

(
1 +

(
Im(w)

Im(z)

) 1
2

)
� 1 + Im(z)−1.
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Plugging this into our estimate for Hk(z, w) completes the proof. �

Lemma 7.10. For f ∈ C(Γ\H) we have

〈Hk(z, ·), f〉 = 0.

Proof. We simply compute the inner product using the unfolding trick:

〈Hk(z, ·), f〉 =

∫
Γ∞\H

∫
R
k(z, n(t)w)dtf(w)dµ(w)

=

∫ ∞
0

∫
R
k(z, t+ iv)dt

∫ 1

0

f(iv + x)dxv−2dv

=

∫ ∞
0

∫
R
k(z, t+ iv)dtf0(v)v−2dv = 0.

�

At this point we define

k̂Γ = kΓ −HΓ.

We associate the integral operator T̂k with kernel k̂Γ acting on functions f : F → C.
Recall that F is considered fixed. The definition and the previous lemma directly
imply the following.

Corollary 7.11. For f ∈ C(Γ\H) we have

Tkf = T̂kf.

We are now ready to establish the following important result.

Proposition 7.12. The kernel k̂Γ is bounded on F × F .

Proof. Let z, w ∈ F . We start by observing that

kγ(z, w) =
∑

γ parabolic

k(z, γw) +O(1).

This is true since for non-parabolic motions the points z and γ.w are separated by
large distances for almost all γ. Similarly, using Lemma 7.9, we see that

Hk(z, w) =

∫
R
k(z, n(t)w)dt+O(1).

We arrive at

k̂γ(z, w) =
∑
γ∈Γ∞

k(z, γw)−
∫
R
k(z, n(t)w)dw︸ ︷︷ ︸

=J(z,w)

+O(1).
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We will show that J(z, w) is bounded on H×H. To do so we will use the Euler-
MacLaurin summation formula∑

b∈Z

F (b) =

∫
R
F (t)dt+

∫
R
ψ(t)dF (t),

where ψ(t) = t− [t]− 1
2
. This leads to

J(z, w) =
∑
b∈Z

k(z, w + b)−
∫
R
k(z, w + t)dt =

∫
R
ψ(t)dk(z, w + t).

We conclude the proof by observing that∫
R
ψ(t)dk(z, w + t)�

∫ ∞
0

|k′(u)|du� 1.

�

The upshot of this proposition is that the operator T̂k is Hilbert-Schmidt.

Remark 7.13. So far we have assumed that the kernel k(u) are smooth and com-
pactly supported. However, we will want to work with more general kernels. Thus
it is useful to note that our results remain true as long as the kernels satisfy

k(u), k′(u)� (u+ 1)−2. (70)

This can be seen by a standard approximation argument.

Theorem 7.14. The Laplace operator ∆ has pure point spectrum in L2
0(Γ\H) and

the eigenspaces have finite dimension. There is a complete orthonormal system
{φj} of eigenfunctions such that

f(z) =
∑
j

〈f, φj〉φj(z) for all f ∈ L2
0(Γ\H).

If f ∈ C(Γ\H), then the series converges absolutely and uniformly on compacta.

Proof. As in the compact case we proof this result by studying the resolvent op-
erator. To do so we fix a > s ≥ 2 and construct the (invariant integral) operator

L = Rs −Ra = (s(1− s)− a(1− a))RsRa.

The latter identity is known as Hilbert’s formula. If k(u) = Ga(u) − Gs(u), then
L = Tk. Note that, since the singularity is canceled out, the function k satisfies
(70). We also recall that Rs = (∆ + s(1 − s))−1 has dense range in L2(Γ\H).24

This implies that also L has dense range. Now the operator L̂ = T̂k is bounded on

L2(F). We claim that L̂ has still dense range in C(Γ\H). To see this we put

g = (s(1− s)− a(1− a))−1(∆ + a(1− a))(∆ + s(1− s))f

24This follows from Lemma 4.3, which is easily seen to remain true for non-compact quotients.
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We have Lg = f . Furthermore, if f ∈ C(Γ\H), then g ∈ C(Γ\H). Our claim

follows because L̂g = Lg = f .

Thus L̂ is a compact (even Hilbert-Schmidt) operator with dense range. By

the corresponding spectral theorem we conclude that L̂ has discrete spectrum on

L2
0(Γ\H) and each element f ∈ L2

0(Γ\H) can be expanded in eigenfunctions of L̂.

We are done, since when restricted to C(Γ\H) the operators L̂ and L agree. �

Let J0 ⊆ N denote an index set and put J = J0 ∪ {0}. We index the eigenfunc-
tions (resp. eigenvalues) contributing to the spectrum of L2

0(Γ\H) by {φj : j ∈ J0}
(resp. (λj)j∈J0). We also put λ0 = 0 and φ0(z) =

√
3/π. Note that φ0 is the

L2-normalized constant function.
Recall that the Mellin transform is given by

[Mψ](s) =

∫ ∞
0

ψ(y)ys
dy

y
.

If ψ is smooth and compactly supported, then Mψ is entire. We have the inversion
formula

ψ(y) =
1

2πi

∫
(σ)

[Mψ](s)y−sds,

for a suitable vertical line (σ).
Our remaining task will be to derive a spectral decomposition for E(Γ\H). We

start by taking E∞(·|ψ) in this space and computing

〈E∞(·|ψ), φ0〉 · φ0(z) =
3

π

∫
Γ\H

E∞(z|ψ)dµ(z)

=
3

π

∫
Γ∞\H

ψ(Im(z))dµ(z) =
3

π

∫ ∞
0

ψ(y)y−2dy =
3

π
[Mψ](−1).

This is already quite interesting.
We continue our study of incomplete Poincaré series by writing

E∞(z|ψ) =
∑

γ∈Γ∞\Γ

1

2πi

∫
(2)

[Mψ](−s) Im(γz)sds

=
1

2πi

∫
(2)

[Mψ](−s)E(z, s)ds.

Recall that E(z, s) is meromorphic in the half plane Re(s) ≥ 1
2

with a single simple
pole at s = 1. we are thus invited to shift the contour and obtain

E∞(z|ψ) =
3

π
[Mψ](−1) +

1

2πi

∫
( 1

2
)

[Mψ](s)E(z, s)ds

= 〈E∞(·|ψ), φ0〉 · φ0(z) +
1

2πi

∫
( 1

2
)

[Mψ](s)E(z, s)ds.
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We want to rewrite the final integral slightly. To do so we recall that the Eisenstein
series satisfies the functional equation

E(z, 1− s) =
ζ∗(2s)

ζ∗(2(1− s))︸ ︷︷ ︸
=ϕ(1−s)

E(z, s) = ϕ(1− s) Im(z)s + Im(z)1−s + . . . .

We also note that we have

E(z, s) = E(z, s) = E(z, 1− s) = ϕ(1− s)E(z, s) on the line Re(s) =
1

2
.

In particular, we must have ϕ(1
2

+ it) ∈ S1. This turns out to be an important
observation.

Now we compute

〈E∞(·|ψ), E(·, s)〉 =

∫
Γ\H

E∞(·|ψ)E(z, s)dµ(z)

=

∫
Γ\H

E∞(·|ψ)E(z, 1− s)dµ(z)

=

∫ ∞
0

y−2ψ(y)[y1−s + ϕ(1− s)ys]dy

= [Mψ](−s) + ϕ(1− s)[Mψ](s− 1),

for Re(s) = 1
2
. In the last step we have unfolded the integral as in the proof of

Proposition 7.6. Multiplying the last expression with E(z, s) and integrating over
Re(s) = 1

2
yields∫

( 1
2

)

〈E∞(·|ψ), E(·, s)〉 · E(z, s)ds =

∫
( 1

2
)

[Mψ](−s)E(z, s)ds

+

∫
( 1

2
)

ϕ(1− s)[Mψ](s− 1)E(z, s)ds

=

∫
( 1

2
)

[Mψ](−s)E(z, s)ds

+

∫
( 1

2
)

[Mψ](s− 1)E(z, 1− s)ds

= 2

∫
( 1

2
)

[Mψ](−s)E(z, s)ds.

Putting everything together gives us the decomposition

E∞(z|ψ) = 〈E∞(·|ψ), φ0〉·φ0(z)+
1

4π

∫
R
〈E∞(·|ψ), E(·, 1

2
+it)〉·E(z,

1

2
+it)dt (71)

This already looks like a spectral decomposition. We only need to understand the
nature of the t-integral.
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We define
R(Γ\H) = Cφ0.

This space is orthogonal to L2
0(Γ\H) and {φj}j∈J is a complete orthonormal system

for
L2

disc(Γ\H) = R(Γ\H)⊕ L2
0(Γ\H)

consisting of eigenfunctions of ∆. It turns out that the spectrum of ∆ on the
complement of L2

disc(Γ\H) is absolutely continuous. To describe it we introduce
the so called Eisenstein transform

[E∞f ](z) =
1

4π

∫ ∞
0

f(t)E(z,
1

2
+ it)dt,

for f ∈ C∞c (R>0).

Lemma 7.15. For f ∈ C∞c (R>0) we have E∞f ∈ L2(Γ\H)

Proof. Using the Fourier expansion of E(·, 1
2

+ it) one can show that

E(x+ iy,
1

2
+ it) = y

1
2

+it + ϕ(
1

2
+ it)y

1
2
−t +O(e−2πy)

for x + iy ∈ F . To see this one estimates the contribution of the non-constant
Fourier modes trivially using the exponential decay of the K-Bessel function. The
trick is to use partial integration to see that∫ ∞

0

f(t)y
1
2

+itdt�f y
1
2 log(y)−1.

With this at hand we estimate

‖E∞f‖2 �f

∫ ∞
√

3
2

y−1 log(y)−2dy �f 1.

This gives the desired result. �

Now we equip C∞c (R>0) with the inner product

〈f, g〉 =
1

2π

∫ ∞
0

f(y)g(y)dy,

so that C∞c (R>0) ⊆ L2(R>0). Our goal is to show that E∞ extends to an isometry
from L2(R>0) into L2(Γ\H). This is achieved in Proposition 7.17 below. We need
some preparations.

Definition 7.3 (Truncated Eisenstein series). For a large parameter Y > 1 we
define

EY (z, s) =

{
E(z, s)− Im(z)s − ϕ(s) Im(z)1−s if Im(z) > Y,

E(z, s) if Im(z) ≤ Y,

for z ∈ F . We extend EY (z, s) to a Γ-invariant function in the obvious way.
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An easy computation shows that EY (·, s) ∈ L2(Γ\H) as long as we are staying
away from the poles.

Lemma 7.16 (Maaß-Selberg Relations). For s1, s2 ∈ C and Y > 1 we have

〈EY (·, s1), EY (·, s2)〉

=
Y s1+s2−1

s1 + s2 − 1
+ ϕ(s1)

Y s2−s1

s2 − s1

+ ϕ(s2)
Y s1−s2

s1 − s2

+ ϕ(s1)ϕ(s2)
Y 1−s1−s2

1− s1 − s2

.

Proof. We first compute that inner product for Re(s1) > Re(s2) > 1 The general
statement follows by analytic continuation.

First, a simple computation shows that

〈EY (·, s1), EY (·, s2)〉 = 〈EY (·, s1), E(·, s2)〉.
Indeed, we have

〈f, E(·, s2)− EY (·, s2)〉 =

∫ 1

0

∫ ∞
Y

f(x+ iy) · ys2 + ϕ(s2)y1−s2y−2dydx

=

∫ ∞
Y

f0(y) · y−2dy.

However, if f = EY (·, s2), then we observe that f0|(Y,∞) = 0 and our claim is
verified.

Now we observe that EY (·, s1) ∈ L2(Γ\H). We can thus write it as

EY (·, s1) = φ+ E(·|ψ)

for φ ∈ L2
0(Γ\H) and E(·|ψ) ∈ E(Γ\H). Our standard unfolding trick (using that

Re(s2) > 1) shows that 〈φ,E(·, s2)〉 = 0. We conclude that.

〈EY (·, s1), E(·, s2)〉 = 〈E(·|ψ), E(·, s2)〉.
We can now determine ψ explicitly. Indeed, we only have to choose ψ so that its
constant term matches the one of EY (·, s1). One finds that

ψ(y) =

{
ys1 if y < Y

−ϕ(s1)y1−s1 if y ≥ Y.

With this at hand we unfold again to find

〈EY (·, s1), E(·, s2)〉 =

∫ ∞
0

y−2ψ(y)[ys2 + ϕ(s2)y1−s2 ]dy

=

∫ Y

0

ys2−s1−2dy + ϕ(s2)

∫ Y

0

ys1−s2−1dy

− ϕ(s1)

∫ ∞
Y

ys2−s1−1dy − ϕ(s1)ϕ(s2)

∫ ∞
Y

y−s1−s2dy.

Evaluating the y-integrals gives the desired result. �
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We are now ready to establish the main technical result.

Proposition 7.17. For f, g ∈ C∞c (R>0) we have

〈E∞f, E∞g〉 = 〈f, g〉.

Proof. We consider the truncated Eisenstein transform

EY
∞f =

1

4π

∫ ∞
0

f(r)EY (·, 1

2
+ ir)dr.

We compute

‖(E∞ − E∞Y )f‖2 =

∫ ∞
Y

∣∣∣∣∫ ∞
0

[y
1
2

+ir + ϕ(
1

2
+ ir)y

1
2
−ir]f(r)dr

∣∣∣∣2 y−2dy

�f

∫ ∞
Y

y−1 log(y)−2dy � log(Y )−1.

Here we have used partial integration in the r-integral to obtain the extra factor
of log(y)−1. Using Cauchy-Schwarz we conclude that

〈E∞f, E∞g〉 = 〈EY
∞f, E

Y
∞g〉+Of,g(log(Y )

1
2 ).

Since EY (·, 1
2

+ ir) is square integrable we can use Fubini to obtain

〈EY
∞f, E

Y
∞g〉 =

1

(4π)2

∫ ∞
0

∫ ∞
0

f(r′)g(r)〈EY (·, 1

2
+ ir′), EY (·, 1

2
+ ir)〉drdr′.

Here we insert the Maaß-Selberg relations to obtain

〈EY
∞f, E

Y
∞g〉 =

1

(4π)2

∫ ∞
0

∫ ∞
0

f(r′)g(r)

[
ϕ(

1

2
+ir′)

Y −i(r
′+r)

−i(r′ + r)
+ϕ(

1

2
+ ir)

Y i(r′+r)

i(r′ + r)

ϕ(
1

2
+ ir′)ϕ(

1

2
+ ir)

Y i(r−r′)

i(r − r′)
+

Y i(r′−r)

i(r′ − r)

]
drdr′.

The terms with r+ r′ in the denominator have no pole in the support of f(r′)g(r)
and one can estimate their contribution using the by now familiar integration by
parts argument. Further we note that

ϕ(
1

2
+ ir′)ϕ(

1

2
+ ir)− 1

has a zero at r = r′, which can be used to kill the pole coming from (r − r′)−1.
This allows us to write the integral as

〈EY
∞f, E

Y
∞g〉 =

1

(4π)2

∫ ∞
0

∫ ∞
0

f(r′)g(r)

(
Y i(r′−r)

i(r′ − r)
+

Y i(r−r′)

i(r − r′)

)
drdr′ +Of,g(log(Y )−1)

=
1

8π2

∫ ∞
0

∫ ∞
0

f(r′)g(r)
sin((r′ − r) log(Y ))

r′ − r
drdr′ +Of,g(log(Y )−1).
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Now, as Y →∞, the function sin(u log(Y ))
u

approximates the distribution π ·δ0. This
can be made precise using standard Fourier analysis and we omit the argument.
This shows that

〈EY
∞f, E

Y
∞g〉 =

1

8π2

∫ ∞
0

f(r′)g(r′)dr + of,g(1). (72)

Taking the limit Y →∞ completes the proof. �

As indicated above this allows us to extend E∞ to an isometry from L2(R>0) to
L2(Γ\H). We denote the image by LE(Γ\H).25 A key observation is that

∆E∞f = E∞Mf

where M is the multiplication operator

[Mf ](r) = (r2 +
1

4
)f(r).

The spectrum of the multiplication operator is easily determined and we obtain
the the spectrum of ∆ in L2

E(Γ\H) is [1
4
,∞) and is absolutely continuous. It is

also immediate that R(Γ\H) is orthogonal to L2
E(Γ\H). In view of (71) we obtain

the decomposition
E(Γ\H) = R(Γ\H)⊕ L2

E(Γ\H).

In total we have decomposed

L2(Γ\H) = L2
disc(Γ\H)⊕ L2

E(Γ\H)

into ∆-invariant spaces and we have understood the spectrum of ∆ on each piece.
As a result we obtain the following theorem.

Theorem 7.18 (Spectral decomposition for SL2(Z)). For f ∈ L2(Γ\H) we have

f(z) =
∑
j∈J

〈f, φj〉 · φj(z) +
1

4

∫ ∞
−∞
〈f, E(·, 1

2
+ ir)〉 · E(z,

1

2
+ it)dt.

In general this expansion converges in norm. However, if f ∈ C∞b (Γ\H), then it
converges absolutely and uniformly on compacta.

This can be used to obtain the following spectral expansion of an automorphic
kernel.

Theorem 7.19. Let k(u) be a function such that its Selberg-Harish–Chandra trans-
form h is sufficiently regular. Then we have

kΓ(z, w) =
∑
j∈J

h(tj)φj(z)φj(w) +
1

4π

∫
R
h(t)E(z,

1

2
+ it)E(w,

1

2
+ it)dt. (73)

This expansion converges absolutely and uniformly on compacta.

We conclude this section by proving the following theorem.

25This is not standard notation.
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Theorem 7.20. Suppose λ is an eigenvalue of ∆ on the space L2
0(Γ\H), then we

have

λ ≥ 3

2
π2.

In particular, the spectrum of ∆ acting on L2(Γ\H) is {0} ∪ [1
4
,∞).

Proof. Let φ ∈ L2
0(Γ\H) be an L2-normalized eigenfunction of ∆ with eigenvalue

λ. We start by recalling that

λ = 〈∆φ, φ〉 =

∫
F
| Im(z)∇φ(z)|2dµ(z).

Now we observe that the union of two fundamental domains F ∪S.F contains the
strip

{z ∈ H : Im(z) ≥
√

3

2
and |Re(z)| ≤ 1

2
}.

We can this estimate

2λ ≥
∫ ∞
√

3
2

∫ 1
2

− 1
2

|∇φ(x+ iy)|2dxdy. (74)

We now write the Fourier expansion of φ as

φ(z) =
∑
n6=0

an(y)e(nx).

The gradient is then given by

∇φ(z) =

(
2πi
∑
n6=0

n · an(y)e(nx),
∑
n6=0

a′n(y)e(nx)

)
.

Thus we can estimate the norm of this from below by

|∇φ(z)|2 ≥ 4π2

∣∣∣∣∣∑
n6=0

n · an(y)e(nx)

∣∣∣∣∣
2

= 4π2
∑
n,m 6=0

nm · an(y)am(y)e((n−m)x).

Inserting this in (74) and executing the x-integral yields

2λ ≥ 4π2

∫ ∞
√

3
2

∑
n6=0

|n · an(y)|2dy

≥ 3π2

∫ ∞
√

3
2

∑
n6=0

|an(y)|2y−2dy

=≥ 3π2

∫ ∞
√

3
2

∫ 1
2

− 1
2

|φ(x+ iy)|2y−2dxdy

≥ 3π2

∫
F
|φ(z)|2dµ(z) ≥ 3π2.
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This completes the proof. �

Note that this argument is very wasteful. One can numerically compute that

λ1 ≈ 91, 14 . . . .

8. Selberg’s trace formula for the modular curve

We stick to the important arithmetic case Γ = SL2(Z). We would like to follow
the computation of the trace of an (invariant) integral operator Tk as in Section 5.
However, doing so quickly leads to convergence issues. To circumvent these we
introduce the truncated fundamental domain

F(Y ) = {x+ iy ∈ H : |x| ≤ 1

2
, y ≤ Y and |x+ iy| ≥ 1}.

We also write

P(Y ) = {x+ iy ∈ H : |x| ≤ 1

2
and y > Y },

so that F(Y ) = F \ P(Y ).
The truncated trace is defined as

TrY Tk =

∫
F(Y )

kΓ(z, z)dµ(z).

Note that if Tk would be trace class, then this would approach the usual trace as
Y →∞. However, in our current set-up Tk fails to be trace class and we will only
be able to establish an asymptotic formula as Y →∞.

Throughout this section we will make the following additional assumptions on
h and k:

• 0 ≤ k(u)� (u+ 1)−s for s > 1,
• 0 ≤ h(t)� (|t|+ 1)−4 and
• 0 ≤ g(x)� e−|x|/2.

This will greatly simplify certain parts of the analysis.

8.1. The spectral trace. We start by computing the spectral trace. More pre-
cisely, we spectrally expand kΓ using Theorem 7.19. Note that for z ∈ F(Y ) we
have E(z, s) = EY (z, s). Thus, we can write

TrY Tk =
∑
j∈J

h(tj)

∫
F(Y )

|φj(z)|2dµ(z) +
1

4π

∫
R
h(t)

∫
F(Y )

|EY (z,
1

2
+ it)|2dµ(z)dt.

For j ∈ J we have∫
F(Y )

|φj(z)|2dµ(z) = 1−
∫
P(Y )

|φj(z)|2dµ(z).

For j = 0 this simply is∫
F(Y )

|φ0(z)|2dµ(z) = 1− 3

π
Vol(P(Y )) = 1 +O(Y −1).
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On the other hand, for j ∈ J0 (i.e. φj is a cusp form) we have the following result.

Lemma 8.1. Let φj be a cusp form and Y > 1 sufficiently large. Then we have∫
P(Y )

|φj(z)|2dµ(z)�ε |sj|
4
3

+ε · Y −1.

Proof. We will show that φj(z) � |sj|2/3+ε for y ≥ 1. The desired result follows
after integrating this bound from Y to ∞ (against y−2dy).

The desired estimate is derived from the Fourier expansion of φj given in Propo-
sition 7.1. The first step will be to prove suitable (L2)-estimates for the Fourier
coefficients. To deduce these we use Parseval’s identity to obtain∑

n6=0

|aφj(n)Wsj(iny)|2 =

∫ 1

0

|φj(x+ iy)|2dx.

Integrating this over the interval (X,∞) yields∑
n6=0

|aφj(n)|2
∫ ∞
X

|Wsj(iny)|2y−2dy =

∫ 1

0

∫ ∞
X

|φj(x+ iy)|2dxdy
y2

.

Here we think of X > 0 being small, so that we can estimate the right hand side
by the number of translates of F that has a non-zero intersection with the strip
{x+ iy : x ∈ [−1/2, 1/2], y ≥ X}. An easy count (see the proof of Lemma 7.9 for
similar estimates) shows that∫ 1

0

∫ ∞
X

|φj(x+ iy)|2dxdy
y2
� 1 +X−1.

Now, from the bound ∫ ∞
|s|/2

Ks−1/2(y)2y−1dy � |s|−1e−π|s|

we deduce that ∫ ∞
X

Ws(iny)2y−2dy � |n| · |s|−1e−π|s|

as long as 4π|n|X ≤ |s|. After choosing 4πNX = |sj| we can estimate∑
06=|n|≤N

|n| · |aφj(n)|2 � |sj| · eπ|sj |
∑
n6=0

|aφj(n)|2
∫ ∞
X

|Wsj(iny)|2y−2dy (75)

Using the above bounds to majorize the right hand side we get the important
estimate ∑

06=|n|≤N

|n| · |aφj(n)|2 � (N + |sj|)eπ|sj |. (76)
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A trivial consequence is

aφj(n)� eπ|sj |/2 ·


(
|sj |
n

) 1
2

if n ≤ |sj|,
1 if n ≥ |sj|.

At this point we record the important uniform estimate√
|x|

|Γ(sj)|
Ksj− 1

2
(2π|x|)�

{
|sj|

1
6 if |x| ≤ |sj|,

e−π|x| if |x| > |sj|.
(77)

We are now able to estimate φj for large y > 1 using its Fourier expansion. To do
so we recall the definition of Ws and Stirling’s formula. We then use the estimates
above and Cauchy-Schwarz to bound26

φj(x+ iy)�

 ∑
06=|n|≤|sj |/y

|n| · |aφj(n)|2e−π|sj |
 1

2
 ∑

06=|n|≤|sj |/y

|n|−1 · |Wsj(ny)|2eπ|sj |
 1

2

+ |sj|
1
2

∑
|n|>|sj |/y

e−π|n|y

�ε |sj|2/3+ε + |sj|
1
2y−1.

This gives the desired result on the size of φj. �

Now recall that by our assumption on h we have∑
j∈J

h(tj)|tj|
4
3

+ε � 1.

We conclude that∑
j∈J

h(tj)

∫
F(Y )

|φj(z)|2dµ(z) =
∑
j∈J

h(tj) +O(Y −1).

For the Eisenstein series we use the Maaß-Selberg relations to compute∫
F
|EY (z, σ + it)|2dµ(z) =

1

2σ − 1

(
Y 2σ−1 − ϕ(σ + it)ϕ(σ − it)Y 1−2σ

)
+

1

2it

(
ϕ(σ − it)Y 2it − ϕ(σ + it)Y −2it

)
.

In order to take the limit σ → 1
2

we record the approximation

Y ±(2σ−1) = 1± (2σ − 1) log(Y ) + . . . .

Furthermore one obtains

ϕ(σ + it) = ϕ(σ + it) + (σ − 1

2
)ϕ′(σ + it) + . . .

26We are very wasteful here, but the result will be sufficient for our purposes.



THE SELBERG TRACE FORMULA 98

and using the functional equation also

ϕ(σ + it)ϕ(σ − it) = 1 + (2σ − 1)
ϕ′(σ + it)

ϕ(σ + it)
+ · · · .

This gives∫
F
|EY (z, σ + it)|2dµ(z) =

1

2it

(
ϕ(σ − it)Y 2it − ϕ(σ + it)Y −2it

)
+ 2 log(Y )−

ϕ′(1
2

+ it)

ϕ(1
2

+ it)
.

Taking the integral over R against the test function h yields

1

4π

∫ ∞
−∞

h(t)

∫
F
|EY (z, σ + it)|2dµ(z)dt = g(0) log(Y )−

∫ ∞
−∞

h(t)
ϕ′(σ + it)

ϕ(σ + it)
dt

+
1

8πi

∫ ∞
−∞

h(t)
(
ϕ(σ − it)Y 2it − ϕ(σ + it)Y −2it

)
dt.

The remaining integral can be computed by rewriting it as

1

8πi

∫ ∞
−∞

h(t)
(
ϕ(σ − it)Y 2it − ϕ(σ + it)Y −2it

)
dt

=
1

4πi

∫ ∞
−∞

t−1h(t)

(
ϕ(

1

2
− it)Y 2it − ϕ(

1

2
)

)
dt.

We move the line of integration to Im(·) = δ and obtain

1

8πi

∫ ∞
−∞

h(t)
(
ϕ(σ − it)Y 2it − ϕ(σ + it)Y −2it

)
dt = −

ϕ(1
2
)

4πi

∫
Im(t)=δ

t−1h(t)dt+O(Y −2δ).

The t-integral can be evaluated by moving the contour to Im(t) = −δ picking up
the pole at 0. Using symmetry of h we arrive at

1

8πi

∫ ∞
−∞

h(t)
(
ϕ(σ − it)Y 2it − ϕ(σ + it)Y −2it

)
dt =

1

4
ϕ(

1

2
)h(0). (78)

We still need to control the integral of the truncated Eisenstein series over P(Y ).
This is again done using the Fourier expansion. We prove the following estimate.

Lemma 8.2. Under our current assumptions we have

1

4π

∫
R
h(t)

∫
P(Y )

|EY (z,
1

2
+ it)|2dµ(z)� Y −2.

Proof. This is also proved using the Fourier expansion. It is important to recall
that on P(Y ) the constant term of EY vanishes. Thus, we have

EY (z, s) =
1

ζ∗(2s)

∑
m6=0

|m|−
1
2ηs(m)Ws(mz) for z ∈ P(Y ).
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We have the divisor bound ηs(m) � |m|Re(s)+ε and we recall (77). Note that the
Γ-factor normalizing the Bessel function in (77) comes from the completed zeta
function ζ∗(2s). In particular, we estimate∫
P(Y )

|EY (z,
1

2
+ it)|2dµ(z) =

1

|ζ∗(1 + it)|2

∫ ∞
Y

∑
m6=0

|m|−1|ηs(m)Ws(miy)|2dy
y2

� 1

|ζ(1 + it)|2

∫ ∞
Y

 t/y∑
m=1

mεt
1
3 +

∑
m>t/y

mεe−2my

 dy

y2

� |t| 43 +ε

|ζ(1 + i2t)|2
Y −2.

Using suitable (lower) bounds for ζ(1 +2it) allows us to integrate this against h(t)
and complete the proof. �

Putting everything together yields the following important proposition.

Proposition 8.3. Under our working assumptions we have

TrY Tk = g(0) log(Y )+
∑
j∈J

h(tj)−
1

4π

∫ ∞
−∞

h(t)
ϕ′(1

2
+ it)

ϕ(1
2

+ it)
dt+

h(0)

4
ϕ(

1

2
)+Oh,δ(Y

−δ)

for some small δ > 0 and as Y →∞.

8.2. Conjugacy classes for SL2(Z). Before we turn towards the geometric side
let us compute the conjugacy classes for Γ. First, the two parabolic conjugacy
classes are {T±1}. We deduce that a complete list of parabolic conjugacy classes
is given by {Tm} where 0 6= m ∈ Z.

The elliptic classes can be computed as follows. Let γ ∈ Γ be elliptic. Because
the entries are integers we must have tr(γ) ∈ {0,±1}. We know that each elliptic
conjugacy class corresponds to precisely one fixed point in F . For tr(γ) = 0 this
leads to the condition27

a

c
+ i

1

c
∈ F .

After recalling the definition of F we obtain that |a/c| ≤ 1
2

and a2+1
c2
≥ 1. We

conclude that a = 0 and c = ±1. Therefore, we have found exactly one elliptic
conjugacy class in Γ with trace 0. It is given by {S} where

S =

(
0 1
−1 0

)
has order two in Γ.

27The case c = 0 is easily ruled out.
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Next we look at the case tr(γ) = 1. (Since we are working in Γ this covers also
the case tr(γ) = −1.) Here we obtain the condition

2a− 1

2c
+ i

√
3

2c
∈ F .

A solution is c = a = 1 and d = 0. The determinant condition then implies
b = −1. We conclude that

γ =

(
1 −1
1 0

)
∈ Γ

is elliptic and fixes 1
2

+ i
√

3
2

. One computes γ3 = −I2, so that γ has order 3.
The most interesting conjugacy classes are the hyperbolic ones. As we will

see below these classes carry very special arithmetic information. Indeed, for
Γ = SL2(Z) we can relate them to certain class groups in real quadratic fields. We
will sketch this correspondence following [He83, Chapter Eleven, Section 2].

We start by defining a map

W : GL2(C)→ GL3(C),

(
a b
c d

)
7→

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2

 .

The following properties can be verified by direct computation:

(1) The map W is a group homomorphism;
(2) det(W (T )) = det(T )3 for T ∈ GL2(C);
(3) For the matrix

D =

 0 0 −2
0 1 0
−2 0 0


we have W (T )tDW (T ) = det(T )2 · S for T ∈ GL2(C).

(4) If e2(0, 1, 0)t, then W (T )e2 = e2 for T ∈ SL2(R) if and only if T is diagonal.
(5) The hyperboloid

{x ∈ R3 : x2
2 − 4x1x3 = 1} ⊆ R3

can we realized as the set W (SL2(R)) · e2.

A binary quadratic form is a homogeneous polynomial in two variables. We
write

q

[(
x
y

)]
= n1x

2 + n2xy + n3y
2.

We note that we can identify a (general) binary quadratic form q with the vector
n = (n1, n2, n3)t. However, we have a natural action of SL2(R) on these forms.
Indeed we set

[g.q]

[(
x
y

)]
= q

[
g

(
x
y

)]
.
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Lemma 8.4. Let q be a binary quadratic form associated to n ∈ R3 and let g ∈
SL2(R) be a matrix. Further, denote the vector associated to q.q by m ∈ R3. Then
we have

m = W (gt)n.

Proof. This is a direct computation. �

The discriminant of a quadratic form is defined by

disc(q) = n2
2 − 4n1n3.

We will now turn our attention to integral quadratic forms. These are those with
integral coefficients (i.e. their associated vector n is in Z3). For d ∈ N with
d ≡ 0, 1 mod 4 and non-square we define

C(d) = {n ∈ Z3 : n2
2 − 4n1n3 = d}.

Further, put

C =
⋃
d

C(d),

where the union is taken over all d satisfying the conditions above. Furthermore
we call n ∈ Z3 as well as the associated quadratic form primitive if (n1, n2, n3) = 1.

The group W (Γ) induces an obvious equivalence relation on C(d), which respects
primitive forms. Let h(d) denote the class number of primitive quadratic corms.
It is easy to see that the number of all equivalence classes in C(d) is given by∑

g2|d,
g>0

h(d/g2).

Lemma 8.5. Let T =

(
a b
c d

)
∈ SL2(R) be hyperbolic. Then

{x ∈ R3 : W (T )x = x} = R ·

 b
d− a
−c

 .

Proof. The inclusion of the right hand side in the left hand side can be directly
verified. Next we note that since T is hyperbolic we can write T = g · a(λ) · g
with λ > 1. In particular, the vector W (T ) has eigenvalues λ2, 1 and λ−2. We
conclude that the space on the left hand side is one dimensional. This completes
the proof. �

Lemma 8.6. Let n ∈ C(d) be primitive and set εd = αd+βd
√
d

2
where αd, βd is the

minimal solution to Pell’s equation x2 − dy2 = 4. We define

Pn =

(
αd−βdn2

2
βn1

−βn3
αd+βdn2

2

)
∈ SL2(R).
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Then
Γn = {T ∈ PSL2(Z) : W (T )n = n} = 〈Pn〉

and Pn is primitive hyperbolic.

Proof. It is a classical result from number theory that the matrix Pn generates the
stabilizer of n. To see that Pn is primitive and hyperbolic we observe that Γn is a
discrete subgroup of a group isomorphic to R×. In particular, Γn is cyclic and its
generator must be primitive by default. �

Given T ∈ PSL2(Z) primitive hyperbolic we define

n(T ) =
sgn(a+ d)

(b, d− a, c)

 b
d− a
−c

 .

Lemma 8.7. For γ1, γ2 ∈ PSL2(Z) primitive hyperbolic we have

(1) n(γ1) ∈ C primitive;
(2) Γn(γ1) = 〈γ1〉;
(3) n(gγ1g

−1) = W (g)n(γ) for g ∈ PSL2(Z);
(4) n(γ−1

1 ) = −n(γ1);
(5) n(γ1) = n(γ2) if and only if γ1 = γ2; and
(6) n(Pn) = n for primitive n ∈ C.

Proof. These properties are all very straight forward to verify. �

Corollary 8.8. There is a one to one correspondence between primitive hyperbolic
conjugacy classes in PSL2(Z) and inequivalent primitive elements in N .

Proof. By the lemma above the map {γ} 7→ W (Γ)n(γ) is well defined and gives
the desired correspondence. �

Suppose γ is a primitive hyperbolic matrix with l = d(γ) > 0. Then we have

αd = tr(γ) = el/2 + e−l/2,

where n(γ) ∈ C(d). Solving this equation leads us to

el = ε2d.

Together with the correspondence above we deduce that

ZΓ(s) =
∞∏
k=0

∏
d

[1− ε−2(s+k)
d ]h(d).

Similarly we have
Z ′Γ
ZΓ

(s) = 2
∞∑
k=1

∑
d

h(d) log(εd)

ε2lsd − ε
2l(s−1)
d

.

We conclude that for the lattice SL2(Z) the Selberg Zeta Function is very arith-
metic in nature. These arithmetic features can be used to establish strong forms
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of the prime geodesic theorem using tools from analytic number theory. We refer
to [SY] for more information.

8.3. Computing the orbital integrals. After this interlude we return to the
study of orbital integrals. The main task is to handle the parabolic conjugacy
classes. Thus we can assume that γ = T k for k ∈ N. We need to compute

IY (γ) =

∫
Dγ(Y )

k(γ.z, z)dµ(z),

where

Dγ(Y ) =
⋃

T∈Γγ\Γ

T.F(Y ).

Since γ = T k, we can understand the set Dγ(Y ) as follows. We first define the
part of the upper half plane with cuspidal zones removed

H(Y ) = Γ.F(Y ).

This is left invariant by Γγ = Γ∞. We thus obtain

IY (γ) =

∫
Γ∞\H(Y )

k(z + k, z)dµ(z).

We can find a set of representatives for the quotient Γ∞\H(Y ) that contains {x+
iy : 0 < x ≤ 1 and Y −1 < y ≤ Y } and is contained in {x+ iy : 0 < x ≤ 1 and y ≤
Y }. We thus have∫ 1

0

∫ Y

Y −1

k(z + k, z)dµ(z) ≤ IY (γ) ≤
∫ 1

0

∫ Y

0

k(z + k, z)dµ(z).

We can write the upper bound as∫ 1

0

∫ Y

0

k(z + k, z)dµ(z) =

∫ Y

0

k

((
k

2y

)2
)
y−2dy

= |k|−1

∫ ∞
(k/2Y )2

k(u)u−
1
2du.

This will be summed over k ∈ Z \ {0} and we obtain∑
06=k∈Z

IY ({T k}) ≤ 2
∑
k∈N

1

k

∫ ∞
(k/2Y )2

k(u)u−
1
2du

= 2

∫ ∞
(1/2Y )2

k(u)u−
1
2

 ∑
1≤l<2Y

√
u

l−1

 du

= 2

∫ ∞
(1/2Y )2

k(u)u−
1
2

(
log(2Y

√
u) + γ +O(u−

1
2Y −1)

)
du.
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The integral over the error is easily bound by � Y −1 log(Y ). We conclude that∑
06=k∈Z

IY ({T k}) ≤ 2

∫ ∞
0

k(u)u−
1
2

(
log(2Y

√
u) + γ

)
du+O(Y −1 log(Y )).

The lower bound can be written as

IY ({T k}) ≥
∫ 1

0

∫ Y

0

k(z + k, z)dµ(z)−
∫ 1

0

∫ Y −1

0

k(z + k, z)dµ(z).

Proceeding as above allows us to obtain a lower bound with the same asymptotic

behavior. (Here we can treat the short integral
∫ Y −1

0
) essentially trivially.) We

arrive at the following preliminary result.

Lemma 8.9. We have∑
k∈Z

IY ({T k}) = 2

∫ ∞
0

k(u)u−
1
2

(
log(2Y

√
u) + γ

)
du+O(Y −1 log(Y )).

The integrals can be further computed and one obtains

Lemma 8.10. We have∑
k∈Z

IY ({T k}) = g(0) log(Y )

− g(0) log(2) +
1

4
h(0)− 1

2π

∫
R
h(t)ψ(1 + it)dt+O(Y −1 log(Y )).

Proof. We only have to compute the u-integral. We first note that∫ ∞
0

k(u)u−
1
2du = q(0) =

1

2
g(0).

This immediately gives

2

∫ ∞
0

k(u)u−
1
2

(
log(2Y

√
u) + γ

)
du = g(0) log(Y )+g(0) log(2)+g(0)γ+

∫ ∞
0

k(u)u−
1
2 log(u)du.

We compute the remaining integral as follows. By inserting (35) and exchanging
the integrals we obtain∫ ∞

0

k(u)u−
1
2 log(u)du = − 1

π

∫ ∞
0

∫ v

0

log(u)√
u(v − u)

dudq(v)

= − 1

π

∫ ∞
0

∫ 1

0

log(uv)√
u(1− u)

dudq(v)

=
1

π
q(0)

∫ 1

0

log(u)√
u(1− u)

du− 1

π

∫ 1

0

1√
u(1− u)

du

∫ ∞
0

log(v)dq(v)

= −2q(0) log(2)−
∫ ∞

0

log(v)dq(v).
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After a change of variables we obtain

2

∫ ∞
0

k(u)u−
1
2

(
log(2Y

√
u) + γ

)
du = g(0) log(Y )+g(0)γ−

∫ ∞
0

log(sinh(r/2))dg(r).

In order to replace g by h we recall

g′(r) = − 1

2πi

∫
Im(·)=ε

eirth(t)tdt

and ∫ ∞
0

log(sinh(r/2))de−νr = γ + log(2)− 1

2ν
+ ψ(1 + ν).

The latter is a well known Laplace transform. Combining these two facts yields∫ ∞
0

log(sinh(r/2))dg(r) = (γ + log(2))g(0)− 1

4
h(0) +

1

2π

∫
R
h(t)ψ(1 + it)dt.

Note that the term containing h(0) arises through the same trick that allowed us
to arrive at (78). This completes the proof. �

8.4. The final trace formula. We are mow ready to collect all the pieces together
and prove a version of Selberg’s trace formula for SL2(Z).

Theorem 8.11 (Selberg’s trace formula for SL2(Z)). Suppose h satisfies the regu-
larity properties from Remark 2.24. We make the following additional assumptions:

• 0 ≤ k(u)� (u+ 1)−s for s > 1,
• 0 ≤ h(t)� (|t|+ 1)−4 and
• 0 ≤ g(x)� e−|x|/2.

Then we have∑
j∈J

h(tj)−
1

4π

∫
R
h(t)

ϕ′

ϕ
(
1

2
+ it)dt

=
1

12

∫
R
h(t)t tanh(πt)dt− 1

2π

∫
R
h(t)ψ(1 + it)dt

+
h(0)

4
(1− ϕ(

1

2
))− g(0) log(2)

+
∑
d

h(d) log(εd)
∞∑
k=1

g(2k log(εd))

sinh(k log(εd))

+
1

2

∫ ∞
0

g(r) cosh(r/2)

cosh(r)− cos(π)
dr +

1

3

∑
k=1,2

∫ ∞
0

g(r) cosh(r/2)

cosh(r)− cos(2πk
3

)
dr.
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Proof. By combining Proposition 8.3 and Proposition 8.10 we obtain

TrY Tk −
∑
k∈Z

IY ({T k})

=
∑
j∈J

h(tj)−
1

4π

∫ ∞
−∞

h(t)
ϕ′(1

2
+ it)

ϕ(1
2

+ it)
dt+

h(0)

4
ϕ(

1

2
) + g(0) log(2)− 1

4
h(0)

+
1

2π

∫
R
h(t)ψ(1 + it)dt+Oh,δ(Y

−δ).

On the other hand we have

TrY Tk −
∑
k∈Z

IY ({T k}) =
∑
{γ}

not parabolic

IY ({γ}) ≤
∑
{γ}

not parabolic

I({γ}). (79)

The last inequality holds by non-negativity of k. Recall that we have computed
all non-parabolic orbital integrals in Lemma 5.4, 5.6 and 5.5. These computations
were independent of the compactness of Γ\H.

Note that, due to the sufficient regularity of h, the right hand side of (79)
converges absolutely. Since we further have IY ({γ})→ I({γ}) individually we can
take the limit Y →∞. The formula as stated is then a direct consequence of our
computations. �

As in the compact case one can relax the conditions on h by a suitable approx-
imation argument. We will not pursue this here, because for all our applications
the formula above is sufficient.

9. Application II

We now turn towards the standard applications. As in the co-compact case
we will discuss the Weyl law, the Selberg zeta function and the Prime geodesic
theorem. Even though some of the results remain valid more generally we will
work exclusively with Γ = SL2(Z).

9.1. The Weyl law for SL2(Z). Recall that the Weyl law is an asymptotic for-
mula for the number of ∆-eigenvalues in a growing interval. It will be convenient
to consider the following equivalent count

NΓ(T ) = ]{j ∈ J : |tj| ≤ T}.
Since the quotient Γ\H is non-compact we will encounter the following artifact of
the continuous spectrum

MΓ(T ) =
1

4π

∫ T

−T

ϕ′

ϕ
(
1

2
+ it)dt.

Using the Bessel inequality (for a suitable kernel) one can show that

NΓ(T ),MΓ(T )� T 2.
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In order to upgrade these upper bounds to an asymptotic formula we consider the
test pair

h(t) = e−δt
2

and g(x) =
1√
4πδ

e−
x2

4δ ,

for small δ > 0. In the proof of Proposition 6.1 we have already seen that

1

12

∫ ∞
−∞

e−δt
2

t tanh(πt)dt =
1

12δ
+O(1).

Furthermore, the hyperbolic and the elliptic contribution are uniformly bounded.
The remaining contribution is

h(0)

4
(1− ϕ(

1

2
))− g(0) log(2)− 1

2π

∫
R
h(t)ψ(1 + it)dt

= − log(2)

2
√
πδ
− 1

2π

∫
R
e−δt

2

ψ(1 + it)dt+O(1).

To compute the integral we use that

ψ(1 + it) + ψ(1− it) = log(1 + t2) +O((1 + t2)−1) = 2 log(t) +O((1 + t2)−1).

This allows us to compute

1

2π

∫
R
e−δt

2

ψ(1 + it)dt =
1

π

∫ ∞
0

e−δt
2

log(t)dt+O(1)

=
1

4π
√
δ

∫ ∞
0

e−r log(r/δ)r−
1
2dr +O(1)

=
1

4π
√
δ

(Γ′(
1

2
)− Γ(

1

2
) log(δ)) +O(1)

=
1

4
√
πδ

(−γ − log(4δ)) +O(1).

We conclude that

h(0)

4
(1− ϕ(

1

2
))− g(0) log(2)− 1

2π

∫
R
h(t)ψ(1 + it)dt =

γ

4
√
πδ

+
log(δ)

4
√
πδ

+O(1).

We arrive at the following result.

Proposition 9.1. As δ → 0 we have∑
j∈J

e−δt
2
j − 1

4π

∫
R
e−δt

2ϕ′

ϕ
(
1

2
+ it)dt =

1

12δ
+

log(δ)

4
√
πδ

+
γ

4
√
πδ

+O(1).

Using a Tauberian theorem we obtain the following Weyl law:

Corollary 9.2. We have

NΓ(T )−MΓ(T ) =
T 2

12
(1 + o(1)).
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Remark 9.3. With more effort one can show that

NΓ(T )−MΓ(T ) =
T 2

12
− 1

π
T log(T ) + cΓT +O(T log(T )−1),

where cΓ is a suitable constant. This is the correct generalization of Theorem 6.28
to the non-compact situation. A similar formula with slightly different constants
is true for general co-finite groups Γ.

Note that, because we pick up NΓ and MΓ simultaneously this does not give us
not a lot of information on NΓ. However, in our case (i.e. Γ = SL2(Z)) we can
recall that

ϕ(s) =
√
π

Γ(s− 1
2
)ζ(2s− 1)

Γ(s)ζ(2s)
.

This allows us to obtain useful information on MΓ(T ). After expressing ϕ(s) as a
Hadamard canonical product, taking the logarithmic derivative and performing a
contour shift in the definition of MΓ(T ) we observe that

−MΓ(T ) = ]{Im(sj) ≤ T : sj pole of ϕ}+O(T ).

Since the poles of ϕ(s) are essentially the zeros of ζ(2s), whose number in boxes
is sufficiently well understood, we obtain

−MΓ(T )� T log(T ).

This allows us to conclude that ]J = ∞. More precisely we have obtained the
following.

Theorem 9.4 (Selberg 1954). We have

NΓ(T ) =
T 2

12
(1 + o(1)).

A similar result can be obtained more generally for congruence subgroups. How-
ever for arbitrary co-finite Γ the quantity −MΓ(T ) can not be controlled this way.
There are indeed many interesting questions connected to the existence of (many)
cusp forms for general lattices. See [PS].

9.2. The Selberg zeta function. As in the compact case we can also choose the
test function

h(t) =
1

t2 + α2
− 1

t2 + β2
for α = s− 1

2
and β = z − 1

2
.

If we assume 1 < s < z this function (and its transforms) satisfies the assumptions
for our trace formula. We obtain the following formula.
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Theorem 9.5 (Resolvent trace formula for SL2(Z)). For 1 < s < z we have∑
j∈J

[
1

(s− 1
2
)2 + t2j

− 1

(z − 1
2
)2 + t2j

]
− 1

4π

∫
R

[
1

(s− 1
2
)2 + t2

− 1

(z − 1
2
)2 + t2

]
· ϕ
′

ϕ
(
1

2
+ it)dt

=
1

2s− 1

Z ′Γ
ZΓ

(s)− 1

2sz − 1

Z ′Γ
ZΓ

(z)

+ ψ(z)− ψ(s) +

[
1

(2s− 1)2
− 1

(2z − 1)2

]
(1− ϕ(

1

2
))

+
1

2s− 1
R2(s)− 1

2z − 1
R2(z) +

1

2s− 1
R3(s)− 1

2z − 1
R3(z)

− 1

2s− 1
(ψ(s+

1

2
) + log(2)) +

1

2z − 1
(ψ((z +

1

2
)) + log(2)),

where Rm is defined in (64).

Proof. This is derived as Theorem 6.21. The additional terms arising from the
non-compactness of Γ\H are easily computed. Note that

χ(SL2(Z)) =
1

6
+

1

3
+

1

2
= 1.

�

This formula directly leads to a meromorphic continuation of
Z′Γ
ZΓ

(s) to the com-
plex plane. One checks that all poles are simple and have integral residues. This
allows us to conclude the following.

Theorem 9.6. The Selberg zeta function ZΓ(s) has a meromorphic continuation
to s ∈ C. Furthermore, the identity given in Theorem 9.5 holds for all s, z ∈ C
and we have a functional equation of the form

ZΓ(s) = Ψ(s)ZΓ(1− s),
where Ψ(s) is a certain meromorphic function of order two.

Proof. After having seen the analytic continuation of
Z′Γ
ZΓ

(s) we find that ZΓ(s) =

ZΓ(z)F (s) for

F (s) = exp

(∫ s

z

Z ′Γ
ZΓ

(u)du

)
.

That the formula in Theorem 9.5 remains valid for all s, z ∈ C follows by analytic
continuation.

Finally, the functional equation is obtained by using z = 1− s in Theorem 9.5.
�

We end by listing some further properties of ZΓ(s) for Γ = SL2(Z) that can be
obtained from the resolvent trace formula:
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• In the half plane Re(s) > 1
2

the function ZΓ(s) is holomorphic and has a
zero at s0 = 1;
• At s = 1

2
there is a simple pole.

• There are so called topological zeros at s = 0,−1,−2, . . . and topologi-
cal poles at s = −1

2
,−3/2, . . .. These arise form the terms involving the

digamma function ψ.
• The remaining zeros are spectral and occur at so called resonances. These

include zeros at sj for j ∈ J .

9.3. The prime geodesic theorem for the modular curve. Recall that the
prime geodesic theorem is about an asymptotic formula for the counting function

πΓ(x) = ]{l ∈ LΓ\H : |l| ≤ x}.

In this section we will prove the following theorem.

Theorem 9.7 (Prime geodesic theorem for SL2(Z)). For Γ = SL2(Z) we have

πΓ(x) = li(ex) +O(e
3
4
x).

This is a direct analogue of Theorem 6.26 for the con-compact quotient SL2(Z)\H.
Note that here we do not encounter secondary terms, because we have excluded
eigenvalues of ∆ in the interval (0, 1

4
).

We will give a proof of Theorem 9.7 using the trace formula. To do so we study
the sum

H(T ) =
∑
{γ0}

prim. hyp.

l(γ0)
∑

1≤k≤T/l(γ0)

cosh(kl(γ0)/2)

sinh(kl(γ0)/2)
.

The asymptotic behavior of the sum is as follows.

Proposition 9.8. We have

H(T ) = eT +O(e
3T
4 ).

Taking this result for granted allows us to deduce Theorem 9.7. Indeed, since

cosh(x)

sinh(x)
= 1 +O(e−2x)

we can easily write

H(T ) =
∑
{γ0}

prim. hyp.
|l(γ0)|≤T

l(γ0) +O(e
T
2 ).

Passing from the remaining sum to the counting function πΓ is an exercise using
partial integration.
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Proof or Proposition 9.8. We define the function

gT (x) = 2 cosh(x/2)1[−T,T ](x).

The hyperbolic contribution of Selberg’s trace formula corresponding to gT would
precisely give H(T ). Unfortunately, the discontinuity of gT forbids a direct use of
it in the trace formula. To fix this we choose a (fixed) bump function ϕ ∈ C∞c (R)
satisfying

• ϕ is non-negative and even;
• ϕ is supported in the interval [−1, 1];
• ϕ is L1-normalized (i.e.

∫
R ϕ(x)dx = 1).

For a small parameter ε > 0 we consider the re-scaled version

ϕε(x) =
1

ε
ϕ(x/ε).

Finally set

gT,ε(x) = [gT ∗ ϕε](x) = 2

∫
R

cosh((x− y)/2)1[−T,T ](x− y)ϕε(y)dy.

Note that gT,ε ∈ C∞c (R). We define

Hε(T ) =
1

2

∑
{γ0}

prim. hyp.

l(γ0)
∞∑
k=1

gT,ε(kl(γ0))

sinh(kl(γ0)/2)
.

Note that we have Hε(T ) → H(T ) as ε → 0. More important is the observation
that

Hε(T − ε) ≤ H(T ) ≤ Hε(T + ε). (80)

We have

hT,ε(t) = ĝT,ε(t) = ĝT (t) · ϕ̂ε(t).
Before applying the trace formula we gather some estimates. First, we can compute

ĝT (t) =
2

1
2

+ it
sinh(T (

1

2
+ it)) +

2
1
2
− it

sinh(T (
1

2
− it)).

For t ∈ R we obtain the useful estimate

ĝT (t)� (1 + |t|)−1eT/2.

On the other hand we have

ĝT (±i/2) = eT + 2T + e−T = eT +O(T ).

We also compute that

ϕ̂ε(t) = ϕ̂(εt)� (1 + |tε|)−2

and

ϕ̂ε(i/2) = ϕ̂(iε/2) = 1 +O(ε).
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Combining this we obtain

hT,ε(i/2) = eT +O(εeT )

and

hT,ε(t)� eT/2(1 + |t|)−1(1 + |εt|)−2 for t ∈ R.
We now begin our analysis of the terms in the trace formula Theorem 8.11. The

discrete contribution is bounded by∑
j∈J

hT,ε(tj) = eT +O

(
εeT + eT/2

∑
j∈J0

(1 + |tj|)−1(1 + |εtj|)−2

)
.

After splitting the remaining j-sum into the pieces {tj ≤ 1
ε
} and {tj > 1

ε
} one uses

Weyl’s law to estimate∑
j∈J

hT,ε(tj) = eT +O

(
εeT +

1

ε
e
T
2

)
.

Using standard bounds for ζ(s) on the line Re(·) = 1 one can easily show that the
contribution from

− 1

4π

∫
R

ϕ′

ϕ
(
1

2
+ it)hT,ε(t)dt

is absorbed in the error term. The remaining geometric terms can also be estimated
directly using our bounds. All together the trace formula produces the asymptotic

Hε(T ) = eT +O(εeT +
1

ε
e
T
2 ).

Choosing ε = e−T/4 and using (80) completes the proof. �

Using our description of the primitive hyperbolic conjugacy classes we can write

πΓ(log(x2)) =
∑
{γ0}

prim. hyp.
|l(γ0)|≤log(x2)

1 =
∑

d≡0,1 mod 4,
non-square
εd≤x

h(d).

We put

D(x) = {d ∈ N : εd ≤ x, d ≡ 0, 1 mod 4, non-square}.
Then it was shown by Sarnak in [Sa, Proposition 4.1] that

]D(x) =
35

16
x+Oε(x

2
3

+ε).

We can thus write our prime geodesic theorem as

1

]D(x)

∑
d≤D(x)

h(d) =
16

35
· li(x2)

x
+Oε(x

2
3

+ε).
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It is a key feature of our summation, that we order by the size of the so called
regulator or Q(

√
d). That the ordering matters can be seen by the following

asymptotic formula, which is due to Siegel:∑
1≤d≤x

d≡0,1 mod 4
non-suqare

h(d) log(εd) =
π2

18ζ(3)
x

3
2 +O(x log(x)).

Remark 9.9. Note that for Γ = SL2(Z) the error term in the prime geodesic
theorem can be improved. Such improvements usually rely on deep results from
analytic number theory. We refer to the paper [SY] for example. The current
(unconditional) record28 is ∑

{γ0}
prim. hyp.
|l(γ0)|≤T

l(γ0) = eT +Oε(e
( 2

3
+ε)T )

due to I. Kaneko in 2024.
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Deutscher Verlag der Wissenschaften, Berlin, 1972.

[Ve] A. B. Venkov, Spectral theory of automorphic functions and its applications, Translated
from the Russian by N. B. Lebedinskaya. Mathematics and its Applications (Soviet
Series), 51. Kluwer Academic Publishers Group, Dordrecht, 1990.


	1. Introduction
	1.1. Example A: The abstract trace formula
	1.2. Example B: The round sphere
	1.3. Example C: The flat torus

	2. The hyperbolic plane
	2.1. Basic hyperbolic geometry
	2.2. Global spectral theory

	3. Fuchsian groups
	4. Spectral theory for compact quotients
	5. The trace formula for compact quotients
	6. Applications I
	6.1. The Weyl law for co-compact quotients
	6.2. The prime geodesic theorem
	6.3. Selberg's zeta function
	6.4. Odds and ends

	7. Spectral theory for the modular curve
	8. Selberg's trace formula for the modular curve
	8.1. The spectral trace
	8.2. Conjugacy classes for SL2(Z)
	8.3. Computing the orbital integrals
	8.4. The final trace formula

	9. Application II
	9.1. The Weyl law for SL2(Z)
	9.2. The Selberg zeta function
	9.3. The prime geodesic theorem for the modular curve

	References

