
THIN GROUPS AND APPLICATIONS

EDGAR ASSING

1. Introduction

In these lectures we are interested in thin groups and (some of) their applica-
tions. Even though thin groups have been around for a long time the term thin
group has only been coined recently by Peter Sarnak. This re-branding goes hand
in hand with a surge of progress in the area, which led to many interesting results
and applications. Here we are interested in some specific applications to num-
ber theory following a series of works by Alex Kontorovich and Jean Bourgain.
However, this forces us to fill our toolbox with methods and results from many
branches of mathematics. Many of the results discussed on the way are interesting
and important in their own right and we will give full proofs when ever possible.

We take inspiration from several lectures and mini-courses by Alex Kontorovich
on the topic. (All mistakes, misunderstandings and typos are of course only due
to the author of these notes!)

1.1. What is a thin group. This section bares the same name as the nice little
paper [11]. We start directly with the definition of a thin group.

Definition 1.1. Let Γ be a (finitely generated) subgroup of GLn(Z) and let G =
Zcl(Γ) be its Zariski closure. We say that Γ is a thin group if the index of Γ in
G(Z) is infinite.

We now give a series of examples and non-examples for the case n = 2:

(1) Let Γ = 〈T, S〉 for T =

(
1 1
0 1

)
and S =

(
0 1
−1 0

)
. It is well known that

Γ = SL2(Z). Therefore we have G = Zcl(Γ) = SL2, so that G(Z) = Γ. In
particular, this group is not thin. (It is the basic example of an arithmetic
group!)

(2) Let Γ = 〈T 2,−ST−2S〉. One can compute that

Γ =

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod 4, 2 | b, c

}
.

Again we find that the Zariski closure is G = SL2. Since [G(Z) : Γ] = 12
this is again not thin. (It is a classical congruence subgroup.)

1
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(3) Let Γ = 〈T 2〉 =

(
1 2Z
0 1

)
. The Zariski closure of Γ is the algebraic group

G given by the equations

(a, b, c, d) : ad− bc− 1 = a− 1 = d− 1 = c = 0.

(This is a unipotent group which is strictly smaller than SL2 and will

be called U for later reference.) Of course G(Z) =

(
1 Z
0 1

)
, so that

[G(Z) : Γ] = 2. Therefore Γ is not thin (despite it having infinite index in
SL2(Z)).

(4) Take Γ = 〈A〉 with A =

(
2 1
1 1

)
. One computes inductively that

An =

(
f2n+1 f2n

f2n f2n−1

)
,

where fn is the nth Fibonacci number (i.e. fn+1 = fn+fn−1 and f0 = f1 =

1). Let K = Q(1+
√

5
2

). Then there is a matrix g ∈ SL2(K) such that

gΓg−1 = Γ1 =


(1+

√
5

2

)2n

0

0
(

1+
√

5
2

)−2n

 : n ∈ Z

 .

The Zariski closure of Γ1 is the algebraic torus T given by the equations

(a, b, c, d) : ad− bc− 1 = b = c = 0.

Conjugating back we find that G = g−1Tg = Zcl(Γ). Again we find G(Z) =
Γ. Again Γ is not thin (even though again [SL2(Z) : Γ] =∞).

(5) Let Γ = 〈T 4, S〉. Counter intuitively one can show that [SL2(Z) : Γ] = ∞.
Furthermore the only subvarieties of SL2 that are also groups are up to
conjugation T , U and UT . One checks that Γ is not contained in any of
these, so that the Zariski closure is given by G = SL2. Therefore we have
found our first thin group.

We have seen 5 groups out of which only one was thin. Note that this numbers
do not represent reality very well and are due to our (poor) choices. Indeed it can
be shown that random subgroups of arithmetic groups are thin (in a precise way).
However it remains non-trivial in general to verify that a given group is thin (or
not). This problem gets worse in higher rank.

(6) Consider Γ = 〈A,B〉 with

A =

0 0 1
1 0 0
0 1 0

 and B =

1 2 4
0 −1 −1
0 1 0

 .
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One can verify that the Zariski closure of Γ is G = SL3. A harder task is
to see that the generators have the relations A3 = B3 = (AB)4 = 1 and
no others. (Γ is a faithful representation of the hyperbolic triangle group
(3, 3, 4).) This allows one to conclude that Γ has infinite index in G(Z) and
therefore is thin.

Already for n = 3 it is easy to give examples of finitely generated Γ with full
Zariski closure where it is not known if they are thin or not.

One can define the notion of thinness in greater generality. Roughly speaking an
integer set is called thin (i.e. thin integer set) if it has density zero in the integer
points of its Zariski closure. This can be precisely formulated and one sees that
when the integer set turns out to be a subgroup of a linear group then one recovers
the notion of thin group discussed above. We will need this more general notion
only for one explicit example which we will work out in detail now.

Fix A ∈ N and consider the semigroup

ΓA =

〈(
a 1
1 0

)
: 0 ≤ a ≤ A

〉+

∩ SL2(Z).

Note that for A = 1 we essentially recover example (4) above which wasn’t thin.
Therefore it makes sense to exclude this case. The following lemma establishes
that ΓA is thin making the imprecise definition of thin integer sets precise for this
particular example.

Lemma 1.1. Let A ≥ 2 and let G be the Zariski closure of ΓA. Then we have

](ΓA ∩BX)

](G(Z) ∩BX)
= o(1),

where BX = {γ ∈ SL2(R) : ‖γ‖ ≤ X}.

Proof. Since A ≥ 2, the Zariski closure of ΓA is G = SL2. It is an easy exercise to
check that

](SL2(Z) ∩BX) � X2.

Further we will show below, that there is a number 1 > δA >
1
2

so that

](ΓA ∩BX) � X2δA .

This completes the proof so far. �

1.2. A local to global conjecture. Let Γ ⊂M2×2(Z) be a thin integer set. (We
can think of the two cases Γ ⊂ SL2(Z) being a thin group or Γ being the semigroup
ΓA for A ≥ 2.) let F : M2×2(Z)→ C be an (affine) linear map taking integer values
on Γ. Then we are interested in properties of the image F (Γ). For n ∈ Z put

multΓ,F (n) = ]{γ ∈ Γ: F (γ) = n} and multΓ,F,X(n) = ]{γ ∈ Γ ∩BX : F (γ) = n}.
(If F and Γ are clear from the context we may drop the subscripts.) We call
n admissible if n ∈ F (Γ) mod q for all q ∈ N. (This rules out all congruence
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obstructions, but a priori requires the verification of infinitely many congruences.)
Now given

](Γ ∩BX) � X2δ

one might expect that in favorable situations one has

multΓ,F,X(n) � X2δ−1−o(1),

for n � X admissible. This is a slightly imprecise but a very general local-global
conjecture for thin orbits.

For thin groups Γ ⊂ SL2(Z) progress towards the local-global conjecture above
can be made. Given v0,w0 ∈ Z2 we consider F (γ) = 〈v0 · γ,w0〉. Then

F (Γ) = S = 〈v0 · Γ,w0〉 = {〈v0 · γ,w0〉 | γ ∈ Γ} ⊂ Z.

If n ∈ S we say that it is represented by the triple (Γ,v0,w0). In general we
are interested in understanding the structure of the set S. Recall that n ∈ Z is
admissible if

n ∈ S + qZ for all q.

In other words, n is locally represented everywhere. We write A ⊂ Z for the
set of all admissible numbers. Of course the set S must be contained in A. If
A = S, we would say that a local to global principle holds for S. This is maybe
to optimistic in general. However one can proof the following almost every local
to global principle in quite some generality.

Theorem 1.2 (Bourgain-Kontorovich 2010). Let Γ be thin, free, finitely generated
with no parabolic elements and assume that the Poincare series

PΓ(s) =
∑
γ∈Γ

‖γ‖−2s (1)

converges absolutely for Re(s) > 1−5×10−5. (The last condition is rather technical
but it can be thought of as Γ being not to thin.) Then there is η0 > 0 so that

](S ∩ [1, N ])

](A ∩ [1, N ])
= 1 +O(N−η0).

This can be read as (a quantitative version of) for almost every n we have that n
is represented (by (Γ,v0,w0)) if and only if n is admissible.

The proof will also give a lower bound of the expected size for the multiplicities
multΓ,F,X(n) for almost all admissible n � X.

We now turn towards the case Γ = ΓA. In this case we formulate the following
formal conjecture

Conjecture 1.1 (Bourgain-Kontorovich, The Local-Global Conjecture). Assume
A ≥ 2 (so that ΓA is Zariski dense in SL2) and that the image under the map
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F is infinite (i.e. the Zariski closure of F (ΓA) is the affine line). For a growing
parameter X and an admissible integer n � X we have

multΓA,F,X(n) � X2δA−1−o(1).

1.3. Applications. We will now continue to give (real world) applications of this
conjecture. These should motivate the rest of this lecture in which we will give
full proves of as many of the facts presented in this introduction as possible. We
partly follow [10].

1.3.1. Zaremba’s conjecture. Given x ∈ (0, 1) we can consider the continued frac-
tion expansion

x =
1

a1 + 1

a2+
...

.

We will write this as x = [a1, a2, . . .] and call the numbers aj ∈ N partial quotients
of x. For A ≥ 1 we define

RA =

{
b

d
= [a1, . . . , ak]

∣∣∣∣ (b, d) = 1 and aj ≤ A for all j

}
and

DA =

{
d ≥ 1

∣∣∣∣∃b with (b, d) = 1 and
b

d
∈ RA

}
.

Exercise 1.1. Show that D1 is the Fibonacci sequence and that {2j : j ∈ N} ⊂ D3.

Conjecture 1.2 (Zaremba). Every number is the denominator of a reduced frac-
tion whose partial quotients are absolutely bounded. In other words there is A ≥ 1
so that

DA = N.
(Possibly A = 5 suffices.)1

It is well known that b
d

= [a1, . . . , ak] if and only if(
d b
? ?

)
=

(
a1 1
1 0

)
· · ·
(
ak 1
1 0

)
.

This brings the semigroup

Γ̃A =

〈(
a 1
1 0

)
: a ≤ A

〉+

(2)

into the picture. Obviously we get

DA = 〈v0 · Γ̃A,w0〉 (3)

1It was also conjectured by Niederreiter (1978) and Hensley (1996) that D3 and D2 contain
all sufficiently large integers. Hensley also generalized Zaremba’s conjecture by replacing the set
{1, . . . , A} by some general alphabet A. This is the denominators allowed in the partial fraction
decomposition must be contained in A. As observed by J. Bourgain and A. Kontorovich this
conjecture needs to modified implementing the notion of admissibility.
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for v0 = w0 = (1, 0). One can now establish a weak form of Zaremba’s conjecture
as soon as one has an analogue of Theorem 1.2 for semigroups:

Theorem 1.3 (Bourgain-Kontorovich 2011). For A = 50 we have

](DA ∩ [1, N ])

N
→ 1 as N →∞.

In other words, almost every number is the denominator of a reduced fraction
whose partial quotients ar bounded by 50.2

Zaremba’s conjecture is a very beautiful and completely elementary conjecture
(requiring only Euclid’s algorithm). The partial solution stated above requires
(surprisingly) heavy machinery. Of course the full Zaremba Conjecture follows
from the Local-Global-Conjecture in the previous subsection with

F

((
a b
c d

))
= a.

(The difference between ΓA and Γ̃A is not essential.) In this case one can even
make the more precise conjecture

multΓA,F (n) ∼ 2δA
](ΓA ∩Bn)

n
· π

2

6
·
∏
p|n

(1− 1

p
).

The almost all version of Zaremba’s conjecture stated above actually follows
directly from the following result in the thin orbit setting.

Theorem 1.4 (Bourgain-Kontorovich 2011). There is a constan c < ∞ so that
for A ≥ 50 and all sufficiently large N we have

]{n ≤ N : ∃γ ∈ ΓA with γ11 = n} = N
(

1 +O
(
e−c
√

log(N)
))

.

For those who don’t find Zaremba’s conjecture itself very motivating we will
now give some more (or less) practical applications.

Quasi Monte Carlo numerical integration: Given a finite sequence X = (xi)i≤N ⊂
[0, 1]s we define the discrepancy as

D(X) = max
I⊂[0,1]s,

box

|Vol(I)− 1

N
]{j ≤ N : xj ∈ I}|.

The notion of discrepancy appears in many contexts. In many applications it is
desirable to choose sequences X minimizing D(X). (Often one has also practical

2The lower bound on A was later improved to A ≥ 5 and probably the techniques can be
pushed to A ≥ 4.
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constraints concerning the computability of X.) Indeed in the context of numerical
integration on has the Hlawka-Koksma inequality stating that

|
∫

[0,1]s
f(x)dx− 1

N

N∑
j=1

f(xj)| � V (f) ·D(X),

for functions f of bounded variation V (f) = maxα⊂{1,··· ,s} ‖∂αf‖L1 <∞.
One has the following result due to Schmidt (1972):

D(X)� log(N)

N
for any sequence X ⊂ [0, 1]2.

It seems desirable to come as close as possible to this lower bound.

Theorem 1.5 (Zaremba). Take (b, d) = 1 with b
d
∈ RA. Consider the sequence

X = {xj = (
j

d
,
bj

d
mod 1) : 1 ≤ j ≤ d} ⊂ [0, 1]2.

Then we have

D(X) <

(
4A

log(A+ 1)
+

4A+ 1

log(d)

)
log(d)

d
.

Thus taking A = 5 Zaremba’s conjecture allows us to find for each (length) d a
corresponding b such that b

d
∈ R5. The theorem then implies that the correspond-

ing sequence X essentially optimizes the discrepancy. Theorem 1.4 allows one to
consider almost all lengths d.

Pseudo Random Numbers: The easiest pseudo random number generator is the
linear congruential number generator

x 7→ bx+ c mod d.

For simplicity we take x0 = 1, c = 0, d prime, and b a primitive root modulo
d. Then the quality of the pseudo random numbers generated depend on the
statistical properties of the sequence

X1 = {b
j

d
mod 1: 1 ≤ j ≤ d}.

(Note that by Fermat’s Little Theorem bd

d
mod 1 = 0.) Empirically the sequence

X1 behaves nicely for large d (Exercise). The next simplest quality test is to look
at the serial correlation of pairs

X2 = {(b
j

d
,
bj+1

d
) mod 1: 1 ≤ j ≤ d− 1}.

Note that X2 is essentially the sequence defined by Zaremba. We can now make
the following observation
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Corollary 1.6 (Bourgain-Kontorovich 2011). There are infinitely many fractions
b
d
∈ R51 with d prime and b a primitive root modulo d. In particular, for such

(b, d) the discrepancy of X2 is essentially best possible.

Proof. Let P = PN be the set of primes up to N so that

(1) p ≡ 3 mod 4 and
(2) (p− 1)/2 is a 10-almost-prime.

Using a standard sieve argument one can show (Exercise) that

]P � N

log(N)2
.

Note that the cardinality of the exceptional set is much smaller, so that DA ∩P is
unbounded as N → ∞ (as long as δA > δ0). If p = d appears in this intersection
then the multiplicity L is at least

N2δA−1.001 > N10/11.

Thus there are b1, . . . , bL distinct numbers so that
bj
d
∈ RA for 1 ≤ j ≤ L. Take

any primitive root r modulo d and write

bj ≡ rkj mod d.

The set of exponents will be denoted by K = {k1, . . . , kL}. We will use the
elementary fact, that bj is a primitive root modulo d if and only if (kj, d− 1) = 1.

Let K ′ ⊂ K be the subset of k ∈ K with (k, d− 1) > 2. Since d ∈ P each such

k has a prime factor fo size N
1
10 . We conclude that ]K ′ � N9/10. Thus we obtain

a nonempty set K ′′ = K \K ′.
Take k ∈ K ′′ and consider b ≡ rk mod d. If (k, d− 1) = 1 we are done since b is

a primitive root. Therefore let us assume (k, d−1) = 2. Then b is a square modulo
d and we set b′ = d − b. In particular b′ ≡ −rk mod d and since d ≡ 3 mod 4 we
conclude that b′ is a primitive root. It remains to verify that b′

d
= 1 − b

d
∈ RA+1.

This can be elementary deduced from b
d
∈ RA. �

Of course Zaremba’s conjecture gives a stronger result that for every prime d
there is a primitive root b modulo d, which is good in the sense that the sequence
X2 has essentially best possible discrepancy by the theorem of Schmidt.

The Lusztig Conjecture: We now enter the realm of (geometric) representation
theory. (We will be brief. For more details see [8,12,13].) Let Fp be the algebraic
closure of Fp. Let G be a connected and simply connected algebraic group over

Fp. (We can regard G as a universal Chevalley group. For us it is enough to keep
the case G = SLn in mind.) Fix a maximal torus T ⊂ G and assume that the
corresponding root system of G agrees with the root system of a Lie algebra g.
Write gZ for the Z-span of a Chevalley basis for g. Then we can identify the Lie
algebra gp of G with gZ ⊗Z Fp. As usual a G-module is a Fp vector space together
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with an homomorphism of G → GL(V ) of algebraic groups. The weight spaces
are defined by

Vλ = {v ∈ V : tv = λ(t)v for all t ∈ T}.
If V is finite dimensional one defines the formal character ch(V ) ∈ Z[X] by setting

ch(V ) =
∑
λ∈X

dim(Vλ)e(λ).

(Here {e(λ)}λ∈X is the standard basis of the group ring Z[X]. Note that we identify
the group of characters of T with the group of integral weights X.) This character
is W -invariant.

It can be shown that any simple G-module is finite dimensional. Furthermore,
for any dominant µ ∈ X+ there is a (unique up to isomorphism) simple G-module
Lp(µ) such that dimLp(µ)µ = 1 and such that Lp(µ)ν 6= {0} implies ν ≤ µ. We
call Lp(µ) simple G-module with highest weight µ. Every simple G-module is
isomorphic to Lp(µ) for exactly one µ ∈ X+.

One can also construct simple modules using reduction modulo p. Let V (µ)
be the (classical) simple g-module of highest weight µ. We choose a minimal
admissible lattice VZ(µ) and define Vp(µ) = VZ(µ)⊗ZFp. The latter can be regarded
as a G-module. One calls Vp(µ) the Weyl module with highest weight µ. Of course
we have

ch(Vp(µ)) = ch(V (µ)) for all µ ∈ X+

In particular, this character can be computed using Weyl’s character formula. The
unique simple quotient of Vp(µ) is Lp(µ). It can be shown that the composition
factors of Vp(µ) have the form Lp(ν) with ν ≤ µ and Lp(µ) has multiplicity one.
Thus there are coefficients bµ,ν with bµ,µ = 1 so that

chLp(µ) =
∑
ν

bµ,νch(V (ν)).

Knowing these coefficients would allow us to compute all the characters. Lusztig
stated a conjecture for the coefficients, which we will state now. Let h be the
Coexter number (i.e. h = maxα∈R+{ρ(hα) + 1}, where ρ is the half sum of positive
roots, R+ ⊂ R is a set of positive roots and hα ∈ [gα, g−α] is the unique element
with α(hα) = 2) of the rootsystem of g. (For G = SLn(Fp) we have h = n.) We
define

Mp = {µ ∈ X+ : (µ+ ρ)(hα) ≤ p(p− h+ 2) for all α ∈ R+}.

We have Mp = ∅ for p ≤ h − 2. Let Wa be the affine Weyl group of R. There is
an action ◦p of Wa on X (For w ∈ W we just have w ◦p ν = w ◦ ν but if w is the
translation by γ ∈ ZR then w ◦p ν = ν + pγ). Let

C− = {λ ∈ X : − p ≤ (λ+ ρ)(hα) ≤ 0 for all α ∈ R+}.
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This is a fundamental domain for the ◦p-action of Wa on X. We can write µ =
w ◦p λ for λ ∈ C−. In a long series of papers (written by subsets of the named
mathematicians and maybe others) the following result was established:

Theorem 1.7 (Andersen, Jantzen, Soergel, Kashiwara, Tanisaki, Kazhdan, Lusztig).
Let p be sufficiently large3 and µ = w ◦p λ ∈Mp for w with minimal length. Then

ch(µ) =
∑
x∈Wa,

x◦pλ∈X+

det(wx)Px,w(1)ch(V (x ◦p λ)),

where Px,w is the Kazhdan-Lusztig polynomial attache to w and x.

This theorem establishes Lusztig’s conjecture for sufficiently large p. Of course
it is desirable to understand what this means. First, for p < h the statement must
fail and there seems to be no conjecture that predicts character formula for Lk(µ)
in this case. However, some low dimensional evidence and maybe intuition leads
to the following question

Question. Does Lusztig’s conjecture hold for all p > 0 (or more conservatively
for all p > 2h− 2)?

In spectacular fashion the answer to this question turns out to be no. First the
answer no was given conditional on the existence of Fibonacci primes. However,
using our results towards Zaremba’s conjecture we can give a definite unconditional
answer.

Theorem 1.8 (Kontorovich, McNamara, Williamson). Let G = SLn(Fp). There
is no sub-exponential function f(n) such that Lusztig’s conjecture holds for all
p ≥ f(n).

We use the following black boxes:

• If the torsion of SLn grows exponentially in n, then no sub-exponential
(lower) bound for p (in n) is sufficient to ensure the validity of Lusztig’s
conjecture.
• Let Γ = 〈T,−ST−1S〉+. Given γ ∈ Γ we write l(γ) for the wordlength of γ

in the generators of Γ. Suppose p divides any coefficient γij of any matrix

Γ =

(
γ11 γ12

γ21 γ22

)
∈ Γ, then p occurs as torsion in SL2l+5 with l = l(γ).

This reduces Theorem 1.8 to the following statement

Theorem 1.9. There are absolute constants τ > 0 and c > 1 so that for all
sufficiently large L there is γ ∈ Γ of wordlength l(γ) ≤ L and top left entry γ11 = p
prime with p > τcL. Even more

]{p > τcL : ∃γ ∈ Γ with l(γ) ≤ L and γ11 = p} � cL

L
.

3Large means gigantic. For example if G = SLn it means at least p� nn
2

.
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Proof. Define

S1 = {p > τcL : ∃γ ∈ Γ with l(γ) ≤ L and γ11 = p}.
Take a parameter A and write lA(γ) to be the wordlength of γ ∈ ΓA in the
generators of ΓA. Observe(

a 1
1 0

)(
b 1
1 0

)
=

(
1 a
0 1

)(
1 0
b 1

)
.

Thus ΓA is a sub-semigroup of Γ. We also have the wordlength relation

l(γ) ≤ 2AlA(γ).

For the purpose of obtaining a lower bound we can therefore decrease the set S1

to

S2 = {p > τcL : ∃γ ∈ ΓA with l(γ) ≤ L

2A
and γ11 = p}.

It is easy to see inductively that ‖γ‖∞ = γ11 for γ ∈ ΓA. Define

ϕ =
1 +
√

5

2
and ϕ =

1−
√

5

2
.

These are the eigenvalues of

(
1 1
1 0

)
. For any

γ =
n∏
i=1

(
a1 1
1 0

)(
bi 1
1 0

)
∈ ΓA

we have

‖γ‖∞ =
(
1 0

)
γ

(
1
0

)
≥
(
1 0

)(1 1
1 0

)2n(
1
0

)
= F2n+1.

It is a well known fact that the mth Fibonacci number satisfies

Fm = (ϕm − ϕm)/
√

5.

For all γ ∈ ΓA we obtain

‖γ‖∞ ≥ dϕ2lA(γ) for d = ϕ/
√

5.

We define N = dϕL/A and further decrease S2 to

S3 = {p > τcL : ∃γ ∈ ΓA with ‖γ‖ ≤ N and γ11 = p}
= {τcL < p ≤ N : ∃γ ∈ ΓA with γ11 = p}.

We are done since the prime number theorem together with Theorem 1.4 implies

]{p ∈ (θN,N ] : ∃γ ∈ ΓA with γ11 = p} = (1− θ) N

log(N)
(1 + o(1)).

Thus we get

]S1 ≥ ]S2 ≥ ]S3 �
N

log
(N)� cLL−1
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and are done. �

1.3.2. A Question by Einsiedler, Lindenstrauss, Michel and Venkatesh. Let us
raise the question straight away and then explain some terminology:

Does there exist a compact subset Y ⊂ T 1(SL2(Z)\H) of the unit tan-
gent bundle of the modular surface which contains infinitely many fun-
damental closed geodesics?

In order to explain the question we will have to take a glimpse at hyperbolic
geometry. Let H be the upper half plane and denote the tangent bundle by TH
(resp. T 1H the unit tangent bundle). The group of isometries of H is PSL2(R)
and it acts on the unit tangent bundle by

T 1H 3 (z, ζ) 7→
(
az + b

cz + d
,

ζ

(cz + d)2

)
.

Here we of course have ζ ∈ S1 ⊂ C and

(
a b
c d

)
∈ PSL2(R). The invariant

measure on T 1(H) is

dµ =
dxdydθ

y2
for θ = arg(ζ).

The geodesics in H are semi-circles orthogonal to ∂H. (This includes vertical
half lines!) A point (z, ζ) ∈ T 1H determines a geodesic through z in direction
ζ. Following the geodesic flow for time t moves the point z along this geodesic
to a the point at distance t from z. Taking t to ∞ brings us to the virtual
point on the boundary ∂H. (One can identify T 1H with PSL2(R). The geodesic
flow in PSL2 becomes right multiplication by the diagonal subgroup A = {at =
diag(et/2, e−t/2)}.)

We are interested in the quotient X = PSL2(Z)\H. The unit tangent bundle
T 1X can be identified with PSL2(Z)\PSL2(R). A closed geodesic starts at some
point PSL2(Z) · g and returns after a least time l > 0 to the same point including
the tangent vector. We can write this as

PSL2(Z) · gal = PSL2(Z) · g or gal = ±Mg for some M ∈ PSL2(Z).

Of course M = galg
−1, has eigenvalues e±l/2 and has trace

Tr(M) = 2 cosh(l/2).

Since M is only determined up to conjugation by PSL2(Z) we conclude that prim-
itive closed geodesics correspond to primitive hyperbolic conjugacy classes [M ] in
Γ. (Primitive means [M ] is not of the form [Nk] for k ≥ 2.) The visual point α
from g is fixed by M and given by

α = lim
t→∞

at · i =
a− d+

√
Tr(M)2 − 4

2c
for M =

(
a b
c d

)
.

The Galois conjugate of α is the visual point of the backwards geodesic flow.
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Recall that PSL2(Z) is generated by T and S and let

F = {Re(z) > −1

2
}︸ ︷︷ ︸

=FT

∩{Re(z) <
1

2
}︸ ︷︷ ︸

=FT−1

∩{|z| > 1}︸ ︷︷ ︸
=FS

be the standard fundamental domain. If we follow the geodesic flow through F ,
we will leave the fundamental domain at some point passing through a wall of
some FL for L ∈ {T, T−1, S}. It is clear that L is also the transformation that
needs to be applied to re-enter in F . We record this letter L. Therefore, given a
starting point (z, ζ) ∈ T 1X we obtain the corresponding cutting sequence, which
is a sequence of letters L, by following the geodesic through F as just described.
The sequence consists of a number of T ’s followed by one S followed by a number
of T−1’s followed by S and so on. It suffices to record the number of T ’s and T−1’s.
For example

TTST−1T−1T−1STST−1T−1S · · · 2, 3, 1, 2, · · · .

It (miraculously) turns out that this sequence is closely related to the partial
fraction expansion of the visual point α.

We call a quadratic irrational α reduced if it and its Galois conjugate α′ satisfy
the inequalities −1 < α′ < 0 < 1 < α. A representative M of the conjugacy class
[M ] is called reduced if its visual point α is. One can show that α is reduced if
and only if its continued fraction is exactly periodic. For reduced M , the coding
of the geodesic flow corresponds exactly to the sequence giving the partial fraction
decomposition of α.

An integral quadratic form is given by

Q(x, y) = Ax2 +Bxy + Cy2.

We call Q primitive if (A,B,C) = 1. A number n is said to be represented by Q
if there are x, y ∈ Z with n = Q(x, y). A linear change of variables

Q(x, y) 7→ Q(ax+ by, cx− dy) for ad− bc = ±1

does not change the set of integers represented by Q. We call two quadratic forms
Q,Q′ (strictly) equivalent if there is γ ∈ SL2(Z) such that Q(x, y) = Q′(γ(x, y)).
This gives an equivalence relation Q ∼ Q′. We define the discriminant of Q by

DQ = B2 − 4AC.

We call Q definite if DQ < 0. (In this case it only takes negative or positive values.)
When DQ > 0, we call Q indefinite. Note that DQ ≡ 0, 1 mod 4. Furthermore, if

Q ∼ Q′, then DQ = DQ′ . Write αQ =
−B+
√
DQ

2A
for the root of Q(x, 1). We define

the class group as

CD = {[Q] : DQ = D} and write hD = ]CD.
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Gauß showed that CD has a group structure (justifying the name) and that for
non-square D one has 1 ≤ h(D) <∞.

A discriminant is fundamental if it is the discriminant of a (quadratic) field.
Such D’s are either congruent 1 modulo 4 and squarefree or D/4 is squarefree and
congruent 2, 3 modulo 4. Dirichlet’s class number formula says that

hD =
√
|D|L(1, χD) ·

{
(2π)−1 for D ≤ −5,

log(εD)−1 for D > 0.

The class numbers are very mysterious and important objects. There is lots of
work (and conjectures) on them but we will not discuss this in more detail now.

Given a hyperbolic matrix M we want to attach a quadratic form QM . This is
done essentially by equating αQM with the visual point α of the geodesic associated
to M . This leads

Q0 = cx2 + (d− a)xy − by2.

However, this does not need to be primitive. To fix this we set

QM =
sgn(Tr(M))

s
Q0 for s = gcd(c, d− a,−b).

The sign makes this independent of the choice ±M , which is desirable since we
are working with PSL2. We can invert this map by defining

MQ =

(
(t−Bs)/2 −Cs

As (t+Bs)/2

)
where Q = Ax2 +Bxy + Cy2

and (t, s) is a fundamental solution to the Pellian equation T 2−S2DQ = 4. (Taking
a fundamental solution ensures that MQ is primitive.) One can also write down
the inverse map using the continued fraction expansion.

The discriminant of a closed geodesic γ on the modular surface or its correspond-
ing hyperbolic conjugacy class is defined to be that of its associated equivalence
class of binary quadratic forms. This is given by

DM =
Tr(M)2 − 4

s2
for s = gcd(c, d− a, b).

If DM is a fundamental discriminant, then we call M as well as the corresponding
closed geodesic fundamental.

Given a fundamental discriminant D we have constructed a correspondence
between elements in the class group CD and fundamental closed geodesics. We
abuse notation and write γ ∈ CD. This explains the question raised by Einsiedler-
Lindenstrauss-Michel-Venkatesh in 2004. Let us briefly explain the motivation
behind the question.

Theorem 1.10 (Duke’s Theorem). As D → ∞ through fundamental discrimi-
nants

1

hD

∑
γ∈CD

1

l(γ)

∫
γ

1Ads→
1

Vol(X)

∫
X

1A
dxdy

y2
,
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for domains A ⊂ X.

This raises the question if individual geodesics already equidistribute. (Of course
if hD = 1 this is the case.) This will not be the case in general. Even among
fundamental closed geodesics one can find examples of sequences where the limiting
measure is dy/y instead of dxdy/y2. This happens for examples if we allow the
mass of the geodesics to escape towards the cusp. The question now arises when
one wants to exclude this phenomenon. This is asking for sequences of low-lying
geodesics that not equidistribute.

Let us translate the question into thin orbit language. Recall that α = [a0, . . . , al]
is fixed by the matrix

M =

(
a0 1
1 0

)
· · ·
(
al 1
1 0

)
and α ∈ Q(

√
Tr(M)2 − 4). One can see that if Tr(M)2− 4 is squarefree, then the

corresponding closed geodesic is fundamental. In particular one can deduce the
answer of the question from Conjecture 1.1 with the map F (γ) = Tr(γ). But one
can even give an unconditional answer.

Theorem 1.11 (Bourgain-Kontorovich 2014). There exist infinitely many low-
lying fundamental geodesics. More precisely for each ε > 0 there is a compact
region Y = Y (ε) ⊂ X and a set D = D(ε) of positive fundamental discriminants,
such that

(1) for each D ∈ D, many of the geodesics in the ccorresponding class group
are low-lying:

]{γ ∈ CD : γ ⊂ Y } > h1−ε
D ;

(2) there are many discriminants in D :

]D ∩ [1, T ] > T
1
2
−ε as T →∞.

We will reduce this statement to the following result

Theorem 1.12 (Bourgain-Kontorovich 2014). Many elements γ ∈ ΓA have traces
satisfying Tr(γ)2 − 4 being square-free. More precisely for any η > 0 there is
A = A(η) <∞ such that

]{γ ∈ ΓA ∩BX : Tr(γ)2 − 4 is square-free} > X2δA−η.

as X →∞.

Proof of Theorem 1.11. The reduction to Theorem 1.12 is a simple consequence of
the discussion above. We set

T = {t ≥ 1: t2 − 4 square-free}.
For an integer t and A <∞ define the trace multiplicity by

MA(t) = ]{γ ∈ ΓA : Tr(γ) = t}.
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From Theorem 1.12 we deduce that

N2δ−η <
∑

t∈T ∩[1,N ]

MA,N(t)

=
∑

t∈T ∩[1,N ]

MA,N(t)(1MA,N (t)≥W + 1MA,N (t)<W )

� N1+ε
∑

t∈T ∩[1,N ]

1MA,N (t)≥W +NW.

Setting W = N2δ−1−2η (and renaming constants) yields∑
t∈T ∩[1,N ]

1MA,N (t)≥W > N2δ−1−η.

Given ε > 0 we take η > 0 sufficiently small and A large enough so that

2δ − 1− η > 1− ε.

To the choice A > 0 we have a corresponding compact region

Y = Y (ε) ⊂ X = T 1(PSL2(Z)\H).

We define

D = {D = t2 − 4: t ∈ T ,MA(t) > t2δ−1−η}.
All D ∈ D are square-free so that D is fundamental. Of course the corresponding
geodesic is also fundamental. By construction we have

](D ∩ [1, T ]) ≥ ]{t ∈ T ∩ [1,
√
T ] : MA(t) > t2δ−1−η} > T

1
2
−ε.

This confirms (2). Finally, for each D = t2 − 4 ∈ D the trace multiplicity satisfies

MA(t) > t1−ε > (
√
D)1−ε � (]CD)1−ε.

Note that not each γ ∈ ΓA corresponds uniquely to a closed geodesic in X.
However, the corresponding visual points of the geodesics are all reduced. This
implies that any two differ only by a cyclic permutation of their partial quotients.
Since there are only � log(t) such permutations we are done. �

1.3.3. McMullen’s (classical) Arithmetic Chaos. A similar question is known as
McMullen’s Arithmetic Chaos:

Conjecture 1.3 (Arithmetic Chaos V1). There is a compact subset Y ⊂ X such
that for all real quadratic fields K, the set of closed geodesics defined over K and
lying in Y has positive entropy.

This can be directly formulated in terms of continued fractions:
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Conjecture 1.4 (Arithmetic Chaos V2). There is A < ∞ so that, for any real
quadratic field K the set

{[a0, a1, . . . , al] ∈ K : aj ≤ A}

has exponential growth as l→∞.

The only observation needed for the reformulation is that a geodesic goes high in
the cusp, then the corresponding partial fraction will have large partial quotients.
The reason we stated this conjecture is the following result

Proposition 1.13. Conditionally on Conjecture 1.1 McMullen’s Arithmetic Chaos
conjecture is true.

Proof. By assuming A ≥ 2 we can assume that all integers n are admissible. Taking
F = Tr and n � X the local to global conjecture tells us that

]{γ ∈ BX ∩ ΓA : Tr(γ) = n} � Xη,

for some η = 2δA − 1 + o(1) > 0 where we take A and X large enough. Similar
reductions as we have seen earlier now reveals that

{[a0, a1, . . . , al] ∈ K : aj ≤ A} � eη
′l.

where K = Kn = Q(
√
n2 − 4). Here we again used that log(‖γ‖) � lA(γ). Given

a fixed real quadratic field K = Q(
√
D) it remains to find n � X so that Kn = K.

This is possible for (in terms of D) large enough X by solving the classical Pell
equation n2 − d2D = 4. �

1.4. Odds and Ends. Towards the end of the introduction we supply some expla-
nations that were skipped above. First recall the notion of Hausdorff dimension.
For A ⊂ S1 the s-dimensional Hausdorff measure is given by

Hs(A) = lim
ε→0

inf{
∑
j

Vol(Ij)
s : A ⊂

⋃
j

Ij,Vol(Ij) < ε}.

(Without changing anything we can treat the situation A ⊂ [0, 1].) One can see
that there is a threshold d such that

Hs(A) =

{
∞ if s < d,

0 if s > d.

We define the Hausdorff dimension to be this threshold:

dimH(A) = d.

Some easy examples are

• The set A = S1 has Hausdorff dimension 1.
• The Cantor middle third set has Hausdorff dimension log(2)

log(3)
.
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Let us (approximately) compute another Hausdorff dimension. Define the set

CA = {[a1, a2, . . .] : aj ≤ A for all j}.
This can be thought of as the limiting set of ΓA. Put δA = dimH(CA). We also
define

C(r)
A = {[a1, a2, . . . , ar] : aj ≤ A for all j} and C(∞)

A =
⋃
r∈N

C(r)
A .

We will slightly abuse notation and view r-tuples a = (a1, . . . , ar) ∈ [1, A]r ∩ Nr

as elements in C(r)
A by considering the associated continued fraction. We write l(a)

for the length of a and den(a) for the denominator of [a1, . . . , al(a)]. With this
notation at hand we define the zeta function

ζ(s, A) =
∑

a∈C(∞)
A

den(v)−s.

This sum converges for s with sufficiently large real part. Let D(A) denote the
abscissa of convergence of ζ(s, A).

Lemma 1.14 (Cusick). We have D(A) = 2δA.

Proof. First rewrite the zeta function as

ζ(s, A) =
∑
n∈N

rA(n)

ns
for rA(n) = ]{v ∈ C∞A : den(v) = n}.

Take α = [a1, a2, . . .] ∈ CA. Truncating the continued fraction at k ∈ N gives us
the convergents

pk
qk

= [a1, . . . , ak].

These satisfy the approximation

|α− pk
qk
| < 1

q2
k

.

Having made this observation we can find αj = [a
(j)
1 , . . .] ∈ CA so that CA is covered

by intervals of length 2

(q
(j)
k )2

for
p

(j)
k

q
(j)
k

= [a
(j)
1 , . . . , a

(j)
k ]. We get the estimate

∑
j

2

(q
(j)
k )2β

≤ 2
∞∑
n=1

rA(n)

n2β
= 2ζ(2β,A).

Now by definition of the Hausdorff dimension the left hand side diverges for β <
δA. But this implies that the zeta function (defined as sum) diverges, so that
2β ≤ D(A) for all β < δA. This implies 2δA ≤ D(A).

For the reverse inequality we have to work harder. Write

fr(δ) =
∑

v∈C(r)
A

den(v)−2δ.



THIN GROUPS AND APPLICATIONS 19

This family of functions satisfies A−2δfn(δ)fm(δ) < fm+n(δ) < fm(δ)fn(δ) for
m,n ∈ N (Exercise).

We claim that for n ≥ 2 there is a unique solution 0 < σn < 1 to f(δ) = 1 and
that

lim
n→∞

(σn) = δA.

Furthermore, for m, r ≥ 2, we have σrm < σm, and σm > δA.
We will now show that ζ(2σm, A) converges for each m ≥ 2. This directly implies

D(A) ≤ 2δA as desired. Put N = rm and look at n = jN + t. Then we have

fn(σm) < fN(σm)jft(σm).

With this at hand we can estimate

ζ(2σm, A) =
∞∑
n=1

fn(σm) < C
∞∑
i=0

fN(σm)i <∞,

for C = sup0≤t≤N ft(σm).
The existence of these numbers is straight forward. We find

1 = fm+n(σm+n) < fn(σm+n)fm(σm+n).

Thus one of the factors on the right is bigger than one, which implies σm+n <
max(σn, σm). Inductively taking m = n, 2n, 3n, . . . gives the desired property
σrm < σm. We directly obtain the generalization

σrn+sm < max(σm, σn).

Let σ = lim supn→∞ σn. Given two primes p, q we take a sufficiently large number
n of the form n = rp+ sq and obtain σ ≤ max(σp, σq). Thus there is at most one
prime pe with pe < σ. Using the properties of the family fn one obtains

frn(δ) > A−2rfn(δ)r.

By the mean value theorem there is σrn ≤ δ ≤ σn so that

1− A−2r = 1− A−2rfn(σn) > 1− frn(σn)

= frn(σrn)− frn(σn) = (σn − σrn)f ′rn(δ)

> (σn − σrn)2 min
v

log(der(v))frn(δ)

> (σn − σrn)2A−2rfn(δ) min
v

log(der(v))

> (σn − σrn)2A−2r log(A
1
2
rn).

We conclude that σn − σrn < CA
A2r

rn
. Suppose there is n with σn = σ − ε. Then

we find a large prime p 6= pe so that CA
A2n

pn
< ε. Thus we have σp − σpn < ε. This

gives the contradiction

σp > σ = σn + ε ≥ σpn + ε > σp + ε.
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Thus we have seen that

lim inf
n→∞

σn ≥ σ = lim sup
n→∞

σn,

so that σ = limn→∞ σn. It is a nice Exercise to identify sigma with δA. �

Lemma 1.15 (Hensley). We have 1− 5
2A
< δA < 1− 1

10(A+1)
. Even more

δA = 1− 6

π2A
+ o(A−1).

We will omit the proof. Note that it is easier to show 1− δA � A−1. The latter
suffices to deduce that by choosing A sufficiently large we can make δA as close to
1 as desired.

Finally we can complete the estimate for ](ΓA ∩BX) used earlier.

Lemma 1.16 (Hensley). Let A ≥ 2, then

](ΓA ∩BX) � X2δA ,

where δA is as above.

Proof. First recall the definitions of ΓA and Γ̃A. Of course the count only differs

up to constants. Therefore it is enough to show that ](Γ̃A ∩BX) � X2δA . We can
take the ball BX with respect to the maximum norm and it is an easy observation

that, if γ ∈ Γ̃A, then the upper left entry is always the largest. Employing an
earlier observation we find that

](ΓA ∩BX) � ](Γ̃A ∩BX) � ]{ b
d
∈ RA : d ≤ X} � ]{a ∈ C(∞)

A : den(v) ≤ X}.

Let us denote the number on the right by FA(X).

Take u ∈ C(∞)
A with den(u) > X. Then we can (uniquely) write u = (a,w) so

that
X

1 + w1

< den(a) ≤ X < den((a, w1)).

For s > D(A) we estimate∑
w∈C(∞)

A

∑
a∈C(∞)

A ,
X

1+w1
<den(a)≤X

den((a,w))−s >
1

4

∑
w∈C(∞)

A

den(w)−s
∑

a∈C(∞)
A ,

X
1+w1

<den(a)≤X

den(a)−s

>
1

4
(FA(X)− FA(X/2))x−sζ(s, A).

This leads to
1

2
ζ(s, A) >

1

4
(FA(X)− FA(X/2))X−sζ(s, A).

We infer that FA(X)−FA(X/2) ≤ 4XD(A). This directly implies FA(X)� XD(A).
This completes the proof of the upper bound by the first of the two lemmata above.
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Turning to the lower bound we look at another decomposition. Suppose w ∈
C(∞)
A satisfies den(w) > (A+ 1)2X. Then we write w = (v, k,u) with v,u ∈ C(∞)

A

and k ∈ N such that
X

A+ 1
< den(v) ≤ X < den((v, k)).

This decomposition shows∑
w∈C(∞)

A ,

(A+1)2X<den(w)

den(w)−s �
∑

v∈C(∞)
A ,

X
A+1

<den(v)≤X

den(v)−s
∑

X
den(v)

≤k≤A

k−s
∑

u∈C(∞)
A

den(u)−s

︸ ︷︷ ︸
=ζ(s,A)

.

Dividing both sides by ζ(s, A) and taking s→ D(A) we find that

1�
∑

v∈C(∞)
A ,

X
A+1

<den(v)≤X

den(v)−D(A)
∑

X
den(v)

≤k≤A

k−D(A) �
∑

v∈C(∞)
A ,

X
A+1

<den(v)≤X

den(v)−D(A)

(
X

den(v)

)1−D(A)

.

This can be written as

XD(A) �
∫ X

X/(A+1)

X

t
dFA(t).

Partial integration (in the Riemann-Stieltjes sense) gives

XD(A) � FA(X)− (A+ 1)FA(X/(A+ 1)) +X

∫ X

X/(A+1)

t−2FA(t)dt.

Now suppose that for every ε > 0 we have FA(X) < (εX)D(A) for sufficiently large
X. Then we get

XD(A)−1 �
∫ εX

X/(A+1)

t−2+D(A)dt+

∫ X

εX

t−2(εX)D(A)dt� (εX)D(A)−1.

This gives a contradiction for sufficiently small ε > 0 and we obtain FA(X) �
XD(A). This completes the proof. �

2. Fuchsian Groups

The hyperbolic plane (also upper half plane) is given by H = {z ∈ C : Im(z) >

0}. The metric is given by ds2 = dx2+dy2

y2 and the measure is dµ(z) = dxdy
y2 . The

group PSL2(R) acts on H via Möbius transformations. More precisely

g.z =
az + b

cz + d
for g =

(
a b
c d

)
∈ PSL2(R).

It turns out that PSL2(R) is the group of orientation preserving isometries of H.
The geodesics of H are precisely the arcs of circles intersecting ∂H orthogonally.

The basic example is the (degenerate circle) iR+. Given two points z, w ∈ H =
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H ∪ ∂H there is a unique geodesic segment, denoted by [z, w] for now, connecting
z and w. We define the hyperbolic distance by

d(z, w) = l([z, w]), (4)

where l(·) denotes the length of a curve with respect to the line element ds. A
short computation shows that

cosh(d(z, w)) = 1 +
|z − w|2

2 Im(z) Im(w)
.

The geodesic distance gives rise to so called geodesic polar coordinates, which we
will use frequently.

Elements T ∈ PSL2(R) can be classified by their fixed points in H (i.e. z ∈ H
with Tz = z). According to this we make the following definition:

• T is called elliptic if Tr(T ) < 2. This implies that T has one fixed point in
H;
• T is called parabolic if Tr(T ) = 2 and T 6= 1. In this case T has a single

degenerate fixed point in ∂H;
• T is hyperbolic if Tr(T ) > 2. In this situation T has two distinct fixed

points in ∂H.

The (complex) Möbius transform

z 7→ z − i
z + i

maps the upper half to the unit disc. This gives rise to the disc-model B for the
hyperbolic plane.

A Fuchsian group is a discrete subgroup of PSL2(R). We say a subgroup Γ ⊂
PSL2(R) acts properly discontinuously if any compact subset of H contains only
finitely many orbit points. In this case the quotient Γ\H is well defined as a metric
space.

Lemma 2.1. A subgroup Γ ⊂ PSL2(R) acts properly discontinuously on H if and
only if it is Fuchsian.

Proof. Exercise. �

A fundamental domain F ⊂ H for a Fuchsian group Γ is a closed region such
that ΓF = H and F◦ does contain at most one point of each Γ-orbit. The limit
set Λ(Γ) ⊂ ∂H of a Fuchsian group Γ is the set of limit points of all orbits Γz for
z ∈ H.

Theorem 2.2 (Poincaré, Fricke-Klein). The possibilities for the limit set of a
Fuchsian group Γ are:

• ]Λ(Γ) ∈ {0, 1, 2} (in this case Γ is called elementary);
• Λ(Γ) is a perfect nowhere dense subset of ∂H (in this case Γ is called of

the second kind);
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• Λ(Γ) = ∂H (in this case Γ is called of the first kind).

Proof. [1, Theorem 2.9]. �

We call Γ cofinite (cocompact) if the quotient Γ\H has finite volume (is compact).

Theorem 2.3. A Fuchsian group is cofinite if and only if it is of the first kind.

Proof. [9, Section 4.5] �

The absolute Poincaré series of a Fuchsian group is given by

PΓ(z, w; s) =
∑
γ∈Γ

e−sd(zγ.w),

which converges for s ∈ C with sufficiently large real part. The exponent of
convergence of Γ is given by

δ = inf{s ≥ 0: PΓ(z, w; s) <∞} for some w, z.

Exercise 2.1. Show that the Poincare series defined in (1) converges absolutely
for Re(s) > δ, where δ is the exponent of convergence of Γ.

Lemma 2.4 (Selberg’s Lemma). A finitely generated group of matrices over a
field of characteristic 0 has a torsion free subgroup of finite index.

Proof. We call a group G residually finite, if for each f ∈ G \ {1} there is a finite
homomorphic image Hg so that the image of g in Hg is not the identity. (Roughly
speaking: there are many finite quotients.)

We actually proof the following more general statement:

Let A be a finitely generated integral domain of characteristic 0 and
consider the group G = GLn(A). Then G is residually finite and G con-
tains a normal subgroup of finite index which is torsion free.4

To prove this we consider the quotient field F of A. It is a finite algebraic exten-
sion, lets call the degree k, over the purely transcendental field K = Q(x1, . . . , xm).
Next we express the finite set of generators of A in terms a basis for F over K. The
coefficients will feature denominators which are contained in a finitely generated
ring B. There is an integer s and a polynomial f such that

B = Z[
1

s
][x1, . . . , xm,

1

f
].

Given an n-dimensional vector space V over F we have the natural representation
EndF (V ) → EndK(V ). By considering V = F n we obtain an injective homomor-
phis

ρ : GLn(F )→ GLnk(K).

4If the characteristic of A is positive, then one can still show that G contains a normal
subgroup of finite index in which every element of finite order is unipotent. The statement that
G is residually finite also remains true.
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The homomorphism ρ represents the groupG = GLn(A) as a subgroup off GLnk(B).
Therefore it suffices to prove the statement for the group G′ = GLnk(B).

Take g ∈ G′ \ {1} and let w(x1, . . . , xm,
1
f
) be a non-zero entry in the matrix

g − 1. Fix a prime not dividing s, so that modulo p not all coefficients of w are
0. Further take v sufficiently large, so that u = f vw is a polynomial in x1, . . . , xm.
Finally choose a1, . . . , am in the algebraic closure of Fp so that u(a1, . . . , am) 6= 0.
With these choices made w(a1, . . . , am, f(a1, . . . , am)−1) 6= 0 and the kernel b of
the homomorphism

π : B → Fp(a1, . . . , am)

is a maximal ideal of finite index. We conclude that the induced homomorphism
Π: GLnk(B) → GLnk(B/b) has finite image. By construction we have Π(g) 6= 1.
This shows that G′ (and thus G) is residually finite.

Let g be an element of order 1 < a < ∞ in G. Of course g satisfies the
polynomial Xa − 1. The minimal polynomial of g has distinct roots and the
eigenvalues are roots of unity. Since the coefficients of the characteristic polynomial
of g are symmetric functions in its roots these coefficients are algebraic integers
in K = Q(x1, . . . , xm). We conclude that the trace of an element of finite order
in G′ is an integer. Of course its absolute value is ≤ nk. Thus there are only a
finite number of traces of these elements of finite order. We call the set of these
traces T . Consider a prime p which does not divide s, the coefficients of f , and
the non-zero integers t − nk for t ∈ T . (These are finitely many conditions so
that there are infinitely many such primes.) Write Ωp for the algebraic closure of
Fp. We can now find an homomorphsim σ : A → Ωp. (For example by extending
the reduction modulo p naturally to Z[1/s] and by sending xi to ai ∈ Ωp with
f(a1, . . . , am) = 0.) We find that σ(A) = Fp(a1, . . . , am) is a finite field, so that
the kernel a = ker(σ) is a maximal ideal of finite index in A. Let Σ: GLnk(A)→
GLnk(A/a) be the corresponding natural homomorphism. Its kernel G(a), called
the (principal) congruence subgroup of level a, has finite index and is normal.
Consider the subgroup G0 = G′ ∩G(a), which is of finite index in G′ and normal.
Now consider an element of finite order g ∈ G0. Obviously Tr(g) ∈ T and Tr(g) ≡
nk mod a. We conclude that Tr(g)− nk is an integer, which reduces to 0 modulo
a. Therefore p divides Tr(g) − nk and our choice of p implies that Tr(g) = nk.
But this already implies that g = 1. �

A Fuchsian group is called geometrically finite if there exists a fundamental
domain which is a finite sided convex polygon. It can be shown (see [1, Theo-
rem 2.10]) that Γ is geometrically finite if and only if Γ is finitely generated.

We end this section by looking at the classification of hyperbolic ends, which will
be of importance later on. Before stating the classification we carefully introduce
the main players.
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Given a hyperbolic transformation T ∈ PSL2(R) we obtain the cyclic hyperbolic
group 〈T 〉 generated by T . Write

l = l(T ) = min
z∈H

d(z, Tz).

The quotient Cl = 〈T 〉\H will be called a hyperbolic cylinder of diameter l. After
conjugation if necessary we can identify the generator T with the map z 7→ elz.
Write Γl for the corresponding cyclic group. It is easy to verify that

Fl = {1 ≤ |z| ≤ el}

is a fundamental domain for Γl. The y-axis is the lift of the only simple closed
geodesic on Cl with length l. A funnel Fl is half of a hyperbolic cylinder of diameter
l with boundary given the central geodesic. Note that Vol(Fl, µ) =∞.

Similarly we can define parabolic cylinders : take a parabolic element T , form
the parabolic cyclic group 〈T 〉 and consider the quotient 〈T 〉\H. We can assume
that T is given by the map z 7→ z+1 and we write Γ∞ for the corresponding cyclic
group. A fundamental domain for Γ∞ is

F∞ = {0 ≤ Re(z) ≤ 1}.

A circle lying in H which is tangent to ∂H is called a horocycle. (These are exactly
curves stabilized by parabolic transformations.) A cusp is the small end of a
parabolic cylinder with boundary the unique closed horocycle of length one. The
volume of a cusp (normalized as in our definition) is 1.

Now let Γ be nonelementary. Recall that in this case Λ(Γ) is either a perfect
nowhere dense set or equal to ∂H. Suppose we are in the first case (i.e. Γ is of the
second kind). Then ∂H \ Λ(Γ) =

⋃
j∈N Ij is the countable union of open intervals

Ij. Suppose that γj is the geodesic connecting the endpoints of Ij. Let Hj be the
half plane bounded by γj and Ij. The Nielsen region if a Fuchsian group Γj is the

set Ñ = H \ (
⋃
j Hj). The quotient N = Γ\Ñ is called the convex core of Γ\H.

(Note that if Γ is of the first kind, then the Nielsen region of Γ is simply H.)
By passing from Γ\H to its convex core we remove a finite set of funnels. How-

ever, there still may be some cusps which we would like to isolate as well. Given
a parabolic fixed point p ∈ ∂H let Γp be the parabolic cyclic subgroup of Γ fixing
p. Let σp be the unique horocycle tangent to p such that Γp\σp has length one.
Take Op to be the open region bounded by σp, so that Γp\Op is precisely a cusp.
The truncated Nielsen region is

K̃ = Ñ \ (
⋃

p parabolic f.p.

Op).

We put K = Γ\K̃ and call it the compact core of Γ\H. (Note that it requires some
work to see that the quotient is actually well defined, see [1, Lemma 2.12].)
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Theorem 2.5. Let Γ be nonelementary and geometrically finite. Then the compact
core K of Γ\H is compact and (Γ\H) \K is a finite disjoint union of cusps and
funnels.

Proof. [1, Theorem 2.13] �

3. Strong Approximation

Strong approximation can be formulated in many ways. The easiest way is
probably in terms of congruences. Suppose we have a family of polynomials

fα(x1, . . . , xd) ∈ Z(x1, . . . , xd), α ∈ I.

For any Z-algebra R we have the set of points

X(R) = {(α1, . . . , αd) ∈ Rd : f(α1, . . . , αd) = 0 for all α ∈ I}.

(X ⊂ Ad
Z is the closed affine subscheme defined by these polynomials.) For each

m ∈ N we have the natural reduction map

ρ : X(Z)→ X(Z/mZ).

The question is for which m these maps are surjective. Ideally one would want the
map to be surjective for all m but in reality one needs to restrict to m that are
coprime to some fixed N = N(X).

For algebraic groups the theory of strong approximation becomes particularly
useful. We state a general theorem:

Theorem 3.1 (Mathews, Vaserstein, Weisfeiler). Let G be a connected simply
connected absolutely almost simple algebraic group defined over Q. Let Γ be a
finitely generated subgroup of G(Q) that is Zariski dense in G. Then the reduction
Γp of Γ is equal to G(Fp) for sufficiently large p.

The proof is very deep and requires a lot of representation theory as well as
the classification of finite simple groups. We will only discuss an simpler version,
where the computations are more hands on.

For the reminder of this section let Γ be a finitely generated non-elementary sub-
group of SL2(Z). We write Γ(q) to be the kernel of the reduction mapRq : SL2(Z)→
SL2(Z/qZ) restricted to Γ. Our goal is to prove that for p�Γ 1 (i.e. large enough)
one has Γ/Γ(p) ∼= SL2(Fp). According to Selberg’s lemma we can assume that Γ
is torsion free.

Note that the principal congruence subgroup K(2) = ker(R2) modulo 2 is free.
Since subgroups of free groups are free we conclude that Γ(2) ⊂ K(2) is free. We
will now apply the following theorem.

Theorem 3.2 (Stallings). A finitely generated torsion free group which contains
a free subgroup of finite index is free.
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Note that Γ(2) ⊂ Γ is obviously of finite index, so that we can conclude that Γ
is free.

Take a symmetric set of generators S = {A1, . . . , Ak} of Γ and consider the
Cayley graphs

Gp = G(Γ/Γ(p);S).

Let c(Gp) be the length of the shortest cycle also called the girth. Also define d(Gp)
be the largest integer such that any two walks in Gp starting at the identity E
with length at most d(Gp) end at different vertices. (This can be thought of as the
injectivity radius.) Obviously we have

c(Gp) ≥ 2d(Gp)− 1.

Let Yp = Rp(Γ) denote the image of Γ under the reduction map Rp. In particular
we have Yp ∼= Γ/Γ(p) and Yp is a subgroup of SL2(Fp). The images of the generators
will be denoted by Ai,p = Rp(Ai) for i = 1, . . . , k and we write Sp = Rp(S). In
particular we have

Gp = G(Yp, Sp).

Take two walks p = (p0, . . . , pr) and s = (s0, . . . , st) with starting point E = s0 =
p0 and common end st = pr. We obtain the corresponding words V = (v1, . . . , vr)
and W = (w1, . . . , wt) over Sp and we have pi = v1 · · · vi as well as sj = w1 · · ·wj.
In particular, since st = pr we have

v1 · · · vr = w1 · · ·wt.
We lift the words V and W to words Ṽ and W̃ over S. (This is done by taking
the appropriate preimage Ai of Ai,p or A−1

i of A−1
i,p .) Note that V , W are reduced

and different so that Ṽ and W̃ are reduced and different. We obtain

ṽ1 · · · ṽr 6= w̃1 · · · w̃t
since Γ is free and generated by A1, . . . , Ak. Thus we can look at the matrix

M = M(V,W ) = ṽ1 · · · ṽr − w̃1 · · · w̃t ∈ Mat2×2(Z).

Obviously M ≡ 0 mod p but M 6= 0. Therefore

‖M‖ = sup
x 6=0

‖Mx‖
‖x‖

≥ p,

where the norm ‖ · ‖ of x ∈ R2 is the usual 2-norm. We obtain

max(‖ṽ1 · · · ṽr‖, ‖w̃1 · · · w̃t‖) ≥
p

2
.

We put α = maxk ‖Ak‖ and obtain

αmax(r,t) ≥ p

2
.

We directly obtain

d(Gp) ≥ logα(
p

2
) and c(Gp) ≥ 2 logα(

p

2
)− 1.
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We recall the following (standard) result classifying subgroups of SL2(Fp).

Theorem 3.3. Let p ≥ 5 be prime. Then any subgroup of SL2(Fp) is isomorphic
to one of the following subgroups:

• The dihedral groups of order 2
(
p±1

2

)
and their subgroups;

• A group H of order p
(
p−1

2

)
and its subgroups. If H1 ≡ N1 is a subgroup of

H, then its factor group H/H1 is cyclic;
• A4, S4 or A5.

Suppose Yp 6= SL2(Fp) for p large enough. Then Yp is one of the groups listed
in the Theorem above. The idea is that certain groups are excluded immediately,
because they violate the girth bound derived above. They key input is that the
remaining subgroups have trivial second commutator. More precisely

(x1y1x
−1
1 y−1

1 )(x2y2x
−1
2 y−1

2 )(y1x1y
−1
1 x−1

1 )(y2x2y
−1
2 x−1

2 ) = 1 (5)

for all x1, x2, y1, y2 ∈ Yp. Therefore, taking x1, x2, y1, y2 to be generators we find
a closed cycle of length 16. We find 2 logα(p

2
) ≤ 17, which is a contradiction for

p > 2α
17
2 . We have established the following theorem.

Theorem 3.4. Let Γ be a non-elementary finitely generated subgroup of SL2(Z),
then Γ/Γ(p) ∼= SL2(Fp) for all p�Γ 1.

4. Spectral Theory

A key tool for us is the spectral theory of orbifolds Γ\H. The operator in
question is the Laplace-Beltrami operator

∆ = −y2(∂2
x + ∂2

y).

Note that ∆ ◦ g = g ◦∆ for all g ∈ SL2(R). We quickly check

〈∆F,G〉H =

∫
H
OFOGdµ = 〈F,∆G〉H.

Thus, given a Fuchsian group Γ we can view ∆ as an unbounded non-negative
self-adjoint operator on L2(Γ\H, µ). (More precisely we can start by defining ∆
on D = {f ∈ C∞0 (Γ\H) : f,∆f ∈ L2(Γ\H, µ)} and then consider the Friedrich’s
extension.)

The spectrum of this operator depends heavily on Γ. Particularly strong are the
differences between the situations cocompact, cofinite but not cocompact and not
cofinite. We are most interested in the final case since this is the situation arising
from thin groups.

We say λ is an eigenvalue of ∆ on Γ\H, with eigenfunction φ, if φ ∈ L2(Γ\H, µ)
and

∆φ = λφ.

It will be convenient to identify Γ\H with a suitable fundamental domain F
for Γ. We write Ω(F) for the spectrum of the Laplace-Beltrami operator ∆ on
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L2(F , µ) = L2(Γ, \H, µ). Let λ0(F) denote the bottom of the spectrum and write
λ1(F) for the next eigenvalue.

4.1. The Full Hyperbolic Plane. We start by looking at the full hyperbolic
plane (i.e. Γ = {±1}). In this case we can guess certain (pseudo)-eigenfunctions.
(Note that we have not yet specified the domain of ∆!) Given s ∈ C we check

∆ys = s(1− s)ys.
The resolvent (of ∆ for H) is defined by

RH(s) = (∆− s(1− s))−1 for Re(s) >
1

2
and s 6∈ [

1

2
, 1].

Note that obviously we have

(∆− s(1− s))RH(s)f(z) = f(z) =

∫
H
y2δ(z − z′)f(z′)dµ(z′).

Put RH(s)f(z) =
∫
HRH(s; z, z′)f(z′)dµ(z′). Then we obtain

(∆− s(1− s))RH(s; z, z′) = y2δ(z − z′), (6)

where ∆ acts on the z-coordinate.5 Since ∆ is SL2(R)-invariant, the resolvent
kernel depends only on the hyperbolic distance between z and z′. Thus there is a
function fs so that

RH(s; z, z′) = fs(d(z, z′)).

Putting r = d(z, z′) we can swap to polar coordinates (r, θ). The Laplacian then
reads

∆ = − 1

sinh(r)
∂r(sinh(r)∂r)−

1

sinh(r)2
∂2
θ .

Before solving (6) we look at the corresponding homogeneous equation in polar
coordinates: [

− 1

sinh(r)
∂r(sinh(r)∂r)− s(1− s)

]
fs(r) = 0.

Changing coordinates by setting gs(σ) = fs(r) for σ = cosh(r/2)2 yields

σ(1− σ)g′′s + (1− 2σ)g′s − s(1− s)gs = 0.

This is a special case of the classical hypergeometric equation.6 We get the solution

gs(σ) = csσ
−s

2F1(s, s; 2s;σ−1) = cs
Γ(2s)

Γ(s)2

∫ 1

0

(t(1− t))s−1

(σ − t)s
dt.

5We are essentially dealing with the classical Green’s function.
6The equation reads

z(1− z)h′′(z) + (c− (a+ b+ 1)z)h′(z)− abh(z) = 0.

The typical solution is the Gauß hypergeometric function h(z) = 2F1(a, b; c; z) which is regular
at z = 0. We took a different solution since we require regularity at ∞.
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Where we used Euler’s integral representation for the hypergeometric function
(valid for Re(s) > 0). We want to choose cs so that RH(s; z, z′) = gs(σ(z, z′)) and
confirm our choice of gs. To do so we integrate (6) in polar coordinates over a
small disc of radius ε (i.e. B0(ε)). We get

1 = −2π

∫ ε

0

[(sinh(r)f ′s(r))
′ + s(1− s) sinh(r)fs(r)] dr

= −2π sinh(ε)f ′s(ε)− 2πs(1− s)
∫ ε

0

sinh(r)fs(r)dr.

Supposing that fs is locally L2 we see that the integral vanishes as ε → 0. Thus
we obtain

f ′s(r) = − 1

2πr
+O(1) as r → 0.

This implies that the appropriate boundary condition is fs(r) ∼ − 1
2π

log(r). Recall
that σ ∼ 1 + r2/4 so that this translates into

gs(σ) ∼ − 1

4π
log(σ − 1) as σ → 1.

A quick analysis of Euler’s integral reveals that gs has the correct asymptotic for

cs = 1
4π

Γ(s)2

Γ(2s)
= 2−1−2s Γ(s)√

πΓ(s+ 1
2

)
. We have obtained the following theorem:

Proposition 4.1. The resolvent kernel is given by

RH(s; z, z′) = gs(cosh(d(z, z′)/2)2),

for

gs(σ) = 2−1−2s Γ(s)√
πΓ(s+ 1

2
)
σ−s2F1(s, s; 2s;σ−1) =

1

4π

∫ 1

0

ts−1(1− t)s−1

(σ − t)2
dt.

Note that the integral representation is only valid for Re(s) > 0.

We define

EH(s; z, x′) = lim
y′→0

(y′)−sRH(s; z, z′) for z′ = x′ + iy′

and call the resulting function generalized eigenfunctions of ∆. (The adjective
generalized is added to indicate that they are not in L2.) One can compute

EH(s; z, x′) =
1

2s− 1

Γ(s)√
πΓ(s− 1

2
)

[
y

(x− x′)2 + y2

]s
using our explicit formula for the resolvent kernel. One quickly verifies

(∆− s(1− s))EH(s; ·, x′) = 0

justifying the term eigenfunction.
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Proposition 4.2. Meromorphically for s ∈ C we have

RH(s; z, w)−RH(1− s; z, w) = −(2s− 1)

∫ ∞
−∞

EH(s; z, x′)EH(1− s;w, x′)dx′.

Proof. We consider the region ΣT = [−T, T ]× [T−1, T ]. One computes

RH(s; z, w)−RH(1− s; z, w)

= lim
T→∞

∫
ΣT

[RH(s; z, z′)∆z′RH(1− s; z′, w)−RH(1− s; z′, w)∆z′RH(s; z, z′)] dµ(z′).

By Greens formula we obtain

RH(s; z, w)−RH(1− s; z, w)

= lim
T→∞

∫
∂ΣT

[∂v′RH(s; z, z′)RH(1− s; z′, w)−RH(1− s; z′, w)∂v′RH(s; z, z′)] ds(z′).

Note that since z ∈ H is fixed we have σ(z, z′) → ∞ as T → ∞ and z′ ∈ ∂ΣT .
The explicit formula for the resolvent kernel shows that

RH(s; z, z′) ∼ csσ(z, z′)s and RH(1− s;w, z′) ∼ c1−sσ(w, z′)s−1.

The normal derivatives have the same asymptotics. With this at hand it becomes
easy bound the contributions of everything but the bottom edge. (One can show
O(T−1) for this contribution.) To treat the bottom edge we put y′ = T−1 → 0.
Recalling the definition of the generalized eigenfunction shows that

RH(s; z, z′) = (y′)sEH(s; z, x′) +O((y′)s+1).

The normal derivative is simply δv′ = −y′∂y′ . We compute

y′∂y′RH(s; z, z′) = s(y′)sEH(s; z, x′) +O((y′)s+1).

The length element simplifies to ds(z′) = (y′)−1dx′. So taking T →∞ yields

lim
T→∞

∫
∂ΣT

∂v′RH(s; z, z′)RH(1−s; z′, w)ds(z′) = −s
∫ ∞
−∞

EH(s; z, x′)EH(1−s;w, x′)dx′.

The second term is computed similarly. �

Theorem 4.3. The spectrum of ∆ on L2(H, µ) is absolutely continuous and equal
to [1

4
,∞).

Proof. Let PI denote the spectral projector of ∆ onto I ⊂ R. This spectral
projector can be computed using Stone’s formula (which is a direct consequence
of the resolvent functional calculus). One needs to be slightly careful with the
parametrization s(1− s) = λ± iε in the definition of the resolvent. We have

1

2
(P[a,b] + P(a,b)) = lim

ε→0

1

2πi

∫ b

a

[RH(s+(z, ε))−RH(s−(z, ε))]dz.
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Here s = s±(z, ε) with Re(s) > 1
2

is given by

s(1− s) = z ± iε.

This is s±(z, ε) = 1
2
±
√

1
4
− (z ± iε). For 0 ≤ z ≤ 1

4
the ε-limits coincide, so that

the two terms cancel each other. We conclude that P[0, 1
4

) = 0. Therefore there can

be no spectrum below 1
4
.

On the other hand suppose z ≥ 1
4

and write z = 1
4

+ ξ. Then we can rewrite
Stone’s formula as

1

2
(P[a,b] + P(a,b)) =

1

2πi

∫ √b− 1
4

√
a− 1

4

[RH(
1

2
− iξ)−RH(

1

2
+ iξ)]2ξdξ,

for b > a ≥ 1
4
. The kernel of the spectral measure is given in the proposition above

and one reads of that the spectrum is absolutely continuous. �

A continuous compactly supported function k(·, ·) : H×H→ C is called a point
pair invariant7 if

k(gz, gw) = k(z, w) for all z, w ∈ H and all g ∈ SL2(R).

Such a function depends only on the hyperbolic distance and we abuse notation
to write

k(z, w) = k(u(z, w)).

Thus we can view k as a function from R≥0 → C.

Theorem 4.4. Let k be a point pair invariant and suppose that φ : H → C is a
function with ∆φ = λφ. Write λ = s(1− s) with s = 1

2
+ it. Then∫

H
k(z, w)φ(w)dw = h(t)φ(z),

where h is the Selberg/Harish-Chandra transform of k given by

q(v) =

∫ ∞
v

k(u)(u− v)−
1
2du,

g(r) = 2q(sinh(r/2)2),

h(t) =

∫ ∞
−∞

eirtg(r)dr.

Proof. This is proved in several steps. First it is easy to check using polar coordi-
nates that

∆zk(z, w) = ∆wk(z, w).

7Note that we include strong regularity conditions in the definition of a point pair invariant.
This is not standard but makes our live easier. Note that these conditions can be slightly relaxed.
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From this one deduces that the invariant integral operators commute with ∆.
Indeed put Tkf(z) =

∫
H k(z, w)f(w)dµ(w), then

∆Tkf(z) =

∫
H

∆zk(z, w)f(w)dµ(w) =

∫
H

∆wk(z, w)f(w)dµ(w)

=

∫
H
k(z, w)[∆f ](w)dµ(w) = Tk∆f(z).

Given f : H→ C define the mean value operator (at w ∈ H) by

fw(z) =

∫
Gw

f(gz)dg for Gw = {g : gw = w}.

The averaged function fw is radial at w, meaning that fw(z) only depends on the
distance between z and w. Obviously fz(z) = f(z). One also easily checks that
(Tkf)(z) = (TKfz)(z).

The upshot is that ω(z, w) = 2F1(s, 1− s; 1;u(z, w)) is the unique function in z,
which is radial at w and satisfies ω(w,w) = 1 as well as [∆z − s(1− s)]ω(z, w) =
0. (To see this one looks at the corresponding differential equation obtained by
considering the eigenvalue equation in geodesic polar coordinates. This is similar
to earlier arguments.)

Uniqueness of ω(z, w) implies directly that a function φ with ∆φ = s(1 − s)φ
(i.e. λ = s(1− s)) satisfies

φw(z) = ω(z, w)φ(w).

From this we obtain that φ is an eigenfunction of all invariant integral operators
Tk. Furthermore, the eigenvalue only depends on k and λ. More precisely, there
is Λ = Λ(λ, k) with

Tkφ(z) =

∫
H
k(z, w)φ(w)dµ(w) = Λφ(z).

To compute Λ we can now choose φ(z) = Im(z)s and specialize to z = i. We get

Λ =

∫
H
k(i, w) Im(w)sdµ(w)

= 2

∫ ∞
0

∫ ∞
0

k(
x2 + (y − 1)2

4y
)ys−2dydx.

One concludes by changing variables to x = 2
√
uy and y = er. �

4.2. Compact Quotients. In the compact case any function φ : Γ\H→ C satis-
fying ∆φ = λφ is automatically in L2(Γ\H, µ). Indeed, by elliptic regularity such a
function is smooth and thus square integrable when restricted to compact subsets
(such as fundamental domains for Γ) of H. It turns out that the full spectrum is
exhausted by eigenvalues.
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Theorem 4.5. If Γ is co-compact, then there is a complete orthonormal basis
(φi)i∈N0 for L2(Γ\H, µ) such that ∆φi = λiφi and

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞.

Proof. One can check that the domain of ∆ (constructed as above using the
Friedrichs extension) is the Sobolev space

H2(Γ\H, µ) = {u ∈ L2(Γ\H, µ) : ∆u ∈ L2(Γ\H, µ)}.

The inclusion H2(Γ\H, µ) → L2(Γ\H, µ) is compact, so that (∆ + 1)−1 is a com-
pact self-adjoint operator on L2(Γ\H, µ). The theorem follows from the spectral
theorem for compact operators.8 �

Given a point-pair invariant k we define the automorphic kernel

KΓ(z, w) =
∑
γ∈Γ

k(z, γw).

Note that this converges due to the regularity of k. Furthermore, the result is
Γ-invariant in both variables. We observe that∫

Γ\H
KΓ(z, w)f(w)dµ(w) =

∫
H
k(z, w)f(w)dµ(w)

for all f ∈ L2(Γ\H, µ). Spectrally expanding KΓ yields the following pre-trace
formula:

KΓ(z, w) =
∑
i≥0

h(ti)φi(z)φi(w).

It can be shown that the right hand side converges absolutely and uniformly on
compacta. (Recall that we write λi = 1

4
+ t2j .)

4.3. Non-Compact Finite Volume Quotients. The basic spectral theorem in
this case reads as follows

Theorem 4.6 (Lax-Phillips). Let Γ be cofinite but non-cocompact. The spec-
trum of ∆ on L2(Γ\H, µ) has absolutely condinuous spectrum [1

4
,∞). The discrete

spectrum consists of finitely many eigenvalues in [0, 1
4
). Furthermore, there are

examples with infinitely many embedded eigenvalues in [1
4
,∞).

While the discrete spectrum will remain mysterious one can give a more precise
description of the absolutely continuous part.

Let Γ be a Fuchsian group of the first kind. (In particular Γ has finite co-volume
and finitely many generators.) We assume that Γ is not co-compact. Recall that

8Let A be a compact self-adjoint operator on a Hilbert space H, then there exists an orthonor-
mal basis {φj} for H such that Aφj = λjφj . The eigenvalues λj are real and accumulate only at
0.
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the cusps of Γ are fixed points of parabolic elements in Γ. Due to the classifi-
cation of ends these are the only hyperbolic ends that can appear. We denote
(equivalences of) cusps by gothic letters a, b, . . .. Note that

Γa = {γ ∈ Γ: γa = a} = 〈γa〉.
There is a matrix σa ∈ PSL2(R), called a scaling matrix, such that

σa∞ = a and σ−1
a γaσa =

(
1 1
0 1

)
.

We define the Eisenstein series

Ea(z, s) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)s

for z ∈ H and Re(s) > 1. It is a deep result that these Eisenstein series have an
analytic continuation and satisfy a functional equation. Given ψ ∈ C∞c (R+) we
define the incomplete Eisenstein series by

Ea(z|ψ) =
1

2πi

∫
(c)

Ea(z, s)[Mψ](s)ds

where

[Mψ](s) =

∫ ∞
0

ψ(y)y−s−1dy

is the Mellin transform.
We define the space of cusp forms to be the set of all smooth and bounded

functions φ : Γ\H→ C with

〈φ,Ea(◦|ψ)〉 = 0 for all ψ ∈ C∞c (R+) and all cusps a.

Write Lcusp(Γ\H, µ) for the closure of this space in L2(Γ\H, µ). Roughly speaking
this is the complement of the space of incomplete Eisenstein series. It is very edu-
cational computation to show that the orthogonality condition precisely translates
into a vanishing condition at all cusps of Γ.

Proposition 4.7. The Laplace-Beltrami operator ∆ has pure point spectrum in
L2

cusp(Γ\H, µ) and the eigenspaces have finite dimensions. There is a complete
orthogonal system {φj}j∈N of cusp forms with ∆φj = λjφj so that

f(z) =
∑
j

〈f, φj〉φj(z).

The spectral expansion converges in the norm-topology but can be upgraded to ab-
solute and uniform convergence on compacta with f is assumed to be more regular.

The cuspidal part of the spectrum is very mysterious and there is a common
believe that (infinitely many) cusp forms only exist if there is a reason for this. The
remaining part of the spectrum turns out to be much more explicit (in a sense).
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Proposition 4.8. We have the ∆-invariant decomposition

L2
cusp(Γ\H, µ)> = L2

res(Γ\H, µ)⊕
⊕
a

L2
a(Γ\H, µ).

The spectrum of ∆ on L2
res(Γ\H, µ) is discrete and it consists of finitely many

points 0 ≤ λj <
1
4
. The spectrum of ∆ on L2

a(Γ\H, µ) is absolutely continuous and

covers the segment [1
4
,∞) uniformly with multiplicity 1.

For f ∈ L2(Γ\H, µ) we have

f(z) =
∑
i

〈f, φj〉φj(z) +
∑
a

1

4π

∫ ∞
−∞
〈f, Ea(◦,

1

2
+ ir)〉Ea(z,

1

2
+ ir)dr,

which converges in the norm topology. (An upgrade of convergence is again possible
when f is more regular.) Note that the j-sum combines an eigenbasis of cusp forms
(possibly infinite) with a finite eigenbasis for the residual part.

This spectral expansion can be applied to the automorphic kernel KΓ associated
to a point pair invariant k as in the co-compact case. Indeed one obtains the
pretrace formula

KΓ(z, w) =
∑
j

h(tj)φj(z)φj(w) +
∑
a

1

4π

∫ ∞
−∞

h(r)Ea(z,
1

2
+ ir)Ea(w,

1

2
+ ir)dr,

which converges absolutely and uniformly on compacta. (Recall that the φj satisfy
∆φj = λjφj for λj = 1

4
+ t2j . Note that not all of the φj are cusp forms and that

we might encounter the situation 0 ≤ λj <
1
4
.)

We have omitted most proofs in this section, because they are partly similar to
what we will do in the next subsection.

4.4. Infinite Volume Quotients. Let Γ be a geometrically finite Fuchsian group
of the second kind. Our goal is to sketch a proof the following theorem

Theorem 4.9 (Patterson, Lax-Phillips). Assume that the exponent of convergence
δ of Γ satisfies δ > 1

2
. Then the bottom of the spectrum λ(F) = δ(1 − δ) is an

isolated eigenvalue of multiplicity one. Furthermore there are finitely many discrete
eigenvalues in the interval [0, 1

4
) and the spectrum is continuous in [1

4
,∞).

Furthermore we will put some effort in deriving a technical tool resembling the
pretrace equality that we stated for Γ with finite co-volume. We start by looking
at the model resolvents of funnels and cusps.

4.4.1. The Model Resolvent of a Hyperbolic Cylinder. The basic model for an hy-
perbolic cylinder is Cl = Γl\H for Γl = 〈z 7→ elz〉. We have the fundamental
domain

Fl = {z ∈ H : 1 ≤ |z| ≤ el}.
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There is a very convenient set of coordinates, called Fermi coordinates, given as
follows:

z = et
er + i

er − i
for t ∈ R/lZ and r ∈ R. One checks that in the coordinates (r, t) we have

ds2 = dr2 + cosh(r)2dt2.

Recall that earlier we computed the resolvent kernel RH(s; z, z′) for the full
hyperbolic plane. The analysis also shows that

RH(s, z, eklz′) = O(e−s|k|l).

Hence we can define

RCl(s; z, z
′) =

∑
k∈Z

RH(s; z, eklz′).

This defines an analytic function of s as long as Re(s) > 0. Note thatthis already
establishes the analytic continuation of RCl(s; z, z

′) across the critical line Re(s) =
1
2

supporting the (expected) continuous spectrum. With a more detailed analysis
one can show the following result

Proposition 4.10. The resolvent RCl(s) has a meromorphic continuation to s ∈ C
with poles at s ∈ Z<0 + 2πi

l
Z.

One can go further and compute an explicit Fourier decomposition for the re-
solvent kernel. We will omit the details.

For the spectral theory of infinite volume hyperbolic surfaces the resolvent for
funnel ends Fl will be of great importance. A Funnel end Fl is exactly half of a
hyperbolic cylinder. We can model it on {z ∈ Fl : Re(z) > 0}. This corresponds
to r > 0 in the Fermi coordinates. This implies that the funnel resolvent is given
by

RFl(s; z, w) = RCl(s; z, w)−RCl(s; z,−w).

This yields a meromorphic continuation of the the funnel resolvent. Analysing the
pole structure shows that the poles of RFl are precisely those of RCl with odd real
part.

4.4.2. The Model Resolvent of a Parabolic Cylinder. A parabolic cylinder has the
standard model C∞ = Γ∞\H where Γ∞ = 〈z 7→ z + 1〉. The resolvent kernel can
be written as

RC∞(s; z, z′) =
∑
k∈Z

RH(s; z, z′ − k).

Recall that we can write RH(s; z, z′) = gs(σ(z, z′)). Furthermore, analysing the
description of gs as hypergeometric function yields

gs(σ) =
N−1∑
n=0

1

4π

Γ(s+ n)2

Γ(2s+ n)
σ−s− n+O(σ−s−N).
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Define

J(a, b; s) =
∑
k∈Z

[(a+ k)2 + b2]−s.

It can be shown that J(a, b; s) has a meromorphic continuation to s ∈ C. These
observations give us

RC∞(s; z, z′) =
N−1∑
n=0

1

4π

Γ(s+ n)2

Γ(2s+ n)
J(a, b; s+n)(4yy′)s+n+O

(∑
k∈Z

σ(z, z′ − k)−s−N

)
.

From this it is easy to deduce

Proposition 4.11. The resolvent RCinfty(s) for the parabolic cylinder has a mero-

morphic continuation to s ∈ C. The only pole of is at s = 1
2
.9

4.4.3. The Spectral Theorem. Let X = Γ\H be a geometrically finite Fuchsian
group of the second kind. In particular X has infinite volume, is non-elementary
and features at least one funnel end.

Key to the spectral theory is the analytic continuation of the resolvent RX

originally define by

RX(s) = (∆X − s(1− s))−1 for Re(s) >
1

2
and s 6∈ [

1

2
, 1].

Recall that by using the truncated Nielsen region we obtained a decomposition

X = K ∪ F ∪ C,

where K is the compact core, F is the disjoint union of funnels F1, . . . , Fnf and C
consists of the cusps C1, . . . , Cnc .

A key ingredient for the analytic continuation of the rsolvent is an appropri-
ate compactification of X. Put Ω(Γ) = ∂H \ λ(Γ). Any (Dirichlet) fundamental
domain F for Γ will meat Ω(Γ) in a finite collection of discjoint arcs each corre-
sponding to a funnel end. let P(Γ) denote the parabolic fixed points. We have

X = Γ\(H ∪ Ω(Γ) ∪ P(Γ)).

We derive the smooth structure from the compactification of a Dirichlet funda-
mental domain in the Riemann-sphere topology. Functions f ∈ C∞(X) are simply
functions f ∈ C∞(X) that behave nicely at infinity. We define the boundary
defining function

ρ(r) =

{
2e−r in F ,

e−r in C.
(7)

We extend ρ to a smooth non-vanishing function inside K.

9To show this final statement concerning the pole one has to work a bit harder. This can for
example be deduced by computing an appropriate Fourier decomposition.
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Theorem 4.12. Let X be a geometrically finite hyperbolic surface. For N > 0
the resolvent RX(s) extends for Re(s) > 1

2
− N fo a finitely meromorphic family

of operators10

RX(s) : ρNL2(X)→ ρ−NL2(X).

Proof. We briefly sketch the proof. At each funnel Fj ⊂ F we let RFj(s) denote
the resolvent for ∆|Fj with Dirichlet boundary condition at the boundary geodesic.
Further, we defineRCj(s) as the pull back of the model resolventRC∞(s). We group
these resolvents together and write

RF (s) = ⊕jRFj(s) and RC(s) = ⊕iRCi(s).

We view these as operators for the full surface acting by 0 outside the funnels or
cusps.

Define cutoffs χa which is a smoothed version of 1r≤a, where r is the geodesic
distance form the compact core, with support in r ≤ a+ 1. We define

Mi = χ2RX(s0)χ1 for some fixed Re(s0) > 1,

Mf (s) = (1− χ0)RF (s)(1− χ1),

Mc(s) = (1− χ0)RC(s)(1− χ1) and

M(s) = Mi +Mf (s) +Mc(s).

One computes

(∆X − s(1− s))M(s) = I − Li(s)− Lf (s)− Lc(s)

for some error terms Li, Lf and Lc. The goal is to show that these errors are
finitely meromorphic and compact on the weighted Hilbert space. Once this is
established, the result follows from standard resolvent estimates (establishing the
combined error is invertible at some s) and the analytic Fredholm theorm.

That Lf and Lc are nice can be deduced by studying the corresponding model
resolvent. Let us only sketch the idea for Li. One checks that

Li(s) = −[∆, χ2]RX(s0)χ1 + (s(1− s)− s0(1− s0))Mi.

This is polynomial in s, so that we only need to show compactness. To this end
we observe that [∆, χ2]RX(s0)χ1 is a smoothing operator. This is due to the
disjoint supports of [∆, χ2] and χ1. On the other hand Mi is compact because
∆X is a second-order elliptic differential operator in the interior (standard elliptic
parametrix construction). �

10A family of bounded operators A(s) on a Hilbert space H, parametrized by s ∈ U ⊂ C is
finitely meromorphic if for each point a ∈ U we have a Laurent series representation A(s) =∑∞

k=−m(s − a)kAk converging in operator topology in some neighbourhood of a, where the

coefficients Ak are finite-rank operators for k < 0.
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Due to the explicit understanding of the spectral theory for funnel and cusp
ends one can describe the structure of RX(s) in much more detail. Pursuing this
would go beyond the purpose of these notes. We will now turn towards establishing
important properties of the spectrum itself.

Weyl’s criterion says that λ is in the essential spectrum of ∆ if and only if there
is a sequence φn ∈ L2(Γ\H, µ) with

‖(∆− λ)φn‖ → 0.

Proposition 4.13. For geometrically finite Γ of infinite co-volume the interval
[1
4
,∞) is contained in the essential spectrum of ∆.

Proof. Note that X = Γ\H must contain at least one funnel. After possibly
conjugating the group we can assume that

{z ∈ H : |Re(z)| < 1, Im(z) < 1} ⊂ F .
We define pick ψn n C∞(R2) such that

ψn(x, t) =

{
0 if |x| ≥ 1 and t 6∈ [0, n],

1 if |x| ≤ 1
2

and t ∈ [1, n− 1].

We can do this in such a way that the derivatives of second order are bounded
independently of n. For Re(s) = 1

2
define

un(z) = ysψn(x,− log(y)).

One checks that ‖un‖2 ≥ n− 2 and

‖(∆X − s(1− s))un‖ = O(1)

. Taking φn = un/‖un‖ now satisfies

‖(∆X − s(1− s))φn‖ � n−1.

A slight modification making this sequence orthogonal (for example by making the
supports disjoint) allows us to apply Weyl’s criterion and conclude the proof. �

Proposition 4.14. For geometrically finite Γ of infinite co-volume the discrete
spectrum consists of finitely many eigenvalues in the interval (0, 1

4
).

Proof. This follows by Stone’s formula for the spectral projectors. The argument
being similar to the one in the proof of Theorem 4.3. One sees that the spectral
projectors 1

2
(P[a, b] − P (a, b)) are zero away from the points λ = s(1 − s) ≤ 1

4
,

where s is a pole of RX(s). Since RX(s) is finitely meromorphic there can be only
finitely many poles in the relevant region. �

Proposition 4.15. For a non-elementary geometricall finite Γ with infinite co-
volume ∆ has no L2-eigenvalues in [1

4
,∞).

Proof. The proof relies on a unique continuation principle and is quite technical.
We omit the details. Let us just note that this phenomenon holds due to the
existence of funnels in the infinite volume case. �
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4.5. Patterson-Sullivan Theory. Given a point x ∈ B we let νx denote the
corresponding point measure at x. Now define the probability measures

µ(s) =

(∑
γ∈Γ

e−sd(x,γx)

)−1∑
γ∈Γ

e−sd(x,γx)νγx.

We can take x = 0 to be the origin in the disc model B. By Alaoglu’s theorem we
find a sequence sj → δ such that µ(sj) converges weakly to some limiting measure
µ. The support of this measure is on the unit circle ∂B.

Lemma 4.16. For ξ ∈ Γ we have

ξ?µ = |ξ′|δ · µ.
Here ξ?µ(E) = µ(ξ.E).

Proof. Let E be a Borel subset of B, ξ ∈ Γ and s > δ. By definition we have

µ(s)(ξ.E) =

(∑
γ∈Γ

e−sd(x,γx)

)−1 ∑
γ∈Γ,

γ.x∈ξ.E

e−sd(x,γx)

=

(∑
γ∈Γ

e−sd(x,γx)

)−1 ∑
γ∈Γ,
γ.x∈E

e−sd(ξ−1x,γx).

Now we need the following property of the Poisson kernel P (z, q) = 1−|z|2
|z−q|2 :

lim
w→q

ed(z,w)−d(z′,w) =
P (z′, q)

P (z, q)
for q ∈ ∂B.

With this at hand we observe that

e−sd(ξ−1x,w) ∼ e−sd(x,w)P (ξ−1x, q)s for w → q.

(Note that since q ∈ ∂B and x = 0 is the origin we have P (0, q) = 1.) Now
the Poisson kernel satisfies P (γz, γq) = |γ′(q)| = P (z, q) for z ∈ B, q ∈ ∂B and
γ ∈ PSU(1, 1). We obtain P (ξ−1x, q) = |ξ′(q)|. For a sequence γjx→ q ∈ Λ(Γ) we
have

e−sd(ξ−1x,γjx) ∼ e−sd(x,γjx)|ξ′(q)|s.
Since µ is supported on the boundary the result follows. �

We now define

F (z) =

∫
∂B

P (z, q)δdµ(q), (8)

which we may call Patterson function. Note that F is Γ-invariant and thus de-
scends to a function on Γ\B. One checks that

(∆− δ(1− δ))F = 0.
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Theorem 4.17 (Beardon). For any nonelementary Fuchsian group Γ we have
δ > 0. Furthermore, if Γ contains parabolic elements then δ > 1

2
.

Proof. Suppose δ = 0. Then µ is Γ-invariant. If T ∈ Γ is hyperbolic with fixed
points q± ∈ ∂B, then we can partition ∂B \ {q±} into a countable finite collection
of disjoint intervals that are mapped to each other by powers of T . By invariance
of µ and because the total mass is finite we conclude that µ(∂B \ {q±}) = 0. We
further conclude that {q±} is a finite orbit of Γ. This implies that Γ is elementary.
(A similar argument works if we assume that T is parabolic.)

Now assume that Γ is non-elementary and contains a parabolic element T . Con-
jugating Γ if necessary allows us to assume that T fixes 1 and maps i to −1.
Therefor

T n =

(
1 + in/2 −in/2
in/2 1− in/2

)
.

One checks that

|(T n)′(z)| = |1 + in(z − 1)|−2.

Let E = {eiθ : π/2 < θ ≤ π}, so that {T nE : n ∈ Z} forms a disjoint cover of
∂B \ {1}. Since Γ is non-elementary µ can not concentrate entirely on {1}. We
conclude that µ(E) > 0. We obtain

1 > µ(∂B \ {1}) =
∑
n

µ(T nE) =
∑
n

∫
E

|(T n)′(z)|δdµ(z) ≥ µ(E)
∑
n

(1 + 4n2)−δ.

However, the right hand side converges only for δ > 1
2
. �

Proposition 4.18. For Γ non-elementary and geometrically finite, the measure µ
has no atoms.

Proof. The proof relies on the following characterization of limit points. We call
q ∈ Λ(Γ) radial limit point if there exists a geodesic ray ηq in B with endpoint
q and an orbit Γw such that {z ∈ Γw : d(z, ηq) < r} is infinite for some r > 0.
(Example: If q is an attracting hyperbolic fixed point of T ∈ Γ, then q is radial.)
It can be shown that if Γ is geometrically finite, then all points in Λ(Γ) are either
parabolic fixed points or radial limit points.

It is now easy to see that there can be no atoms at radial limit points. Indeed,
without loss of generality we can assume that q = 1 and take a geodesic ray η
ending at 1 such that d(γ−1

n 0, η) < C for some sequence γn ∈ Γ. This implies that
γ−1
n approaches 1 within a sector of the form

{|Im(z)| ≤ cRe(1− z)}.

(This can be best seen geometrically by drawing a picture.) We obtain

|γ′n| =
1− |γ−1

n 0|2

|γ−1
n 0− 1|2

,
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so that |γ′n(1)| → ∞. Furthermore we know that

µ({γn1}) = γ∗nµ{1} = |γ′n(1)|δµ{1}.
This implies that µ{1} = 0, so that there can not be an atom at 1.

The argument that there are no atoms at parabolic fixed points is more involved.
We omit the details. (Note that in our applications later we assume that there are
no parabolic fixed points anyway!) �

It is well known that the geodesic flow (on SX) is ergodic with respect to the
Liouville measure. This, together with the fact that µ has no atoms implies the
following result

Proposition 4.19. The action of Γ on ∂B is ergodic with respect to µ. Further-
more, the product action T : (q, q′) 7→ (Tq, T q

′) of Γ on (∂B× ∂B)− = {(q, q′) : q 6=
q′} is ergodic with respect to µ̃. Here dµ̃(q, q′) = dµ(q)dµ(q′)

|q−q′|2δ .

Theorem 4.20 (Patterson, Sullivan). Let Γ be a geometrically finite Fuchsian
group of second type. Then dimH(Λ(Γ)) = δ. Even more, if Γ has no parabolic
fixed points then the Patterson-Sullivan measure µ is a constant multiple of the
Hausdorff measure Hδ|Λ(Γ).

Proof. We sketch the proof only for the case of Γ with no parabolic elements. (I.e.
if the convex core Γ\Ñ is compact. Sometimes this property is refereed to as Γ
being convex cocompact.)

Given w ∈ B and r > 0 so that 0 6∈ B(w, r). Then we define the shadow of
B(w, r)on ∂B by

I(w, r) = {q ∈ ∂B : d([0, q], w) < r}.
If r is constant and |w| is bounded away from zero we have the estimate

|I(w, r)| � 1− |w|.
for the euclidean arc length. A key input for the proof is Sullivan’s shadow lemma,
which states that for fixed (sufficiently large) r and all but finitely many γ ∈ Γ we
have

µ(I(γ0; r)) � |I(γ0, r)|δ.
To use this one shows that all small intervals in ∂B can be approximated by

shadows of the form I(γ0, r). It is here were our simplifying assumption on Γ
comes in, since it can be seen that neighborhoods of parabolic fixed points can not
be approximated this way. More precisely, (if there are no parabolic fixed points)
one can show the following. For q ∈ Λ(γ) let Iq denote an interval in ∂B centered
at q. There exists ε > 0 such that for any |Iq| < ε we have µ(Iq) � |Iq|δ, uniformly
in q.

With these technical pre-requisites taken for granted we can conclude the proof.
Indeed we easily see from the definition of the Hausdorff measure that µ(A) �
Hδ(A) for any Borel set A ⊂ Λ(Γ). This means that µ is absolutely continuous
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with respect to Hδ. More precisely dµ = fdHδ for some f on Λ(Γ). Note that the
function f is Γ-invariant, so that by ergodicity it must be constant.

Thus we have seen that µ = c ·Hδ|Λ(Γ). Since µ(Λ(Γ)) = 1, the statement about
the Hausdorff measure follows directly. �

4.5.1. Resonances. Recall that we are working with geometrically finite Fuchsian
groups Γ of the second kind. The key to the proof of the spectral theorem was the
meromorphic continuation of the resolvent RX(s), where X = Γ\H.

Definition 4.1. The poles of RX(s) are called resonances. We write RX for the
set of all resonances.

We will mainly be interested in resonances for δ ≤ 1
2
, because in this case ∆X has

no discrete eigenvalues and the resonances are somehow the natural replacement.
Note that if δ < 1

2
, then Γ can not contain parabolic elements.

Theorem 4.21 (Patterson). Assume that Γ\H is geometrically finite, non-elementary
and of infinite volume. There is a resonance of multiplicity one at the point s = δ
such that

ress=δRX(s; z, w) = c(Γ)F (z)F (w),

where F is the Patterson function defined in (8). Furthermore, there are no other
resonances in the half-plane Re(s) ≥ δ.

Proof. Again we only give a rough sketch of the proof. The key technical input is
the following result concerning the resolvent kernel. Recall the Poincaré series

PΓ(z, w; s) =
∑
γ∈Γ

e−sd(z,γw)

of Γ. One can show that

RX(s; z, w) =
4s−1

π

Γ(s)2

Γ(2s)
PΓ(z, w; s) +H(s; z, w),

for Re(s) > δ and a function H(s; z, w) which is holomorphic for Re(s) > δ − 1.
This follows directly from our explicit knowledge of RH(s; z, w) and the relation
RX(s; z, w) =

∑
γ∈ΓRH(s; z, γw), which is valid for Re(s) > δ.

The next step is to show that RX(s; z, w) as well as PΓ(z, w; s) both have a pole
at δ = s. This can be seen by alluding to Landau’s theorem, which says that a
Dirichlet series has a pole at its abscissa of convergence.

To identify the residue we have to recall the construction of the Patterson-
Sullivan measure. Note that we can do so using an arbitrary base point:

µ(s)
w =

(∑
γ∈Γ

e−sd(0,γw)

)−1∑
γ∈Γ

e−sd(0,γw)δγw
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and µw = limsj→δ µ
(sj)
w . It turns out that µw is absolutely continuous with respect

to the original Patterson-Sullivan measure µ = µ0. One computes that∫
∂B
P (z, q)δdµw(q) = lim

s→δ

PΓ(z, w; s)

PΓ(0, w; s)
.

A quick computation shows that PΓ(z, w; s) has a pole of order 1 at s = δ. This
implies that the corresponding pole of the resolvent also has order one. It is a
general result that then we can write

RX(s; z, w) =

q∑
k=1

φk(z)φk(w)

s− δ
+ (holomorphic),

for linearly independent, real valued generalized eigenfunctions. We obtain that∫
∂B
P (z, q)δdµw(q) = a(w)

q∑
k=1

φk(z)φk(w).

By choosing points w1, . . . , wq suitably we find a matrix (Ak,j)k,j so that

φk(z) =

∫
∂B
P (z, q)δhk(q)dµ0(q) for hkdµ0 =

q∑
j=1

Akjdµwj .

One checks that hk is (almost everywhere) Γ-invariant. By ergodicity we conclude
that hk is constant for all k. This implies that q = 1 and φk = c · F as desired.

Finally we need to show that there are no other resonances on the line Re(s) = δ.
We argue by contradiction assuming there is such a resonance ζ. The idea is that
we can run the same construction that led to the Patterson-Sullivan measure with
ζ replaced by δ. We get a measure

σ = lim
sj→ζ

(sj − ζ)
∑
γ∈Γ

e−sjd(0,γ0)δ(γ0).

One goes on to show that σ has the same properties as µ and is absolutely contin-
uous with respect to µ:

dσ(q) = ψ(q)dµ(q).

Furthermore

ψ(γq) = |γ′(q)|ζ−δψ(q).

Similarly one constructs σ̃, which is absolutely continuous with respect to µ̃. Using
ergodicity one finds that σ̃ = cµ̃, so that

ψ(q)ψ(q′) = c|q − q′|2(ζ−δ),

for almost all q, q′. With a bit more work this identity can be extended to all
(q, q′) ∈ (∂B×∂B)−. Taking the limit qj → q in Λ(Γ) and using continuity of ψ we
get ψ(q)2 = 0. But this implies that σ is 0, contradicting the existence of ζ. �
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4.6. Pre-Trace Inequality and the Convolution of Kernels. Recall that a
point pair invariant was a compactly supported smooth function k : H × H → C
satisfying k(gz, gw) = k(z, w) for all z, w ∈ H and all g ∈ SL2(R). We abuse
notation and write k(z, w) = k(u(z, w)), which is possible since k depends only
on the hyperbolic distance. The associated automorphic kernel (with respect to a
geometrically finite Fuchsian group) is defined by

KΓ(z, w) =
∑
γ∈Γ

k(z, γw).

The convolution of two kernels is defined by

[k1 ? k2] =

∫
H
k1(z, x)k2(x,w)dµ(x).

We are interested in a very specific point-pair invariant:

k1(z, w) = 1u(z,w)≤(X−2)/4. (9)

This is of interest since we have

K1(z, w) =
∑
γ∈Γ

k1(z, γw) = ]{γ ∈ Γ: 4u(z, γw) + 2 ≤ X}.

In particular, taking z = w = i this simplifies to

N1(
√
X,Γ) = K1(i, i) = ]{γ ∈ Γ: ‖γ‖2 ≤ X}. (10)

We will need to establish a good estimate for the self-convolution of this kernel.

Proposition 4.22. Let k = k1 ? k1. Then we have

k(z, w)� eT−
ρ(z,w)

2 if ρ(z, w) ≤ 2T

and 0 for ρ(z, w) ≥ 2T , where eT + e−T = X.

Proof. To prove this it is more convenient to work in the disc model B.
By definition of the convolution we find that

k(z, w) = Areah(B(z, T ) ∩B(w, T )),

here B(z, T ) is the hyperbolic disc with center z and radius T . Denote B(z, T ) ∩
B(w, T ) = E. Obviously E = ∅ if ρ(z, w) > 2T . Thus we can assume the contrary
and without loss of generality we take z = 0.

Note that ρ(0, ζ) = T is an Euclidean circle centered at 0 and with radius R
determined by

sinh(T/2) =
R√

1−R2
or equivalently tanh(T/2) = R.

Thus, if ρ(0, w) = s, then we can assume that w has euclidean coordinates
(tanh(s/2), 0). Put d = tanh(s/2).
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Next we observe that the set of points ρ(w, ζ) is a Euclidean circle of radius R0

centered at (a0, 0), where

a0 = d
1−R2

1−R2d2
and R0 = R

1− d2

1−R2d2
.

We consider the hyperbolic triangle (0, w, ζ), where ρ(0, ζ) = ρ(w, ζ) = T . By the
hyperbolic cosine law we get

cosh(T ) = cosh(s) cosh(T )− sinh(s) sinh(T ) cos(α) and cos(α) =
tanh(s/2)

tanh(T )
.

Let v = (s/2, 0). Then our goal is to show that E ⊂ B(v, r) for cosh(r) =
cosh(T )

cosh(s/2)
. Once this is established we are done since, by the hyperbolic area formula

for discs, we get

Areah(B(v, r)) = 4π sinh(r/2)2 = 2π

(
cosh(T )

cosh(s/2)
− 1

)
� e(T − s/2).

To see the inclusion we let A,B be the points where B(0, T ) intersects B(ζ, T ).

Let C is any point in B(w, T ) with ρ(C, 0) = T and denote the angle Ĉzv by φ.
We must have φ < α. Using the hyperbolic cosine law once again we find that

cosh(ρ(0, C)) ≤ cosh(T )

cosh(s/2)
.

A similar estimate holds for C ∈ B(0, T ) with ρ(C,w) = T . This shows the
claim. �

Spectrally expanding the automorphic kernel KΓ associated to k = k1 ? k1 we
obtain the following very important pretrace inequality.

Proposition 4.23. Suppose Γ is a geometrically finite Fuchsian group and take
k = k1 ? k1 be as above. Let λ0, . . . , λj be the discrete eigenvalues in [0, 1

4
) with

corresponding eigenfunctions φ0, . . . , φj. Then

K(z, z) ≥
∑
λi<

1
4

|h1(ti)|2|φi(z)|2,

where h1 is the Selberg/Harish-Chandra transform of k1.

Proof. We first note that the Selberg/Harish-Chandra transform translates convo-
lutions into products. In particular we have∫

H
k(x, y)φ(y)dµ(y) = |h1(t)|2φ(x).
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By the spectral theorem for ∆ on L2(Γ\H, µ) we know that there are finitely
many eigenvalues in [0, 1

4
) which make up the discrete spectrum:

L2
disc(Γ\H, µ) = V1 =

⊕
λi<

1
4

Cφi.

The rest of the spectrum is absolutely continuous and covers [1
4
,∞) (there are no

embedded eigenvalues). Put V2 = L2
cont(Γ\H, µ), so that L2(Γ\H, µ) = V1 ⊕ V2.

By construction as a convolution the integral operator Tk : L2(Γ\H, µ)→ L2(Γ\H, µ)
is non-negative:

〈Tkf, f〉 ≥ 0 for all f ∈ L2(Γ\H, µ).

Spectrally expanding the automorphic kernel yields

K(z, z) =
∑
λi<

1
4

|h1(ti)|2|φi(z)|2 +B(z, z) (11)

where B(z, w) = K(z, w)−
∑

λi<
1
4
h(λi)φi(z)φi(w). It turns out that B is the kernel

for the operator TB = PrV2 ◦ Tk, which is obviously non-negative. For fixed z we
define

fn(w) = δd(z,w)≤1/n (12)

and observe that

B(z, z) = lim
n≥∞
〈Bfn, fn〉 ≥ 0. (13)

Thus we can drop B(z, z) from the pre-trace formula and the result follows. �

Finally we remark that the Selberg/Harish-Chandra transform of k1 can be
computed explicitly (Exercise) and one finds

h1(t) = 2
√
π

Γ(s− 1
2
)

Γ(s+ 1)
Xs +O(

√
X) for

1

2
< s ≤ 1.

Here λ = s(1− s) and s = 1
2

+ it.

4.7. Spectral Theory on the Group Level. So far we have looked at the
spectral theory of the Laplace-Beltrami operator ∆ on quotients Γ\H. Put G =
SL2(R). Since we can identify H = G/K for K = SO2(R) and ∆ is G-invariant, the
spectral theory of ∆ is equivalent to the decomposition of L2(Γ\G) into irreducible
G-modules. Here G acts on L2(Γ\G) by right translation.

The Cartan decomposition of G reads G = KA+K, for

A+ = {at = diag(e−
t
2 , e

t
2 ) : t ≥ 0}.

Note that K is abelian and can be parametrized as

K = {kθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
: θ ∈ [0, 2π)}.
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Let Γ be a Fuchsian group of second type with critical exponent δ = δΓ > 1
2
.

We order the eigenvalues of the Laplacian on Γ\H below 1
4

by

0 < δ(1− δ) = λ0 < λ1 ≤ . . . ≤ λN <
1

4
.

Another parametrisation of the eigenvalues is λj = sj(1 − sj) with sj >
1
2
. The

corresponding Laplace eigenfunctions are denoted by ϕj.
As mentioned above the group G acts on the Hilbert space V = L2(Γ\G) by right

translation. The G-span of ϕj in V will be denoted by Vϕj . As a G-representation
it is isomorphic to the complementary series representation with parameter sj.
(We are normalizing everything so that the principal series lie on the critical line
Re(s) = 1

2
.) This gives us the decomposition

V = Vϕ0 ⊕ Vϕ1 ⊕ . . .⊕ VϕN ⊕ Vtemp.

The spaces Vϕj will be called the automorphic model of the corresponding G-
representation. We will now also recall the line model. Given a function f : R→ C
we define

[If ](y) =

∫
R

f(x)

|x− y|2(1−s)dx.

Further, we introduce the pairing

〈f1, f2〉 =

∫
R
f1(x)[If2](x)dx.

Let Vs denote the space of f : R→ C with 〈f, f〉 <∞. The G-action on this space
is given by

π

((
a b
c d

))
f(x) = |−bx+ d|−2sf

(
ax− c
−bx+ d

)
.

We have constructed a G-representation (π, Vs). This is the line model for the
complementary series with parameters s. (As mentioned above we have Vϕj

∼= Vsj
as G-module.)

Write H for one of the irreducible spaces Vϕj . The (dense) subspace of smooth
vectors in H will be denoted by H∞. We have the following decomposition on
K-isotypic components:

H∞ =
⊕
k∈Z

H(2k),

where H(2k) = C · v2k. This simple structure of the K-isotypic parts is due to the
fact that K is abelian and thus its representation theory is very easy. Indeed v2k

is a function of weight 2k, that means it satisfies

v2k(gkθ) = e2ikθv2k(g),

for all g ∈ G.
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Recall that the Lie algebra g of G acts on H∞ by differential operators. A basis
of g = sl2(R) is given by

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
and f =

(
0 0
1 0

)
.

In the complexified Lie algebra gC we define the two important operators

R = h+ i(e+ f) and L = h− i(e+ f).

These operators go by the names raising and lowering operator. We will need
the following expressions for them in KA+K (i.e. g = kθ1atkθ2 ! (θ1, t, θ2))
coordinates:

R = e2iθ2

(
−icsch(t)

∂

∂θ1

+ 2
∂

∂t
+ i coth(t)

∂

∂θ2

)
and

L = e−2iθ2

(
icsch(t)

∂

∂θ1

+ 2
∂

∂t
− i coth(t)

∂

∂θ2

)
.

The proof is a straight forward but cumbersome computation that can be found
in [7, Lemma 2.7]. Another important operator is the Casimir operator

C =
1

2
h2 + ef + fe ∈ U(gC).

It acts on H∞ as scalar multiplication by −2λ = −2s(1 − s). The following
expression in Cartan coordinates is well known:

1

2
C =

∂2

∂t2
+ (coth(t))

∂

∂t
+ csch(t)2

(
∂2

∂θ2
1

+
∂2

∂θ2
2

)
− 2 cosh(t)

sinh(t)2
· ∂2

∂θ1∂θ2

.

Finally we can change variables (θ1, t, θ2) ! (θ1, r, θ2) for r = tanh(t/2) or (al-
most) inversely et = 1+r

1−r . One has

∂

∂t
=

1

2
(1− r2)

∂

∂r
.

Note that csch(t) = 1−r2

2r
and cosh(t) = 1+r2

2r
. Thus we have

1

2
C =

(1− r2)2

4
· ∂

2

∂r2
+

(1− r2)2

4r
· ∂
∂r

+
(1− r2)2

16r2
·
(
∂2

∂θ2
1

+
∂2

∂θ2
2

)
− 1− r4

8r2
· ∂2

∂θ1∂θ2

,

R = e2iθ2

(
−i1− r

2

2r
· ∂
∂θ1

+ (1− r2)
∂

∂r
+ i

1 + r2

2r
· ∂
∂θ2

)
and

L = e−2iθ2

(
i
1− r2

2r
· ∂
∂θ1

+ (1− r2)
∂

∂r
− i1 + r2

2r
· ∂
∂θ2

)
.

We turn our attention towards the line model H = Vs. Here we can describe
the weight 2k element f2k,s ∈ V (2k)

s element explicitly by

f2k,s(x) = c(x− i)k−s(x+ i)−k−s
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up to some constant c ∈ C. To see this we consider the action of Y = e− f ∈ g on

f ∈ V (2k)
s . It is given by Y.f = ∂

∂θ2
f = 2ikf. On the other hand, in the line model

Y acts on Vs by

Y.f(x) = 2sxf(x) + (1 + x2)f ′(x).

Thus we get the ordinary differential equation 2sxf(x) + (1 + x2)f ′(x) = 2ikf(x).
One checks that the proposed function f2k,s is the up to scaling unique solution.

We will now derive a suitable basis forH using the weight 2k elements v2k. Start-
ing point is a weight 0 (i.e. K-fixed) vector v0, which we normalize by 〈v0, v0〉 = 1.
The raising (resp. lowering) operator takes H(2k) to H2k+2 (resp. H2−2). However,
it does not respect the norm. Thus we need the following computation.

Lemma 4.24. let X ∈ {R,L}. Then, for any k ≥ 0 we have

〈X kv0,X kv0〉 = 22kΓ(s+ k)Γ(1− s+ k)

Γ(s)Γ(1− s)
= bk,s.

Proof. We do the case X = R. The remaining case is left as an exercise. Recall
that

LR = 2C + Y 2 + 2iY, for Y = e− f.
Therefore this operator acts on H(2k) by scalar multiplication with

− 4λ+ (2ik)2 + 2i(2ik) = −4(s+ k)(1− s+ k).

Note that 〈Rv, w〉 = −〈v,Lw〉. With these facts gathered we can compute

〈X kv0,X kv0〉 = (−1)k〈LkRkv0, v0〉
= (−1)k(−4(s)(1− s)(−4(s+ 1)(1− s+ 1)) · · · (−4(s+ k − 1)(1− s+ k − 1)))〈v0, v0〉

= (−1)k(−1)k4k
Γ(s+ k)Γ(1− s+ k)

Γ(s)Γ(1− s)
.

�

For v0 fixed as above we now define the convenient basis

v2k =
1√
b|k|,s

·

{
Rkv0 if k > 0,

L|k|v0 if k < 0.

The next goal is to connect v2k in the automorphic model to the functions f2k,s

in the line model. To do this we need the following result:

Lemma 4.25. We have

[If2k,s] =
41−sπ(−1)kΓ(2s− 1)

Γ(s− k)Γ(s+ k)
f2k,1−s.
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Proof. Since the intertwiner I preserves the group action we must have If2k,s ∈
V

(2k)
1−s . Therefore it must be a multiple of f2k,1−s and it suffices to compute If2k,s(0)

to determine this multiple. This boils down to evaluating the integral∫
R

(y − i)k−s(y + i)−k−s

|y|2(1−s) dy.

Computing this and recalling that fsk,1−s(0) = (−i)k−(1−s) · i−k−(1−s) concludes the
proof. �

It is now easy to compute the norms of f2k,s:

Lemma 4.26. For f2k,s as above we have

〈f2k,s, f2k,s〉 =
41−sπ2(−1)kΓ(2s− 1)

Γ(s− k)Γ(s+ k)
= b̃k,s.

Proof. This follows directly from the definition of the inner product and our com-
putation of If2k,s above. �

We have established how to generate the full G-module Vj from the original
eigenfunction ϕj. This was done by using the ladder operatorsR and L go generate
a nice basis in the automorphic model. Furthermore we understand the image of
this basis in the line model. The latter is very useful for explicit computations as
we will see below.

Given v2k ∈ H(2k) we write v2k(θ1, t, θ2) = v2k(kθ1atkθ2) and we can also apply
the change of variables t to r described earlier. One obtains the Fourier expansion

v2k(θ1, r, θ2) = e2ikθ2
∑
n∈Z

v2n,2k(r)e
2inθ1 .

(Note that we only pick up even frequencies because the center of G acts trivially.)
Applying the Casimir operator to the Fourier expansion (term wise) yields the
equations

(1− r2)2

4
· ∂

2

∂r2
v2n,2k(r) +

(1− r2)2

4r
· ∂
∂r
v2n,2k(r)

+

(
−(1− r2)2

4r2

(
n2 + k2

)
+

1− r4

2r2
nk + s(1− s)

)
v2n,2k(r) = 0.

We want to solve this equation, but to do so we need to have some regularity. Since
v2k is regular at the origin (actually everywhere) also v2n,2k is regular at r = 0.
Approximately we have

(1 +O(r))
∂2

∂r2
+

1 +O(r)

r

∂

∂r
− 1 +O(r)

r2
(n− k)2 = 0.
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This gives us an asymptotic solution of the form{
(c1r

n−k + c2r
k−n)(1 +O(r)) if n 6= k

(c1 + c2 log(r))(1 +O(r)) if n = k.

We find that c2 = 0 for n ≥ k and c1 = 0 for n < k. Either way there is
a multiplicity one principle so that v2n,2k is a constant multiple of the unique
solution Φ2n,2k to the ODE above. Explicitly one computes

Φ2n,2r(r) = (1− r2)sr|n−k|2F1(s− εn,kk, s+ εn,kn; 1 + |n− k|; r2)

for

εn,r =

{
1 if n ≥ k

−1 else.

For convenience we write

Φ2n,2k(kθ1atkθ2) = e2inθ1Φ2n,2k(r)e
2ikθ2 .

We have obtained the Fourier expansion

v2k(g) =
∑
n∈Z

c2n,2kΦ2n,2k(g).

Given the coefficients c2n = c2n,0 of v0 we can determine c2n,2k for all k using the
ladder operators. To do this one computes, see [7, Lemma 2.27], that

RΦ2n,2k = −2Φ2n,2k+2 ×

{
−(n− k) if n > k,
(s+k)(1−s+k)

1−n+k
if n ≤ k

and

LΦ2n,2k = −2Φ2n,2k−2 ×

{
(s−k)(1−s−k)

1+n−k if n ≥ k,

−(k − n) if n < k.

One deduces that

Rkv0(g) = (−1)k2k
∑
n∈Z

d(n, k) · c2nΦ2n,2k(g),

for k ≥ 0 and with

d(n, k) =


(−1)k Γ(n+1)

Γ(n−k+1)
if n ≥ k,

(−1)n Γ(n+1)Γ(s+k)Γ(1−s+k)
Γ(k−n+1)Γ(s+n)Γ(1−s+n)

if 1 ≤ n ≤ k − 1,
Γ(|n|+1)Γ(s+k)Γ(1−s+k)

Γ(k+|n|+1)Γ(s)Γ(1−s) if n ≤ 0.

Similarly we can work out the action of Lk on the Fourier coefficients. This shows

Proposition 4.27. For k ≥ 0, the value at the origin of v0 acted on by ladder
operators is related to its Fourier coefficients by

Rkv0(e) = c2k2
kΓ(k + 1)
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and
Lkv0(e) = c−2k2

kΓ(k + 1)

We conclude this discussion on Fourier expansions by remarking that in general
the coefficients c2n can be rather complicated. However, since the first eigenfunc-
tion ϕ0 can be described using the Patterson-Sullivan-measure µ we can be more
precise. Indeed we simply have

ϕ0(θ1, r, θ2) =

∫ π

0

(
1− r2

|re2iθ1 − e2iα|2

)δ
dµ(α).

The Fourier development discussed above reads

ϕ0(θ1, r, θ2) =
∑
n∈Z

c2nΦ2n,0(r)e2inθ1 .

Define the 2n-th Fourier coefficient of µ by

µ̂(2n) =

∫ π

0

e2inαdµ(α).

Proposition 4.28. The relationship between the coefficients c2n and µ̂ is given by

c2n =
1

Γ(δ)
· Γ(δ + |n|)

Γ(1 + |n|)
µ̂(−2n).

Proof. Recalling the shape of Φ2n,0 in terms of the Gauß hypergeometric function
yields∑
n

c2nr
|n|

2F1(δ, δ+|n|; 1+|n|; r2)e2inθ1 =

∫ π

0

(r2−r(ei(2θ1−2α)+ei(2α−2θ1))+1)−δdµ(α).

The result follows by writing down the appropriate series expansions of both sides
and comparing coefficients. �

For the record we state the following asymptotic of Φ2n,2k as t→∞:

Φ2n,2k(at) = 41−se−t(1−s)
Γ(1 + |n− k|)Γ(2s− 1)

Γ(s− εn,kk)Γ(s+ εn,kn)
(1 +O(nke−1)).

This is [7, Lemma 2.30].
We turn towards matrix coefficients. If π denotes the tight-regular representa-

tion on the irreducible space H, then we write

M2n,2k(g) = 〈π(g)v2k, v2n〉.
Here v2k ∈ H(2k) is the normalized basis element constructed from v0 by applying
the ladder operators. We observe straight away that

M2n,2k(kθ1gkθ2) = e2inθ1M2n,2k(g)e2ikθ2 .

Since M2n,2k are also eigenfunctions of the Casimir operator one sees that M2n,2k is
a multiple of Φ2n,2k. For example, if n = k one directly obtains M2n,2n(g) = Φ2n,2n.
The general case is treated in the following lemma.
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Lemma 4.29. For integers n, k ∈ Z we have

M2k,2n(g) =
(−1)k41−sπ2Γ(2s− 1)

Γ(1 + |n− k|)Γ(s− εn,kn)Γ(s+ εn,kk)
· Φ2n,2k(g)√

b̃k,sb̃n,s

.

Proof. To prove this result we switch to the line model, where we can work ex-
plicitly. Of course it is enough to look at g = at, for t = t(r) as usual. We
have

M2k,2n(at) = 〈π(at)v2k, v2n〉 =
〈π(at)f2k,s, f2n,s〉√

b̃k,sb̃n,s

.

The inner product is now given by

〈π(at)f2k,s, f2n,s〉 =
41−sπ(−1)nΓ(2s− 1)

Γ(s− n)Γ(s+ n)

·
∫
R

(
1 + r

1− r

)s((
1 + r

1− r

)
x− i

)k−s((
1 + r

1− r

)
x+ i

)−k−s
· (x− i)n−(1−s)(x+ i)−n−(1−s)dx.

We know already that in r this is a constant multiple of Φ2k,2n. Thus it suffices
to asymptotically evaluate the integral as r → 1. This can be done for example
using Laplace’s method and one obtains∫

R

(
1 + r

1− r

)s((
1 + r

1− r

)
x− i

)k−s((
1 + r

1− r

)
x+ i

)−k−s
·(x− i)n−(1−s)(x+ i)−n−(1−s)dx

=
(−1)k+nπΓ(s+ εn,kn)

Γ(1 + |n− k|)Γ(s+ εn,kk)
Φ2k,2n(r).

Combining all the constants completes the proof. �

Finally let us cite some results concerning the matrix coefficients of tempered
representations.

Lemma 4.30. Let (π, V ) be a tempered unitary representation of G. Then, for
any vectors v, w ∈ V whose K-span is one-dimensional, we have

|〈π(kθ1atkθ2)v, w〉| � te−
t
2‖v‖2‖w‖2

with absolute implied constant when t→∞.

Another estimate can be given in terms of the Sobolev norm

Sv = ‖v‖2 + ‖dπ(h).v‖2 + ‖dπ(e).v‖2 + ‖dπ(f).v‖2.

(Recall that h, e, f are an orthonormal basis of g acting on H infinitesimal by dπ.)
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Lemma 4.31. Let Θ > 1
2

and (π, V ) be a unitary representation of G which does
not weakly contain any complementary series representation with parameter s > Θ.
Then for any smooth vectors v, w ∈ V ∞ we have

|〈π(kθ1atkθ2)v, w〉| � e−Θt(‖v‖‖w‖)
1
2 (SvSw)

1
2

as t→∞ with absolute implied constant.

5. Expansion, Lattice Point Counting and Spectral Gaps

We will first introduce the three players in this section and then dedicate a
subsection too each. Note that since these concepts are highly intertwined the
structure of this section is not linear.

First let us briefly talk about lattice point counting. This typically means count-
ing certain elements of a discrete group (i.e. lattice) contained in an archimedean
ball. More precisely let ‖ · ‖ denote the Frobenius norm on 2× 2 matrices. Given
a subgroup (or more generally a subset) Γ of SL( Z) we define the congruence
subgroups Γ(q) as the kernel of the natural projection SL2(Z)→ SL2(Z/qZ) inter-
sected with Γ. Then we are interested in the size of

N1(T,Γ(q)) = ](Γ(q) ∩BT ) = ]{γ ∈ Γ(q) : ‖γ‖ ≤ T}.
Of course there exist many variations of this counting problem.

Recall that given X = Γ\H we have seen in the previous section that parts of
the discrete spectrum of ∆ may be contained in the interval [0, 1

4
). We call such

eigenvalues exceptional eigenvalues. Of course there are at most finitely many such
eigenvalues and we number them by 0 ≤ λ0(Γ) < λ1(Γ) ≤ · · · ≤ λmax(Γ) < 1

4
. A

deep result due to Selberg states that for congruence subgroups Γ of SL2(Z) we
have the lower bound 3

16
≤ λ1(Γ). This is what we call a (quantitative) spectral

gap. It is uniform in the sense that it holds for all congruence subgroups.11 Here
we are mostly interested in the following situation. Let Γ be a finitely generated
non-elementary subgroup of SL2(Z). In particular, X has infinite volume and we
write δ = δ(Γ) for the Hausdorff dimension of the limiting set of Γ. We have two
very different situations. If 1

2
< δ < 1, then we have seen that λ0(Γ) = δ(1 − δ).

On the other hand, if δ ≤ 1
2
, then ∆ has no discrete spectrum. In this case one

needs to consider so called scattering resonances to make sense of the spectral gap.
Finally we turn towards expansion. Given an undirected k-regular graph G with

vertices V and a subset X of V , the expansion of X, called c(X), dis defined by
]N(X)
]X

, where N(X) is the set of neighbors of X. The expansion coefficient of a

graph is
c(G) = inf

]X< 1
2
]G
c(X).

11The assumption that Γ is a congruence subgroup can not be lifted completely, since one can
construct Γ with arbitrary small eigenvalues. However, in the congruence case the value 3

16 can

be slightly improved.
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We say that a family of k-regular graphs Gn forms a family of expanders if there
is a fixed constant C > 0 so that

lim inf
n→∞

c(Gn) ≥ C.

The connection to the topics above lies in considering Cayley graphs of Γ/Γ(p) for
p large.

5.1. Lattice Point Counting. We start with the following counting result.

Lemma 5.1. For a prime p we have

N1(T,K(p)) =
∑

γ∈K(p),‖γ‖≤T

1� T 2+ε

p3
+
T 1+ε

p
+ 1.

The implicit constant is independent of p.

Proof. We follow the method of Sarnak and Xue. The problem obviously trans-
forms into counting (a, b, c, d) ∈ Z4 with

|a|, |b|, |c|, |d| ≤ T,

ad− bc = 1,

a ≡ d ≡ 1 mod p and

b ≡ c ≡ 0 mid p.

We claim that we get the congruence conditions together with the determinant
restriction yields the strong condition

a+ d ≡ 2 mod p2. (14)

To see this we write

a = 1 + λ1p, b = λ3p, c = λ4p and d = 1 + λ2p.

We get the equation

(1 + λ1p)(1 + λ2p)− λ3λ4p
2 = 1.

This can be rewritten as

(λ1 + λ2)p = (λ3λ4 − λ1λ2)p2.

With this at hand we get

a+ d = 2 + (λ1 + λ2)p = 2 + (λ3λ4 − λ1λ2)p2 ≡ 2 mod p2.

The case a = d = 1 contributes O(T
p

+ 1) possibilities. This is since b or c must

vanish and |b|, |c| � T as well as p | (b, c).
The case |a| > 1, d = 1 or a = 1, |d| > 1 contributes at most O(T

1+ε

p2 ) . This is

since there are O( T
p2 ) choices for a or d due to (14) and since bc = 1− ad we have

O(T ε) possibilities for (b, c).
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Finally, if |a|, |d| > 1, then we choose a in O(T
p
) ways and a+ d in O( T

p2 ) ways.

This determines (a, d) and we conclude by observing that there are O(T 2ε) choices
for (b, c) due to the divisor bound. �

Using spectral theory different types of lattice point counting results can be
obtained.

Theorem 5.2. Let Γ be a finitely generated subgroup of SL2(Z) with δΓ >
1
2
. Let

q0 ∈ N be given so that Γ/Γ(q) ∼= SL2(Z/qZ) for all square-free q with (q, q0) = 1.
(Such a q0 exists by the strong approximation combined with Gorusat’s Lemma.)
There is ε > 0 depending on Γ, so that for any square-free q with (q, q0) = 1 and
any g ∈ SL2(Z/qZ) we have

]{γ ∈ Γ: ‖γ‖ ≤ T and γ ≡ g mod q} =
cΓT

2δ

] SL2(Z/qZ)
+O(q3T 2δ−ε1).

Proof. The starting point is the observation

‖g‖2 = a2 + b2 + c2 + d2 = 4u(g.i, i) + 2 (15)

Recall that cosh(d(z, w)) = 1+2u(z, w). Thus we define the more general counting
problem

NΓ(X; z, w) = ]{γ ∈ Γ: d(z, γw) ≤ X}.
A spectral argument due to Lax and Phillips yields

|NΓ(q)(X; z, w)−
∑
j

cjϕj,q(z)ϕj,q(w)esj,qX | = O(q3X
5
6 eX/2).

Here we are summing over the exceptional part of the spectrum λj(Γ(q)) = sj,q(1−
sj,q) with associated eigenfunctions ϕj,q. Note that s0,q = δ.

Note that the L2-normalization of the ground state implies

ϕ0,q =
1

] SL2(Z/qZ)
ϕ0,1.

Inserting the spectral gap and translatingX to T completes this proof (sketch). �

The method of Lax-Phillips to prove lattice point counting results using spectral
theorem fails for Γ with δΓ ≤ 1

2
. In these cases one has to use a different approach.

Theorem 5.3 (Bourgain-Gamburd-Sarnak 2011). Let Γ be a finitely generated
subgroup of SL2(Z) with 0 < δΓ ≤ 1

2
. Let q0 be the ramified modulus coming from

strong approximation. There are ε1 > 0 and C > 0 depending on Γ so that for
square-free q with (q, q0) = 1 and any g ∈ SL2(Z/qZ) we have

]{γ ∈ Γ ∩BT : γ ≡ g mod q} =
cΓT

2δ

] SL2(Z/qZ)

(
1 +O(e−c

√
log(T ))

)
+O(qCT 2δ−ε1).
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To give a proof here would go beyond the scope of these notes. As mentioned
above spectral theory can not be used directly here. Instead one rewrites the
counting problem as a renewal equation and uses dynamical methods. More pre-
cisely one encounters the (dynamical) Ruelle zeta function, which is closely linked
to the transfer operator. The resonances appear as zeros of this zeta function.
Note that expansion is still crucial for the proof to work.

We will later need a version of this theorem for the semigroup ΓA (or even ΓA).
However, since δ < 1

2
, the group Γ can not contain parabolic elements. This is

crucial for the proof. It turns out, that, since ΓA satisfies this as well, the proof
can be easily adapted to that situation.

Later we will need another basic counting result for Γ = SL2(Z). Since this
seems to be the appropriate place we state them now.

Lemma 5.4. Let X � 1. There exists a function

ϕX : SL2(R)→ R≥0

which approximates the indicator function of an archimedean ball. More precisely

ϕX(g) ≥ 1 for ‖g‖ ≤ X

and ∑
ξ∈SL2(Z)

ϕX(ξ)� X2.

Furthermore, for any y ≥ 1, and any γ0 ∈ SL2(Z/qZ) we have∑
ξ∈SL2(Z),
ξ≡γ0 mod q

ϕX(ξ) =
1

] SL2(Z/qZ)

∑
ξ∈SL2(Z)

ϕX(ξ) +O(X
3
2 ).

Proof. This can be deduced easily using spectral theory using Selberg’s 3/16-
theorem to control the exceptional eigenvalues. �

5.2. Spectral Gap. We now proof Gamburd’s 5
6
-Theorem, which features a uni-

form spectral gap for a family of principal congruence subgroups Γ(p) ⊂ Γ for p
sufficiently large under the assumption δ > 5

6
. If Γ is given this spectral gap is in

some sense quantitative.

Theorem 5.5 (Gamburd). Let Γ = 〈A1, . . . , Ak〉 be a finitely generated subgroup
of SL2(Z) with δ > 5

6
. Let F(p) = Γ(p)\H. For p large enough we have

Ω(F(p)) ∩ [δ(1− δ), 5

36
) = Ω(F(1)) ∩ [δ(1− δ), 5

36
).

In particular Ω(F(p)) has a spectral gap, that is for p large

λ1(F(p)) ≥ min(λ1(F(1)),
5

36
).
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Proof. Take p large enough so that Γ/Γ(p) ∼= SL2(Fp). Further assume that

Ω(F(p)) ∩ [δ(1− δ), 5

36
) 6= Ω(F(1)) ∩ [δ(1− δ), 5

36
).

If this is the case we must have a new discrete eigenvalue λ in (δ(1− δ), 5
36

). Let
Vλ be the corresponding eigenspace. Since the Laplacian commutes with deck
transformations (i.e. Γ) Vλ must contain a non-trivial irreducible representation of
SL2(Fp). (This is a theorem due to Frobenius.) Since any non-trivial representation
of SL2(Fp) has dimension at least p−1

2
we find

m(λ,F(p)) ≥ p− 1

2
.

We will now use spectral theory to give an upper bound for the multiplicity and
thus obtain a contradiction.

Recall the point pair invariant (9):

k1(z, w) = 1u(z,w)≤X−2
4

and k = k1 ? k1. The corresponding automorphic kernel is denoted by K(z, w) =
KX(z, w). Let Kp be the compact part of F(p). Then we have∫

Kp
K(z, z)dµ(z) =

∑
γ∈Γ(p)

∫
Kp
k(z, γz)dµ(z)

=
∑
γ∈Γ(p)

∑
δ∈Γ/Γ(p)

∫
K1

k(δ−1z, γδ−1z)dµ(z)

� p3
∑
γ∈Γ(p)

∫
K1

k(z, γz)dµ(z)

� p3
∑

γ∈K(p)

∫
K1

k(z, γz)dµ(z).

As noted in (10) the kernel K1 evaluated at (i, i) counts exactly N1(
√
X,Γ(p)).

This generalizes to

K1(z, z) = ]

{
γ =

(
a b
c d

)
∈ Γ(p) : fz(γ) = fz(a, b, c, d) ≤ X − 1

2

}
,

for some homogeneous positive-definite quadratic form in a, b, c, d. The dependence
on z is continuous. Thus, since K1 is compact there is σ, so that

‖γ‖2

σ
≤ fz(γ) ≤ σ‖γ‖2,

for all z ∈ K1. We get

K1,X
σ

(i, i) ≤ K1,X(z, z) ≤ K1,σX .
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Recall that cosh(T ) = 2+4X. Thus by Proposition 4.22 together with our counting
result we get∑

γ∈K(p)

∫
K1

k(z, γz)dµ(z)� eT
∫
K1

∑
γ∈K(p)

e−
ρ(z,γz)

2 δρ(z,γz)≤2Tdµ(z)

� X sup
z∈K1

∑
γ∈K(p)

1√
u(z, γz)

δu(z,γz)≤X2

� X
∑
l�X2,
dyadic

N1(
√
l,K(p))√
l

� X
∑
l�X2,
dyadic

[

√
l

p3
+ 1]

� X2+ε

p3
+X1+ε.

This gives ∫
Kp
K(z, z)dµ(z)� X2+ε + p3X1+ε.

On the other hand we can lower bound the automorphic kernel using the pre-trace
inequality: ∫

Kp
K(z, z)dµ(z) ≥

∫
Kp

∑
λj,p<

1
4

X2sj,p |φj,p(z)|2dµ(z).

To further estimate this expression we need to take care of the cusps and funnels of
F(p). Indeed by concretely estimating the integrals of φj,p over the regions around
cusps and funnels one can show12∫

Kp
|φj,p(z)|2dµ(z)�Γ

∫
F(p)

|φj,p(z)|2dµ(z).

We get∫
Kp

∑
λj,p<

1
4

X2sj,p |φj,p(z)|2dµ(z) ≥ C
∑
λj,p<

1
4

X2sj,p

∫
F(p)

|φj,p(z)|2dµ(z)

�
∑
λj,p<

1
4

X2sj,p ·m(λj,p).

Dropping everything but the contribution of one eigenvalue 0 ≤ λ < 1
4

we get

m(λ, p)� X2(1−s)+ε + p3X1−2s+ε.

Choosing X � p3 yields

m(λ, p)� p6(1−s).

12This is technically the most difficult part of the proof, which we omit!
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Combining this with the lower bound for the multiplicity we get (for p large
enough)

6(1− s) > 1.

This translates into s < 5
6

or λ > 5
36

. �

Remark 5.6. The proof can be generalized to give the following stronger result.
Let Γ be a Fuchsian group of the second kind with δ > 5

6
. Then there is N = N(Γ)

so that

Ω(F(p)) ∩ [δ(1− δ), 5

36
) ⊂ Ω(F(q′)),

for all q ∈ N with q′ = (q,N).

Next we give a generalization of this result to all 1
2
< δ. However, the result is

slightly weaker.

Theorem 5.7 (Bourgain-Gamburd-Sarnak 2011). Let Γ be a finitely generated
subgroup of SL2(Z) with δ > 1

2
. There is an ε = ε(Γ) so that

λ1(Γ(q)) ≥ λ0(Γ(q)) + ε

for all square-free q ≥ 1.

Proof. The proof can be found in [3, Section 2]. In contrast to what we have seen
above, to prove this theorem the expansion properties of the associated Cayley
graphs are established using combinatorial techniques. The spectral gap then
follows from Theorem 5.10 below. �

We turn towards the case δ ≤ 1
2
. Note that for this to be the case Γ can

not contain parabolic elements. This is a key property in what follows. Indeed,
the same methods work for the semigroup ΓA, precisely since the latter does not
contain any parabolic elements.

Recall that the resolvent was the meromorphic continuation of RX(s) = (∆X −
s(1 − s)) for X = Γ\H. In the absence of exceptional eigenvalues we have the
spectral gap is replaced by a resonance free region. Recall that RX(s) has a
simple pole at s = δ and no further poles on the line Re(s) = δ. This resonance
replaces the base eigenvalue. One has the following result

Theorem 5.8 (Bourgain-Gamburd-Sarnak 2011). Let Γ be a finitely generated
subgroup of SL2(Z) with δΓ ≤ 1

2
. For q ≥ 1 square-free we write X(q) = Γ(q)\H.

There is ε = ε(Γ) > 0 such that RX(q)(s) is holomorphic, with exception of a simple
pole at δ = s, for

Re(s) > δ − εmin(1,
1

log(1 + Im(s))
).

This is also proved using dynmaical methods and we will not give any details.
Let us just mention, that the resonances can be interpreted as zeros of the Selberg
zeta function. The latter turns out to be the dynamical zeta function that we
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already mentioned in the lattice point counting section. The result above is thus
equivalent to a zero-free region of this zeta function. Again expansion plays a huge
role in establishing this zero-free region.

5.3. Expansion.

Theorem 5.9. Let S = {A1, . . . , Ak} be a symmetric set of generators in SL2(Z)
and let Γ = 〈A1, . . . , Ak〉. If the Hausdorff dimension of the limit set δ(Γ) > 5

6
,

then Gp = G(SL2(Z/pZ), S) is a family of expanders.

Proof. We start by reformulating our spectral gap theorem on the group level.
Write

L2(Γ(p)\ SL2(R)) = Vϕ0 ⊕ L2
0(Γ(p)\ SL2(R))

as (unitary) SL2(R) representations. (Here ϕ0 is the ground state with eigenvalue
λ0(Γ).) Then we define

R =
⋃
p�1

{π ∈ ŜL2(R) : Hom(π, L2
0(Γ(p)\ SL2(R))) 6= {0}}.

When ŜL2(R) is equipped with the Fell topology, then the spectral gap tells us
that Vϕ0 is not contained in R.

We will now use Fell’s continuity of induction to deduce the trivial representation
ρ0 of Γ is isolated from certain other Γ-modules. We define

H(p) = L2(SL2(Fp)) = 1⊕H0(p). (16)

In particular,

H0(p) = {f ∈ H(p) : 〈f, 1〉 =
∑
x

f(x) = 0}.

Note that Γ acts on H(p) and for p sufficiently large the decomposition in (16) is
true in the sense of Γ-modules. (Where γf(x) = f(xγ).)

By induction in stages we have

Ind
SL2(R)
Γ(p) 1 = Ind

SL2(R)
Γ IndΓ

Γ(p) 1 = Ind
SL2(R)
Γ ρ0 ⊕ Ind

SL2(R)
Γ H0(p).

Note that πλ0(Γ) ⊆ Ind
SL2(R)
Γ ρ0. Let

T =
⋃
p�1

H0(p) ⊆ Γ̂.

Then ρ0 is isolated with respect to T . (Otherwise one gets a contradiction to

our spectral gap for Γ\ SL2(R) using that τj → ρ0 implies that Ind
SL2(R)
Γ τj →

Ind
SL2(R)
Γ (ρ0) ⊇ πλ0(Γ).)

Recall that from the definition of the Fell topology it follows that there is ε > 0
depending only on Γ and S such that for all f ∈ H0(p) we have

‖γf − f‖ > ε‖f‖
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for some γ ∈ S.
From here it is easy to conclude. Let A be a subset of Vp = SL2(Fp) of size a.

Denote the compliment of A by B and write b = n− a, where n = ]Vp. Define

f(x) =

{
b if x ∈ A,
−a if x ∈ B.

Obviously f ∈ H0(p). We have

‖f‖2 = nab.

Let
Eγ(A,B) = {x ∈ V |x ∈ A and xγ ∈ B or x ∈ B and xγ ∈ A}.

Then
‖γf − f‖2 = n2 · ]Eγ(A,B).

Now there is γ ∈ S so that

]N(A) ≥ 1

2
]Eγ(A,B) =

‖γf − f‖2

2n2
≥ ε2‖F‖2

2n2
= ε2

ab

2n
=
ε2

2

(
1− ]A

n

)
· ]A.

Since ε does not depend on p we are done. �

This theorem has a direct generalization.

Theorem 5.10. Let Γ = 〈S〉 be a finitely generated subgroup of SL2(R) with
δ(Λ) > 1

2
. Further let Nj be a family of finite-index normal subgroups of Γ. Then

the following are equivalent:

(1) The Cayley graphs G(Γ/Nj, S) form a family of expanders;
(2) There is ε = ε(Γ) > 0 such that λ1(Nj) ≥ λ0(Nj) + ε.

Proof. The implication (2) =⇒ (1) is a direct extension of the argument featured
above.

We turn towards (1) =⇒ (2). Let us set some notation. Write Vj = L2(Γ/Nj)
equipped with the right regular representation Rj. Then we consider

Hj = {F : H→ Vj : F (γz) = Rq(γ)F (z) for all γ ∈ Γ}.
Let ϕ0 be the ground state (i.e. the eigenfunction corresponding to the bottom of
the spectrum) with eigenvalue λ0(Γ). Let H0,j be the subspace of Hj orthogonal
to ϕ0 ⊗ Id. We need to show that∫

F1

‖OF‖2dµ ≥ (λ0 + c)

∫
F1

‖F‖2dµ,

where F1 is a fundamental domain for Γ.
Recall that by the expansion property we have ε > 0 depending only on S such

that for all F ∈ H0(q) we have

‖F (γz)− F (z)‖ ≥ ε‖F (z)‖ (17)
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for some γ ∈ S.
Write f = ‖F‖ and decompose it as

f(z) = aϕ0(z) + b(z).

Here ∫
F1

ϕ0(z)b(z)dµ = 0 and

∫
F1

|f(z)|2dµ = a2 +

∫
F1

|b(z)|2dµ = 1.

Further write F (z) = (F1(z), . . . , Fkj(z)), where kj = ]Γ/Nj.
One computes that

‖OF‖2(z) ≥ |Of |2(z).

We obtain ∫
F1
‖OF‖2dµ∫
F1
‖F‖2dµ

≥
∫
F1
〈∆f, f〉dµ∫

F1
|f(z)|2dµ

=

∫
F1

〈aλ0ϕ0 + ∆b, aϕ0 + b〉 = a2λ0 + 〈∆b, b〉

≥ λ0 + (λ1 − λ0)

∫
F1

|b(z)|dµ.

Since there are only finitely many discrete eigenvalues we have λ1−λ0 = c1(Γ) > 0.
If we have

∫
F1
|b(z)|2dµ > ε1 > 0, then we are done.

Let us consider the critical case when
∫
F1
|b(z)|2dµ = 0. in this case we can

assume that a = 1 and we write

F (z) = u(z)ϕ0(z) with ‖u(z)‖2 =

kj∑
i=1

|ui(z)|2 = 1.

Computing with derivatives yields

‖Oϕ0u‖2 = |Oϕ0|2 + ϕ2
0‖Ou‖2.

This implies ∫
F1
‖OF‖2dµ∫
F1
‖F‖2dµ

≥ λ0 +

∫
F1
ϕ0(z)2‖Ou‖2dµ∫
F1
|ϕ0(z)|dµ

.

Our goal is to show that the remaining quotient is bounded from below.
Assume that ∫

F1
ϕ0(z)2‖Ou‖2dµ∫
F1
|ϕ0(z)|dµ

< κ.

Our goal is to reach a contradiction for small κ. By some foliation argument
(applied after savely removing regions around funnels and cusps) one obtains∫

B(z,δ)

ϕ0(z)2‖u(γz)− u(z)‖dµ(z) < κ

∫
B(z,δ)

ϕ0(z)2dµ,
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for all γ ∈ S. But by (17) we reach a contradiction for some γ ∈ S. This completes
this sketch of a proof. �

In general one has the following result

Theorem 5.11 (Bourgain-Gamburd-Sarnak 2010). Let Γ ⊂ SL2(Z) be finitely
generated and Zariski dense SL2. Let S be a finite symmetric set of generators of
Γ. Then, for squarefree q the graphs G(Γ/Γ(q), S) form an expander family.

Proof. A key technical input is a sum-product estimate for subsets A ⊂ Z/qZ.
The proof can be found in [2]. �

6. Counting results for the semi-group ΓA

For thin groups Γ with δ ≤ 1
2

(i.p. there are no parabolic elements in Γ) the
counting result Theorem 5.3 is a key ingredient for the execution of the affine
sieve. This has been discussed in [3, Theorem 1.6 and 1.7]. For the applications
to Zaremba’s conjecture we will need similar counting results for the semi-group
ΓA. In this section we state the relevant results and make a couple of remarks
concerning the proofs.

Theorem 6.1. Recall the definition of the semigroup ΓA and take A = 2. There
is an absolute square-free integer B ≥ 1, absolute constants c, C > 0 and an
absolute spectral gap Θ > 0 so that for any square free q ≡ 0 mod B and any
ω ∈ SL2(Z/qZ) we have

]{γ ∈ Γ2 ∩BY : γ ≡ ω mod q} =
] SL2(Z/BZ)

] SL2(Z/qZ)
· ]{γ ∈ Γ2 ∩BY : γ ≡ ω mod B}

+O(]{γ ∈ Γ2 : ‖γ‖ < Y } ·G(Y ; q)),

where

G(Y ; q) =

{
e−c
√

log(Y ) if q ≤ C log(Y ),

qCY −Θ if q > C log(Y ).

Proof. Note that Γ2 is free and every non-identity element is hyperbolic. For this
reason the proof of Theorem 5.3 directly generalizes to this setting. (The error
term is a consequence of a zero-free region for the congruence transfer operator
coupled with a Tauberian theorem. One should note the similarity to the typical
prime number theorem error term.) �

This result will be used in the proof of Theorem 1.12 to construct a set Π in
which it taylored for the execution of a sieving argument. In this context the
restriction to square-free moduli q is no obstacle. However, in the application to
Zaremba’s conjecture (Theorem 1.4) we will need a similar result to construct a
set which is suitable for the application of the (orbital) circle method. In this case
it is crucial that all moduli q are allowed.



THIN GROUPS AND APPLICATIONS 67

Theorem 6.2 (Theorem 8.1, [5]). Let Γ = ΓA be the usual semigroup. There exists
an integer B = B(A) ≥ 1 and a constant c = c(A) > 0 so that the following holds.
For any (q,B) = 1, any w ∈ SL2(Z/qZ), any γ0 ∈ Γ and parameters T,H → ∞
with H < ec

√
log(T ), there is a constant C(γ0) > 0 so that

]{γ ∈ Γ: γ ≡ w mod q, |v+(γ)− v| < H−1 and
‖γγ0‖
‖γ‖

≤ T}

= C(γ0)T 2δ µ(I)

] SL2(Z/qZ)
+O(T 2δe−c

√
log(T )).

Here I is the interval of length H−1 about v and the implied constant does not
depend on T , H, q, w or γ0.

Similarly, if B | q we have

]{γ ∈ Γ: γ ≡ w mod q, v+(γ) ∈ I and
‖γγ0‖
‖γ‖

≤ T}

=
] SL2(Q)

] SL2(Z/qZ)
]{γ ∈ Γ: γ ≡ w mod B, v+(γ) ∈ I and

‖γγ0‖
‖γ‖

≤ T}

+O(T 2δe−c
√

log(T )).

Proof. Again the methods from the proof of Theorem 5.3 carry over to this set-
ting with not much modification. (This is because ΓA is a free semigroup with
only hyperbolic elements.) The bottleneck is that the expansion property from
Theorem 5.11 only holds for square-free q. Luckily the relevant results to lift the
square-free assumption are known by now. This allows one to prove the theorem
as stated (and also Theorem 5.3 holds for arbitrary q).

Finally, note that the condition ‖γγ0‖
‖γ0‖ ≤ T can (essentially) be phrased as

d(γγ0i, i)− d(γ0i, i) < C log(T ).

The latter expression appears naturally in the dynamical approach to Theorem 5.3.
�

What we will actually apply later is a direct corollary of this result. Unfor-
tunately we need some notation that is only introduced in Section 9 below to
properly state the result:

Corollary 6.3. With the notation as in Theorem 6.2 we have for any T,H,H1 →
∞ with H1 = o(H) and H < ec

√
log(T ) and any (q,B) = 1, w ∈ SL2(Z/qZ) that

]{γ ∈ Γ: γ ≡ w mod q, |v+(γ)− v| < H−1 and |λ(γ)− T | < T

H1

}

= C(v)T 2δ µ(I)

] SL2(Z/qZ)
(1 +O(H−1

1 +
H1

H
)) +O(T 2δe−c

√
log(T )).
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Here I is the interval of length H−1 about v and the implied constant does not
depend on T , H, H1 q or w.

Similarly, if B | q we have

]{γ ∈ Γ: γ ≡ w mod q, v+(γ) ∈ I and |λ(γ)− T | < T

H1

}

=
] SL2(Q)

] SL2(Z/qZ)
]{γ ∈ Γ: γ ≡ w mod B, v+(γ) ∈ I and |λ(γ)− T | < T

H1

}

+O(T 2δe−c
√

log(T )).

Proof. Later we will see that

‖γ‖ =
λ(γ)

|〈v+(γ), v⊥−(γ)〉|
(1 +O(‖γ‖−2)).

Suppose γ, γ0 both lie in I (an interval of length H−1 about v) and that ‖γ‖, ‖γ0‖ >
H. Then the above yields

‖γ0‖ =
λ(γ0)

|〈v, v⊥−(γ0)〉|
(1 +O(H−1))

and

‖γγ0‖ =
λ(γ)λ(γ0)

|〈v, v⊥−(γ0)〉|
(1 +O(H)).

This leads to
‖γγ0‖
‖γ0‖

= λ(γ)(1 +O(H−1)).

Now we observe that C(γ0) approaches a constant C(v) as v+(γ0)→ v and ‖γ0‖ →
∞. �

To implement this corollary we have to combine it with a (standard) randomness
extraction argument. In absence of a better place we record the relevant lemma
here.

Lemma 6.4. Let µ = µS be a probability measure of finite subset S ⊂ SL2(Z):

µ(γ) =
1

]S

∑
s∈S

1s = γ.

Fix η > 0, let q0 < Q be a fixed modulus, fix w0 ∈ SL2(Z/q0Z) and let Q = Qq0 ⊂
[1, Q] be the set of moduli q < Q with q0 | q. Assume that for all q ∈ Q and all
w ∈ SL2(Z/qZ) with w ≡ w0 mod q0 the projection

πq[µ](w) =
∑

γ≡w mod q

µ(γ)
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is near the uniform measure on SL2(Z/qZ) conditioned on being ≡ w0 mod q0,∥∥∥∥πq[µ]− ] SL2(Z/q0Z)

] SL2(Z/qZ)

∥∥∥∥
L∞|≡w0 mod q0

= max
w∈SL2(Z/qZ),
w≡w0 mod q0

|πq[µ](w)− SL2(Z/q0Z)

SL2(Z/qZ)
| < η.

Then for any T with

η−2 log(Q) < T = o(
√
]S)

there exist T distinct points γ1, . . . , γT ∈ S such that the probability measure ν =
νT,γ1,...,γT defined by

ν =
1

T
(δγ1 + . . .+ δγT )

has the same property. That is, for all q ∈ Q the projection πqν is also nearly
uniform:

max
q∈Q

(∥∥∥∥πq[ν]− ] SL2(Z/q0Z)

] SL2(Z/qZ)

∥∥∥∥
L∞|≡w0 mod q0

)
� η.

Proof. We define

D =
∑

γ∈SL2(Z)T

max
q∈Q

max
w∈SL2(q),

w≡w0 mod q0

| 1
T

T∑
j=1

1γj≡w mod q −
] SL2(Z/q0Z)

] SL2(Z/qZ)
|µ(T )(γ),

where µ(T ) is the product measure on SL2(Z)T and γ = (γ1, . . . , γT ). This is the
expectation with respect to µ of quantity we are aiming to estimate.

Using our assumptions gives the bound

D < η +
∑

γ∈SL2(Z)T

∑
ξ∈SL2(Z)T

max
q∈Q

max
w∈SL2(Z/qZ)

| 1
T

T∑
j=1

fw(γj, ξj)|µ(T )(γ)µ(T )(ξ),

for

fw(γj, ξj) = 1γj≡w mod q − 1ξj≡w mod q.

Note that for fixed w, fw(γj, ξj) are independent mean zero random variables
bounded by 1. The contraction principle gives

D < η +
∑
γ

∑
ξ

D(ξ, γ)µ(T )(γ)µ(T )(ξ).

Here

D(γ, ξ) = 2−T
∑

ε∈{±1}T
max
q∈Q

max
w∈SL2(Z/qZ)

| 1
T

T∑
j=1

εjfw(γj, ξj)| (18)
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For a p chosen later we can apply Khintchine’s inequality to get

D(γ, ξ) ≤ 2−T
∑

ε∈{±1}T

∑
q∈Q

∑
w∈SL2(Z/qZ)

| 1
T

T∑
j=1

εjfw(γj, ξj)|p
 1

p

�

∑
q∈Q

∑
w∈SL2(Z/qZ)

2−T
∑

ε∈{±1}T
| 1
T

T∑
j=1

εjfw(γj, ξj)|p
 1

p

�

∑
q∈Q

∑
w∈SL2(Z/qZ)

p
p
2

(
T∑
j=1

|fw(γj, ξj)|2

T 2

) p
2

 1
p

� Q
4
pp

1
2T−

1
2 .

We choose p = log(Q) and get

D(γ, ξ)� log(Q)
1
2T−

1
2 .

For T > η−2 log(Q) we get

D � η.

Note that the number of T -tuples γ with distinct entries is (]S)!
(]S−T )!

� (]S)T for

T = o(
√
]S). This concludes the proof. �

7. Hyperbolic Sector Counting

In this section we supply several technical counting results that will be needed
later on. We will mostly focus on the infinite volume case. In the classical case of
finite co-volume such estimates were given for example by Good.

Define the Sobolev type norm

S∞,Tf = max
X∈{0,X1,X2,X3}

sup
g∈G,‖g‖<T

|dπ(X).f(g)|.

We start with some technical discussion. We start by working with a Fuchsian
group Γ ⊂ G = SL2(R) of the second type with δ > 1

2
. As before we write

K = SO2(R). The point spectrum of the Laplacian acting on L2(Γ\H) is

0 < δ(1− δ) = λ0 < λ1 ≤ . . . ≤ λN <
1

4
.

We write λj = sj(1− sj) with sj >
1
2
.

First we will (asymptotically) evaluate

N (T ) =
∑
γ∈Γ,
‖γ‖<T

e2inθ1(γ)e2ikθ2(γ).
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This will be done spectrally as follows. For g ∈ G define

fT (g) = e2inθ1(g)e2ikθ2(g)
1‖g‖<T .

The associated automorphic kernel FT : Γ\G× Γ\G→ C given by

FT (g, h) =
∑
γ∈Γ

fT (g−1γh)

satisfies FT (e, e) = N (T ).
Fix η > 0 (in terms of T ) and choose a smooth function ψ : Γ\G → R with∫

Γ\G ψ = 1 and compact support in a ball of radius η around e ∈ G. Consider the

integral

H(T ) = 〈FT , ψ ⊗ ψ〉 =

∫
Γ\G

∫
Γ\G
FT (g, h)ψ(g)ψ(h)dgdh.

Lemma 7.1. We have

H(T ) = N (T ) +O(η(1 + |n|+ |k|)T 2δ).

Proof. We write FT (g, h) = N (T ) + (FT (g, h) − FT (e, e)). Inserting this in the
definition of H(T ) using that ψ has mass one we obtain H(T ) = N (T ) + E(T )
with

E(T ) =

∫
Γ\G

∫
Γ\G

(FT (g, h)−FT (e, e))ψ(g)ψ(h)dgdh

=
∑
γ∈Γ

∫
G...mma\G

∫
Γ\G

(fT (g−1γh)− fT (γ))ψ(g)ψ(h)dgdh.

We consider several cases exploiting the support properties of fT and ψ:

• If ‖γ‖ ≥ T
1−η , then fT (g−1γh) and fT (γ) vanish.

• If T
1+η

< ‖γ‖ ≤ T
1−η , then we have the trivial estimate

|fT (g−1γh)− fT (γ)| ≤ 2.

• If ‖γ‖ ≤ T
1+η

, then ‖g−1γh‖ < T and ‖γ‖ < T . Since |e2inθ1(g−1γh) − e2inθ1(γ)| �
|n|η we deduce that

|fT (g−1γh)− fT (γ)| � (|n|+ |k|)η.

Combining these observations we get

E(T )�
∑
γ∈Γ,

T
1+η

<‖γ‖≤ T
1−η

1 + (|n|+ |k|)η
∑
γ∈Γ,

‖γ‖≤ T
1+η

1

� ηT 2δ + (|n|+ |k|)ηT 2δ.

Here we have used a standard counting argument due to Lax-Phillips. �
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Lemma 7.2. The inner product H(T ) can be expressed as follows

H(T ) =

∫
G

fT (g)〈π(g)ψ, ψ〉dg.

Proof. We insert the definition of F(T ) into the definition of H(T ). By unfolding
we get

H(T ) =

∫
Γ\G

(∫
G

fT (g)ψ(xy)dg

)
ψ(x)dx.

We conclude by interchanging integrals and recognizing the desired inner product.
�

Next we decompose ψ into its Fourier series:

ψ(gkθ) =
∑
m∈Z

ψ2m(g)e2imθ.

Inserting this above yields

H(T ) =
∑
m,l

∫
G

fT (g)〈π(g)ψ2m, ψ2l〉dg =

∫
G

fT (g)〈π(g)ψ−2k, ψ−2n〉dg.

To obtain the second equality we observed that the G-integral vanishes unless
m = −k and l = −n by orthogonality.

At this point we expand the matrix coefficient 〈π(g)ψ−2k, ψ−2n〉. spectrally. To
do so we recall that the first frequency is λ0 = δ(1 − δ) and it comes with the
corresponding eigenfunction ϕ0. Let V be the closure of the G-span of φ0. We
obtain

〈π(g)ψ−2k, ψ−2n〉 = 〈ψ−2k, v−2k〉︸ ︷︷ ︸
=〈ψ,v−2k〉

· 〈v−2n, ψ−n〉︸ ︷︷ ︸
=〈v−2n,ψ〉

·〈π(g)v−2k, v−2n〉

+ 〈π(g)ψ⊥−2k, ψ
⊥
−2n〉.

We can now prove the following estimate

Lemma 7.3. As T →∞ we have

H(T ) = 〈ψ, v−2k〉〈v−2n, ψ〉
∫ 2 log(T )

0

〈π(at)v−2k, v−2n〉 sinh(t)dt+O(‖ψ‖2
2T log(T )).

Proof. The main term comes directly from our observations above, so that we only
need to estimate ∫

G

fT (g)〈π(g)ψ⊥−2k, ψ
⊥
−2n〉dg.

By the triangle inequality and mixing (i.e. Lemma 4.30) we get the bound

‖ψ‖2

∫
A+

1‖at‖<T te
− t

2 sinh(t)dt� ‖ψ‖2
2T log(T ).

Here we used the explicit description of the Haar measure dat as sinh(t)dt. �



THIN GROUPS AND APPLICATIONS 73

We are now ready to proof the following master theorem

Theorem 7.4. Let Γ be a Fuchsian group of the second kind with critical exponent
δ > 1

2
. Let

0 < δ(1− δ) = λ0 < λ1 ≤ . . . ≤ λN <
1

4
be the exceptional eigenvalues of ∆ on Γ\H. Then, for integers n and k there are
constants c1, . . . , cN ∈ C depending on n and k such that

∑
γ∈Γ,
‖γ‖<T

e2inθ1(γ)e2ikθ2(γ) = µ̂(2n)µ̂(2k)
√
π

Γ(δ − 1
2
)

Γ(δ + 1)
T 2δ +

N∑
j=1

cj(n, k)T 2sj

+O(T
1
4

+2δ· 3
4 log(T )

1
4 (1 + |n|+ |k|)

3
4 )

as T →∞. Here |cj(n, k)| � |cj(0, 0)|,as n and k vary and the implied constants
depend only on Γ.

Proof. Recall that we want to estimate precisely N (T ) and we already related this
to H(T ) up to an negligible error. We start directly from the last lemma.

Recall that ψ had unit mass. This implies

〈v−2n, ψ〉 = v−2n(e) +O(η) and ‖ψ‖2 � η−3.

(The last exponent is 3, since this is the dimension of G.)
We end up with

N (T ) = v−2k(e)v−2n(e)

∫ 2 log(T )

0

〈π(at)v−2k, v−2n〉 sinh(t)dt+O(η(1+|n|+|k|)T 2δ+η−3T log(T )).

Choosing η optimally gives the desired error.
It remains to evaluate the main term. This follows from the considerations in

Section 4.7 and is left as an Exercise. �

From this theorem we can derive several important consequences that will be
used later.

Theorem 7.5. Let Γ be a Fuchsian group of the second kind with δΓ > 5
6
. Fix

γ0 ∈ Γ and a congruence subgroup Γ1(q) ⊂ Γ of level q ≥ 1. Let f : G → C be a
smooth function with |f | ≤ 1. There is a fixed integer B depending only on Γ such
that for q = q1q2, q1 | B,

∑
γ∈γ0Γ1(q),
‖γ‖<T

f(γ) =
1

[Γ: Γ1(q)]

 ∑
γ∈Γ,
‖γ‖<T

f(γ) + Eq1

+O
(
T

12
7
δ+ 5

21 (1 + S∞,Tf)
6
7

)
.

Here Eq1 � T 2δ−α0, with α0 > 0 and all implied constants are independent of q2

and γ0.
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Proof. The ramification number B is constructed using strong approximation. Re-
call Remark 5.6 for the corresponding spectral gap. We write

0 < δ(1− δ) = λq0 < λq1 ≤ . . . ≤ λqN0(q) <
1

4
.

We call an eigenvalue coming from smaller levels old-forms. In particular, due to
Gamburd’s 5

6
theorem all eigenvalues below 5

6
(1 − 5

6
) are old, except for possible

finitely many that come from level q1.
We view f in KA+K-coordinates: f(g) = f(θ1(g), t(g), θ2(g)). We define

fT (g) = f(g)1‖g‖<T and

FT,q(g, h) =
∑

γ∈Γ0(q)

fT (g−1γh).

Clearly we have

FT,q(γ−1
0 , 1) = Nq(T ) =

∑
γ∈γ0Γ1(q),
‖γ‖<T

f(γ).

Fix η > 0 and a smooth tes function ψ : G→ R with unit mass (i.e.
∫
G
ψ(g)dg =

1) and compact support in a ball of radius η around 1. We write

Ψ(g) =
∑
γ∈Γ(q)

ψ(γg)

and Ψq,γ0(g) = Ψq(γ0g). As before we consider the integral

Hq(T ) = 〈FT ,Ψq,γ0 ⊗Ψq〉 =

∫
Γ(q)\G

∫
Γ(q)\G

FT (γ−1
0 g, h)Ψq(g)Ψq(h)dgdh.

This is a good approximation to Nq:

Hq(T ) = Nq(T ) +O(η(1 + S∞,T )T 2δ).

One further computes

Hq(T ) =

∫
G

fT (g)〈π(g)Ψq,Ψq,γ0〉Γ(q)\Gdg.

For notational purposes we make the following assumption on the exceptional
spectrum. The spectrum below 5

36
consists only of

• The base eigenvalue λ0 = δ(1− δ) with ground state

ϕ(q) = [Γ: Γ(q)]−
1
2ϕ(1);

• One eigenform from

ϕ̃(q) =
1√

Γ: Γ(q)

√
[Γ : Γ(q1)]ϕ̃(q1)

from the bad level q1.
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Here ϕ(1) ∈ L2(Γ\G) and L2(Γ(q1)\G) are normalized newforms. We write V
(resp. Ṽ ) for the irreducible subspace of L2(Γ(q)\G) generated by ϕ(q) (resp.
ϕ̃(q)). We can decompose

Ψq = Ψq|V + Ψq|Ṽ + Ψ⊥q

accordingly. A similar decomposition holds for Ψq,γ0 . The projections are given by

Ψq|V =
∑
k∈Z

〈Ψq, ϕ
(q)
2k 〉ϕ

(q)
2k

and so on. We use this decomposition to write

Hq(T ) = Wq(T ) + W̃q(T ) +W⊥
q (T ).

The pieces are given by the obvious expressions, for example

Wq(T ) =

∫
G

fT (g)〈π(g)Ψq|V ,Ψq,γ0|V 〉Γ(q)\Gdg.

A simple computation shows that

specmatest〈Ψq, ϕ
(q)
2k 〉Γ(q)\G =

1√
Γ: Γ(q)

〈Ψ1, ϕ
(1)
2k 〉Γ\G

and 〈π(g)ϕ
(q)
2k , ϕ

(q)
2k′〉Γ(q)\G = 〈π(g)ϕ

(1)
2k , ϕ

(1)
2k′〉Γ\G.

These calculations are straight forward from the definitions, but it is important to
get the volumes right. This leads to

Wq(T ) =
1

Γ: Γ(q)
W1(T ) for W1(T ) =

∫
G

fT (g)〈π(g)Ψ1|V ,Ψ1|V 〉Γ\G.

The same argument yields

W̃q(T ) =
1

Γ: Γ(q)
Eq1(T ),

for

Eq1(T ) = [Γ: Γ(q1)]

∫
G

fT (g)〈π(g)Ψq1|Ṽ ,Ψq1,γ̃0|Ṽ 〉Γ(q1)\G.

This integral can be estimated independent of q2 and by taking the supremum over
γ̃ ∈ Γ(q1)\Γ, making the estimate independent of γ0.

Finally we can estimateW⊥
q using the spectral gap. Indeed we have ‖Ψq‖ � η−3

2

and SΨq � η−9
2
, so that

W⊥
q (T )� T 2· 5

6‖Ψq‖2SΨq � T
5
3η−6

by Lemma 4.31.
Putting everything together yields

Nq(T ) =
1

[Γ: Γ(q)]
(N1(q) + Eq1(T )) +O(T

5
3η−6 + η(1 + S∞,Tf)T 2δ).
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We conclude by choosing η = (1 + S∞,Tf)−
1
7T−2(δ− 5

6
)/7. �

Theorem 7.6. Let v0,w ∈ Z2 and assume that n ∈ Z, N
K0

< |n| < N , |w| < N1−σ,

|v0| ≤ 1, and |n| < |v0||w|Nσ. Then∑
γ∈Γ,
‖γ‖<Nσ

1{|〈v0·γ,w〉−n|< N
2K0
} �

N2δσ

K0

+O(Nσ( 3
4

+ 1
2
δ) log(N)

1
4 ).

Proof. We decompose γ = kuaρkv ∈ KA+K. We have 1 < ρ ≈ ‖γ‖, so that ρ < T .
Write v = (a, b) and w = (c, d) and compute

|〈vγ,w〉 − n| = |(a, b)kuaρkv(c, d)> − n|
≈ |ρ(a cos(u)− b sin(u))(−c sin(v) + d cos(v))− n|

<
N

2K0

.

This follows by direct computations expanding the product kuaρkv and we omit
the details.

We can rewrite this as

|ρ|v||w| cos(u) cos(v)− n| < N

2K0

or

| ρ
Nσ

cos(u) cos(v)− n

|v||w|Nσ
| < N1−σ

2|v||w|K0

where u is the angle between (a, b) and (cos(u),− sin(u) while v is the angle between

(c, d) and (cos(v), sin(v)). We definte A = n
Nσ |v||w| and B = N1−σ

|v||w| .

Note that cos(u) and cos(v) range in intervals independent of K0. Dividing these
intervals in sectors: u ∈ Ψα and v ∈ Φβ yields∑

γ∈Γ

Nσ(A− B
2K0

)<‖γ‖<Nσ(A+ B
2K0

)

1u∈Ψα1v∈Ψβ �
1

K0

(
µ(Ψα)µ(Φβ)c0N

2δσ +
∑
j

cjN
2sjσ

)

+O(T
3
4

+ δ
2 log(T )

1
4 ).

by (smoothing and) applying Theorem 7.4. Note that Ψ = ∪αΨα and Φ = ∪βΦβ

are K0-independent intervals we have µ(Ψ), µ(Φ) � 1. This completes the proof.
�

Theorem 7.7. Fix (c, d) ∈ Z2 and y = (y1, y2) ∈ Z2 with |y| <
√
N , |(c, d)| < Nσ

and |y| < N
1
2
−σ|(c, d)|. Then∑

γ∈Γ,

‖γ‖<N
1
2−σ

1{|(c,d)γ−y|<
√
N
K
}1{(c,d)γ≡y mod q} �

N δ(1−2σ)

K1+δq2
+N ( 1

2
−σ)( 12

7
δ+ 5

21
).
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Proof. Writ Γ0(q) for the subgroup of Γ which stabilizes (c, d) modulo q. This
subgroup obviously has level q (i.e. it contains Γ(q)). We decompose γ = γ0γ1 ∈ Γ
with γ0 ∈ Γ0(q) and γ18Γ0(q)\Γ. Using Theorem 7.5 we get∑

γ∈Γ,

‖γ‖<N
1
2−σ

1{|(c,d)γ−y|<
√
N
K
}1{(c,d)γ≡y mod q}

=
∑

γ1∈Γ0(q)\Γ

1{(c,d)γ1≡y mod q}
∑

γ∈Γ0(q)·γ1,

‖γ‖<N
1
2−σ

1{|(c,d)γ−y|<
√
N
K
}

� 1

[Γ: Γ0(q)]

∑
γ∈Γ,

‖γ‖<N
1
2−σ

1{|(c,d)γ−y|<
√
N
K
} +O(N ( 1

2
−σ)( 12

7
δ+ 5

21
)).

It remains to estimate

N =
∑
γ∈Γ,

‖γ‖<N
1
2−σ

1{|(c,d)γ−y|<
√
N
K
}.

This is again done by writing γ = Kuaρkv in KA+K coordinates with 1 < ρ ≈
‖γ‖ < T . To analyse this we let u bet the angle between (c, d) and (cos(u),− sin(u).
Similarly let v be the angle between (y1, y2) and (cos(v), sin(v)). A direct compu-
tation shows that

N

K2
> (ρ · |(c, d)| cos(u)− |y| cos(v))2 + |y|2(1− cos(v)2).

We break this inequality in two pieces.
First consider

N

K2
> |y|2(1− cos(v)2).

This requires v �
√
N

|y|K . This forces v to be contained in an interval Φ of length

�
√
N

|y|K .

The second piece can be written as

| ρ

N
1
2
−σ

cos(u)−A| � 1

K
,

for A = |y|
N

1
2−σ |(c,d)|

cos(v). Since ρ < T , u ranges over a constant interval Ψ.

Breaking the sum into sectors and using Theorem 7.4 yields

N �
∑
γ∈Γ,

AN
1
2−σ(1− c1

K
)<‖γ‖<AN

1
2 +σ(1− c1

K
)

1u∈Ψ1v∈Φ �
1

K
µ(Ψ)µ(Φ)N ( 1

2
−σ)2δ.
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Note that [Γ: Γ0(q)] � q2. One completes the proof by observing that since
|Φ| � K−1 we have µ(Φ)� K−δ. �

The following lemma is of similar flavor as the results above.

Lemma 7.8. For (qK)
13
5 < Y < X, and vectors η, η′ ∈ Z2 having co-prime

coordinates with |η| � X
Y

and |η′| � Y , we have

]{γ ∈ SL2(Z) : ‖γ‖ � Y, |γη − η′| < X

YK
and γη ≡ γ′ mod q} �

(
Y

qK

)2

.

The implied constant is absolute, but it depends on the implied constants in the
assumption.

Proof. Write G(Z) = SL2(Z) and let

Gη(q) = {γ ∈ G(Z) : γη ≡ η mod q}
the stabilizer of η modulo q. We write G(Z) ∼= G(Z)/Gη(q)×Gη(q).

We define the region

RY,K = R = {g ∈ SL2(Z) : ‖g‖Y, |gη − η′| < X

YK
}.

The methods from this section apply in this setting and give estimates of the form∑
γ∈G(Z)

1γ∈R1γη≡η′ mod q =
∑

w∈G(Z)/Γη(q)

1wη≡η′ mod q

∑
γ′∈Gη(Z)

1wγ′∈R

�
∑

w∈G(Z)/Γη(q)

1wη≡η′ mod q

((
Y

qK

)2

+ Y 2Θ+ε

)

�
(
Y

qK

)2

+ Y 2Θ+ε. (19)

Here we take Θ = 1
2

+ 7
64

to be the best known bound towards the Ramanujan

conjecture. The first term dominates as long as q2K2 < Y
25
32 . Note that 64

25
+ε < 13

5
for ε small enough. This concludes the proof sketch. �

Later we will also need a sector estimate for the semi group ΓA (actually the
result also holds for the more general version ΓA introduced later).

Proposition 7.9. Let v+(γ) be the expanding eigenvector of a matrix γ ∈ ΓA.

Further take a density point x ∈ CA (the limiting set of ΓA) and put v = (x,1)√
1+x2 .

There is a constant c = c(A) > 0 so that as long as H < ec
√

log(T ) we have

]{γ ∈ ΓA : ‖γ‖ < T and |v+(γ)− v| < H−1} � T 2δ

H

as T →∞.
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Proof. Let I be an interval of length H−1 around v. Asymptotic estimates like

]{γ ∈ Γ: ‖γ‖ < T and |v+(γ)− v| < H−1} ∼ C · T 2δµ(I) (20)

are well known for non-elementary convex-cocompact (i.e. no parabolic elements)
subgroups of SL2(Z). Here µ is the δ-dimensional Hausdorff measure lifted from
the limiting set Λ(Γ) to P1 by setting dµ(x, y) = dµ(x/y). Note that the proof of
these results uses symbolic dynamics and the renewal method. It is here were it
becomes essential that there are no parabolic elements.

The same method can be set up for Γ replaced by the free semigroup ΓA. (In
this case the transition matrix turns out to be trivial, since all words are allowed.)
One obtains the asymptotic (20) with an error term bounded by

T 2δe−c
√

log(T ).

The result follows since v corresponds to a density point of CA, so that µ(I) �
H−δ−ε. The constraint on H ensures that the error term is nicely dominated.

This concludes this quick sketch. �

8. Proof of Theorem 1.2

We are now ready to put things together. The proofs of the Theorems stated
in the introduction all rely on a version of the Hardy-Littlewood circle method.
However each one has its own intricacies. We start by proving Theorem 1.2 in
detail.

To complete this proof we closely follow the original analysis from [4]. The
basic idea is to apply standard circle method analysis to the coefficients of the
trigonometric polynomial ∑

γ∈Γ,
‖γ‖<N

e(〈v0γ,w0〉θ).

But for technical reasons we need to consider a modified version of this sum.
Recall that Γ ⊂ SL2(Z) is finitely generated, free and contains no parabolic

elements. Suppose α1, . . . , αl are the free generators of Γ. Thus each element in
Γ can be uniquely written as a reduced word in the letters α1, . . . , αl. We write
l(γ) for the word length. Let δ denote the Hausdorff dimension of the limit set of
Γ and assume δ > 1

2
.

We define

Ξk = {ξ ∈ Γ: ‖ξ‖ < N
1
2 , l(ξ) = k and the reduced word giving ξ does end on αl}.

For some σ < 1
4

we set

Π = {$ ∈ Γ: ‖$‖ < N
1
2
−σ and the reduced word giving $ does start with α1}.

Without loss of generality we can assume that α1 6= α−1
l .
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Exercise 8.1. Show that there is k0 ∈ N so that ]Ξk0 � N δ log(N)−1 and ]Π �
N δ(1−2σ) with an explicit constant only depending on Γ. (Hint: Pigeonhole principle
and log(‖γ‖)�Γ l(γ)�Γ log(‖γ‖).)

We put Ξ = Ξk0 for k0 ∈ N as in the exercise. For fixed N and θ ∈ [0, 1] we set

SN(θ) =
∑
ξ∈Ξ

∑
$∈Π

∑
γ∈Γ,
‖γ‖<Nσ

e(〈v0γξ$,w0〉θ).

The nth Fourier coefficients of this trigonometric polynomials are given by

RN(n) = ŜN(n) =

∫ 1

0

SN(θ)e(−nθ)dθ

=
∑
ξ∈Ξ

∑
$∈Π

∑
γ∈Γ,
‖γ‖<Nσ

1{〈v0γξ$,w0〉=n}.

The point is that the products ξ$ are unique, since the last letter of ξ can not
cancel with the last letter of $. Thus, since Γ has no parabolic elements the
vectors vξ$ are all distinct. The additional element γ needs to be included in
order to make it possible to apply spectral methods, for which it is impossible to
detect restrictions on the letters.

We will split the integral defining RN(n) into major and minor arcs. This is
done by setting Q0 = Nα0 and K0 = Nκ0 . The major arcs are given by

M = {θ =
a

q
+ β : q < Q0 and|β| < K0/N}.

Of course the minor arcs are simply the complement: m = [0, 1] \M.

Exercise 8.2. Almost all (with respect to Lebesgue measure) θ ∈ [0, 1] are of the

form θ = a
q

+β with q < N
1
2 , (a, q) = 1 and |β| < 1

qN
1
2

. (Hint: Consider irrational

numbers.)

For analytic reasons we will also introduce the triangle function

ψ(x) =


0 if |x| ≥ 1,

1− x if 0 < x < 1,

1 + x if − 1 < x ≤ 0.

(21)

Exercise 8.3. Show that ψ is a self-convolution and compute its Fourier transform

to be ψ̂(y) =
(

sin(πy)
πy

)2

. In particular it is positive.



THIN GROUPS AND APPLICATIONS 81

We need some more definitions:

ΨN,K0(β) =
∑
m∈Z

ψ ((β +m)N/K0) ,

M(θ) =
∑

1≤q≤Q0

∑
(a,q)=1

ΨN,K0(θ − a

q
),

MN(n) =

∫ 1

0

M(θ)SN(θ)e(−nθ)dθ,

m(θ) = 1−M(θ) and

EN(n) =

∫ 1

0

m(θ)SN(θ)e(−nθ)dθ.

We will proceed by giving a lower bound for MN(n) the so called major arc
contribution (or the main term). Later we will establish a mean square estimate
for EN(n) the minor arc contribution (or the error).

Theorem 8.1. There is a set E(N) ⊂ [−N,N ] of size ]E(N)� N1−ε0 such that
the following holds. Suppose K0 = Nκ0 and Q0 = Nα0 with

κ0 <
3

2
σ(δ − 1

2
) and 21α0 + 13κ0 < (2δ − 5

3
)σ.

Then, for |n| < N and n 6∈ E(N), the main term is

MN(n) =

{
� log log(10 + |n|)−1 log(N)−1N2δ−1 if n ∈ A,
0 else.

Proof. We fix $ ∈ Π and ξ ∈ Ξ and write

w = w0$
>ξ>.

Furthermore we define the congruence subgroup of Γ of level q by

Γ(q) ⊂ Γ1(q) = {γ ∈ Γ: v0γ ≡ v0 mod q}.
Every γ ∈ Γ can be written as γ = γ1γ2 with γ1 ∈ Γ1(q) and [γ2] ∈ Γ1(q)\Γ. This
composition then gives

〈v0 · γ1γ2,w〉 ≡ 〈v0 · γ2,w〉 mod q.

This allows us to split the sum∑
γ∈Γ,
‖γ‖<Nσ

e

(
〈v0 · γ,w〉(

a

q
+ β)

)

=
∑

γ2∈Γ(q)\Γ

e

(
〈v0 · γ2,w〉

a

q

) ∑
γ1∈Γ(q),
‖γ1γ2‖<Nσ

e (〈v0 · γ1γ2,w〉β) .
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An application of Theorem 7.5 (assuming a spectral gap (Θ,B) = (5
6
, 1) for

simplicity) yields∑
γ1∈Γ(q),
‖γ1γ2‖<Nσ

e(〈v0 · γ1γ2,w〉β) =
1

[Γ: Γ(q)]

∑
γ∈Γ,
‖γ‖<Nσ

e(〈v0 · γ,w〉β) +O(K
6
7
0 N

σ( 12
7
δ+ 5

21
)),

for |β| < K0

N
. Inserting this in the main term yields

MN(n) =
∑
ξ,$

∑
q≤Q0

∑
(a,q)=1

∑
γ2∈Γ(q)\Γ

e((〈v0 · γ2,w〉 − n)a
q
)

[Γ: Γ1(q)]∑
γ∈Γ,
‖γ‖<Nσ

∫ 1

0

ΨN,K0(β)e((〈v0 · γ,w〉 − n)β)dβ

+O(N2δ(1−σ)Q3+ε
0

K0

N
K

6
7
0 N

σ( 12
7
δ+ 5

21
)).

Realizing that the a-sum yields a Ramanujan sum brings us to the following sin-
gular series:

SN,ξ,$(n) =
∑
q<Q0

1

[Γ: Γ(q)]

∑
γ2∈Γ(q)\Γ

cq(〈v0 · γ2,w〉 − n).

The singular integral reads

τN,ξ,$(n) =
∑
γ∈Γ,
‖γ‖<Nσ

∫ 1

0

ΨN,K0(β)e((〈v0 · γ,w〉 − n)β)dβ.

Thus the main term reads

MN(n) =
∑
ξ,$

SN,ξ,$τN,ξ,$(n) +O(N2δ(1−σ)Q3+ε
0

K0

N
K

6
7
0 N

σ( 12
7
δ+ 5

21
)).

We begin by looking at the singular integral. By definition of ΨN,K0 we obtain∫ 1

0

ΨN,K0(β)e(xβ)dβ =

∫
R
ψ(β

N

K0

)e(xβ)dβ =
K0

N
ψ̂(x

K0

N
) ≥ 2K0

5N
1|x|< N

2K0

.

The final lower bound follows since ψ̂ is positive and one checks that ψ̂(y) > 0.4
for |y| < 1

2
using the exact formula. We obtain

τN,ξ,$(n) ≥ 2K0

5N

∑
γ∈Γ,
‖γ‖<Nσ

1|〈v0·γ,w〉−n|< N
2K0

.
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We want to apply Theorem 7.6 to give a lower bound for the γ-sum. This can be
done for |w| � N1−σ and we get

τN,ξ,$(n)� 2K0

5N
· N

2δσ

K0

+O(
K0

N
N (2δ+3)σ/4 log(N)

1
4 )

� N2δσ−1 +O(
K0

N
N (2δ+3)σ/4 log(N)

1
4 ).

On the other hand, if |w| � N1−σ−ε, then |〈v0 · γ,w〉| � N1−ε and the corre-
sponding values for n can be absorbed into the exceptional set E(N). Recall that
K0 = Nκ0 . The error term is fine since

κ0 <
3

2
σ(δ − 1

2
).

We define the Ramanujan sum

cq(x) =
∑

(a,q)=1

e(
ax

q
).

Exercise 8.4. Show that cp(x) is p− 1 if x ≡ 0 mod p and −1 otherwise.

We turn towards the singular series. Let us pretend that Γ(q)\Γ ∼= SL2(Z/qZ)
for all q. (The modification needed for the general case are minor.) The singular
series reads

SN,ξ,$(n) =
∑
q<Q0

1

] SL2(Z/qZ)

∑
γ∈SL2(Z/qZ)

cq(〈v0γ,w〉 − n) (22)

This can be extended to all q ∈ N. One sees that the full q-sum is eulerian and
that the main contribution comes from the primes:

∏
p

1 +
1

] SL2(Z/pZ)

∑
γ∈SL2(Z/pZ)

cp(〈v0γ,w〉 − n)


After changing representatives we can assume without loss of generality that v0 =
w = (0, 1). Then 〈v0γ,w〉 = dγ, where dγ is the lower right entry of γ. We first
treat the case p | n. An easy counting argument shows that there are p2−p choices
for γ with dγ ≡ 0 mod p. Since ] SL2(Z/pZ) = p(p2 − 1) we find that there are
remaining matrices (i.e. p - dγ) p3 − p2. Taking the evaluations of the Ramanujan
sums into account yields

1

] SL2(Z/pZ)

∑
γ∈SL2(Z/pZ)

cp(dγ−n) =
1

p3 − p
[
(p− 1)(p2 − p) + (−1)(p3 − p2)

]
= − 1

p+ 1
.

On the other hand if p - n, then we first count matrices γ with dγ ≡ n 6≡ 0 mod p.
One directly sees that there are p2 such matrices. Accounting for the remaining
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matrices as before yields

1

] SL2(Z/pZ)

∑
γ∈SL2(Z/pZ)

cp(dγ−n) =
1

p3 − p
[
(p− 1)p2 + (−1)(p3 − p2 − p)

]
=

1

p2 − 1
.

Combining both cases yields

SN,ξ,$(n)�
∏
p-n

(
1 +

1

p2 + 1

)∏
p|n

(
1− 1

p+ 1

)
� log log(n)−1.

We end up with

MN(n)� N2δ−1 log(N)−1 log log(n)−1 +O(N2δ(1−σ)Q3+ε
0

K0

N
K

6
7
0 N

σ( 12
7
δ+ 5

21
)).

Recalling that Q0 = Nα0 and looking at the error term we are done since

3α0 +
13

7
κ0 < (2δ − 5

3
)σ/7

by assumption. �

We will now deal with the minor arcs. To do so we will look at different ranges

WQ,K = {θ =
a

q
+ β : (a, q) = 1, q ∼ Q, |β| ∼ K

N
}.

It will take us three (long) theorems to gather all the information we need.

Theorem 8.2. Write θ = a
q

+ β with q ≤ N
1
2 , |β| < 1

qN
1
2

and |β| ∼ K
N

. Then

|SN(θ)| � N
3δ+1

2

(
1

K(1+δ)/2q
+N−

1
84

(6δ−5)(1−2σ)

)
.

Proof. We set,

µ(x) =
∑
ξ∈Ξ

1x=w0ξ> and ν(y) =
∑
$∈Π

∑
γ∈Γ,
‖γ‖<Nσ

1y=v0γ$ (23)

so that

SN(θ) =
∑
ξ∈Ξ

∑
$∈Π

∑
γ∈Γ,
‖γ‖<Nσ

e(〈v0γ$,w0ξ
>〉θ)

=
∑
x,y∈Z2

µ(x)ν(y)e(〈x, y〉θ).

Note that because γ contains no parabolic elements we must have µ(x) ≤ 1 for all
x. On the other hand, due to possible cancellation between γ and $ we possibly
have ν(y) > 1. However, for fixed γ the value of v0γ$ is unique, and there are
N2δσ choices for γ. Hence we roughly have

ν(y)� N δσ.
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Thus we have ∑
x

µ(x) �
∑
y

ν(y) � N δ.

Let us also note that µ(x) and ν(y) vanish for ‖x‖, ‖y‖ ≥ N
1
2 .

We break ν =
∑

α να in 64 pieces each of which is supported in a square of side

lengths 1
4
N

1
2 and satisfies |να| ≤ |ν|. We then have

|SN(θ)| ≤
∑
α

|Sα(θ)|,

for
Sα(θ) =

∑
x,y∈Z2

µ(x)να(y)e(〈x, y〉θ). (24)

Fix a smooth non-negative function Υ: R2 → R, which is bounded below by 1

on the unit square [−1, 1]2 and with supp(Υ̂) ⊂ B 1
10

(0).

Inserting Υ and applying Cauchy-Schwarz yields

|Sα(θ)| �

(∑
x

|µ(x)|2
) 1

2
(∑

x

|
∑
y

να(y)e(〈x, y〉θ)|2Υ(
x√
N

)

) 1
2

� N δ/2

(∑
x

|
∑
y

να(y)e(〈x, y〉θ)|2Υ(
x√
N

)

) 1
2

.

Opening the square and interchanging sums yields

|Sα(θ)|2 � N δ
∑
y,y′

να(y)να(y′)
∑
x

e(〈x, y − y′〉θ)Υ(
x

N
1
2

).

Note that∫
R2

e(〈x, y − y′〉θ)Υ(
x

N
1
2

)e(−〈x, k〉)dx = NΥ̂(N
1
2 (θ(y − y′)− k)).

Thus, applying Poisson summation in the x-sum yields

|Sα(θ)|2 � N δ+1
∑
y,y′

να(y)να(y′)
∑
k

Υ̂(N
1
2 (θ(y − y′)− k)).

Due to the support of Υ̂ there is at most one contribution in the k-sum. It is

� |Υ̂(0)| � 1. More precisely this contribution appears when

{θ(y − y′)} ≤ 1

10
√
N
, (25)

where {·} denotes the distance to the closest Z2-lattice point. Let us have a closer
look at this distance. To do so we use that θ = a

q
+ β. We get

|a
q

(y − y′)| ≤ |θ(y − y′)|+ |β(y − y′)|.
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Due to the support of να we can bound |y − y′| ≤
√

2
4
N

1
2 . Since |β| ≤ 1

q
√
N

we have

|β(y − y′)| ≤ 1

q
√
N
·
√

2

4
N

1
2 ≤
√

2

4q
.

By recalling (25) we get

{a
q

(y − y′)} ≤ 1

10
√
N

+

√
2

4q
. < 0.5 · q−1.

We conclude that y ≡ y′ mod q. This implies that

|β(y − y′)| = {θ(y − y′)} ≤ 1

10
√
N
.

We get

|SN(θ)|2 � N δ+1
∑
y

ν(y)
∑

y′≡y mod q,
|y−y′|≤ 1

10|β|
√
N

ν(y′).

Let |β| = K
N

and assume K � 1. (The opposite case is handled similarly and
left as an exercise.) Considering the inner sum for fixed y yields∑

y′≡y mod q,
|y−y′|≤ 1

10|β|
√
N

ν(y′) =
∑
$∈Π

∑
γ∈Γ,
‖γ‖<Nσ

1 (c,d)$≡y mod q,

|(c,d)$−y|≤ 1

10|β|N
1
2

≤
∑
γ∈Γ,
‖γ‖<Nσ

∑
$∈Γ,

‖$‖<N
1
2−σ

1 (c,d)$≡y mod q,

|(c,d)$−y|≤ 1

10|β|N
1
2

,

where we have written v0γ = (c, d). By making the exceptional set larger (if

necessary) we can assume tat |y| � N
1
2 and |(c, d)| � Nσ. This assumptions allow

us to apply Theorem 7.7 to obtain∑
$∈Γ,

‖$‖<N
1
2−σ

1 (c,d)$≡y mod q,

|(c,d)$−y|≤ 1

10|β|N
1
2

� N δ−2δσ

K1+δq2
+N ( 1

2
−σ)( 12

7
δ+ 5

21
).

Going back to SN(θ) we observe that the γ-sum contributes N2δσ and the y-sum
gives a contribution of at most N δ. Therefore we obtain

SN(θ)� N
δ+1

2

(
N δN2δσ

(
N δ−2δσ

K1+δq2
+N ( 1

2
−σ)( 12

7
δ+ 5

21
)

)) 1
2

� N (3δ+1)/2

K(1+δ)/2q
+N δ+ 1

2
+δσ+( 1

2
−σ)( 6

7
σ+ 5

42
).

This completes the proof. �



THIN GROUPS AND APPLICATIONS 87

Theorem 8.3. Recall that θ = a
b

+ β, with Q
2
≤ q < Q <

√
N and |β| < 1

qN
1
2

. Fix

β with |β| < 2
Q
√
N

and let

PQ,β = {θ =
a

q
+ β : q ∼ Q, (a, q) = 1}.

In particular we have ]PQ,β � Q2. We have∑
θ∈PQ,β

|SN(θ)| � N1+δ+εQ
(
Q−

1
2 +N−σ +N−

σ+1
2 Q

)
.

Proof. We write

SN(θ) =
∑
ξ∈Ξ

∑
$∈Π

∑
γ∈Γ
‖γ‖<Nσ

e(〈v0γ,w0(ξ$)>〉θ)

=
∑

x∈BN1−σ

∑
y∈BNσ

µ(x)ν(y)e(〈x,y〉θ),

where µ and ν are certain measures supported in BN1−σ and BNσ respectively. We
can write them explicitly as

µ(x) =
∑
ξ∈Ξ,
$∈Π

1x=w0(ξ$)> and ν(y) =
∑
γ∈Γ,
‖γ‖<Nσ

1y=v0γ.

By constructions products of the form ξ$ are unique, so that the sums have at
most one term (i.e. µ, ν ≤ 1). We choose ζ(θ) ∈ S1 so that |SN(θ)| = ζ(θ)SN(θ).
For any Ω ⊂ [0, 1] we have∫

Ω

|SN(θ)|dθ =
∑
x

µ(x)
∑
y

ν(y)

∫
Ω

ζ(θ)e(〈x,y〉θ)dθ.

We now want to apply Cauchy-Schwarz. To do so we recall the properties of the
function Υ defined the previous minor arc estimate. We get∫

Ω

|SN(θ)|dθ ≤

(∑
x

µ(x)2

) 1
2
(∑

x

|
∑
y

ν(y)

∫
Ω

ζ(θ)e(〈x,y〉θ)dθ|Υ(
x

N1−σ )

) 1
2

.

Recall the bound ∑
x

µ(x)2 ≤
∑
x

µ(x)� N2δ(1−σ).

Using this estimate and opening the square yields∫
Ω

|SN(θ)|dθ � N δ(1−σ)

(∑
y,y′

ν(y)ν(y′)

∫
Ω

∫
Ω

ζ(θ)ζ(θ′)
∑
x

e(〈x,yθ − y′θ′〉)Υ(
x

N1−σ )dθdθ′

) 1
2

.
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We apply Poisson summation in the x-sum. Since Υ̂ has support in B1/10 there
is only a contribution if yθ − y′θ′ is in a small neighborhood of an integer lattice
point. We get∫

Ω

|SN(θ)|dθ � N (δ+1)(1−σ)

(∑
y,y′

ν(y)ν(y′)

∫
Ω

∫
Ω

1‖yθ−y′θ′‖< 1
10N1−σ

dθdθ′

) 1
2

. (26)

Of course the same argument works with the integral over Ω replaced by a sum
over a discrete set of θ’s. More precisely we replace

∫
Ω

by
∑

θ∈PQ,β . The result is

∑
θ∈PQ,β

|SN(θ)| � N (δ+1)(1−σ)

∑
y,y′

ν(y)ν(y′)
∑
θ∈PQ,β

∑
θ′∈PQ,β

1‖yθ−y′θ′‖< 1
10N1−σ

 1
2

.

This is essentially a point counting problem which can be described as follows. We
are interested in the number of elements of a set A ⊂ B2

Nσ × P 2
Q,β. An element

(y,y′, θ, θ′) ∈ A is determined by the numbers y = (y1, y2), y′ = (y′1, y
′
2), θ = a

b
+β

and θ′ = a′

b′
+β. Exploiting the support properties of our sums we get the following

conditions:

(1) |y|, |y′| < Nσ primitive;
(2) y,y′ 6= (0, 0);
(3) ‖y1θ− y′1θ′‖ < 1

10N1−σ and ‖y2θ− y′2θ′‖ < 1
10N1−σ , where ‖ · ‖ is the distance

to the nearest integer.

A first computation shows that

‖(y′2y1 − y′1y2)
a

q
‖ = ‖y′2(y1

a

q
− y′1

a′

q′
)− y′1(y2

a

q
− y′2

a′

q′
)‖

≤ ‖y′2(y1
a

q
− y′1

a′

q′
)‖+ ‖y′1(y2

a

q
− y′2

a′

q′
)‖.

Now we use that θ and θ′ come with the same β, which satisfies |β| < 2

QN
1
2

:

‖y1
a

q
− y′1

a′

q′
‖ ≤ ‖y1θ − y′1θ′‖+ |β(y1 − y′1)| ≤ 1

10N1−σ +
2

QN
1
2

· 2Nσ.

Recall that y′2 is an integer bounded by Nσ. Thus we get

‖y′2(y1
a

q
− y′1

a′

q′
)‖ ≤ 1

10N1−2σ
+

4N2σ

QN
1
2

.

The same agument works for y′2 = y′1, y1 = y2 and y′1 = y′2. We get

‖(y′2y1 − y′1y2)
a

q
‖ ≤ 1

5N1−2σ
+

8N2σ

QN
1
2

.
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We conclude that

‖(y′2y1 − y′1y2)a‖ ≤ q

5N
+

8qN2σ

QN
1
2

≤ 1

5N
1
2

+
8N2σ

N
1
2

.

Choosing σ so that Nσ < 1
4
N

1
4 (i.e. σ < 1

4
− log(4)

log(N)
) we find that

‖(y′2y1 − y′1y2)a‖ < 1.

Since (a, q) = 1 and we are dealing with integers we conclude that

y′2y1 − y′1y2 ≡ 0 mod q.

Similarly we see that
y′2y1 − y′1y2 ≡ 0 mod q′.

Let q̃ be the least common multiple of q and q′ (i.e. q̃ = [q, q′]). Then we have
1
2
Q ≤ q̃ ≤ Q2 and

y′2y1 − y′1y2 ≡ 0 mod q̃.

We will distinguish three cases:

• y1y
′
2 − y2y

′
1 6= 0 (call this region A1);

• y1y
′
2 − y2y

′
1 = 0 but y1y2y1y

′
2 6= 0 (call this region A2);

• y1y
′
2 − y2y

′
1 = 0 and y1y2y1y

′
2 = 0 (call this region A3).

Before we estimate this contributions individually let us recall that∑
θ∈PQ,β

|SN(θ)| � N (δ+1)(1−σ)
√
]A = N (δ+1)(1−σ)

√
]A1 + ]A2 + ]A3.

Claim 1: The contribution of points with y1y
′
2 − y2y

′
1 6= 0 (i.e. Case 1) to A is

bounded by ]A1 � N (1+δ)2σQ.

To see this we argue as follows. First observe that since

q̃ | (y′2y1 − y′1y2) and 0 6= |y′2y1 − y′1y2| ≤ 2N2σ,

we must have q̃ ≤ 2N2σ. We obtain the bound

q̃ ≤ min(Q2, 2N2σ) ≤
√

2QNσ.

We can now deduce that ‖y1
a
q
− y′1 a

′

q′
‖ = 0. Indeed, by assuming the contrary we

obtain the inequality

1√
2QNσ

≤ 1

q̃
≤ ‖y1

a

q
− y′1

a′

q′
‖ ≤ ‖y1θ − y′1θ′‖+ |β(y1 − y′1)|

≤ 1

10N1−σ +
4Nσ

QN
1
2

.

Using Q <
√
N and N2σ < 1

16

√
N we can rewrite this as

1√
2
≤ QN2σ

10N
+

4N2σ

√
N
≤ 1

160
+

1

4
,
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which is a contradiction.
We conclude that

y1
a

q
≡ y′1

a′

q′
mod 1.

A similar argument yields

y2
a

q
≡ y′2

a′

q′
mod 1.

To put these observations to use we need some more notation. Put d = (q, q′) and
write q = dq1 as well as q′ = dq′1. Of course we have (q1, q

′
1) = 1. We obtain

y1aq
′
1 ≡ y′1a

′q1 mod dq1q
′
1.

We can read off the divisibility properties:

q1 | y1, q1 | y2, q
′
1 | y′1 and q′1 | y′2.

At this point we recall that y = (y1, y2) is a primitive vector. Thus (y1, y2) = 1,
forcing q1 = 1 and d = q. Similarly we obtain q′1 = 1 and d = q′ so that q = q′. So
we can write our congruences as

y1a ≡ y′1a
′ mod q and y2a ≡ y′2a

′ mod q.

Now we are ready to count this contribution to A. Observe that there are � Q
choices for q and � q2 choices for (a, a′). Furthermore there are � N2σδ choices
for primitive pairs (y1, y2). At this point y′1 and y′2 are determined modulo q.
Therefore we have � N2σq−2 choices for them. Combing this we get

]A1 �
∑
q∼Q

q2N2σδN
2σ

q2
� N2σ(1+δ)Q. (27)

This proves Claim 1.

Case 2: The contribution of points with y1y
′
2 − y2y

′
1 = 0 but y1y2y

′
1y
′
2 6= 0 (i.e.

Case 2) to A is bounded by ]A2 � N2σδ+εQ2 +N2σδ+σ−1+εQ4.

In this situation the divisibility condition is vacuous, but we know that y1, y2, y
′
1

and y′2 are all nonzero. Using that y = (y1, y2) and y′ = (y′1, y
′
2) are primitive and

y′2y1 = y′1y2 we find that
y1 = ±y′1 and y2 = ±y′2.

Thus there are � N2σδ choices for y and y′.
Set q1 = (y1, q) and q′1 = (y′1, q

′) = (y1, q
′). Since q1, q

′
1 both divide y1 there are

� N ε choices for q1 and q′1. Without loss of generality we can assume q1 ≤ q′1. We

fix a′ and q′. There are � Q2

q′1
possibilities to do so.

Write y1 = q1z1 and q = q1q2. Then

‖y1
a

q
− y′1

a′

q′
+ β(y1 − y′1)‖ < 1

10N1−σ
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can be rewritten as

‖z1
a

q2

− ψ‖ < 1

10N1−σ ,

where ψ = y′1
a′

q′
−β(y1−y′1) is already completely determined. The grid in the unit

interval of possible values of z1
a
q2

as a and q2 vary has mesh of size at least 4q2
1Q
−2.

Hence the set of values of z1
a
q2

, which are as close as required to ψ bounded by

� Q2

q2
1N

1−σ + 1.

Fix a point ψ̃ in the grid with z1
a
q2
≡ ψ̃ mod 1. Since (q2, a, z1) = 1 this determines

q2 uniquely. Now also a is determined modulo q2. Thus we have q1 = q/q2 possible
values for a.

Combining everything we can count

]A1 �
∑
y

ν(y)
∑
y′=y

∑
q1|y1

q′1|y1,
q1<q′1≤min(Q,Nσ)

Q · Q
q′1

(
1 +

Q2

q2
1N

1−σ

)
q1

� N2σδ+εQ2 +N2σδ+σ−1+εQ4.

This is exactly Claim 2.

Case 3: The contribution of points with y1y
′
2 − y2y

′
1 = 0 and y1y2y

′
1y
′
2 = 0 (i.e.

Case 3) to A is bounded by ]A3 � NσQ2.

This case is particularly easy. Without loss of generality we assume y1 = 0.
Since y is primitive we get y2 = ±1. The equation y1y

′
2 = y2y

′
1, then yields

(without loss of generality) y′1 = 0 and y′2 = ±1. From here we can argue as in the
proof of Claim 2 (with q1 = q′1 = 1) and we find

]A3 � Q ·Q ·
(

1 +
Q2

N1−σ

)
� Q2 +Q4Nσ−1 � Q2 +Q2Nσ � Q2Nσ.

This establishes Claim 3.

Combing the three claims we get∑
θ∈PQ,β

|SN((θ))| � N (δ+1)(1−σ)
√
]A1 + ]A2 + ]A3

� N (δ+1)(1−σ)
(
N2σ(1+δ)Q+N2σδ+εQ2 +N2σδ+σ−1+εQ4 +NσQ2

) 1
2

� N (δ+1)(1−σ)QNσ(1+δ)+ε
(
Q−

1
2 +N−σQ4 +N−

σ
2
− 1

2Q
)
.

This completes the proof. �
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Theorem 8.4. We have∫
WQ,K

|SN(θ)|2dθ � log(N)
(
N δ(1+σ)‖SN(θ)|WQ,K

‖∞ +N2δ+1−σ) .
Proof. We first prove the following. Let Ω ⊂ [0, 1] be a finite union of open
intervals. Then ∫

Ω

|SN(θ)|dθ � max(N (σ+1)δ, N δ+(1−σ)/2|Ω|
1
2 ). (28)

To see this we rewrite (26) as

∫
Ω

|SN(θ)|dθ � N (δ+1)(1−σ)

(∑
y,y′

ν(y)ν(y′) Vol({(θ, θ′) : ‖θy1 − θ′y′1‖, ‖θy2 − θ′y′2‖ <
1

N1−σ })

) 1
2

.

Put Y =

(
y1 y2

−y′1 −y′2

)
. We treat two cases. First, if det(Y ) 6= 0, then the map

(θ, θ′) 7→ (θ, θ′)Y is a measure preserving map modulo (1, 1). We get

Vol({(θ, θ′) : ‖θy1 − θ′y′1‖, ‖θy2 − θ′y′2‖ <
1

N1−σ })� N2σ−2.

Furthermore there are up to N4σδ choices for y and y′.
If det(Y ) = 0, then we must have y = ±y′. In this case there are only N2σδ

choices. Without loss of generality we can assume y1 6= 0. Fixing θ′ ∈ Ω con-
tributes at most |Ω|. Then θ must satisfy ‖y1θ − θ0‖ < 1

N1−σ for some fixed θ0.

Hence we get a contribution of N2σδ|Ω|Nσ−1.
Putting both cases together yields∫

Ω

|SN(θ)|dθ � N (δ+1)(1−σ)(N4σδ+2σ−2+|Ω|N2σδ+σ−1)
1
2 � N δ(1+σ)+N δ+(1−σ)/2|Ω|

1
2

which is exactly (28).
We put WQ,K = Ω. The trivial bound is SN(θ)� N2δ and we can take a dyadic

subdivision M � N2δ of � log(N) terms and decompose Ω into level sets

Ω =
⊔
α

Ωα (29)

according to the size of |SN(θ)|. More precisely, if θ ∈ Ωα, then M
2
≤ |SN(θ)| < M

with M = Mα � N2δ.
We have the trivial estimate

1

|Ωα|

∫
Ωα

|SN(θ)|dθ � sup
θ∈Ωα

|SN(θ)|.
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We will now use this observation and (28). This yields∫
Ω

|SN(θ)|2dθ � log(N) sup
α

∫
Ωα

|SN(θ)|2dθ

� log(N) sup
α

sup
θ∈Ωα

|SN(θ)|
∫

Ωα

|SN(θ)|dθ

� log(N) sup
α

sup
θ∈Ωα

|SN(θ)|max
(
N (σ+1)δ, N δ+(1−σ)/2|Ωα|

1
2

)
� log(N) max

(
N (σ+1)δ sup

θ∈Ω
|SN(θ)|, sup

α
N δ+(1−σ)/2|Ωα|−

1
2

∫
Ωα

|SN(θ)|dθ
)

� log(N) max

(
N (σ+1)δ sup

θ∈Ω
|SN(θ)|, sup

α
N2δ+(1−σ)

)
� log(N)

(
N (σ+1)δ‖SN(θ)|Ω‖∞ +N2δ+1−σ)

and completes the proof. �

The next step is to gather the estimates above and deduce that the minor arcs
are small. We do this for the choices

Q = Nα and K = Nκ.

We assume α, κ ∈ [0, 1
2
]. We first deal with those θ for which m(θ) = 1 (these are

most). We will now derive 3 lemmata each dealing with different situations. The
first one works only if K or Q is large. The second lemma deals with both K and
Q that are small but still to large to be covered by the major arcs.

Lemma 8.5. As N →∞ we have∫
WQ,K

|SN(θ)|2dθ � N4δ−1−η,

if

α +
1 + δ

2
κ >

3

2
(1− δ) + δσ

σ > 2(1− δ) and

σ <
132 · δ − 131

96 · δ − 10
.

Proof. Using Theorem 8.4 and then Theorem 8.2 to estimate ‖SN(θ)|WQ,K
‖∞ we

get∫
WQ,K

|SN(θ)|2dθ � N δ(σ+1)+(3δ+1)/2

(
1

K(1+δ)/2
+N−

1
84

(1−2σ)(6δ−5)

)
+N2δ+1−σ.

The assumption σ > 2(1− δ) is needed to control the last term on the right hand
side. For the middle term we need σ < 132·δ−131

96·−10
. Finally, α+ 1+δ

2
κ > 3

2
(1− δ) + δσ
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is needed to control the first term of this bound. (Observe that we require δ to be
close to one. This implies that we essentially need α+κ > σ for this estimate.) �

Lemma 8.6. As N →∞ we have∫
WQ,K

|SN(θ)|2dθ � N4δ−1−η,

for

κ >
1− δ
δ

and

1− δ + κ+ 2α <
1

42
(6δ − 5)(1− 2σ).

Proof. Note that Vol(WQ,K) � Q2K
N

. We apply Theorem 8.2 and get∫
WQ,K

|SN(θ)|2dθ � Q2K

N

(
N3δ+1

K1+δQ2
+N−

1
42

(6δ−5)(1−2σ)

)
=
N3δ

Kδ
+Q2KN3δ− 1

42
(6δ−5)(1−2σ).

The conditions follow directly when fitting this bound to our claim. �

Lemma 8.7. As N →∞ we have∫
WQ,K

|SN(θ)|2dθ � N4δ−1−η,

for

(1− δ)κ+ 3(δ − 1) < α,

(1− δ)κ/2 + 3(1− δ)/2 < σ,

(1− δ)κ/2 + 3(1− δ)/2 + α < (1 + σ)/2,

3(1− δ)/2 + κ+ α/2 <
1

84
(6δ − 5)(1− 2σ),

3(1− δ)/2 + κ+ α <
1

84
(6δ − 5)(1− 2σ) + σ and

3(1− δ)/2 + κ+ 2α <
1

84
(6δ − 5)(1− 2σ) + σ/2 +

1

2
.

Proof. By applying Theorem 8.2 and Theorem 8.3 we get∫
WQ,k

|SN(θ)|2dθ � sup
θ∈WK,Q

|SN(θ)|K
N

∑
θ∈PQ,β

|SN(θ)|

� N (3δ+1)/2

(
1

K(1+δ)/2Q
+N−

1
84

(6δ−5)(1−2σ)

)
·K
N
·N δ+1+εQ

(
Q−

1
2 +N−σ +N−σ/2−

1
2Q
)
.
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Each condition comes from one of the 6 terms that one gets after multiplying out
the bound above. �

Lastly we need to estimate the contribution of those θ, where θ is non-trivial.
We obtain∫

m(θ)6=1

|m(θ)|2|SN(θ)|2dθ �
∑
q≤Q

∑
(a,q)=1

∫
|β|<K/N

(βN/K)2 N3δ+1

(Nβ)1+δQ2
dβ � N3δK−δ.

Here we used the bound from Theorem 8.2, but only the first term of the estimate
is required.

To finish of the minor arc estimate we need to make sense of all the constraints
on σ, δ, α and κ. More precisely we need to find values for δ and σ, so that each
(α, κ) either lies in the major arcs or satisfies the conditions in one of the lemmatas
above.

Theorem 8.8. Assume that δ > 0, 9999493550. Then there exists a choice for σ
such that as N →∞ there is some η > 0 with∑

|n|<N

|EN(n)|2 =

∫ 1

0

|m(θ)|2|SN(θ)|2dθ � N4δ−1−η.

Proof. This is basic but cumbersome. First, one can plot the region in the (σ, δ)
plane in which the following conditions hold:

σ > 2(1− δ),

21((1− δ)(1− δ)/δ + 3(1− δ)) + 13(1− δ)/δ < (2δ − 5

3
)σ and

σ <
132δ − 131

96δ − 10
.

Solving for the minimal δ in this region one finds that it is the largest root of

1020− 8897x− 5010x2 − 12888x3.

(The lower bound on δ given in the statement is an upper approximation to this
root.) The proof is concluded by looking at all the other conditions to see that
together with the major arcs the full (α, κ) plane is covered. �

We can now proof Theorem 1.2:

Theorem 8.9 (Bourgain-Kontorovich 2010). Let Γ be thin, free, finitely generated
with no parabolic elements and assume that δ > 1−5×10−5. Then there is η0 > 0
so that

](S ∩ [1, N ])

](A ∩ [1, N ])
= 1 +O(N−η0).

This can be read as (a quantitative version of) for almost every n we have that n
is represented (by (Γ,v0,w0)) if and only if n is admissible.
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Proof. Let E(N) be the set of exceptions up to N . Let Z denote those integers
passing local obstructions. (For simplicity in our treatment of the major arcs we
assumed that Z = Z.) We now apply Theorem 8.1 and Theorem 8.8 to get

]E(N) =
∑

n∈Z∩BN ,
|EN (n)|>MN (n)

1

�
∑
|n|<N,

|EN (n)|� N2δ−1

log log(n) log(N)

1.

�
∑
|n|<N

|EN(n)|2 log log(n) log(N)N2−4δ

� N1−δ log(N) log log(N).

This finishes the proof. �

9. Proof of Theorem 1.4

In this section we follow [5] to present the proofs of the theorems concerning
Zaremba’s conjecture. Let us recall (and slightly generalize) the statements.

Fix a finite set A ⊂ N, which we call an alphabet. We write CA to denote the
collection of all x ∈ (0, 1) with continued fraction expansion x = [a1, a2, . . .] with
ai ∈ A for all i ∈ N. We further write

RA = { b
d

= [a1, . . . , ak] : 0 < b < d, (b, d) = 1 and aj ∈ A for j = 1, . . . , k}.

Finally let DA ⊂ N denote the set of denominators that appear in RA. Of course
we have seen all this if A = N ∩ [1, A]. In this case the subscript was simply A.

Let δA denote the Hausdorff dimension of CA. We state the following fixed
version of Hensley’s generalization of Zaremba’s conjecture.13

Conjecture 9.1. If δA > 1
2
, then the set of denominators DA contains every

sufficiently large admissible integer.

We will prove the following theorem

Theorem 9.1. There exists δ0 < 1 so that, if the dimension δA exceeds δ0, then the
set of denominators DA contains almost every admissible integer. More precisely,
there is a constant c = c(A) so that

](DA ∩ [N/2, N ])

](AA ∩ [N/2, N ])
= 1 +O(e−c

√
log(N)),

13Hensley formulated this conjecture without the extra admissibility condition. However,
Bourgain and Kontorovich observed that A = {2, 4, 6, 8, 10} satisfies the Hausdorff dimension
condition but DA modulo 4 contains only 0, 1, 2. Thus integers congruent to 3 modulo 4 can not
be represented.
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where AA = {d ∈ Z : d ∈ DA mod q for all q > 1} is the set of admissible integers.
Furthermore, each d produced above appears with multiplicity

� N2δA− 1001
1000 .

Remark 9.2. This implies Theorem 1.4 by taking A = {1, . . . , 50}. As noted above
there are no local obstructions in this case. Of course one needs to verify that in
this case δA > δ0. But it can be computed that δA � 0.986, while the proof yields
δ0 � 0.984. Later δ0 was improved to 5/6 by Huang allowing A = 5. It is unlikely
that the methods can be pushed all the way down to δ0 = 1

2
.

Recall that ΓA is the semigroup (freely and finitely) generated by the matrix
products (

0 1
1 a

)(
0 1
1 a′

)
for a, a′ ∈ A.

We write Γ = ΓA. If Γ̃A is the semigroup in GL2(Z) generated by the matrices(
0 1
1 a

)
with a ∈ A, then we can consider the orbit OA = Γ̃A · e2. We find that

DA = 〈OA, e2〉.
Since we want to work with a semigroup in SL2(Z) we observe that

OA = ΓA · e2 ∪
⋃
a∈A

ΓA ·
(

0 1
1 a

)
e2.

This allows us to work without loss of generality with Γ in place of Γ̃A.

Remark 9.3. The reduction of Γ modulo q is all of SL2(Z/qZ) for all q co-prime
too a certain bad modulus B. This follows from Goursat’s Lemma and strong
approximation as discussed earlier. For the alphabet A = {1, 2} (and all alphabets
containing it), it is easy to see that B = 1.

For simplicity we assume that the reduction of Γ is full from now on.14 Given

γ =

(
a b
c d

)
∈ Γ \ {1} one obtains (using induction) that

1 ≤ a ≤ min(b, c) ≤ max(b, c) < d.

Recall that we have the inequalities

1

2
‖γ‖ ≤ Tr(γ) ≤ 2‖γ‖

for the Frobenius norm. Furthermore we have

‖γ‖∞ = d ≤ |γe2| =
√
b2 + d2 < ‖γ‖ < 2|γe2| < 4‖γ‖∞,

14This is anyway true for all alphabets containing 1 and 2. The modifications needed for the
general case are minor.
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for γ ∈ Γ.
Given γ ∈ Γ we denote the expanding eigenvalue by λ(γ) = λ+(γ) and the

contracting eigenvalue by λ−(γ) = 1
λ+(γ)

. The normalized eigenvectors are denoted

by v+(γ) and v−(γ) respectively. Of course we have

λ(γ) =
Tr(γ) +

√
Tr(γ)2 − 4

2
> 1.

(In particular Γ contains no parabolic elements, since all the eigenvalues are real.)

Proposition 9.4. Let γ, γ′ ∈ Γ. Then we have

λ(γγ′) = λ(γ)λ(γ′)
[
1 +O

(
|v+(γ)− v+(γ′)|+ ‖γ‖−2 + ‖γ′‖−2

)]
.

Furthermore,

|v+(γγ′)− v+(γ)| � ‖γ‖−2 and |v−(γγ′)− v−(γ′)| � ‖γ′‖−2.

Proof. First, for large γ we have

λ(γ) =
Tr(γ) +

√
Tr(γ)2 − 4

2
= Tr(γ) +O(‖γ‖−1).

We can also approximate the eigenvectors by

v+(γ) =
(b, λ+(γ)− a)√
b2 + (λ+(γ)− a)2

=
(b, d)√
b2 + d2

+O(‖γ‖−2) and

v−(γ) =
(d− λ−(γ), c)√

(d− λ−(γ))2 + c2
=

(−d, c)√
c2 + d2

+O(‖γ‖−2) and

Taking the inner product yields

|〈v+(γ), v−(γ)>〉| = bc+ d2√
(b2 + d2)(c2 + d2)

+O(‖γ‖2) ≥ 1

2
,

for large γ. Thus the angle between expanding and contracting eigenvector does
not degenerate. We will only proof the almost multiplicativity of the (expanding)
eigenvalues, since the eigenvector estimates are similar. Note that by our first
observation it suffices to look at the traces:

|Tr(γγ′)− Tr(γ) Tr(γ′)| = |(aa′ + dc′ + cb′ + dd′)− (a+ d)(a′ + d′)|

≤ d

d′
|bc
′d′

d
− a′d′|+ d′

d
|cb
′d

d′
− ad|

≤ d

d′
(1 + c′|bd

′

d
− b′|) +

d′

d
(1 + c|b

′d

d′
− b|)

=
d

d′
+
d′

d
+ (cd′ + c′d)| b

d
− b′

d′
|.

We can clearly estimate

| b
d
− b′

d′
| � |v+(γ)− v+(γ′)|+ ‖γ‖−2 + ‖γ′‖−2.
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We conclude that

|Tr(γγ′)− Tr(γ) Tr(γ′)| � dd′(|v+(γ)− v+(γ′)|+ ‖γ‖−2 + ‖γ′‖−2).

which implies the first part of the statement. �

We now set up the (orbital) circle method. We can not simply sum over {γ ∈
Γ: ‖γ‖ ≤ X}, since for this our treatment of the minor arcs does not work. Instead
we have to replace this nice set by a more complicated one which we construct
now. Given a density point x ∈ C = CA we let

v = vx =
(x, 1)√
1 + x2

be the corresponding unit vector. We let N be large enough and let δ > δ0 = 307
312

.
Define

b =
1

1000
(δ − δ0) > 0.

Let α0 > 0 be a parameter chosen later. Put

B = N b and Q = eα0

√
log(N)

and define

U = {u0 =
B

100
< u ≤ 99

100
B : u− u0 ∈

2B

Q5
· N} ⊂ [

1

100
B,

99

100
B].

The cardinality of U is roughly Q4:

]U � Q5.

Proposition 9.5. For each u ∈ U , there is a non-empty set ℵu ∈ Γ, all of the
same cardinality (i.e. ]ℵu = ]ℵ′u for all u, u′ ∈ U), so that the following holds. For
every a ∈ ℵu, its expanding eigenvector is restricted by

|v+(a)− v| < Q−5

and its expanding eigenvalue is restricted by

|λ(a)− u| < B

Q5
.

In particular λ(a) ∈ ( B
200
, B) for large N . Moreover, for any q < Q, any ω ∈

SL2(Z/qZ) and any u ∈ U we have

]{a ∈ ℵu : a ≡ ω mod q} =
]ℵu

] SL2(Z/qZ)
(1 +O(Q−4)),

where the implied constant does not depend on q, ω or u.

We define

ℵ =
⊔
u∈U

ℵu.
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Proof. We set R = ] SL2(Z/BZ). Furthermore, define

α0 =
βc

40R
and T = N c1 ,

for c as in Theorem 6.2 and a small parameter c1 to be determined later. Finally
put

H = Q12 and H1 = Q6

and define the set

S(T ) = {γ ∈ Γ: |v+(γ)− v| < H−1, |λ(γ)− T | < T

H1

}.

We have the crude estimate

]S(T )� T 2δQ−18 +O(T 2δe−c
√

log(T )).

As long as

c1 >

(
3b

4R

)2

(30)

we have

e−c
√

log(T ) � Q−30.

Thus, applying the pigeon hole principle. we find sT ∈ S(T ) so that

S ′(T ) = {s ∈ S(T ) : s ≡ sT mod B} (31)

satisfying

]S ′(T ) ≥ ]S(T )

] SL2(Z/BZ)
� T 2δQ−18.

For this set the counting statement from Corollary 6.3 remains significant. Indeed,
for q < Q with B | q and any w ∈ SL2(Z/qZ) with w ≡ sT mod B, we get

]{s ∈ S ′(T ) : s ≡ w mod q} = ]{s ∈ S(T ) : s ≡ w mod q}

=
] SL2(Z/BZ)

] SL2(Z/qZ)
]{s ∈ S(T ) : s ≡ w ≡ sT mod B}(1 +O(Q−6)) +O(T 2δQ−30)

=
] SL2(Z/BZ)

] SL2(Z/qZ)
]S ′(T )(1 +O(Q−6)) +O(T 2δQ−30).

By our observations above the main term is � T 2δQ−21 and therefor dominates
the error.

Since R is the order of SL2(Z/BZ) we find that each

γ ∈ S ′(T )sR−1
T

satisfies γ ≡ 1 mod B. We pick representatives {γ1, . . . , γR} = SL2(Z/BZ) and
take x1, . . . , xR ∈ Γ so that

xr ≡ yr mod B for r = 1, . . . , R
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To ensure the existence of these elements we use the assumption that Γ/Γ(q) ∼=
SL2(Z/qZ) for all q. We can assume that the xr are of size �A 1.

We still need to fix a single auxilliary element f0 ∈ Γ with

λ(f0) � B
1

100 and |v+(f0)− v| < Q−6.

We obtain
v+(s · sR−1

T f0xr) = v(1 +O(Q−6)),

for any s ∈ S ′(T ). Furthermore

λ(s · sR−1
T f0xr) = TRλ(f0xr)(1 +O(Q−6)).

For each u ∈ U , u � B and each r = 1, . . . , R we take T = Tu,r so that

TRλ(f0xr) = u.

This boils down to Tu,r � B
99

100R = N
99b

100R . This determines c1 and (30) is easily
satisfied.

In summary we have defined sets

Bu,r = S ′(Tur) · (sTu,r)R−1f0xr ⊂ Γ

for each u and r.For each a ∈ Bu,r we control the expanding vector

|v+(a)− v| � Q−6

and the eigenvalue
λ(a) = u(1 +O(Q−6)).

By construction we have, for all q < Q with B | q and all w ∈ SL2(Z/qZ) with
w ≡ f0xr mod B, that

]{a ∈ Bu,r : a ≡ w mod q} =
] SL2(Z/BZ)

] SL2(Z/qZ)
]Bu,r(1 +O(Q−5)). (32)

But we can bound the cardinality of Bu,r from below by � N c.
For fixed u we apply Lemma 6.4 to Bu,r with η = Q−5 and q0 = B. This way

we obtain sets B′u,r ⊂ Bu,r of size � N c for which (32) still holds. Without loss
of generality we can assume that the cardinality of B′u,r is independent of r. We
define

ℵ̃u =
R⊔
r=1

B′u,r.

For B | q < Q and w ∈ SL2(Z/qZ) we record that

]{a ∈ ℵ̃u : a ≡ w mod q} =
] SL2(Z/BZ)

] SL2(Z/qZ)
]Bu,r(1 +O(Q−5)).

Here r is given by w ≡ f0xr mod B. Recall that ]B′u,r = ]ℵ̃u
R

so that we have

]{a ∈ ℵ̃u : a ≡ w mod q} =
]ℵ̃u

] SL2(Z/qZ)
(1 +O(Q−5)).
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Finally we drop the condition B | q by summing over certain arithmetic pro-
gressions. This is possible since B�A 1. This allows us to apply Lemma 6.4 again
to ℵ̃0 with η = Q−5 and q0 = 1. We obtain the desired sets

ℵu ⊂ ℵ̃0.

Obviously we can ensure that they all have the same cardinality. �

Proposition 9.6. Given M � 1 and H = ec
√

log(M), there exists 1
4
M ≤ L ≤ 4M ,

an integer k � log(M) and a set Ξ = Ξ(M,H;L, k) ⊂ Γ with the following
properties. For all γ ∈ Ξ, the expanding eigenvalue satisfies

L(1− 1

log(L)
) < λ(γ) < L,

the expanding eigenvector is controlled by

|v+(γ)− v| < 1

H
,

and the wordlength metric l (in our usual generators of Γ) is exactly

l(γ) = k.

Furthermore, we have
L2δ

H log(L)2
� ]Ξ� L2δ.

Proof. The set is constructed using the following algorithm:

(1) Let S1 ⊂ Γ be defined by

S1 = {γ ∈ Γ:
M

2
< ‖γ‖ < M, |v+(γ)− v| < H−1}.

By Proposition 7.9 we have ]S1 �M2δH−1.
(2) Note that the expanding eigenvalue of γ ∈ S1 can be bounded by 1

4
M ≤

λ(γ) ≤ 4M . By the pigeon hole principle we find an L in this range so that

] {γ ∈ S1 : L(1− 1

log(L)
) < λ(γ) < L}︸ ︷︷ ︸

=S2(L)=S2

� L2δ

H log(L)
.

(3) Finally we note that l(γ) � log(‖γ‖), with implied constants only de-
pending on A. (In other words the metrics l is commensurable with the
archimedean one.) We can use the pigeon hole principle again to find some
k with

] {γ ∈ S2 : l(γ) = k}︸ ︷︷ ︸
=Ξ(M,H;L,k)=Ξ

� L2δ

H log(L)2
.

�
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We will now use the set ℵ and the sets Ξ(M,H;L, k) to construct an ensemble
ΩN that is used to set up the circle method. We start by taking

M =
√
N/B = N

1
2
−b and H = Q5.

Note that the parameter α0 was chosen sufficiently small so that H < ec
√

log(M).

Using the previous result we find sets Ξ̃1 = Ξ(M,H;L, k) with L = α1M for
α1 ∈ (1

4
, 4). Set

Ñ1 = L = α1N
1
2
−b, N1 = BÑ1 = α1N

1
2 and Ξ1 = ℵΞ̃1.

Note that the representation of an element in Ξ1 as a product of elements in ℵ
and Ξ̃1 is unique since the wordlength of elements in Ξ̃1 is fixed. We have the easy
estimate

]Ξ1 ≥ ]Ξ̃1 � Ñ2δ−ε
1 � N δ−2δb−ε.

The first step is now to (re)-set

M =
N

1
2

1

α1

=
N

1
4

√
α1

and H = log(M).

Generate the set Ξ2 = Ξ(M,H;L, k). Further set N2 = L = α2M , where L is the
newly obtained parameter while constructing Ξ(M,H;L, k) and α2 ∈ (1

4
, 4). We

have

]Ξ2 �
N2δ

2

log(N2)3
.

We now iterate the first step as follows. We start with j = 3 and iterate up to
j = J − 1, where 2J−1 = c log(N). (The constant c will be determined in a bit but
is independent of N .) For each j we set

M =
N

1
2
j−1

αj−1

=
N2−j

α
1
2
j−1α

1
4
j−2 · · ·α2−j+1

1

and H = log(M).

We then generate the set Ξj = Ξ(M,H;L, k) and set Nj = L = αjM for αj ∈
(1

4
, 4). Note that

]Ξj �
N2δ
j

log(Nj)3
and

1

16
N2−j < Nj < 16N2−j .

The final set (i.e. j = J) is constructed with

M =
NJ−1

α2
J−1

and H = log(M).

As before we take ΞJ = Ξ(M,H;L, k) and define

NJ = L =
αJN

2−J+1

αJ−1 · · ·α2−J+1

1

� N2−J+1

= e
1
c � 1.
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Finally note that 1
4
< NJ/M = αJ < 4, so that

1

4
<
N1 · · ·NJ

N
=
BÑ1N2 · · ·NJ

N
< 4.

Set

ΩN = Ξ1 · · ·ΞJ = ℵ · Ξ̃1 · Ξ2 · · ·ΞJ .

We will now record some properties of ΩN that follow directly from its construction.
For γ ∈ ΩN writhe

Γ = aξ̃2ξ2 · · · ξJ with a ∈ ℵ, ξ̃1 ∈ Ξ̃1 and ξj ∈ Ξj for 2 ≤ j ≤ J.

Due to the wordlength restrictions this decomposition is unique.

Lemma 9.7. For any 2 ≤ j1 ≤ j2 ≤ J , any ξj ∈ Ξj for j1 ≤ j ≤ j2 and any

a ∈ ℵ, ξ̃1 ∈ Ξ̃1 we have the following inequalities

|v+(ξ̃1 · ξ2 · · · ξJ)− v| � Q−5,

1

2
<
λ(ξj1 · · · ξj2)

Nj1 · · ·Nj2

< 2,

1

2
<
λ(ξ̃1ξ2 · · · ξj2)

Ñ1N2 · · ·Nj2

< 2 and

1

2
<

λ(aξ̃1ξ2 · · · ξj2)

λ(a)Ñ1N2 · · ·Nj2

< 2.

Proof. We first look at the eigenvector estimate. Observe that

|v+(ξ̃1 · ξ2 · · · ξJ)− v| ≤ |v+(ξ̃1 · ξ2 · · · ξJ)− v+(ξ̃1)|+ |v+(ξ̃1 − v| � ‖ξ̃1‖−2 + Q−5.

This establishes the first estimate. We will only prove the first (second in total)
of the three eigenvalue estimates, since the remaining two are very similar to
establish. First observe that as above we get

|v+(ξj1 · · · ξj2)− v| � 1

log(Nj)
.

We claim that

λ(ξj1 · · · ξj2) = Nj1 · · ·Nj2 ·
(

1 +O(
1

log(Nj1)
+ . . .+

1

log(Nj2)
)

)
.

This is obvious for j1 = j2 and if j1 = j2 − 1 we have

λ(ξj2−1ξj2) = λ(ξj2−1)λ(ξj2) ·
(
1 +O(|v+(ξj2−1)− v+(ξj2)|+ ‖ξj2−1‖−2 + ‖ξj2‖−2)

)
= Nj2−1 ·Nj2 ·

(
1 +O(

1

log(Nj2−1)
+

1

log(Nj2)
)

)
.
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The general case follows by induction using the estimate

λ(ξj1 · · · ξj2)

= λ(ξj1)λ(ξj1+1 · · · ξj2) ·
(
1 +O(|v+(ξj1)− v+(ξj1+1 · · · ξj2)|+ ‖ξj1‖−2 + ‖ξj1+1 · · · ξj2‖−2)

)
= Nj1·)λ(ξj1+1 · · · ξj2) ·

(
1 +O(

1

log(Nj1)
+

1

log(Nj1+1)
)

)
.

We can rewrite this as

λ(ξj1 · · · ξj2) = Nj1 · · ·Nj2 ·
(

1 +O

(
2J

log(N)

))
.

The claim follows when taking the constant c (remember earlier ...) sufficiently
small. �

A direct corollary of this is the bound on the (archimedean) norms:

‖γ‖ ≤ 2λ(γ) ≤ 16N.

We can also estimate the size of ΩN as follows:

]ΩN = ]Ξ1 · · · ]ΞJ � Ñ2δ−ε
1 · N2δ

2

log(N2)3
· · · N2δ

J

log(NJ)3
� N2δ−2δb−ε.

This ensures that the set ΩN is not to small. Of course we also have

]Ξj · · · ]ΞJ � (Nj · · ·NJ)2δe−c(J−j) log log(Nj).

We define the all important trigonometric polynomial

SN(θ) =
∑
γ∈ΩN

e(θ〈γe2, e2〉).

The major arcs (of level Q) are defined by

MQ =
⊔
q<Q

⊔
(a,q)=1

[
a

q
− Q

N
,
a

q
+

Q

N

]
.

We define

νq(a) =
1

] SL2(Z/qZ)

∑
ω∈SL2(Z/qZ)

e

(
a

q
〈ωe2, e2〉

)
.

Theorem 9.8. There exists a function $N : R/Z → C (given explicitly below)
such that

(1) The Fourier transform $̂N : Z→ C given by

$̂N(n) =

∫ 1

0

$N(θ)e(−nθ)dθ

is real-valued and nonnegative, with

$N(0) =
∑
n

$̂N(n)� ]ΩN .
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(2) For 1
15
N < n < 1

5
N we have

$̂N(n)� ]ΩN

N
.

(3) On the major arcs θ = a
q

+ β ∈MQ we have

SN(
a

q
+ β) = νq(a)$N(β)(1 +O(Q−4)).

Proof. We write ΩN = ℵΩ′ with Ω′ = Ξ̃1Ξ2 · · ·ΞJ . This lets us decompose

SN(θ) =
∑
a∈ℵ

∑
γ∈Ω′

e(θ〈aγe2, e2〉).

Recall the properties

|v+(a)− v| < Q−5, |v+(γ)− v| � Q−5

and λ(a) � B.
We have (x, y)⊥ = (−y, x). Furthermore one has the elementary decomposition

w =
〈w, v⊥−〉
〈v+, v⊥−〉

v+ +
〈w, v⊥+〉
〈v−, v⊥+〉

v−

for any linearly independent v+, v− ∈ R2 and w ∈ R2. We deduce that for any
unit vector w ∈ R2 and any large ξ ∈ Γ we have

ξw = λ(ξ)
〈w, v⊥−(ξ)〉
〈v+(ξ), v⊥−(ξ)〉

v+(ξ)

(
1 +O(

1

‖ξ‖2
)

)
.

We obtain

〈ξe2, e2〉 = λ(ξ)
〈w, v⊥−(ξ)〉
〈v+(ξ), v⊥−(ξ)〉

〈v+(ξ), e2〉
(

1 +O(
1

‖ξ‖2
)

)
.

Applying this our present situation gives

〈γe2, e2〉 = λ(γ)
〈e2, v

⊥
−(γ)〉

〈v+(γ), v⊥−(γ)〉
〈v, e2〉

(
1 +O(

1

Q5
)

)
.

Similarly we get

〈aγe2, e2〉 = λ(aγ)
〈e2, v

⊥
−(aγ)〉

〈v+(aγ), v⊥−(aγ)〉
〈v+(aγ), e2〉

(
1 +O(

1

N2
)

)
= λ(a)λ(γ)

〈e2, v
⊥
−(γ)〉

〈v+(γ), v⊥−(γ)〉
〈v, e2〉

(
1 +O(

1

Q5
)

)
.

Combining the last two equations yields

〈aγe2, e2〉 = λ(a)〈γe2, e2〉+O(NQ−5).
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We turn towards computing SN(θ) for θ = a
q

+β ∈MQ with |β| < Q
N

. From the

definition we get

SN(
a

q
+ β) =

∑
a∈ℵ

∑
γ∈Ω′

e(
a

q
〈aγe2, e2〉)e(β〈aγe2, e2〉)

=
∑
a∈ℵ

∑
γ∈Ω′

e(
a

q
〈aγe2, e2〉)e(βλ(a)〈γe2, e2〉) +O(Q−4]ΩN)

=
∑
γ∈Ω′

∑
ω∈SL2(Z/qZ)

e(
a

q
〈ωγe2, e2〉)

∑
a∈ℵ,

a≡ω mod q

e(βλ(a)〈γe2, e2〉) +O(Q−4]ΩN)

We take a closer look at the inner most sum, using the construction of ℵ in
terms ot the ℵu’s:∑

a∈ℵ,
a≡ω mod q

e(βλ(a)〈γe2, e2〉) =
∑
u∈U

∑
a∈ℵu,

a≡ω mod q

e(βλ(a)〈γe2, e2〉)

=
∑
u∈U

e(βu〈γe2, e2〉) · ]{a ∈ ℵu : a ≡ ω mod q} ·
(
1 +O(Q−4)

)
.

The cardinality of all ℵu is the same and by construction we have

]{a ∈ ℵu : a ≡ ω mod q} =
]ℵ

]U · ] SL2(Z/qZ)
(1 +O(Q−4)).

The implied constant is absolute.
Inserting this above yields

SN(
a

q
+β) =

1

] SL2(Z/qZ)

∑
ω∈SL2(Z/qZ)

e(
a

q
〈ωe2, e2〉)︸ ︷︷ ︸

=νq(a)

]ℵ
]U
∑
γ∈Ω′

∑
u∈U

e(βu〈γe2, e2〉)·(1+O(Q−4)).

It remains to polish the archimedean contribution. For now consider γ and u
fixed. If m ∈ Z satisfies

|m− u〈γe2, e2〉| ≤ B〈γe2, e2〉 ·Q−5,

we have
e(βu〈γe2, e2〉) = e(βm)(1 +O(Q−4)).

There are 2B〈γe2, e2〉Q−5 +O(1) integers m in this range. We obtain

e(βu〈γe2, e2〉) =
Q5

2B〈γe2, e2〉
∑
m∈Z

| m
〈γe2,e2〉

−u|≤BQ−5

e(βm)(1 +O(Q−4)).

With this in mind we set

$N(β) =
]ℵ
]U
∑
γ∈Ω′

Q5

2B〈γe2, e2〉
∑
m∈Z

e(βm)
∑
u∈U

1| m
〈γe2,e2〉

−u|≤BQ−5 .
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This gives us

SN(
a

q
+ β) = νq(a)$N(β)(1 +O(Q−4))

as required. It remains to verify some properties of $N(β).
The Fourier transform of $N is given by

$̂N(n) =
]ℵ
]U
∑
γ∈Ω′

Q5

2B〈γe2, e2〉
∑
u∈U

1| n
〈γe2,e2〉

−u|≤BQ−5

and clearly has the desired properties.
We can estimate

N

4B
< 〈γe2, e2〉 <

4N

B
.

Thus for N
25
< n < N

5
we have

B

100
<

n

〈γe2, e2〉
<

99

100
B.

By the spacing in U the innermost sum has at least one contribution. We obtain
the lower bound

$̂N(n)� ]ℵ
]U
∑
γ∈Ω′

Q5

2B〈γe2, e2〉
� ]ℵ · ]Ω′

N
=
]ΩN

N
.

This completes the proof. �

This is all we need to treat the major arc contribution. Recall the triangle
function defined in (21). We rescale this function to

ψN(x) = ψ(
N

Q
x)

and make it periodic by averaging:

ΨN(θ) =
∑
m∈Z

ψN(θ +m).

The desired function, which has support on the major arcs, is

ΨQ,N(θ) =
∑
q<Q

∑
(a,q)=1

ΨN(θ − a

q
).

The set up is now very analogous to the one in the proof of Theorem 1.2. The
representation number is

RN(n) = ŜN(n) =

∫ 1

0

SN(θ)e(−nθ),

We split RN(n) = MN(n) + EN(n) into major arcs and minor arcs (or error) by
setting

MN(n) =

∫ 1

0

ΨQ,N(θ)SN(θ)e(−nθ)dθ.
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Of course we then must have

EN(n) =

∫ 1

0

(1−ΨQ,N(θ))SN(θ)e(−nθ)dθ.

Theorem 9.9. For 1
20
N ≤ n ≤ 1

10
N we have

MN(n)� ]ΩN

N · log log(N)
.

Proof. Fix n ∈ 1
20

[N, 2N ]. We first rewrite the major arcs as

MN(n) =
∑
q<Q

∑
(a,q)=1

∫ 1

0

ΨN(θ − a

q
)SN(θ)e(−nθ)dθ

=
∑
q<Q

∑
(a,q)=1

e(−na
q

)

∫ 1

0

ΨN(β)SN(
a

q
+ β)e(−nβ)dβ. (33)

Inserting the approximation for SN(a
q

+ β) on major arcs yields the following:

MN(n) =
∑
q<Q

∑
(a,q)=1

νq(a)e(−na
q

)

∫ 1

0

ΨN(β)$N(β)e(−nβ)dβ+O(QQ
Q

N
(]ΩN)Q−4).

Note that this expression is already split in archimedean and modular component:

MN(n) = SQ(n) · ΠN(n) +O(
]ΩN

NQ
),

for

SQ(n) =
∑
q<Q

∑
(a,q)=1

νq(a)e(−na
q

)

and

ΠN(n) =

∫ 1

0

ΨN(β)$N(β)e(−nβ)dβ.

The singular series already appeared in (22). The treatment there showed that

SQ(n)� log log(n)−1.

Turning towards the singular integral we first observe that

ΠN(n) =
∑
m∈Z

Ψ̂N(n−m)$̂N(m) =
Q

N

∑
m∈Z

ψ̂(
Q

N
(n−m))$̂N(m).

Recall that ψ̂ is positive and satisfies ψ̂(y) > 2
5

for |y| ≤ 1
2
. We get

ΠN(n) ≥ 2Q

5N

∑
|m−n|< N

2Q

$̂N(m).



THIN GROUPS AND APPLICATIONS 110

For N sufficiently large the summation condition forces mN ∈ [ 1
25
, 1

5
]. Using the

properties of $̂N in this range gives

ΠN(n)� Q

N
· N

2Q
· ]ΩN

N
� ]ΩN

N
.

This completes the proof. �

We turn now to the treatment of the minor arcs. As usual this will be quite
involved. The goal is to estimate∑

n∈Z

|EN(n)|2 =

∫ 1

0

|1−ΨQ,N(θ)|2|SN(θ)|2dθ.

We consider the regions

WQ,K =

{
θ =

a

q
+ β :

Q

2
≤ q < Q, (a, q) = 1,

K

2N
≤ |β| < K

N

}
.

The parameters K and Q will vary dyadically in the ranges

Q < N
1
2 and K <

N
1
2

Q
.

Note that if K � 1, then we interpret the condition on β as |β| � N−1.

Proposition 9.10. Let N,Q,K be as above and write θ = a
b

+ β ∈ WQ,K. Then

|SN(θ)| � N2δ

(
N1−δ

KQ

)
as N →∞.

Proof. We write

ΩN = Ξ1 · Ω′ for Ω′ = Ξ2 · · ·ΞJ .

Recall that for γ ∈ Ξ1 and ω ∈ Ω′ we have

|γ>e2|, |ωe2| < 50N
1
2 .

Furthermore, ]Ξ1, ]Ω
′ � N δ.

We rewrite SN(θ) as follows

SN(θ) =
∑
x∈Z2

∑
y∈Z2

µ(x)ν(y)e(θ〈x,y〉),

where µ and ν are (counting) measures defined by

µ(x) =
∑
γ∈Ξ1

1x=γ>e2 and µ(x) =
∑
ω∈Ω′

1y=ωe2 .
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The projection ω → ω · e2 is one-to-one. (This is so because the continued fraction
of a rational number, if restricted to have even length, is unique.) Similarly the
map γ 7→ γ> · e2 is one-to-one. Thus we have

‖µ‖∞, ‖ν‖∞ ≤ 1.

At this point we decompose ν into (say 100000) blocks

ν =
∑
α

ν(α)

so that if y,y′ ∈ supp(να), then we have

|y − y′| < 1

2
N

1
2 .

We bound |SN(θ)| ≤
∑

α|S
(α)
N (θ)| with

S
(α)
N (θ) =

∑
x∈Z2

∑
y∈Z2

µ(x)ν(α)(y)e(θ〈x,y〉).

We will estimate each S
(α)
N independent of α obtaining the desired bound for SN .

Take a smooth test function Υ: R2 → R+ as follows. On [−1, 1]2 the function

is bigger than 1 and the Fouriertransfrom Υ̂ is supported in B1(0).
Applying Cuachy-Schwarz, artificially inserting Υ and opening the squares leads

to

|S(α)
N (θ)| �

(∑
x

µ(x)2

) 1
2

︸ ︷︷ ︸
�Nδ/2

(∑
x

Υ(
x

50N
1
2

)
∑
y

ν(α)(y)
∑
y′

ν(α)(y′)e(〈x,y − y′〉θ)

) 1
2

.

Using Poisson summation in the remaining x-sum and exploiting the support of

Υ̂ we obatin

|S(α)
N (θ)| � N

1
2

+ δ
2

(∑
y,y′

ν(α)(y)ν(α)(y′)1‖(y−y′)θ‖< 1

50
√
N

) 1
2

.

Here ‖ · ‖ is the distance to the nearest lattice point in Z2. We have

‖(y − y′)
a

q
‖ ≤ ‖(y − y′)θ‖+ |y − y′||β| < 1

50
√
N

+
K

2
√
N
<

1

Q
.

Since q < Q we find that ‖(y − y′)a
q
‖ = 0, which implies

y ≡ y′ mod q.

We obtain

|y − y′| �
√
N

K
.
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So far we found

|S(α)
N (θ)| � N

1
2

+ δ
2

(∑
y

ν(α)(y)
∑
y′

1y≡y′ mod q,

|y−y′|�
√
N
K

) 1
2

.

Using Q < N
1
2

K
and estimating the y′-sum trivially yields

|S(α)
N (θ)| � N

1
2

+ δ
2

(∑
y

ν(α)(y)
N

Q2K2

) 1
2

� N1+δ

QK
.

�

This bound already suffices to treat certain parameter-ranges.

Theorem 9.11. Assume Q <
√
N and K <

√
N
Q

. Then∫
QQ,K

|SN(θ)|2dθ � (]ΩN)2

N
· N

2(1−δ)+4b

K
.

Proof. Estimating trivially using the proposition above yields∫
WQ,K

|SN(θ)|2dθ � K

N
Q2

(
N1+δ

QK

)2

� N4δ−1 · N
2(1−δ)

K
.

We conclude by using ]ΩN � N2δ−2δb−ε. �

For the next (bilinear form) estimate we introduce

PQ,β = {θ =
a

q
+ β :

Q

2
≤ Q < Q, (a, q) = 1}.

Proposition 9.12. For all ε > 0 we have∑
θ∈PQ,β

|SN(θ)| �ε N
2δQ2N1−δ+ε

(
1

Q
3
2

+
1

QN
1
8

)
.

Proof. Set Ω′ = Ξ1Ξ2 and Ω′′ = Ξ2 · · ·ΞJ . Of course we have ΩN = Ω′Ω′′. Fur-
thermore,

|γ>e2| < 300N
3
4 and |ωe2| < 2000N

1
4 ,

for γ ∈ Ω′ and ω ∈ Ω′′. Recall ]Ω′ � N
3δ
2 and ]Ω′′ � N δ2.

Proceeding as in the proof of the previous proposition (also using analogous
notation) we need to bound

S
(α)
N =

∑
x

∑
y

µ(y)ν(α)(y)e(θ〈x,y〉).

The difference being that we arrange ν(α) so that for y,y′ ∈ supp(ν(α)) we have

|y − y′| < 1

10000
N

1
4 .
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We proceed by writing∑
θ∈PQ,β

|S(α)
N (θ)| =

∑
q�Q

∑
(a,q)=1

ζ(θ)S
(α)
N (θ)

=
∑
q�Q

∑
(a,q)=1

ζ(θ)
∑
x

∑
y

µ(y)ν(α)(y)e(θ〈x,y〉).

Choose the bump function Υ essentially as earlier but assuming that the Fourier
transform is supported in a ball of radius 1/40 of the origin. Applying Cauchy-
Schwarz, inserting Υ, exchanging order of summation and applying Poisson sum-
mation yields

∑
θ∈PQ,β

|SN(θ)| � N3δ/4

∑
x

Υ(
x

300N
3
4

)|
∑
q�Q

∑
(a,q)=1

ζ(θ)
∑
y

ν(α)(y)e(θ〈x,y〉)|2
 1

2

� N
3(δ+1)

4 X
1
2 ,

for
X = XQ,β =

∑
q,q′

∑
a,a′

∑
y,y′

ν(α)(y)ν(α)(y′)1‖yθ−y′θ′‖< 1

12000N
3
4

.

Coordinate wise the condition in the sum reads

‖y1θ − y′1θ′‖, ‖y2θ − y′2θ′‖ <
1

12000N
3
4

.

Note that y1y2y
′
1y
′
2 6= 0. Recall that |β| < K

N
< 1

N
1
2Q

. We get

‖y1
a

q
− y′1

a′

q′
‖ ≤ ‖y1θ − y′1θ′‖+ |(y1 − y′1)β| < 1

12000N
3
4

+
1

1000N
1
4Q

.

A similar estimate holds for y2, y
′
2.

We put Y =

(
y1 y′1
y2 y′2

)
. The determinant is given by

Y = det(Y ) = y1y
′
2 − y′1y2.

We can estimate

‖Y a
q
‖ ≤ ‖y′2

(
y1
a

q
− y′1

a′

q′

)
‖+ ‖y′1

(
y′2
a′

q′
− y2

a

q

)
‖ < 1

Q
.

This forces Y ≡ 0 mod q. Running the same argument with the roles of a, q and
a′, q′ interchanged we get Y ≡ 0 mod q′. Thus, if q = [q, q′], we have

Y ≡ 0 mod q.

Note that 1
2
Q ≤ q < Q2.

We decompose X = X1 + X2 according to Y 6= 0 or Y00. The desired bound
will follow directly from the estimates for X1 and X2, which we will prove now.
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We start by considering X1. Here we need to make use of the condition Y 6= 0.
Observe

|Y| ≤ |y1(y′2 − y2)|+ |(y1 − y′1)y2| < N
1
2 .

Since q | Y and Y 6= 0 we have

q ≤ min(Q2, N
1
2 ) ≤ QN

1
4 .

This forces

y1
a

q
− y′1

a′

q′
≡ 0 mod 1 and y2

a

q
− y′2

a′

q′
≡ 0 mod 1.

Introducing q̃ = (q, q′), q = q1q̃ and q′ = q′1q̃ so that q = q1q
′
1q̃ and

y1aq
′
1 ≡ y′1a

′q1 mod q and y2aq
′
1 ≡ y′2a

′q1 mod q.

We deduce that q1 | y1 and q1 | y2 since (a, q) = (a′, q′) = 1. But (y1, y2) = 1, so
that q1 = 1. Similar we deduce that q′1 = 1. This implies that q = q′ = q.

Fixing y,y′ ∈ Ω′′e2 determines Y . Since q | Q this leaves N ε choices for q and
� Q choices for a. But this determines a′ since y1a ≡ y′1a

′ mod q′ (recall q = q′)
and 1 ≤ a ≤ q′. We arrive at

X1 �
∑
y,y′,
Y6=0

ν(α)(y)ν(α)(y′)
∑
q|Y,

Q
2
≤q<Q

∑
a mod q

1� N δ+εQ.

We turn towards the estimate for X2. Note that Y = 0 implies y1

y2
=

y′1
y′2

. By the

uniqueness of the continued fraction expansion we obtain y = y′. There are N δ/2

choices for y and we fix one of these. To save space we set N ′ = 1
12000

N
3
4 . Then

we have the condition

‖y1(
a

q
− a′

q′
)‖ < 1

N ′
.

Put v = (y1, q), v
′ = (y1, q

′) and write q = vr as well as y1 = vz with (z, r) = 1.
Without loss of generality we have v ≤ v′. Since v, v′ | y1, there are at most N ε

choices for these numbers. Now there are � Q/v′ choices for q′ ≡ 0 mod v′ and
� Q choices for (a′, q′) = 1. Having made these choices we fixed y1

a′

q′
mod 1,

which we denote by ψ. Our condition above reads

‖za
r
− ψ‖ < 1

N ′
.

Define the set

Uz = {za
r

mod 1: Q/(2v) ≤ r < Q/v, a ≤ Q with (a, vr) = 1}.

Points u ∈ Uz are separated by a distance of at least v2/Q2. We conclude that

the intersection of Uz with the interval [ψ − 1
N ′
, ψ + 1

N ′
] contains at most Q2

v2N ′
+ 1

points. Once u = f
r
∈ Uz is determined we have v possible values for a mod q, as

q = rv.
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In summary we get

X1 �
∑
y

να(y)
∑
v,v′|y1,
v≤v′

∑
q′≡0 mod v′

∑
(a′,q′)=1

∑
f
r
∈Uz∩[ψ− 1

N′ ,ψ+ 1
N′ ]

∑
a<q,

a≡f mod r

1

�
∑
y

να(y)
∑
v,v′|y1,
v≤v′

Q

v′
·Q
(

1 +
Q2

v2N ′

)
v

� N δ/2+εQ2

(
Q2

N
3
4

+ 1

)
.

This completes the estimate of X2 and therefore the proof. �

This leads to a minor arc bound, which is useful for large Q.

Theorem 9.13. Assume Q < N
1
2 and KQ < N

1
2 . Then∫

WQ,K

|SN(θ)|2dθ � (]ΩN)2

N
·N2(1−δ)+4b

(
1

Q
1
2

+
1

N
1
8

)
.

Proof. We estimate∫
WQ,K

|SN(θ)|2dθ � sup
θ∈WQ,K

|SN(θ)| · K
N

sup
β�K

N

∑
θ∈PQ,β

|SN(θ)|.

Inserting the estimates from the propositions above yields∫
WQ,K

|SN(θ)|2dθ � N2δ+1+ε

(
1

Q
1
2

+
1

N
1
8

)
.

The claim follows directly by recalling how large ΩN is at least. �

We still need suitable estimates for the situation when K is small.

Proposition 9.14. Assume θ ∈ WQ,K with 1� KQ < N
5
52 . Then

|SN(θ)| � ]ΩN

(
ec log log(KQ)2

(KQ)1−(1−δ) 52
5

)
.

Proof. Since Ni � N2−i there is 1 ≤ j ≤ J so that

1

100
(KQ)

13
5 < Nj < (KQ)

26
5 < N

1
2 .

We define the three set

Ω(1) = Ξ1 · · ·Ξj−1, Ω(2) = Ξj and Ω(3) = Ξj+1 · · ·ΞJ .
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For gi ∈ Ω(i) and M = Nj+1 · · ·NJ we have the estimates

λ(g1) � N

MNj

,

λ(g2) ∼ Nj and

λ(g3) ∼M.

Note that
Nj

log(Nj)
�M � Nj log(Nj) and J − j � log log(M). Finally recall that

]ω(2) �
N2δ
j

log(Nj)3
and ]Ω(3) � M2δ

ec log log(M)2 .

We are ready to start the estimation of SN(θ). First write

|SN(θ)| �
∑

g1∈Ω(1)

∑
g3∈Ω(3)

∣∣∣∣∣∣
∑

g2∈Ω(2)

e(〈g3e2, g
>
2 g
>
1 e2〉θ)

∣∣∣∣∣∣ .
For fixed g1 put η = g>1 e2 and note that |η| � N

MNj
. Continuing as previously we

obtain the estimate

∑
g3∈Ω(3)

∣∣∣∣∣∣
∑

g2∈Ω(2)

e(〈g3e2, g
>
2 g
>
1 e2〉θ)

∣∣∣∣∣∣� (]Ω(3))
1
2 ·M · (]S)

1
2 ,

for

S = {(g, g′) ∈ [Ω(2)]> × [Ω(2)]> :‖〈(g − g′)η, ei〉‖ �
1

M
for i = 1, 2}.

Note that we have extended the g3-sum to a sum over g3e2 ∈ {z ∈ Z2 : |z| �M}.
Since θ ∈ WK,Q we can write

‖〈(g − g′)η, ei〉
a

q
‖ = ‖〈(g − g′)η, ei〉θ‖+ ‖〈(g − g′)η, ei〉β‖

and estimate

‖〈(g − g′)η, ei〉β‖ � Nj ·
N

MNj

· K
N

=
K

M
.

For fixed g′ we can enlarge the count ]S by allowing g ∈ SL2(Z) with ‖g‖ � Nj.
An application of Lemma 7.8 with η′ = g′η, X = N/M and Y = Nj yields

]S � ]Ω(2) ·
N2
j

K2Q2
.
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In summary we have

∑
g3∈Ω(3)

∣∣∣∣∣∣
∑

g2∈Ω(2)

e(〈g3e2, g
>
2 g
>
1 e2〉θ)

∣∣∣∣∣∣� (]Ω(2) · ]Ω(3))
1
2 ·M · Nj

KQ

� ]Ω(2) · ]Ω(3) (MNj)
1−δec log log(M)2

log(Nj)
3

KQ
.

The result follows directly after executing the g1-sum trivially and recalling bounds
for Nj and M . �

Corollary 9.15. Suppose that 1� KQ < N
5
52 , then we have∫

WK,Q

|SN(θ)|2dθ � (]ΩN)2

N
· Q

(1−δ) 104
5 ec log log(KQ)2

K1−(1−δ) 104
5

.

Proof. This follows directly after inserting the L∞ bound above in the integral. �

This is still not sufficient for all K.

Proposition 9.16. Suppose 1� KQ < N
5
52 , then∑

θ∈PQ,β

|SN(θ)| � ]ΩN ·Q2

(
(KQ)(1−δ) 52

5 ec log log(KQ)2

Q
3
2

)
.

Proof. Using the same decomposition ΩN = Ω(1)Ω(2)Ω(3) as in the previous proof
we follow the proof of Proposition 9.12. It is relatively straight forward to arrive
at ∑

θ∈PQ,β

|SN(θ)| �
∑

g1∈Ω(1)

(]Ω(3))
1
2 ·M · (]S ′)

1
2 ,

for

S ′ = {(θ, θ′, g, g′) ∈ PQ,β × PQ,β × [Ω(2)]> × [Ω(2)]> : ‖(gθ − g′θ′)η‖ � 1

M
}

with η = g>1 e2. It is by now standard to the condition in S ′ to deduce q = q′ and

a(gη) ≡ a′(g′η) mod q.

One obtains

]S ′ � ]Ω(2) ·
N2
j

Q2
.

After inserting this above it is easy to reach the desired estimate. �

Corollary 9.17. Suppose 1� KQ < N
5
52 , then∫

WK,Q

|SN(θ)|2dθ � (]ΩN)2

N
· (KQ)(1−δ) 104

5 ec log log(KQ)2

Q
1
2

.
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Proof. This follows directly after combining the two previous propositions as ear-
lier. �

With these estimates at hand we can complete the analysis of the minor arcs.

Theorem 9.18. Assume δ > δ0. Then for c > 0 we have∑
n∈Z

|EN(n)|2 � (]ΩN)2

N
Q−c.

Proof. By Parseval, we have∑
n∈N

|EN(n)|2 =

∫ 1

0

|1−ΨQ,N(θ)|2|SN(θ)|2dθ.

First, we estimate the contribution that overlaps with the major arcs. Note that
1− ψ(x) = |x| on [−1, 1]. For K � N |β| we have the estimate∫

MQ

|1−ΨQ,N(θ)|2|SN(θ)|2dθ �
∑
q<Q

∑
(a,q)=1

∫
|β|<Q

N

|N
Q
β|2
(

]ΩN

(N |β|Q)1−c

)
dβ

� (]ΩN)2

NQ1−4c
,

where we used Proposition 9.14. Note that here 0 < c < (1− δ)52
5
< 1

4
.

To treat the pure minor arcs we decompose it inn dyadic regions:∫
m

|SN(θ)|2dθ �
∑
Q<
√
N

∑
K<

√
N
Q

IQ,K ,

where

IQ,K =

∫
WQ,K

|SN(θ)|2dθ.

Suppose Q = Nα and K = Nκ where 0 ≤ α < 1
2

and 0 ≤ κ < 1
2
− α. We define

η = (1 − δ)104
5

. The different estimates we proved will be applied in different
regions of the plane (α, κ). Indeed

R1 = {(α, κ) : κ > 2(1− δ) + 4b},
R2 = {(α, κ) : α > 4(1− δ) + 8b},

R3 = {(α, κ) : η(α + κ) < κ and α + κ <
5

52
}, and

R4 = {(α, κ) : η(α + κ) <
1

2
α and α + κ <

5

52
}

The only remaining job is to collect together the appropriate estimates. �

Finally we can complete the promised proof.
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Proof of Theorem 9.1. For the major arcs we have established

MN(n)� ]ΩN

N log log(N)
� N2δ−1− 1

1000

as long as n � N . Suppose n is not represented, then the minor arcs must be as
big as the major arcs. Indeed we would have

|EN(n)| = |N (n)−MN(n)| � ]ΩN

N log log(N)
.

Let E(N) denote the set of n � N which have a small representation number
RN(n). More precisely

E(N) =

{
N

20
≤ n <

N

10
: RN(n) <

1

2
MN(n)

}
.

The standard argument now proceeds as follows

]E(N)�
∑
n�N

1|EN (n)|� ]ΩN
N log log(N)

� N2 log log(N)2

(]ΩN)2
·
∑
n�N

|EN(n)|

� N2 log log(N)2

(]ΩN)2
· (]ΩN)2

N
·Q−c � Ne−c

√
log(N).

This completes the proof. �

10. Proof of Theorem 1.12

We closely follow [6]. We start with some preliminary estimates. For these we
identify M2×2(Z) with Z4 and observe that Tr(A>B) = A ·B.

Lemma 10.1. For any square-free q ≥ 1 and any vector s ∈ Z4 with (s, q) = 1 we
have ∑

γ∈SL2(Z/qZ)

eq(γ · s)� q
3
2

+ε

for any ε > 0.

Proof. It suffices to consider the case q = p (by multiplicativity and square-

freenes). Write s = (x, y, z, w) and γ =

(
a b
c d

)
. We treat the case p - y (the

other cases are similar). The degenerate case c = 0 contributes nothing since∑
a∈(Z/pZ)×

∑
b∈Z/pZ

ep(ax+ by + aw) =
∑

a∈(Z/pZ)×

ep(ax+ aw)
∑

b∈Z/pZ

ep(by) = 0

by character orthogonality.
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Matrices with c 6= 0 contribute∑
c∈(Z/pZ)×

∑
a,d∈Z/pZ

ep(ax+ c(ad− 1)y + cz + dw)

=
∑

c∈(Z/pZ)×

ep(cz − cy)
∑

a∈Z/pZ

ep(ax)
∑

d∈Z/pZ

ep(d(cay + w)).

The d-sum vanishes unless a ≡ −cyw mod p, in which case it contributes p. The
c-sum is a Kloosterman sum which can be bounded by 2

√
p. (This is Weil’s

bound.) �

This together with Lemma 5.4 implies the following.

Proposition 10.2. Let ϕX be as above. For any square-free q ≥ 1 and any vector
s ∈ Z4 with (s, q) we have∑

ξ∈SL2(Z)

ϕX(ξ)eq(ξ · s)� q−
3
2

+εX2 + q3X
3
2 .

Proof. The idea is simply to split the some into congruence classes and use the
previous estimates:∑

ξ∈SL2(Z)

ϕX(ξ)eq(ξ · s) =
∑

γ∈SL2(Z/qZ)

eq(γ · s)
∑

ξ∈SL2(Z),
ξ≡γ mod q

ϕX(ξ)

� |
∑

γ∈SL2(Z/qZ)

eq(γ · s)| X2

] SL2(Z/qZ)
+O(q3X

3
2 ).

�

Next we proceed as in the proof of Theorem 1.4 and construct a convenient set
ℵ.

Proposition 10.3. Given any Y � 1 there is a non-empty subset ℵ = ℵ(Y ) ⊂
Γ2 ∩BY with the following property. For all square-free q and all a0 ∈ SL2(Z/qZ)
we have

|]{a ∈ ℵ : a ≡ a0 mod q}
]ℵ

− 1

] SL2(Z/qZ)
| � G(Y ; q),

where G is as in Theorem 6.1.

Proof. The proof of this existence result is essentially as before only using Theo-
rem 6.1 (see Proposition 9.5) and we omit the details. �

Our main parameters will be

X = Nx, Y = Ny and Z = N z for x+ y + z = 1.
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We will take x > 1− η close to one and y, z > 0 to be small. Let ℵ = ℵ(Y ) ⊂ Γ2

be the set constructed in Proposition 10.3. Further put

Ξ0 = {ξ ∈ Γ: ‖ξ‖ < X} and Ω0 = {ω ∈ Γ: ‖ω‖ < Z}.

We don’t have good control on the size of ℵ but we know that

]Ξo � X2δ and ]Ω0 � Z2δ.

By the pigeon hole principle we find that there is some lX � log(X) so that

Ξ = {γ ∈ Ξ0 : l(γ) = lX}

satisfies

]Ξ� X2δ log(X)−1.

The same argument applied to Ω0 yields lZ � log(Z) and a set

Ω = {ω ∈ Ω0 : l(ω) = lZ}

with

]Ω� Z2δ log(Z)−1.

Define the product Π = Ξ ·ℵ ·Ω. Since Γ is a free and finitely generated semigroup
the representation $ = ξ · a · ω of $ ∈ Π as a product of ξ ∈ Ξ, a ∈ ℵ and ω ∈ Ω
is unique. Furthermore we have

Π ⊂ Γ ∩B100N .

We now turn towards the sifting procedure. Define the sequence A = {aN} by

aN(n) =
∑
$∈Π

1Tr($)2−4=n.

The sequence is supported in {n � T} for T = N2. for a parameter Q and any
square-free q < Q we set

|Aq| =
∑

n≡0 mod q

aN(n).

We decompose |Aq| as follows

|Aq| =
∑
$∈Π

1Tr($)2−4≡0 mod q =
∑

t mod q,
t2≡4 mod q

∑
$∈Π

1Tr($)≡t mod q.

The congruence condition will now be detected using character orthogonality of
eq(·). This looks as follows

|Aq| =
∑

t mod q,
t2≡4 mod q

∑
$∈Π

1

q

∑
q|q

∑
r∈(Z/qZ)×

eq(r(Tr($)− t)).
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Define

Mq =
∑

t mod q,
t2≡4 mod q

∑
$∈Π

1

q

∑
q|q,
q<Q0

∑
r∈(Z/qZ)×

eq(r(Tr($)− t)).

This gives the decomposition

|Aq| = Mq + Eq. (34)

We will now treat the main term Mq. But first we recall the following estimate
(Exercise):

]{t ∈ Z/qZ : t2 ≡ 4 mod q} = 2ν(q)−12|q .

Proposition 10.4. Let β be the multiplicative function given at primes by

β(p) =
1 + 1p6=2

p

(
1 +

1

p2 − 1

)
.

There is a decomposition

Mq = β(q) · ]Π + r1(q) + r2(q),

where ∑
q<Q

|r1(q)| � ]Π · log(Q)2

(
1

ec
√

log(Y )
+QC

0 Y
−Θ

)
and ∑

q<Q

|r2(q)| � ]Π · Q
ε

Q0

.

Proof. We start by using the construction of Π to write

Mq =
∑

t mod q,
t2≡4 mod q

∑
ξ∈Ξ,
ω∈Ω

1

q

∑
q|q,
q<Q0

∑
r∈(Z/qZ)×

∑
a0∈SL2(Z/qZ)

eq(r(Tr(ξa0ω)−t))·]{a ∈ ℵ : a ≡ a0 mod q}.

Using Proposition 10.3 we can write

Mq = M(1)
q + r1(q),

for

M(1)
q =

∑
t mod q,

t2≡4 mod q

]Π

q

∑
q|q,
q<Q0

∑
r∈(Z/qZ)×

1

] SL2(Z/qZ)

∑
a0∈SL2(Z/qZ)

eq(r(Tr(a0)− t))

and

|r1(q)| � τ(q) · ]Π · 1

q

∑
q|q,
q<Q0

q4B(Y ; q).
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An l1-estimate for this error is easy to deduce:∑
q<Q

|r1(q)| � ]Π·
∑
q<Q0

q4B(Y ; q)
∑
q<Q

τ(q)

q
� ]Π·log(Q)2

[
log(Y )Ce−c

√
log(Y ) +QC

0 Y
−Θ
]
.

We now define the real main term as

M(2)
q = M(1)

q =
∑

t mod q,
t2≡4 mod q

]Π

q

∑
q|q

∑
r∈(Z/qZ)×

1

] SL2(Z/qZ)

∑
a0∈SL2(Z/qZ)

eq(r(Tr(a0)− t)).

Here we have lifted the restriction q ≤ Q0. We get

M(1)
q = M(2)

q + r2(q).

Observe that

r2(q)� τ(q) · ]Π · 1

q

∑
q|q,
q≥Q0

1

q
� ]Π · qε

qQ0

.

This implies the desired average bound.

It remains to evaluate M
(2)
q . To do so we define

ρt(p) =
1

] SL2(Z/pZ)

∑
γ∈SL2(Z/pZ)

∑
r∈(Z/pZ)×

ep(r(Tr(γ)− t))

on the primes. We get

M(2)
q = ]Π ·

∑
t mod q,

t2≡4 mod q

1

q

∏
p|q

(1 + ρt(p)).

Note that t ≡ ±2 mod p for p | q. An elementary computation shows that

ρt(p) =
1

p2 − 1
.

This directly implies M
(2)
q = β(q) · ]Π as desired. �

We still need to control the error Eq. It suffices to do so on average. Define

E =
∑
q<Q

|Eq| =
∑
q<Q

|
∑

t mod q,
t2≡4 mod q

∑
$∈Π

1

q

∑
q|q,
q≥Q0

∑
r∈(Z/qZ)×

eq(r(Tr($)− t))|.

Theorem 10.5. For any ε > 0 and any 1� Q0 < Q < N we have

E � N ε · ]Π · (XZ)1−δ

[
1

Q
1
4
0

+
1

Z
1
4

+
Q4

X
1
4

]
.
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Proof. We define

ζ(q) =
|Eq|
Eq

.

This gives us

E =
∑
q<Q

ζ(q)
∑

t mod q,
t2≡4 mod q

∑
$∈Π

1

q

∑
q|q,
q≥Q0

∑
r∈(Z/qZ)×

eq(r(Tr($)− t))

=
∑

Q0≤q<Q

1

q

∑
r∈(Z/qZ)×

∑
$∈Π

eq(rTr($)) · ζ1(q, r),

for

ζ1(q, r) = q
∑
q<Q,

q≡0 mod q

ζ(q)

q

∑
t2≡4 mod q

eq(−rt).

Now we decompose Π = Ξ · ℵ · Ω and break the q-sum into dyadic pieces. This
gives

E �
∑
a∈ℵ

∑
Q0<Q<Q,

dyadic

1

Q
E1(Q; a),

where

E1(Q; a) =
∑
q�Q

|
∑

r∈(Z/qZ)×

ζ1(q, r)
∑
ξ∈Ξ

∑
ω∈Ω

eq(rTr(ξaω)|.

We are done as soon as we can show

E1(Q; a)� N εQ · ]Ξ · ]Ω · (XZ)1−δ
[

1

Q
1
4

+
1

Z
1
4

+
Q4

X
1
4

]
.

To temporary remove the absolute value in E1(Q; a) we artificially introduce
another number ζ(q) ∈ S1. Taking out the ξ-sum and applying Cauchy-Schwarz
we obtain

E1(Q; a)2 � ]Ξ ·
∑

ξ∈SL2(Z)

ϕX(ξ)

∣∣∣∣∣∣
∑
q�Q

ζ2(q)
∑

r∈(Z/qZ)×

ζ1(q, r)
∑
ω∈Ω

eq(rTr(ξaω))

∣∣∣∣∣∣
2

.

Note that we artificially inserted the weight function ϕX and extended the ξ-sum
to all of SL2(Z). Note that we have the easy estimate ζ1(q, r)� Qε. The trace is
linear so that we can open the square to get

E1(Q; a)2 � Qε · ]Ξ ·
∑
q,q′�Q

∑
ω,ω′∈Ω

∑
r∈(Z/qZ)×

r′∈(Z/q′Z)×

∣∣∣∣∣∣
∑

ξ∈SL2(Z)

ϕX(ξ)e

(
ξ ·
[
r

q
aω − r′

q′
aω′
])∣∣∣∣∣∣

2

.
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At this point we write

r

q
aω − r′

q′
aω′ =

s

q0

.

We need some information on s and q0. Both these depend on q, q′, r, r′, ω, ω′ and
a. Let us introduce some more notation

q̃ = (q, q′), q = q1q̃, q
′ = q′1q̃ and q̂ = [q, q′] = q1q

′
1q̃.

All q’s are square-free. Observe that q1q
′
1 | q0 and q0 | q̂. Further set q̃0 = (q0, q̃)

and q̂ = q0q̂0 = q1q
′
1q̃0q̂0. We must have q0 = q1q

′
1q̃0 and Q� q̂ � Q2.

We also obtain the congruence

q′1rω ≡ q1r
′ω′ mod q̂0.

Looking at the determinant yields

(q′1r)
2 ≡ (q1r

′)2 mod q̂0.

Since 1 = (q1r
′, q̂0) = (q′1r, q̂0) we find u with u2 ≡ 1 mod q̂0 so that

q′1r ≡ uq1r
′ mod q̂0.

The number of such u can be estimates by 2ν(q̂0) � N ε. We deduce that

ω ≡ uω′ mod q̂0.

With this at hand we obtain

E1(Q; a)2 � Qε · ]Ξ ·
∑

Q�q̂�Q2

∑
q1q′1q̃0q̂0=q̂,
q=q1q̃0q̂0�Q,
q′=q′1q̃0q̂0�Q,
q0=q1q′1q̃0

∑
u mod q̂0

q2≡1 mod q̂0

∑
r∈(Z/qZ)×

∑
r′∈(Z/q′Z)×,

q′1r≡uq1r′ mod q̂0

∑
ω′∈Ω

∑
ω∈SL2(Z),

ω≡uω′ mod q̂0,

s=q0( r
q
aω− r

′
q′ aω

′)

ϕZ(ω)

∣∣∣∣∣∣
∑

ξ∈SL2(Z)

ϕX(ξ)eq0(ξ · s)

∣∣∣∣∣∣
2

.

We work from inside out. First, the ξ-sum can be estimated using Proposi-

tion 10.2 (contributing (q
− 3

2
0 X2 + q3

0X
3
2 )). Similarly we treat the ω-sum (con-

tributing (q̂−3
0 Z2 +Z

3
2 )) and the ω′-sum is treated trivially (contributing ]Ω). The

r′-sum can be estimated by q′

q̂0
and the r-sum by q. Together this makes

qq′

q̂0

=
qq′q0

q̂
� Q2q0

q̂
.
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As noted earlier we can bound the u-sum by N ε. We are left with

E1(Q; a)2 � (QN)ε · ]Ξ ·
∑

Q�q̂�Q2

∑
q0q̂0=q̂

Q2q0

q̂
]Ω · (q̂−3

0 Z2 + Z
3
2 )(q

− 3
2

0 X2 + q3
0X

3
2 )

� N εQ2(]Ξ · ]Ω)2(XZ)2(1−δ)
∑

Q�q̂�Q2

1

q̂

[
1

q̂
1
2

+
1

Z
1
2

+
Q8

X
1
2

]
.

This directly implies the desired estimate. �

We are now ready to put main term and error together.

Theorem 10.6. For any sufficiently small η > 0 there is A = A(η) sufficiently
large so that the sequence A has level of distribution

Q = T
1
32
−η.

More precisely there is a multiplicative function β : N→ R so that∏
w≤p<z

(1− β(p))−1 ≤ C ·
(

log(z)

log(w)

)2

,

for some C > 1 and any 2 ≤ w < z. (This is a quadratic sieve condition.)
Furthermore there is a decomposition

|Aq| = β(q) · ]Π + r(q),

so that for all K ∑
q<Q,

square-free

�K
]Π

log(N)K
.

Finally, we can choose X = N1−η (in the construction of Π) so that ]Π� N2δ−η.

Proof. From Proposition 10.4 and Theorem 10.5 we get

|A| = β(q) · ]Π + r1(q) + r2(q) + Eq︸ ︷︷ ︸
r(q)

.

Recall that we had X = Nx, Y = Ny and Z = N z with x+ y+ z = 1. Further set

Q = Tα = N2α and Q0 = Nα0 .

Note that we can estimate∑
q<Q

|r(q)| � ]Π · log(Q)2

(
1

ec
√

log(Y )
+QC

0 Y
−Θ

)
+ ]Π · Q

ε

Q0

+ E
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by Proposition 10.4. The first two contributions are controlled as long as y > 0
and 0 < α0 <

yΘ
C

. Finally E can be estimated by Theorem 10.5. The so obtained
bound suffices for

α0

4
> (x+ z)(1− δ),

z

4
> (x+ z)(1− δ) and

x

4
> 8α + (x+ z)(1− δ). (35)

What is left is an exercise in maximizing α for which there is such a triple
(x, y, z). Let η be sufficiently small and put α = 1

32
− η. Further assume δ > 1− η

and set x = 1− η. It is elementary to show that (35) is satisfied.
We set

z =
η

1 + C/Θ
, y = z · C

Θ
and α0 =

5

6
z.

Further assume that δ > 1− η
5(1+C/Θ)

. We can guarantee this condition by making

A sufficiently large. (Note that ℵ ∈ Γ2 is independent of A!)
We have yΘ

C
> α0 as desired. Finally we observe

z

4
>
α0

4
=

5

24
z <

1

5
z > 1− δ > (x+ z)(1− δ).

Thus all requirements are met and the proof is complete. �

This level distribution theorem implies the following key sieving theorem.

Theorem 10.7. Let ΠAP denote the set of $ ∈ Π for which Tr($)2− 4 is almost
prime. That is

ΠAP = {$ ∈ Π: p | (Tr($)2 − 4) =⇒ p > N
1

350}.
Then for any sufficiently small η there is an A = A(η) sufficiently large and a
choice of X, Y, Z so that

]ΠAP > N2δ−η.

Proof. Put α = 1
34

. An application of Brun’s sieve (Exercise) shows that∑
n,

(n,Pz)=1

aN(n)� ]Π

log(N)2
,

for Pz =
∏

p<z p and z ≤ Tα/(9κ+1) = T 1/646 = N1/323. We can take z = N
1

350 . Of

course any n = Tr($)2 − 4 co-prime to Pz has no prime factors below z. The rest
of the theorem follows directly. �

It is an easy Exercise to show that

]{γ ∈ ΓA : Tr(γ) = t} � t1+ε

for all A <∞ and t ≥ 1.
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Proof of Theorem 1.12. Let α = 1
350

and η > 0 sufficiently small. We have already

fund A sufficiently large and a set Π ⊂ ΓA ∩BN with ]ΠAP > N2δ−η. Recall that

ΠAP = {$ ∈ Π: p | (Tr($)2 − 4) =⇒ p > Nα}.

Also define

Π�AP = {$ ∈ ΠAP : Tr($)2 − 4 not square-free}.
We can estimate

]{γ ∈ ΓA ∩BN : Tr(γ)2 − 4 square-free} ≥ ]{γ ∈ ΠAP : Tr(γ)2 − 4 square-free}
> N2δ−η − ]Π�AP .

Suppose γ ∈ Π�AP . Then there is a prime p > Nα so that p2 | (Tr(γ)2 − 4).
However, this implies that there is ε ∈ {±q} so that

(p2 + ε2) | Tr(γ).

This implies p�
√
N . With these observations made we can trivially estimate

]Π�AP ≤
∑

Nα<p�N
1
2

∑
t<N,

t2−4≡0 mod p2

]{γ ∈ ΓA ∩BN : tr(γ) = t}

�
∑

Nα<p�N
1
2

N

p2
·N1+ε � N2−α+ε.

We are done as soon as 2δ > 2 − α. This can be arranged by assuming δ − η
2
>

1− 1/700, which will fold for A sufficiently large. �
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