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Part 1. Introduction

1. Zusammenfassung

Meine Forschung beschäftigt sich mit Themen in der Schnittmenge von analytischer Zahlenthe-
orie, harmonischer Analysis und Darstellungstheorie. Das Bindeglied zwischen diesen Gebieten ist
die spektrale Theorie der automorphen Formen sowie das Langlands-Programm. Eine zentrale Ver-
mutung in diesem Bereich ist die sogenannte allgemeine Ramanujan-Vermutung, welche viele weit-
reichende Implikationen hat. Ein vollständiger Beweis dieser Vermutung scheint aber mit heutigen
Techniken noch aussichtslos zu sein. Nichtsdestotrotz haben viele interessante mathematische En-
twicklungen ihren Ursprung in Untersuchungen, die mit Ramanujans-Vermutung zusammenhängen.

Die Dichtehypothese, welche das Thema der vorliegenden Arbeit ist, kann als praktische Approx-
imation an die allgemeine Ramanujan-Vermutung gesehen werden. Diese Hypothese wurde formal
in Sarnaks ICM Vortrag von 1990 formuliert und hat sich seitdem zu einem zentralen Forschungs-
thema in der Theorie der automorphen Formen entwickelt. Anfänglich gab es große Fortschritte
im Zusammenhang mit Sarnaks Dichtehypothese für Rang Eins. Bevor Resultate in höherem Rang
möglich waren, musste jedoch die nötige Theorie der automorphen Formen verfeinert werden. Dies
ist nun geschehen, und es konnten Fälle der Dichtehypothese in beliebigem Rang bewiesen wer-
den. Diese Entwicklungen haben schon zu neuen arithmetischen Anwendungen geführt, und es
ist davon auszugehen, dass auch in Zukunft interessante Mathematik im Zusammenhang mit der
Dichtehypothese entstehen wird.

Alle Arbeiten, die zu dieser Habilitation gehören, haben mit Sarnaks Dichtehypothese in höherem
Rang zu tun. In den folgenden Abschnitten wollen wir die Philosophie hinter der Dichtehypothese
erklären und den aktuellen Forschungsstand zusammenfassen. Diesem Prolog schließen sich die
folgenden Arbeiten an, welche das Herz dieser kumulativen Habilitationschrift formen.

(1) E. Assing, V. Blomer: The density conjecture for principal congruence subgroups
Erschienen in: Duke Math. J. 173 (2024), no. 7, 1359–1426.

(2) E. Assing: A density theorem for Borel-Type Congruence subgroups and arithmetic appli-
cations
Arbeit erhältlich als: arXiv Preprint arXiv:2303.08925, 2023.

(3) E. Assing: A note on Sarnak’s density hypothesis for Sp4

Arbeit erhältlich als: arXiv Preprint arXiv:2305.04791, 2023.
(4) E. Assing, V. Blomer, P. D. Nelson: Local analysis of the Kuznetsov formula and the density

conjecture
Arbeit erhältlich als: arXiv Preprint arXiv:2404.05561, 2024.

2. Summary

My research and in particular the part of it presented in this habilitation sits at the interface
of analytic number theory, harmonic analysis and representation theory. The bridge between these
topics is provided by the spectral theory of automorphic forms and parts of Langlands’ program.
An important cornerstone of the field is the generalized Ramanujan conjecture. This conjecture
has many profound implications, but a complete proof seems to be far out of reach of current
technology. Nonetheless many interesting mathematical developments originated in the study of it.

The density hypothesis is in some sense a convenient approximation to the generalized Ramanu-
jan conjecture. It has been formally put forward in Sarnak’s 1990 ICM address and has gotten
much attention since. In particular, early on much progress has been made in rank one. Since then
the theory of automorphic forms has matured significantly, so that very recently new instances of
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Sarnak’s density hypothesis have been established in higher rank. These developments have already
led to interesting arithmetic applications. In the future we expect more exciting developments in
connection with the density hypothesis and its applications.

All the articles contained in this habilitation are part of a series of recent breakthroughs in
connection with Sarnak’s density hypothesis in higher rank. In the following sections we will discuss
the density hypothesis in detail and survey old and new results connected to it. This prelude is
proceeded by the following works, which form the hearth of this cumulative habilitation thesis.

(1) E. Assing, V. Blomer: The density conjecture for principal congruence subgroups
Published in: Duke Math. J. 173 (2024), no. 7, 1359–1426.

(2) E. Assing: A density theorem for Borel-Type Congruence subgroups and arithmetic appli-
cations
Preprint available at: arXiv Preprint arXiv:2303.08925, 2023.

(3) E. Assing: A note on Sarnak’s density hypothesis for Sp4

Preprint available at: arXiv Preprint arXiv:2305.04791, 2023.
(4) E. Assing, V. Blomer, P. D. Nelson: Local analysis of the Kuznetsov formula and the density

conjecture
Preprint available at: arXiv Preprint arXiv:2404.05561, 2024.
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3. The concept of a density theorem

Broadly speaking a density hypothesis is a precise quantification of the expectation that ex-
ceptional events occur rarely. The prototypical density hypothesis occurs in connection with the
generalized Riemann hypothesis. Recall that it is conjectured that all non-trivial zeros of all Dirich-
let L-functions lie on the line { 1

2 + it : t ∈ R}. Proving this appears to be out of reach of current
technology. However, one can often replace the full generalized Riemann hypothesis by suitable
approximations, which are more approachable in practice. One of these approximations is the
so-called zero density hypothesis and it arises as follows. We introduce the counting function

N(σ;T, q) :=
∑

χ mod q

]{ρ = β + iγ : L(ρ, χ) = 0, |γ| ≤ T and β ≥ σ}.

If σ = 0, then we count all non-trivial zeros up to height T of all Dirichlet characters modulo q. All
these L-functions satisfy a functional equation relating L(s, χ) and L(1− s, χ). The zeros of these
L-functions inherited this symmetry, so that it is sufficient to understand N(σ;T, q) for 1

2 ≤ σ ≤ 1.
The goal is to replace the generalized Riemann hypothesis by a suitable upper bound for N(σ;T, q),
which is small for σ close to 1 and captures the correct order of magnitude for σ = 1

2 .
Recall that for individual primitive Dirichlet character χ modulo q we have

]{ρ = β + iγ : L(ρ, χ) = 0, β ∈ [0, 1] and |γ| ≤ T} =
T

π
log

(
qT

2πe

)
+O(log(q(T + 3))).

See [IwKo04, Theorem 5.24] for example. Summing this over all χ modulo q allows us to estimate

(1) N(
1

2
;T, q)�ε (qT )1+ε.

For convenience we have replaced log(qT ) by (qT )ε for arbitrary small ε > 0. This is common
practice in many branches of analytic number theory and particularly convenient when keeping
track of powers of logarithms is not relevant for the end result.

For σ > 1
2 the generalized Riemann hypothesis would imply N(σ;T, q) = 0. Such a result is of

course not available at present, and the best we know is that N(1;T, q) = 0 for all T ∈ R>0 and
q ∈ N. This is Dirichlet’s theorem, see [IwKo04, Theorem 2.1]. Since we are ignoring factors like
(qT )ε for small ε > 0 in our current discussion, we can record this observation as

(2) N(1;T, q)�ε (qT )ε.

The zero density hypothesis is the bound on N(σ;T, q), that arises when linearly interpolating (1)
and (2) in the exponent. More precisely, it is conjectured that the estimate

(3) N(σ;T, q)�ε (qT )2(1−σ)+ε

holds for 1
2 ≤ σ < 1. The best bound available in practice is

(4) N(σ;T, q)� (qT )
12
5 (1−σ)+ε.

We refer to [IwKo04, Chapter 10] for a more exhaustive discussion of zero density theorems.1

The big conjecture underpinning Sarnak’s density hypothesis is the generalized Ramanujan con-
jecture. In this context exceptional events are triggered by non-tempered automorphic representa-
tions. In what follows we will make this more precise and explain how rareness can be quantified.
This will lead naturally to a formulation of the automorphic density hypothesis.

1In a recent breakthrough, see [GuMa24], Huxley’s density theorem for the Riemann zeta function (i.e. q = 1)
was improved.
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Ramanujan originally conjectured that the Fourier coefficients τ(n) of the Ramanujan ∆-function
satisfy the bound

(5) |τ(n)| ≤ d(n) · n 11
2 ,

where d(n) is the divisor function. What is nowadays known as Ramanujan conjecture goes far
beyond this initial prediction. In order to fully appreciate the density hypothesis it is necessary
to understand the full scope of the generalized Ramanujan conjecture. Therefore, we will start by
giving a very brief introduction to this fascinating topic. For more details we refer to the surveys
[Sar05, BlBr13] and the references within.

Let AQ denote the adele ring of Q. It is a fact that Ramanujan’s ∆-function gives rise to a
representation π∆ of GL2(AQ) with trivial central character. This representation appears with
multiplicity one in L2

disc(GL2(Q)\GL2(AQ)1). Flath’s tensor product theorem allows us to write
π∆ = π∆,∞ ⊗

⊗
p π∆,p. Here π∆,∞ is a discrete series representation of GL2(R) and π∆,p are

spherical representations of GL2(Qp) with trivial central character. The bound (5) is equivalent
to the statement that the representations π∆,p are tempered for all p. The following is a brave
generalization.

Conjecture 3.1 (GL2-Ramanujan conjecture). Let π = π∞ ⊗
⊗

p πp be an irreducible representa-

tion of GL2(AQ) with unitary central character. If π appears in L2
disc(GL2(Q)\GL2(AQ)1) and is

infinite dimensional, then the representations π∞, π2, π3, . . . are all tempered.

As explained above this contains Ramanujan’s original conjecture. It is a deep theorem of
Deligne that the statement of Conjecture 3.1 holds for representations π that arise from classical
holomorphic modular forms. On the other hand, when considering representations coming from
Maaß forms, then the GL2-Ramanujan conjecture implies Selberg’s eigenvalue conjecture, which is
still open.

We are tempted to further generalize Conjecture 3.1 as follows. Let G be a reductive linear
algebraic group over a number field F . We write AF for the adele ring of F and denote the places
of F by v. The right regular representation of G(AF )1 on L2(G(Q)\G(AF )1) can be decomposed
into a continuous part described by Eisenstein series and a discrete part

L2
disc(G(Q)\G(AF )1) ∼=

∑
π∈Ĝ(AF )1

multG(π) · π.

Naively one might hope that the following is true.

Conjecture 3.2 (Naive Ramanujan conjecture). Let π = π∞ ⊗
⊗

v πv be an irreducible infinite
dimensional representation of G(AF ) with unitary central character. If multG(π|G(AF )1) > 0, then

π =
⊗

v πv for tempered representations πv ∈ Ĝ(Fv).

This is false in general. Indeed, the discrete spectrum further decomposes into a cuspidal part
and a residual part:

(6) L2
disc(G(Q)\G(AF )1) = L2

cusp(G(Q)\G(AF )1)⊕ L2
res(G(Q)\G(AF )1).

An irreducible representation contributing to the cuspidal part will be called cuspidal automorphic.2

For G = GLn the residual spectrum is described in [MoWa89]. As a result of this description one
finds that for many n there exist non-cuspidal (i.e. residual) infinite dimensional representations

2We refer to [BoJa79, Sections 4.4 and 4.6] for more precise definitions.
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that are non-tempered at all places. We conclude that even for GLn the naive conjecture needs to
be modified.

Conjecture 3.3 (GLn-Ramanujan conjecture). Let π =
⊗

v πv be a a cuspidal automorphic rep-
resentation of GLn(AF ) with unitary central character. Then πv is tempered for all places v of
F .

Remark 3.4. For G = GL2 the residual spectrum consists only of one dimensional representations
and Conjecture 3.3 reduces to Conjecture 3.1 in this case.

For general groups G the situation is more subtle. Indeed, the construction of certain functorial
lifts leads to examples of non-tempered cuspidal automorphic representations. These must be
excluded in any reasonable formulation of the generalized Ramanujan conjecture. This can be done
by introducing so-called CAP-representations. These arise in Arthur’s classification of the discrete
spectrum and encapsulate precisely the constituents thereof that are known to be non-tempered.

Conjecture 3.5 (Generalized Ramanujan conjecture). Let π be a cuspidal automorphic represen-
tation of G(AF ) with unitary central character. If π is non-CAP, then it is tempered at all places.

Remark 3.6. If G is quasi-split, then one can define the notion of globally generic representa-
tions. A version of the generalized Ramanujan conjecture now states that all globally generic
representations are everywhere tempered. If Arthur’s conjectures concerning the discrete spectrum
of reductive groups are true, then this formulation is essentially equivalent to the one given in Con-
jecture 3.5. Furthermore, the generalized Ramanujan conjecture would follow from the Ramanujan
conjecture for GLn and Arthur’s conjectures. See [Shah11] for more details.

Recall that our goal is to find a suitable approximation to the generalized Ramanujan conjecture,
which morally mimics the zero density hypothesis for L-functions. The first step is to introduce a
measure for non-temperedness. Roughly speaking, given a place v such that G(Fv) is non-compact,
we are trying to assign a number to a (unitary) irreducible representation πv which is minimal if
πv is tempered and maximal if πv is trivial. There are two popular set-ups:

• One characterization of temperedness is through the regularity of matrix coefficients. To
make this precise we fix a maximal compact subgroup Kv ⊆ G(Fv) and let ωv denote the
central character of πv. For a Kv-finite vector w ∈ πv we define3

(7) p(πv) = inf{2 ≤ p ≤ ∞ : 〈w, πv(·)w〉 ∈ Lp(G(Fv), ω
−1
v )}.

By definition πv is tempered if and only if p(πv) = 2. Furthermore, for the trivial represen-
tation πtriv we have p(πtriv) =∞.

• For G = GLn one can use the Langlands classification to characterize tempered represen-
tations. To do so we realize πv as the unique subrepresentation of a representation arising

through normalized parabolic induction Ind
G(Fv)
P (Fv)(⊗

r
i=1| · |σπv (i)τi). Here P is a parabolic

subgroup of G with Levi M ∼= GLn1
× . . . × GLnr , the representations τi of GLni(Fv) are

tempered and σπv (i) are real numbers. We put

(8) σ(πv) = max
i
σπv (i).

If πv is tempered, then we must have σ(πv) = 0. On the other hand, σ(πtriv) = n−1
2 .

3It can be shown that this definition is independent of the choice of w.
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Remark 3.7. One way to approach the GLn-Ramanujan conjecture is by showing upper bounds
for σ(πv), where πv is the vth-component of a non-trivial automorphic representation π. For
archimedean v this is essentially a spectral gap. If we assume that π is cuspidal, then very strong
bounds for σ(πv) are available. We refer to [LRS99, BlBr11] for a more thorough discussion.

Suppose we are given a finite family F of irreducible automorphic representations contributing
to L2

disc(G(F )\G(AF )1). To each representation π ∈ F we associate a positive weight m(π).4 We
write

S(F) =
∑
π∈F

m(π)

for the total mass (i.e. the weighted cardinality) of the family F . In order to allow for a clean
statement of the density hypothesis we assume that

(9)
∑
π∈F

dim(π)=1

m(π)�ε S(F)ε,

for any ε > 0. This is the automorphic analogue of (2). Practical families F often contain only an
absolutely bounded number of one dimensional representations and these will be weighted by one.
Thus, (9) is a reasonable assumption to make.

Finally, fix a place v of F and let r(πv) denote a suitable measure for non-temperedness. For
example, if G = GLn, then we can take r(πv) = p(πv) or r(πv) = σ(πv). Put r0 = r(πv) for a
tempered representation πv and set r1 = r(πtriv). Linear interpolation in the exponent produces
the density hypothesis

(10)
∑

π=⊗vπv∈F
r(πv)≥σ

m(π)�ε

{
S(F)1− σ−r0

r1−r0
+ε if r1 <∞,

S(F)
r0
σ +ε if r1 =∞.

This is a statistical statement concerning the weighted number of non-tempered representations of
r-badness at least σ in the family F . Note that this is only meaningful when S(F) tends to infinity.

Of course it is easy to construct families and weights for which (10) is false. However, for many
families arising in practice this hypothesis is believed to hold.

Remark 3.8. In (10) we are interpolating between the full family (i.e. σ = r0) and the sub-family
of one dimensional representations (i.e. σ = r1). Thus, we approximate the naive Ramanujan
conjecture as stated in Conjecture 3.2. This is intentional. Indeed, the density hypothesis is
believed to be robust enough to absorb all known cuspidal and residual counter-examples to the
naive Ramanujan conjecture.

There are several ways to make the proceeding discussion precise. Here we will follow [GoKa23] to
give a formal statement of Sarnak’s density hypothesis. This is supposed to serve as a prototypical
example for how such a statement may look in practice. For convenience we work over the real
numbers.

Let G(R) denote the R-points of a semisimple algebraic group defined over R and fix a maximal
compact subgroup K∞ ⊆ G(R). Given a lattice Γ ⊆ G(R) we define the multiplicity of π∞ in
L2

disc(Γ\G(R)) by

m(π∞,Γ) = dim HomG(R)(πv, L
2
disc(Γ\G(R))).

4In practice m(π) will be a certain multiplicity which is related to (but not equal in general) to the global
multiplicity multG(π) of π in L2

disc(G(F )\G(AF )1).
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In particular,

L2
disc(Γ\G(R)) =

∑
π∈Ĝ(R)

m(π∞,Γ) · π∞.

In this setting Sarnak’s density hypothesis is formulated in [GoKa23, Conjecture 1.1].

Conjecture 3.9 (Sarnak’s density hypothesis). Let G(R) be a real, semisimple, almost-simple and
simply connected Lie group, let Γ0 be an arithmetic lattice in G(R) and let {Γn}n∈N be a sequence
of finite index congruence subgroups of Γ0 such that [Γ0 : Γn] → ∞ as n → ∞. Then, for every

pre-compact subset Ω ⊆ Ĝ(R) and every ε > 0 we have∑
π∞∈Ω
p(π)≥p

m(π∞,Γn)�Ω,ε [Γ0 : Γn]
2
p+ε

uniformly in p > 2 and n ∈ N.

A weak form of this conjecture was proposed by Sarnak and Xue in [SaXu91, Conjecture 2.3] and
is also known as pointwise multiplicity hypothesis or Lp-conjecture. Indeed, by applying Sarnak’s
density hypothesis with p = p(π) to the singleton Ω = {π} we obtain:

Conjecture 3.10 (Sarnak-Xue conjecture). Let G(R) be a real, semisimple, almost-simple and
simply connected Lie group, let Γ0 be an arithmetic lattice in G(R) and let {Γn}n∈N be a sequence
of finite index congruence subgroups of Γ0 such that [Γ0 : Γn] → ∞ as n → ∞. Then, for every

π∞ ∈ Ĝ(R) and every ε > 0 we have

m(π∞,Γn)�π∞,ε [Γ0 : Γn]
2

p(π∞)
+ε

uniformly in p > 2 and n ∈ N.

In practice it is often easier and sometimes sufficient to work with spherical representations.
These are representations featuring a non-trivial K∞-invariant vector. The isomorphism classes of
spherical irreducible unitary representations form the spherical dual of G(R), which we denote by

Ĝ(R)sph. It is well known that the Casimir operator acts on the subspace of K∞-invariant vectors

in π∞ by scalar multiplication. For π∞ ∈ Ĝ(R)sph this scalar is a well defined non-negative real
number, which we denote by λπ∞ . The spherical density hypothesis can now be stated as follows.

Conjecture 3.11 (Sarnak’s spherical density hypothesis). Let G(R) be a real, semisimple, almost-
simple and simply connected Lie group, let Γ0 be an arithmetic lattice in G(R) and let {Γn}n∈N be
a sequence of finite index congruence subgroups of Γ0 such that [Γ0 : Γn]→∞ as n→∞. If G(R)
has rank one, then ∑

π∞∈Ĝ(R)sph
p(π∞)≥p

m(π∞,Γn)�ε [Γ0 : Γn]
2
p+ε for p > 2.

In the situation where G(R) has rank at least two we let M ≥ 1 be a parameter. Then there exists
a constant K depending only on G such that∑

π∞∈Ĝ(R)sph
λπ∞≤M
p(π∞)≥p

m(π∞,Γn)�ε M
K [Γ0 : Γn]

2
p+ε for p > 2.
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Remark 3.12. The reason why we have to distinguish between rank one and higher rank is that
the set

(11) Ω = {π ∈ Ĝ(R)sph : p(π) > 2}

is pre-compact as long as G(R) has rank one. Otherwise, Ω is not pre-compact in general and we
add the restriction on the Casimir eigenvalue to force pre-compactness. Note that our statement of
the spherical density hypothesis includes the additional requirement that the dependence on (the
bounds on) the Casimir eigenvalue are polynomial. This is often important in applications and was
already proposed in [GoKa23, Conjecture 1.2]. Obvious variations of these conjectures are obtained
by replacing

• R with some non-archimedean local field Fv;
• p(π∞) with σ(π∞).

Remark 3.13. We should explain how these conjectures relate to the general discussion above.
Suppose that G, as in Conjecture 3.9, is defined over Q and has strong approximation. Then, for
a congruence lattice Γ ⊆ Γ0, there is some open compact subgroup KΓ of G(AQ,fin) with

Γ\G(R) ∼= G(Q)\G(AQ)/KΓ.

Given a representation π = ⊗vπv of G(AQ) we let πKΓ

fin denote the space of KΓ-invariant elements
in πfin = ⊗v<∞πv. We want to apply our heuristic to the family

F = {π = ⊗vπv ∈ Ĝ(AQ) : π∞ ∈ Ω, πKΓ

fin 6= {0}}

with weights

m(π) = multG(π) · dimπKΓ

fin .

It can be shown that (9) is satisfied for these families. Next we note that, as [Γ0 : Γ] grows, the

compact subgroup KΓ shrinks and the restriction πKΓ

fin 6= {0} gets weaker. As a result the family F
grows as [Γ0 : Γ]→∞. Even more, when Γ0 and Ω are fixed, the index [Γ0 : Γ] is expected to be a
good replacement for the total mass S(F) of F . These observations allow us to write the density
hypothesis from (10), with v =∞ and r(π∞) = p(π∞), as

(12)
∑

π=⊗vπv∈F
p(π∞)≥σ

m(π)�Γ0,Ω,ε [Γ0 : Γ]
2
σ+ε.

Finally, because ∑
π=⊗vπv∈F
p(π∞)≥σ

m(π) =
∑
π∞∈Ω
p(π∞)≥σ

m(π∞,Γ),

we see that (12) produces Conjecture 3.9.

In recent years there has been a lot of activity around Sarnak’s density hypothesis. While
Sarnak’s density hypothesis as stated in Conjecture 3.9 is still open in general, much progress has
been made in special cases. Best understood are the cases where G(R) has (real) rank one or when
G = SLn. These situations will be discussed in detail in Sections 4 and 5 below. In Section 6 we
take a look at selected applications of the density hypothesis. The next section, namely Section 7, is
devoted to a discussion of progress towards the (spherical) density hypothesis for G = Sp4. Finally,
in Section 8 we reflect on the general conjecture and formulate some concrete open problems.
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4. Automorphic density theorems in rank one

Here we will discuss results towards the density hypothesis in real rank one focussing mostly
on the case G = SL2. We start with developments preceding the official formulation of Sarnak’s
density hypothesis. Indeed, to the best of our knowledge, the first spectral density theorems appear
in the works of Iwaniec and Huxley.5 More precisely, given a congruence subgroup Γ ⊆ SL2(R) we
consider the Laplace-Beltrami operator

∆H = −y2

(
∂2

∂x2
+

∂2

∂y2

)
acting on L2(Γ\H). It is known that ∆H has point spectrum

σ∆H(Γ) = {0 = λ0 < λ1 ≤ λ2 ≤ . . .}

and we write the eigenvalues as λj = ( 1
2 + tj)(

1
2 − tj) = 1

4 − t
2
j . Note that the bottom eigenvalue

λ0 has t0 = 1
2 and appears with multiplicity one. Furthermore, by Weyl’s law, we have

(13) ]

{
1

4
− t2 ∈ σ∆H(Γ) : |t| ≤M

}
∼ Vol(Γ\H)

2π
M2.

Selberg’s eigenvalue conjecture predicts that λ1 ≥ 1
4 or equivalently tj ∈ iR for all j ≥ 1. In view

of the philosophy explained in Section 3 we expect

(14) ]

{
1

4
− t2 ∈ σ∆H(Γ) : t ∈ [σ,∞)

}
�ε Vol(Γ\H)1−2σ+ε.

Indeed, here we interpolate

(15) ]

{
1

4
− t2 ∈ σ∆H(Γ) : t ∈ [

1

2
,∞)

}
= 1 and ]

{
1

4
− t2 ∈ σ∆H(Γ) : t ∈ [0,∞)

}
� Vol(Γ\H)

linearly in the exponent. Huxley, see [Hux86], establishes this for the three congruence subgroups

Γ0(N) =

(
Z Z
NZ Z

)
∩ SL2(Z),(16)

Γ1(N) =

(
Z Z
NZ 1 +NZ

)
∩ SL2(Z) and(17)

Γ(N) =

(
1 +NZ NZ
NZ 1 +NZ

)
∩ SL2(Z)(18)

of SL2(R).

Theorem 4.1 (Section 4, [Hux86]). Let ε > 0, N ∈ N and let Γ be one of the congruence subgroups
defined in (16)-(18). Then, for 0 ≤ σ ≤ 1

2 and ε > 0, we have

]

{
1

4
− t2 ∈ σ∆H(Γ) : t ∈ [σ,∞)

}
�ε [SL2(Z) : Γ]1−2σ+ε.

5Related estimates appear already in [DeIw82], but a formal statement and the terminology density theorem

seems to first appear in [IwSz85, Iwa85]. Note that [Iwa85] contains a reference to a preprint by Huxley, which is
dated to 1983 and most likely contains results which later appeared in [Hux86].
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Huxley’s proof uses Selberg’s trace formula. The basic idea is to reverse the strategy used when
solving the hyperbolic circle problem. This approach works for a large variety of lattices and is an
exercise with the trace formula. See [Iwa95, Section 11.4], where this is discussed for hyperbolic
groups.

Remark 4.2. In the setting of compact orbifolds X = Γ\H the analogy between the spectral
density hypothesis (see (14)) and the density hypothesis for Dirichlet L-functions can be explained
using the Selberg zeta function. Recall that the Selberg zeta function is defined by

(19) ZX(s) =
∏
γ

(1− e−sl(γ))−1 for <(s)� 1.

Here γ runs over prime geodesics and l(γ) denotes their length. This zeta function has a meromor-
phic continuation to s ∈ C. Furthermore, if <(ρ) ≥ 1

2 and ZX(ρ) = 0, then ρ(1− ρ) ∈ σ∆H(Γ). In
particular, we can rewrite (14) as

]{ρ ∈ C : ZX(ρ) = 0, <(ρ) > σ} �ε Vol(X)2−2σ+ε,

for 1
2 < σ ≤ 1. Since Weyl’s law translates to counting zeros in a certain boxes, this estimate

is a perfect analogue of the classical zero density estimate for Dirichlet L-functions. See (3) for
comparison.

In the series of papers [IwSz85, Iwa85, Iwa90] the Kuznetsov formula is used to count exceptional
eigenvalues. These efforts result in a very strong estimate, which Iwaniec calls his favorite estimate
for the cardinality of the empty set! See also [Iwa95, Theorem 11.7].

Theorem 4.3 (Theorem 1, [Iwa90]). Let ε > 0 and N ∈ N. Then we have

]

{
1

4
− t2 ∈ σ∆H(Γ0(N)) : t ∈ [σ,

1

2
)

}
�ε [SL2(Z) : Γ0(N)]1−4σ+ε.

Remark 4.4. From our point of view (14) is the correct density hypothesis (or density conjecture).
It is therefore interesting to note that in [IwSz85, Iwa85] the much stronger estimate given in
Theorem 4.3 is referred to as density conjecture. This estimate is special for the Hecke congruence
subgroups Γ0(N), where the exponent 1− 4σ interpolates between Selberg’s spectral gap λ1 ≥ 3

16
on the one hand and Weyl’s law on the other hand.

Remark 4.5. In this remark we will try to illustrate the strength of Iwaniec’s density estimate
for Γ0(N) by showing that it implies a strengthening of the density hypothesis for the principal
congruence subgroup Γ(N). This requires a slight extension of Theorem 4.3. Given a Dirichlet
character χ modulo N we can define a character of Γ0(N), also denoted by χ, via

χ(γ) = χ(d) where γ =

(
a b
c d

)
∈ Γ0(N).

One can consider the space L2(Γ0(N)\H, χ) consisting of square integrable automorphic functions
satisfying f(γz) = χ(γ)f(z) for all γ ∈ Γ0(N). We write σ∆H(Γ0(N), χ) for the point spectrum of
∆H acting on L2(Γ0(N)\H, χ). A modification of the argument from [Iwa90] shows that

]

{
1

4
− t2 ∈ σ∆H(Γ0(N), χ) : t ∈ [σ,

1

2
)

}
�ε [SL2(Z) : Γ0(N)]1−4σ+ε,
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for all N and all Dirichlet character χ modulo M with M2 | N .6 Put

Γ(N)\ =

(
N−1 0

0 1

)
Γ(N)

(
N 0
0 1

)
=

(
1 +NZ Z
N2Z 1 +NZ

)
∩ SL2(Z)

and observe that

σ∆H(Γ(N)) = σ∆H(Γ(N)\) =
⊔

χ mod N

σ∆H(Γ0(N2), χ).

In particular, we can count exceptional eigenvalues for Γ(N) as follows:

]

{
1

4
− t2 ∈ σ∆H(Γ(N)) : t ∈ [σ,

1

2
)

}
=

∑
χ mod N

]

{
1

4
− t2 ∈ σ∆H(Γ0(N2), χ) : t ∈ [σ

1

2
)

}
�ε

∑
χ mod N

[SL2(Z) : Γ0(N2)]1−4σ+ε �ε N
3−8σ+ε.

In summary, we have seen that

]

{
1

4
− t2 ∈ σ∆H(Γ(N)) : t ∈ [σ,

1

2
)

}
�ε [SL2(Z) : Γ(N)]1−

8
3σ+ε,

which is still an improvement upon Theorem 4.1.

These results can be translated into the language of Section 3. To do so we recall that H =

SL2(R)/SO2 and that the eigenvalues λ ∈ σ∆H(Γ) correspond to representations π ∈ ŜL2(R)sph

with m(π,Γ) > 0. Furthermore, if π corresponds to λπ = 1
4 − t

2
π ∈ σ∆H(Γ), then we have

p(π) =
2

1− 2<(tπ)

and the multiplicity of λπ in σ∆H(Γ) is precisely m(π,Γ). These observations allow us to write
Theorem 4.1 as ∑

π∈ŜL2(R)sph

p(π)>p

m(π,Γ)�ε [SL2(Z) : Γ]
2
p+ε,

for 2 < p ≤ ∞, Γ as in (16)-(18) and ε > 0. This is precisely Conjecture 3.11 for G = SL2.
More generally, we can take G(R) to be a semisimple Lie group of non-compact type with real

rank one. Fix an Iwasawa decomposition G(R) = NAK. Let ρ be the half sum of positive roots,
W the Weyl group and let a∗C be the complexified dual of the Lie algebra a of A. We parametrize

Ĝ(R)sph by a∗C/W and write this parametrization as π ↔ µπ. This is set up such that the trivial
representation corresponds to ρ and tempered representations have parameters in ia∗R. All non-
tempered unitary representations occur with parameter in (0, ρ]. It turns out that we can translate
between p(π) and µπ using the equality

p(π) =
2ρ

ρ− Re(µπ)
.

6More can be shown, but this is not necessary for our current discussion. We refer to [Hum18, (1.8)] or Theo-
rem 4.10 below for more details.
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Remark 4.6. If G(R) = SL2(R), then we have ρ = 1
2 . Selberg’s eigenvalue conjecture can be

phrased as ⋃
Γ

{µπ : m(π,Γ) > 0} ⊆ ia∗R ∪ {ρ},

where the union runs over all congruence subgroups Γ ⊆ SL2(Z).

In order to introduce suitable families of lattices we further assume that G is defined over Q and
that we have an embedding τ : G(R) → GLn(R). We say that Γ ⊆ G(R) is arithmetic if τ(Γ) is
commensurable with G(Z) = τ(G(R)) ∩ GLn(Z). This allows us to define (principal) congruence
subgroups of Γ by

Γ(N) = τ−1(τ(Γ) ∩ {γ ∈ G(Z) : γ ≡ In mod N}).
This is the context in which the original density hypothesis is formulated.

Conjecture 4.7 (Density Hypothesis 2.2, [Sar90]). Assume G(R) is as above and let Γ ⊆ G(R) be
an arithmetic lattice. Then we have

(20)
∑

π∈Ĝ(R)sph
µπ≥σ

m(π,Γ(N))�Γ,ε [Γ : Γ(N)]1−
σ
ρ+ε.

This is a special case of the general spherical density hypothesis formulated in Conjecture 3.11.
It was observed by [SaXu91], see also [Sar90, Proposition 2.3], for co-compact Γ and by [HuKa93,
Theorem 1.1] in general that Conjecture 4.7 follows from a certain uniform counting result. See
Section 6 and in particular Conjecture 6.1 below for more details. This opens the door to a direct
verification of Huxley’s result Theorem 4.1 by counting matrices and also to some new instances of
the density hypothesis.

Theorem 4.8 (Corollary 1, [SaXu91]). The density hypothesis as stated in Conjecture 4.7 holds
for co-compact arithmetic lattices Γ in SL2(R) or SL2(C).

Remark 4.9. To be precise, it should be noted that [SaXu91, Corollary 1] only contains the slightly
weaker statement

m(π,Γ(N))�Γ,ε [Γ : Γ(N)]
2

p(π)
+ε.

This is the pointwise multiplicity hypothesis of Sarnak and Xue proposed in [SaXu91, Conjecture 1]
see also Conjecture 3.10. However, the stronger statement given here is immediate. See also [Sar90,
Remarks 2.3].

We conclude that our understanding of Sarnak’s (spherical) density hypothesis for arithmetic
subgroups of SL2(R) is quite advanced. The same can be said about versions of the density hypoth-
esis for SL2 over non-archimedean local fields F . In this case the theory has a more combinatorial
flavour. We refer to [GoKa22] and the references within for further discussion.

For more general groups G(R) of real rank one the situation is more complicated. For arithmetic
lattices Γ in SU2,1(R) (arising from a Hermitian form in three variables) a result towards Conjec-
ture 4.7 was obtained in [SaXu91]. Indeed the counting result [SaXu91, Theorem 2] together with
a version of [HuKa93, Theorem 1.1] (see also [SaXu91, Theorem 3]) produces a density estimate
with an exponent weaker than the one predicted by the density hypothesis. More precisely, Sarnak
and Xue show that

m(π∞,Γ(N))�π∞,ε [Γ : Γ(N)]
7/3

p(π∞)
+ε,

which is slightly worse than the bound predicted by Conjecture 3.10. Using different tools, namely
endoscopy, stronger bounds than predicted by Conjecture 3.10 were established for cohomological
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representations of U2,1 in [Mar14]. This was later generalized to cohomological representations of
Un,1, see [MaSh19].

To the best of our knowledge a general density theorem along the lines of Conjecture 4.7 is
still open for groups like SUn,1 and SOn,1 of real rank one. In [EGM87, CLPSS91] the theory of
Poincaré series is developed in order to produce a spectral gap. However, the tools seem not yet
sufficient to produce a density theorem. It should be noted that certain weighted density results
have been established using Kuznetsov-type formulae in quite some generality. See for example
[Rez93, BrMia98, BMP03, BrMia10].

We conclude this section by stating two very impressive results. Both go in some sense beyond
the density hypothesis as stated in Conjecture 3.11, Conjecture 3.9 or Conjecture 4.7.

The methods developed in [Iwa90] extend to density theorem taking non-temperedness at finite
places into account. This was worked out in [BBR14, Proposition 1] improving earlier results from
[Sar84]. The method was pushed to its limits in [Hum18]. To state the result we take Γ as in
(16)-(18) and fix an orthonormal basis B(Γ) of L2

disc(Γ\H). Given f ∈ B(Γ) we write λf = 1
4 − t

2
f

for the corresponding Laplace eigenvalue (i.e. λf ∈ σ∆H(Γ)). We further assume that B(Γ) consists
of Hecke eigenfunctions and write λf (p) for the pth Hecke eigenvalue of f ∈ B(Γ).

Theorem 4.10 (Theorem 1.1 and 1.5, [Hum18]). Let P be a finite set of primes. Let N ∈ N and

assume that N is co-prime to all p ∈ P. Further, for p ∈ P let αp ∈ (2, p
1
2 + p−

1
2 ) be arbitrary and

fix µp ∈ [0, 1] with
∑
p∈P µp = 1. For T ≥ 0 and Γ as in (16)-(18) (with level N) we have

]{f ∈ B(Γ) : |λf (p)| ≥ αp for all p ∈ P and tf ∈ i[0, T ]}

�ε [SL2(Z) : Γ]1−αΓ
∑
p∈P µp

log(αp/2)

log(p)
+εT 2−8

∑
p∈P µp

log(αp/2)

log(p)
+ε

with

αΓ =


4 if Γ = Γ0(N),

3 if Γ = Γ1(N) and
8
3 if Γ = Γ(N).

Furthermore, we can take α∞ ∈ (0, 1
2 ) and pick µ∞ ∈ [0, 1] such that µ∞ +

∑
p∈P µp = 1. Then we

have

]{f ∈ B(Γ) : |λf (p)| ≥ αp for all p ∈ P and <(tf ) ≥ α∞}

�ε [SL2(Z) : Γ]
1−αΓ

(
α∞µ∞+

∑
p∈P µp

log(αp/2)

log(p)

)
+ε
.

Remark 4.11. We make the following comments:

• For Γ = Γ0(N) one can extend the result to non-trivial nebentypi as indicated in Remark 4.5.
However, for general nebentypus the Kloosterman sums can degenerate, so that the upper
bound comes with certain correction factors and we omit a precise statement. Furthermore,
the results in [Hum18] also include weight 1 Maaß forms.

• At a finite place v = p we measure non-temperedness in terms of the size of the pth Hecke
eigenvalue λf (p). However, it is also natural to use the invariant defined in (8) instead.

To be precise, we can write the Hecke eigenvalues as λf (p) = pµf (p,1) + pµf (p,2) and define
σp(f) = maxi=1,2<(µf (p, i)). As long as the implicit constants in the result above are
allowed to depend on P one can modify the arguments from [Hum18] and obtain a version
of Theorem 4.10 where the condition |λf (p)| ≥ αp is replaced by σf (p) ≥ σp for all p ∈ P.
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Another remarkable theorem is obtained in [FHMM24]. As we will see the result goes beyond
rank one, but we nonetheless state it at the end of this section because it is closely related to the
(algebraic) group SL2. Fix a, b, c ∈ N and let Fa,b,c denote the family of all congruence lattices
Γ ⊆ SL2(R)a× SL2(C)b that arise from certain (congruence) orders in quaternion division algebras
of signature (a, b, c) over a number field k of degree a+ c+ 2b. See [FHMM24, Definition 1.1] for a

precise definition. We let G(R) = SL2(R)a×SL2(C)b and parametrize representations π ∈ Ĝ(R)sph

by a tuple (sπ(j))j∈S∞ , where S∞ = {1, . . . , a+ b} and sπ(j) ∈ (0, 1
2 ] ∪ i[0,∞).

Theorem 4.12 (Theorem 1, [FHMM24]). Let a, b, c ∈ N, ∅ 6= S ⊆ S∞ and take tuples (σj)j∈S ∈
[0, 1

2 ]]S and (Tj)j∈S∞\S ∈ R]S∞\S≥0 . Then, for ε > 0, we have

∑
π∈Ĝ(R)sph

sπ(j)∈[σj ,
1
2 ] for j∈S

sπ(j)∈i[Tj−1,Tj+1] for j∈S∞\S

m(π,Γ)�a,b,c,ε

Vol(Γ\G(R))
∏

j∈S∞\S

(1 + |Tj |)1+δj>a

min
j∈S

(1−2σj)+ε

uniformly in Γ ∈ Fa,b,c.

The key feature here is the uniformity within the family of lattices F . Also note that if S = S∞,
then

p(π) =
2

minj(1− 2<(sj))
.

Thus, Theorem 4.12 covers (among other things) Conjecture 3.11 for a very large family of congru-
ence lattices of G(R). This result is established using the trace formula and can be seen as a vast
extension of the work of Huxley mentioned above. In particular, the high uniformity in the lattices
requires the introduction of many interesting new ideas.

5. A density hypothesis for SLn

We will now change gears and work over SLn for fixed n ≥ 3.7 Our goal is to discuss recent
progress towards the spherical density hypothesis as formulated in Conjecture 3.11.

Given a congruence lattice Γ ⊆ SLn(R) we will begin classically and consider automorphic forms
$ ∈ L2

disc(Γ\SLn(R)/SOn(R)). Throughout we will assume that these forms $ are eigenfunctions
of the algebra of invariant differential operators. We denote the corresponding spectral parameter
by µ$(∞) = (µ$(∞, 1), . . . , µ$(∞, n)). Similarly, if v = p is a finite place of Q and $ is an
eigenfunction of all (spherical) Hecke operators at v, then we write µ$(v) for the Satake parameter
attached to $ at v. In this case the entries of µ$(v) are defined modulo 2πi

log(p)Z. We normalize our

parameters such that the following statements hold:

• The constant function 1 has µ1(v) = ((1− n)/2, . . . , (n− 1)/2) for all places v.
• The form $ is tempered at v if and only if µ$(v) ∈ (iR)n.

To measure non-temperedness we define

(21) σ$(v) = max
j=1,...,n

|<(µ$(v, j))|.

7Let us stress that we view n as fixed and we claim no uniformity in this parameter. In particular, all the hidden
constants in our estimates will depend on n.
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Remark 5.1. Note that σ$(v) is the spherical version of the invariant σ(πv) defined in (8). Indeed,
an automorphic form $ gives rise to an automorphic representation π$ = ⊗vπ$,v of GLn(AQ). If
$ is an eigenfunction of all spherical Hecke operators at v (with non-trivial eigenvalues), then πv
is spherical. Thus, after changing the ordering of the tuple µ$(v) if necessary, we can realize πv
as the unique subrepresentation of Ind

GLn(Qv)
B(Qv) (| · |µ$(v,1) ⊗ . . .⊗ | · |µ$(v,n)). In particular, we have

σ$(v) = σ(π$,v).
The same discussion is valid for n = 2 and we can compare our current notation to the one from

Section 4. Indeed, given an automorphic form $ with Laplace-Beltrami eigenvalue λ$ = 1
4 − t

2
$ ∈

σ∆H(Γ) the corresponding spectral parameter is nothing but µ$(∞) = (−t$, t$). In particular,
σ$(∞) = |<(t$)|.

Remark 5.2. In view of the assignment $  π$ mentioned in the previous remark we can easily
define another measure of non-temperedness. Recall p(·) as defined in (7) and set

(22) p$(v) = p(π$,v).

For n = 3 we have

p$(v) =
2

1− σ$(v)
.

In general, for n ≥ 4 the two numbers σ$(v) and p$(v) do not contain the same information. They
are however related by the inequality:

p$(v) ≥ 2(n− 1)

(n− 1)− 2σ(µ)
.

See [JaKa24, Remark 3.4] for details.

Let F be a finite family of (orthogonal) automorphic forms $ and σ ≥ 0. We define

(23) Nv(σ,F) := #{$ ∈ F | σ$,v ≥ σ}.

In the case at hand the GLn-Ramanujan conjecture predicts that, if F consists of cusp forms, then
Nv(σ,F) = 0 for all σ > 0. In general we allow F to contain residual forms such as the constant
function $ = 1. Thus, Nv(σ,F) might be non-zero for 0 ≤ σ ≤ n−1

2 . In this context Sarnak’s
philosophy leads to the robust estimate

(24) Nv(σ,F)�ε (#F)1− 2σ
n−1 +ε.

As soon as F contains the constant function this estimate is sharp up to the tolerable factor (#F)ε.
However, for certain special families one can hope to find cn >

2
n−1 such that the stronger estimate

(25) Nv(σ,F)�ε (#F)1−cn·σ+ε

holds.
In practice we will encounter certain spectral families, which we will describe now. Let Γ be a lat-

tice and fix a symmetric set Ω ⊆ Cn such that Ω∩(iR)n is compact. We define the family F(Ω,Γ) to
consist of a maximal linearly independent set of automorphic forms $ ∈ L2

disc(Γ\SLn(R)/SOn(R))
with µ$(∞) ∈ Ω. We write Fcusp(Ω,Γ) for the subfamily consisting of cusp forms.

These families grow if the (Plancherel) volume of Ω or the co-volume of Γ gets large. We
distinguish these two aspects:
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• (Spectral Aspect) One can consider Γ as (essentially) fixed and let Ω grow. In this
situation the size of the family F(Ω,Γ) (resp. Fcusp(Ω,Γ)) is asymptotically captured by
the volume of Ω with respect to the Plancherel measure. In practice we often encounter
balls ΩM = {µ ∈ Cn : ‖µ‖ ≤M} of radius M > n. In this case the Weyl law predicts

]F(ΩM ,Γ) ∼Γ M
dn and ]Fcusp(ΩM ,Γ) ∼Γ M

dn

for dn = (n+2)(n−1)
2 . See [Mue23, Corollary 1.3] for suitable Weyl laws.

• (Level Aspect) On the other hand one can fix Ω and vary the lattice Γ. In practice one
often fixes an ambient lattice Γ0 and considers certain families {Γm}m∈N of sublattices with
growing index. In this case we have

]Fcusp(ΩM ,Γm) ≤ ]F(ΩM ,Γm)�Γ0,Ω [Γ0 : Γm].

For generic not to small Ω this upper bound is a good replacement for the size of the family
F(Ω,Γn) (resp. Fcusp(Ω,Γm)) as m→∞.

Remark 5.3. Sarnak’s spherical density hypothesis is essentially the estimate (24) for the family
F(Ω,Γ) in the level aspect. Note that in Conjecture 3.11 it is formulated for

Ω = Ω′M = {λπ∞ ≤M2}

and it contains the additional requirement that the implied constant depends at most polynomially
on M . If π∞ = π$,∞ for an automorphic form $ with spectral parameters µ$(∞), then one can
compute λπ∞ in terms of µ$(∞) and compare Ω′M and ΩM . For example, if n = 3, then

Ω′M = {µ ∈ C3 : 1− 1

2
(µ(1)2 + µ(2)2 + µ(3)2) ≤M2} ⊆ C3.

The general case is similar and in practice we can replace Ω′M by ΩM without loosing any informa-
tion.

We will now turn towards explaining recent progress towards the density hypothesis (24) (or
even its strengthening (25)) for families of the form F(ΩM ,Γ). The first breakthroughs were made
for n = 3 in [Blo13, BBR14, BBM17] using the Kuznetsov formula.

Theorem 5.4 (Theorem 2, [Blo13]). For σ > 0 and ε > 0 we have

(26) N∞(σ,Fcusp(ΩM ,SL3(Z)))�ε M
3−4σ+ε.

Remark 5.5. The numerical values in the exponent of this density theorem require some explana-
tion. First, we note that the spectral parameter of an exceptional Maaß form $ is very restricted.
Indeed it can be written as

(27) µ$(∞) = (σ$(∞) + iγ,−σ$(∞),−2iγ),

for γ ≥ 0 and 0 < σ$(∞) ≤ 5
14 . The upper bound on σ$(∞) is given in [BlBr11, Theorem 1]. Due

to the constraint on the imaginary part of the spectral parameter the spectral density of exceptional
Maaß forms drops. Indeed, by [LaMue09, Corollary 1.2] we have

(28) ]{$ ∈ Fcusp(ΩM ,SL3(Z)) : σ$(∞) > 0} �M3.

In view of this, the result fits within our usual philosophy. Indeed, for σ = ε/4 > 0 close to zero
we count all exceptional Maaß forms and as σ increases fewer forms contribute to the count. Note
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that the statement of [Blo13, Theorem 3] actually reads

(29)
∑

$∈Fcusp(ΩM ,SL3(Z))
‖µ$(∞)‖∞=T+O(1)

σ$(∞)>0

T 4σ$(∞) � T 2+ε.

The result as stated is deduced from this by cutting ΩM into O(1)-pieces and taking (27) into
account.

Theorem 5.6 (Theorem 2, [BBR14]). Let v = p be a finite place of Q. Then, for ε > 0, we have

(30) Nv(σ,Fcusp(ΩM ,SL3(Z)))�v,ε (M5)1−σ+ε.

Remark 5.7. We should note that the statement given in [BBR14, Theorem 2] is slightly weaker
than what we are claiming here. However, the argument given in loc. cit. is easily adapted to
produce the bound above. This is also discussed in the final remark of [MaTe21, Section 1.D]. For
completeness let us provide a brief sketch of the argument using notation and results from [BBR14].

Fix ε > 0. If σ < ε, then (M5)1−σ+ε ≤ M5 and Weyl’s law gives the desired bound. Thus we
can assume that σ ≥ ε. In this case one applies [BBR14, (18)] to obtain

plσ$(v) �ε |A$(pl, 1)|.
At this point we estimate

Nv(σ,Fcusp(ΩM ,SL3(Z))) ≤ p−2lσ
∑

$∈F(ΩM ,SL3(Z))

p2lσ$(v)

�ε p
−2lσ

∑
$∈F(ΩM ,SL3(Z))

|A$(pl, 1)|2.(31)

Estimating this as in the proof of [Blo13, Theorem 3] gives

(32) Nv(σ,Fcusp(ΩM ,SL3(Z)))�ε (Mpl)ε(M5 +M2pl)p−2lσ.

To establish the density hypothesis we need to pick l so that pl �p M
5
2 . Since l should be an

integer, we choose l =
⌊

5 log(M)
2 log(p)

⌋
. In view of our bound above this leads to

Nv(σ,Fcusp(ΩM ,SL3(Z)))�ε p
2σ+ε(M5)1−σ+ε

as desired. We conclude this remark by discussing the strength of the exponent:

• Using [BBR14, (23)] with k = 1 instead of the argument from [Blo13] to estimate (31) gives
the weaker bound

Nv(σ,Fcusp(ΩM ,SL3(Z)))�ε (Mpl)ε(M5 +M2p2l +M3p
7
16 l + p

20
3 l)p−2lσ.

In particular, this estimate only allows us to take pl �p M
3
4 . This way one obtains the

density result

Nv(σ,Fcusp(ΩM ,SL3(Z)))�v,ε (M5)1− 3
10σ+ε,

which is weaker than Sarnak’s density hypothesis.
• The optimal choice in (32) is pl �M3 and yields an improved density theorem. Even more,

[BuZh20, Theorem 3.3] can be used to estimate (31) even better. This way one can prove

Nv(σ,Fcusp(ΩM ,SL3(Z)))�v,ε (M5)1− 8
5σ+ε.

This improves upon the density hypothesis and was already recorded in [JaKa24, Proposi-
tion 4.15].
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Theorem 5.8 (Theorem 4 and 5, [BBM17]). Fix ΩM ⊆ C3, a place v of Q and let Γ0(N) ⊆ SL3(Z)
denote the Hecke congruence subgroup

Γ0(N) =

 Z Z Z
Z Z Z
NZ NZ Z

 ∩ SL3(Z).

If v = p is finite then we assume (N, p) = 1. For N prime we have

(33) Nv(σ,Fcusp(ΩM ,Γ0(N)))�M,v,ε [SL3(Z) : Γ0(N)]1−2σ+ε.

Remark 5.9. Some remarks are in order:

(1) The statement for finite v appearing in [BBM17, Theorem 5] is slightly weaker than what
is claimed in the statement above. However, what we state is easily deduced from [BBM17,
Theorem 4]. See Remark 5.7 for a similar discussion.

(2) For general N the proof given in [BBM17] reveals the weaker bound

(34) Nv(σ,Fcusp(ΩM ,Γ0(N)))�M,v,ε [SL3(Z) : Γ0(N)]1−σ+ε,

which matches Sarnak’s density hypothesis (see (24)).

In view of Remark 5.2 we can rephrase (24) as

Nv(σ,Fcusp(ΩM ,Γ0(N)))�M,v,ε [SL3(Z) : Γ0(N)]
2

p$(v)
+ε.

All the results mentioned so far are for n = 3 only and crucially rely on explicit versions of the
Kuznetsov formula. Another natural approach is to use the Arthur-Selberg trace formula. This
gives rise to the following general result.

Theorem 5.10 (Corollary 1.8, [MaTe21]). Let v = p be a finite place of Q. Then we have

Nv(σ,Fcusp(ΩM ,SLn(Z)))� p2σ(Md)1−cnσ.

Here cn > 0 is a small unspecific constant depending (at least quadratically) on n−1.

Remark 5.11. To the best of our knowledge this is the first result which gives quantitative control
on the density of exceptional Maaß cusp forms for SLn with unbounded n. Note that [MaTe21]
appeared as an arXiv preprint already in 2015. Unfortunately the estimate is much weaker than
what is predicted by Sarnak’s density hypothesis.

Another general density estimate is contained in [BrMil24, Proposition 9.1]. This result is crucial
to the argument in loc. cit., but takes a quite peculiar shape in the sense that it intertwines level
aspect and spectral aspect. Also [BrMil24] was published as a preprint already in 2018.

A major breakthrough was obtained in [Blo23], where the density hypothesis (and more) was
established for SLn, with no assumptions on n, in the level aspect.

Theorem 5.12 (Theorem 1, [Blo23]). Let M, ε > 0, σ ≥ 0 and let N ∈ N. Then, for a place v of
Q with p - N if v = p is finite, we have

Nv(σ,Fcusp(ΩM ,Γ0(N)))�M,v,ε [SLn(Z) : Γ0(N)]1−
2

n−1σ+ε.

Even more, if N is prime, then

Nv(σ,Fcusp(ΩM ,Γ0(N)))�M,v,ε [SLn(Z) : Γ0(N)]1−
4

n−1σ+ε.



19

Remark 5.13. The statement of [Blo23, Theorem 1] only covers the case when N is prime. How-
ever, the bound in the general case is a by-product of the argument. This is the content of the
discussion below [Blo23, (1.4)].

The family of Hecke congruence subgroups Γ0(N) is very nice in several aspects. Most notably it
admits an elegant theory of oldforms and newforms, which was developed in [JPS81, Ree91, Jac12].
Given a cuspidal automorphic representation of GLn(AQ) this theory allows us to estimate

(35) dimC π
K0(N) �ε N

ε,

where K0(N) is the open compact subgroup of GLn(AQ,fin) such that K0(N) ∩GLn(Q) = Γ0(N).
Given a cusp form $ ∈ L2

cusp(Γ0(N)\SLn(R)/SOn) the standard procedure of adelization allows us

to construct a corresponding cuspidal automorphic representation π$ with π
K0(N)
$ 6= {0}. In view

of global multiplicity one (see [Shal74]) and (35) we can replace Nv(σ,Fcusp(ΩM ,Γ0(N))) by the
counting function

Ñv(σ,M,K0(N)) = ]{π = ⊗vπv cuspidal automorphic : σ(πv) ≥ σ, πK0(N) 6= {0} and λπ∞ ≤M2}
without loosing to much information. Reformulating Theorem 5.12 accordingly yields

Ñv(σ,M,K0(N))�M,v,ε

{
[SLn(Z) : Γ0(N)]1−

2
n−1σ+ε for arbitrary N,

[SLn(Z) : Γ0(N)]1−
4

n−1σ+ε for N prime.

A different family of automorphic forms was studied in [Jan21]. Indeed given a representation
π∞ of PGLn(R) we associate the analytic conductor C(π∞) as in [IwSa00]. Note that we are not
making any assumption on the minimal K-type of π∞. We define Fco(X,Γ) to be a maximal
orthogonal set of automorphic forms $ for Γ such that C(π$,∞) ≤ X. From Weyl’s law it can be
deduced that

]Fco
cusp(X,Γ) �Γ X

n−1.

Theorem 5.14 (Theorem 3, [Jan21]). Let v be a finite place of Q. Then we have

Nv(σ,Fco
cusp(X,SLn(Z)))�v,ε (Xn−1)1− 2

n−1σ+ε.

So far we only have discussed families of automorphic forms which are closely linked to families of
(automorphic) L-functions. See [SST16] for a detailed account on the notion of families.8 However,
there are many other reasonable families of automorphic forms. The level structure underlying one
of the original formulations of Sarnak’s density hypothesis, see for example Conjecture 4.7, arises
from so-called principal congruence subgroup. For SLn(Z) these are defined as

(36) Γ(N) =


1 +NZ NZ · · · NZ

NZ
. . .

. . .
...

...
. . .

. . . NZ
NZ · · · NZ 1 +NZ

 ∩ SLn(Z) for N ∈ N.

As we will see in Section 6 below the arithmetic applications arising from this family of congruence
lattices are particularly beautiful.

Establishing the density hypothesis for the lattices Γ(N) is the content of the two papers [AsBl24,
ABN24], which are both part of this habilitation. The first theorem in this direction is the following:

8The attentive reader will note that we slightly abuse the term family when using it for F(Ω,Γ).
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Theorem 5.15 (Theorem 1.1, [AsBl24]). Let M, ε > 0, N ∈ N squarefree and fix a place v of Q.
If v = p is finite, then we assume p - N . There exists K > 0 depending only on n such that

Nv(σ,Fcusp(ΩM ,Γ(N)))�v,ε M
K · [SLn(Z) : Γ(N)]1−

2
n−1σ+ε.

Remark 5.16. Some remarks are in order:

(1) The dependence on M (i.e. the spectral aspect) is not very impressive. However, for appli-
cations it turns out to be important that it is polynomial. Achieving this uniformity requires
some delicate tweaks of the archimedean argument in [Blo13]. A convenient by-product is
that also the density estimate stated in Theorem 5.12 above can be made polynomial in M .

(2) As a corollary, see [AsBl24, Corollary 1.2], we get a Sarnak-Xue type multiplicity bound

m(π∞,Γ(N))�λπ∞ ,v,ε
[SLn(Z) : Γ(N)]1−

2
n−1σπv+ε.

As discussed in Remark 5.2 this is different from the Sarnak-Xue Lp-conjecture as soon as
n > 3.

(3) Using Langlands’ theory of Eisenstein series and the classification of the discrete spectrum
by Moeglin and Waldspurger given in [MoWa89] one can upgrade the cuspidal density
theorem to the full spectrum, see [AsBl24, Theorem 7.1]. We will come back to this in
Corollary 5.21 below.

Remark 5.17. In Remark 4.5 we have seen that for n = 2 the density hypothesis for the principal
congruence group follows from a strong Γ0(N) density theorem. Recall that the key to this deduction
was that Γ(N) is conjugate to a nice subgroup of Γ0(N2). This argument does not generalize to
n ≥ 3. In the following discussion, which is kept rather informal, we will illustrate the issue. Write
K(N) for the open compact subgroup of GLn(AQ,fin) corresponding to the principal congruence
subgroup Γ(N). Strong approximation fails for this subgroup, so that the assignment $  π$
looses uniqueness. However, one still obtains

Nv(σ,Fcusp(ΩM ,Γ(N))) ≈ 1

N

∑
π=⊗vπv, cuspidal

λπ∞�M
2

σ(πv)≥σ

dimC π
K(N).

It can be shown that for cuspidal automorphic representations one has dimC π
K(N) � N

n(n−1)
2 .

Furthermore, if πK(N) 6= {0}, then π has level ≤ Nn. In view of (35) we conclude that∑
π=⊗vπv
cuspidal
λπ∞�M

2

dimC π
K(N) ≈ N

n(n−1)
2

∑
χ mod N

∑
π=⊗vπv cuspidal
ωπ=χ, σ(πv)≥σ
λπ∞�M

2

dimC π
K0(Nn),

where ωπ denotes the central character of π. A minor modification of Theorem 5.12 shows that∑
χ mod N

∑
π=⊗vπv cuspidal
ωπ=χ, σ(πv)≥σ
λπ∞�M

2

dimC π
K0(Nn) �M,v,ε N

n(n−1)−2nσ+ε.

Putting every together yields

(37) Nv(σ,Fcusp(ΩM ,Γ(N)))�M,v,ε N
3n(n−1)

2 −2nσ+ε.
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For n ≥ 3 this estimate falls short of anything resembling the density hypothesis. Indeed, even for

σ = 0 we overestimate Nv(0,Fcusp(ΩM ,Γ(N))) � Nn2−1. Thus, not even an improvement in the
exponent of the density theorem for Γ0(N) can save this argument.

However, for n = 2 we have a numerical coincidence and (37) reads

Nv(σ,Fcusp(ΩM ,Γ(N)))�M,v,ε (N3)1− 4
3σ+ε,

which is slightly weaker than the density hypothesis. However, an improved density hypothesis for
Γ0(N), as given in Theorem 4.3 for example, is strong enough to recover the density hypothesis for
Γ(N). This is a reincarnation of the argument from Remark 4.5.

In view of the strengthening of the density hypothesis for Hecke congruence subgroups, given in
Theorem 5.12, it is a natural challenge to obtain similar improvements for the principal congruence
subgroup. This is addressed in [BlMa24].

Theorem 5.18 (Proposition 4, [BlMa24]). Let M, ε > 0, N ∈ N prime and fix a place v of Q. If
v = p is finite, then we assume p - N . There exist K, δ > 0 depending only on n such that

Nv(σ,Fcusp(ΩM ,Γ(N)))�v,ε M
K · [SLn(Z) : Γ(N)]1−

2+δ
n−1σ+ε.

Theorems 5.15 and 5.18 come with severe restrictions on the level N of the principal congruence
subgroup. These restrictions are due to several hard technical problems that arise in the general
case. Removing them requires new ideas and was achieved in [ABN24].

Theorem 5.19 (Theorem 1.1, [ABN24]). Let M, ε > 0, N ∈ N arbitrary and fix a place v of Q. If
v = p is finite, then we assume p - N . There exists K depending only on n such that

Nv(σ,Fcusp(ΩM ,Γ(N)))�v,ε M
K · [SLn(Z) : Γ(N)]1−

2
n−1 (1+ 1

n+1 )σ+ε.

Note that this is an explicit improvement on Sarnak’s density hypothesis. The result goes beyond
Theorem 5.15 and 5.18 in strength and in generality simultaneously. It is reasonable to believe that
for general n the factor 2

n−1 (1 + 1
n+1 ) in the exponent is the limit of current technology. However,

for n = 3 one can do slightly better.

Theorem 5.20 (Theorem 1.8, [ABN24]). Let M, ε > 0, N ∈ N arbitrary and fix a place v of Q. If
v = p is finite, then we assume p - N . There exists K such that

Nv(σ,Fcusp(ΩM ,Γ(N)))�v,ε M
K · [SL3(Z) : Γ(N)]1−

3
2σ+ε = MKN8−12σ+ε.

Finally, we can extend the density theorem to the full discrete spectrum. Note that the resulting
family contains the trivial representation, so that one can not hope to improve upon Sarnak’s
density hypothesis.

Corollary 5.21 (Corollary 1.3, [ABN24]). Let M, ε > 0, N ∈ N arbitrary and fix a place v of Q.
If v = p is finite, then we assume p - N . There exists K depending only on n such that

Nv(σ,F(ΩM ,Γ(N)))�v,ε M
K · [SLn(Z) : Γ(N)]1−

2
n−1σ+ε.

One can go a step further and include the full spectrum. This means adding the contribution of
Eisenstein series as well. A statement in this direction is given in [ABN24, Corollary 1.5].

A straight forward application of the Jacquet-Langlands correspondence allows one to transfer
Theorem 5.19 to certain co-compact quotients of SLn(R).
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Corollary 5.22 (Theorem 1.9, [ABN24]). Let ΓO ⊆ SLn(R) be a co-compact lattice arising from
an order in a quaternion division algebra over Q. For N ∈ N co-prime to the discriminant we
define the principal congruence subgroups ΓO(N) and obtain

Nv(σ,F(ΩM ,ΓO(N)))�O,v,ε MK · [ΓO : ΓO(N)]1−
2

n−1σ+ε.

Different families of (congruence) lattices give rise to new applications and also to new challenges.
To illustrate this we have studied level families arising from Borel type congruence subgroups:

Γ2(N) =


Z Z · · · Z

NZ
. . .

. . .
...

...
. . .

. . . Z
NZ · · · NZ Z

 ∩ SLn(Z)

in [Ass23a]. The density theorem takes the usual shape.

Theorem 5.23 (Theorem 1.1, [Ass23a]). For N prime and σ, ε > 0 we have

(38) N∞(σ,F(ΩM ,Γ2(N)))�ε M
K [SLn(Z) : Γ2(N)]1−

2
n−1σ+ε,

for an absolute constant K depending only on n.

Remark 5.24. The assumption that N is prime seems to be difficult to remove. It can probably
be relaxed to squarefree levels, but the general case would require new ideas going even beyond
those developed in [ABN24].

We conclude this section by briefly sketching the basic method behind most of the density results
presented in this section. Similar discussions have appeared in [Blo23, Section 1.1] and [AsBl24,
Section 1.4]. Let Γ ⊆ SLn(R) be a (non co-compact) congruence subgroup. In order to establish
the density hypothesis we use (a version of) the Rankin-Trick and replace N∞(σ,F(ΩM ,Γ)) by

N∞(σ,Fcusp(ΩM ,Γ)) ≤ Z−2σ
∑

$∈Fcusp(ΩM ,Γ)

Z2σ$(∞).

The density hypothesis follows if we can show

(39)
∑

$∈Fcusp(ΩM ,Γ)

Z2σ$(v) �ε Vol(Γ\SLn(R))1+ε,

for Z � Vol(Γ\SLn(R))
1

n−1 . Allowing larger Z will result in estimates that go beyond the density
hypothesis. This strategy has appeared several times above, see for example Remark 5.7. The next
step is to realise the right hand side of (39) as the spectral side of the Kuznetsov formula. With an
appropriately chosen test function the SLn(R)-Kuznetsov formula is an identity that roughly reads

(40)
1

]Fcusp(ΩM ,Γ)

∑
$∈Fcusp(ΩM ,Γ)

|A$(1)|2 · Z2σ$(∞) ≈ 1 +
∑

16=w∈W

∑
c∈Nn−1

|c1|,...,|cn−1|�Z

SΓ,w(1,1, c)

|c1 · · · cn−1|
.

Here W ∼= Sn is the Weyl group, A$(1) is the first Fourier coefficient of $ and SΓ,w(1,1, c) is the
w-Kloosterman sum for Γ.
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The spectral side (i.e. the right hand side of (40)) is a version of the right hand side of (39)
weighted by Fourier coefficients. In order to remove these weights one needs to show that

(41)
∑

$∈Fcusp(ΩM ,Γ)
µ$(∞)=µ0

|A$(1)|2 ≈ ]{$ ∈ Fcusp(ΩM ,Γ): µ$(∞) = µ0}.

This yields

(42)
1

]Fcusp(ΩM ,Γ)

∑
$∈Fcusp(ΩM ,Γ)

Z2σ$(v) ≈ 1 +
∑

16=w∈W

∑
c∈Nn−1

|c1|,...,|cn−1|�Z

SΓ,w(1,1, c)

c1 · · · cn−1
.

Establishing (41) is not an easy task in general. For Γ = Γ0(N) it follows from the Rankin-Selberg
method and newform theory. On the other hand, for the principal congruence subgroup Γ = Γ(N)
and the Borel type congruence subgroup Γ = Γ2(N) more complicated local considerations are
required. See [ABN24, Section 1.3] for more discussion.

To finish the proof of (39) it suffices to estimate the right hand side of (42). In particular, we
must show that

(43)
∑

c∈Nn−1

|c1|,...,|cn−1|�Z

SΓ,w(1,1, c)

c1 · · · cn−1
� 1

for all q 6= w ∈ W and Z sufficiently large. The trivial bound for the Kloosterman sums was
established in [DaRe98] and takes the form

(44)
SΓ,w(1,1, c)

|c1 · · · cn−1|
�Γ 1.

Unfortunately this is insufficient for our purposes. In order to efficiently estimate the geometric
side (i.e. (43)) we need to exploit the following two phenomena:

• The Kloosterman sums vanish by default unless certain compatibility relations between w
and c are satisfied.

• The congruence subgroup Γ forces certain divisibility conditions on the moduli c. More
precisely SΓ,w(1,1, c) = 0 unless c1, . . . , cn−1 satisfy certain congruence conditions that
depend on Γ and w.

For Γ = Γ0(N) these observations are actually sufficient to establish the density hypothesis as
stated in Theorem 5.12 for general N . For other Γ these observations vastly reduce the complexity
of the geometric side, but are in general insufficient to yield the full density hypothesis. Establishing
(43) for suitable Z still relies on good bounds for SΓ,w(1,1, c) that are uniform in Γ. Establishing
these is an interesting and difficult problem in general. For the principal congruence subgroup the
required bounds have been established in [ABN24, Section 3] by direct computation.

We see that the (spherical) density hypothesis in the level aspect follows from the Kuznetsov
formula as long as the estimates (41) and (43) are available. Both of these estimates can be reduced
to local problems. In all instances where these local problems have been solved their solution relies
on structural features of the lattice family in question.

6. Arithmetic applications

The density hypothesis and its variations have many interesting applications. We collect a few
of them in the following list.
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• In the co-compact setting the density hypothesis yields bounds on Betti number. See
[SaXu91, Theorem 4] for example. For an example of this phenomenon in higher rank we
refer to the more recent work [EGG23, Theorem 1.5].

• In some situations the density hypothesis implies a (uniform) spectral gap. See for example
[SaXu91, Corollary 2].

• The density hypothesis for spectral families implies optimal diophantine exponents. See for
example [JaKa24, Theorem 3].

• On a combinatorial level the density hypothesis can be used to construct families of graphs
(or complexes) with good expansion properties. One can also formulate the density hy-
pothesis on the level of graphs. In this setting its applications include cut-off and optimal
almost diameter. We refer to [GoKa22, GoKa23, EGG23] and the references within for a
more thorough discussion of these matters.

So far we have not mentioned uniform counting and optimal lifting, which are both important
arithmetic concepts closely connected to the density hypothesis. We will discuss these in more
detail now.

Uniform counting was one of the main motivations behind the formulation of the density hy-

pothesis in [Sar90]. To set things up we start with a semisimple group G(R) ⊆ GLm(R) ⊆ Rm2

and assume that K = G(R)∩Om(R) is a maximal compact subgroup. The euclidean norm ‖ · ‖ on

Rm2

descends to G(R) and we define

α‖·‖(G) = lim
T→∞

log(T )−1 · log (Vol({g ∈ G(R) : ‖g‖ ≤ T}, dg))

for a Haar measure dg on G(R). We have suppressed the dependence of α on ‖·‖ and the embedding
G(R) ⊆ GLm(R) in the notation. For example taking the standard inclusion SLn(R) ⊆ GLn(R)
yields α(SLn) = n(n − 1). Using the realization of G in GLn we can define Γ(1) = G(Z) =
G(R) ∩GLn(Z) and

Γ(N) = {γ ∈ G(Z) : γ ≡ I mod N}.
One has the well known asymptotic expansion

(45) ]{γ ∈ Γ(N) : ‖γ‖ ≤ T} =
cG · Tα

[G(Z) : Γ(N)]
+ON,G(Tα−δ),

for some δ > 0. See [DRS93]. This asymptotic formula alone is a very important result. However,
its lacking uniformity in the level N can be problematic in practice. To remedy this Sarnak proposed
the following uniform counting conjecture.

Conjecture 6.1 (Main Conjecture 2.1, [Sar90]). For G as above and T,N ≥ 1 we have

]{γ ∈ Γ(N) : ‖γ‖ ≤ T} �G,ε (TN)ε
(

Tα

[G(Z) : Γ(N)]
+ T

α
2

)
.

For G(R) = SL2(R) a beautiful elementary argument, going back to Sarnak and Xue, produces
the following estimate.

Theorem 6.2 (Proposition 5.3, [Gam02]9). We have

(46) ]{γ ∈ SL2(Z) : γ ≡ I mod N and ‖γ‖∞ ≤ T} �ε (NT )ε
(
T 2

N3
+
T

N
+ 1

)
.

In particular, Conjecture 6.1 holds for SL2.

9This statement and its proof appears in many places. Choosing this reference is historically inaccurate but still
justifiable. Note that we have fixed a small typo appearing in loc. cit..
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Similarly, the analogous conjecture was established for principal congruence subgroups of arith-
metic lattices in SL2(R) and SL2(C). See [SaXu91, Theorem 1]. On the other hand, it is shown in
[HuKa93, Theorem 1.1] that Conjecture 6.1 implies Sarnak’s density hypothesis for G of real rank
one.

In higher rank the relation between the density hypothesis and Conjecture 6.1 becomes more
subtle. The main difficulty arises due to the existence of non-generic Eisenstein series, which are
analytically hard to handle. A first step was taken in [AsBl24], where the following conditional
result was obtained:

Theorem 6.3 (Theorem 1.4, [AsBl24]). Let Γ(N) ⊆ SLn(Z) be the principal congruence subgroup
defined in (36). Conditional on [AsBl24, Hypothesis 1] we have

]{γ ∈ Γ(N) : ‖γ‖ ≤ T} �ε (TN)ε
(

Tn(n−1)

[SLn(Z) : Γ(N)]
+ T

n(n−1)
2

)
.

for squarefree N and T ≥ 1.

Here [AsBl24, Hypothesis 1] essentially postulates that the norms of all relevant truncated Eisen-
stein series for SLn are essentially bounded in the N -aspect and of at most polynomial growth in
the spectral aspect. Establishing this hypothesis would require an intricate analysis of the Maaß-
Selberg relations and the availability of strong zero free regions for Rankin-Selberg L-functions. See
[AsBl24, Section 1.3] and [JaKa22, Section 1.4] for a more detailed discussion.

It turns out that [AsBl24, Hypothesis 1] is stronger than what is actually needed to deduce
uniform counting results from density theorems. Indeed, in practice it suffices to control the L2-
growth of Eisenstein on average. This crucial idea was carefully worked out in [JaKa22].

Theorem 6.4 (Theorem 5, [JaKa22]). For G = SLn and N squarefree Conjecture 6.1 holds un-
conditionally.

The squarefreeness assumption on N is a relict from the [AsBl24] density theorem as stated
in Theorem 5.15, which is a key ingredient for the proof of [JaKa22]. Since this assumption was
recently removed in [ABN24] we now have uniform counting for the principal congruence subgroup
of SLn(Z) in full generality:

Theorem 6.5 (Corollary 1.6, [ABN24]). Conjecture 6.1 is true for G = SLn.

Remark 6.6. The second error term Tα/2 in Conjecture 6.1 is (up to the index) exactly the square
root of the main term. This numerology is no coincidence and should be no surprise to analytic
number theorists. Indeed, a classical analogue is counting primes in arithmetic progressions modulo
q. Here it is known that under the generalized Riemann hypothesis one has a main term of size x/q

and an error of roughly size x
1
2 .

The significance of the Tα/2-term can be seen for G(R) = SLn(R). Indeed, one clearly has

]{γ ∈ Γ(N) : ‖γ‖∞ ≤ T and γ upper triangular} �
(
T

N

)n(n−1)
2

.

This matches the error term up to the saving in N . In particular, the claimed bound

]{γ ∈ Γ(N) : ‖γ‖ ≤ T} �n,ε
Tn(n−1)

[SLn(Z) : Γ(N)]
log(T ) + 1

from [Kat93, Theorem 4] is to good to be true. See also [GoKa23, Section 2.6] for a related
discussion.



26

For general (congruence) lattices Γ ⊆ G(Z) the direct generalization of uniform counting is more
subtle. However, one still expects that the the following is true

(47)
1

[G(Z) : Γ]

∑
x∈Γ\G(Z)

]{γ ∈ x−1Γx : ‖γ‖ ≤ T} �ε T
ε

(
Tα

[G(Z) : Γ(N)]
+ T

α
2

)
Note that, if Γ is normal in G(Z), then x−1Γx = Γ for all relevant x and the average is superfluous.
In some situations the quotient Γ\G(Z) has a nice geometric description endowing the average in
(47) with interesting interpretations.

We now turn back to G = SLn and discuss some instances of (47) in this setting. We start by
considering the the case of Γ2(N) assuming that N = l is prime. We denote the set of complete
flags in Fnl by

Bl = {(V1, . . . , Vn−1) : 0 < V1 < . . . < Vn−1 < Fnl }.
Reduction modulo l defines an action

Φl : SLn(Z)→ Sym(Bl).

We write
1 = {〈en〉, 〈en, en−1〉, . . .}

for the standard flag and observe that10

(48) Γ2(l)> = {γ ∈ SLn(Z) : Φl(γ)1 = 1}.
The following is an adaption of Conjecture 6.1 to the setting at hand.

Conjecture 6.7. For every prime l and ε > 0 we have

]{(γ, x) ∈ SLn(Z)×Bl : ‖γ‖∞ ≤ T and Φl(γ)(x) = x} �ε (T l)ε
(
Tn(n−1) + (T l)

n(n−1)
2

)
.

This set-up was already considered in [KaLa23], where the case n = 3 was treated. In loc. cit.
they prove a slightly modified version of Conjecture 6.7. To state it we need to define the following
gauge:

(49) ‖g‖∗ = ‖g‖∞ · ‖g−1‖∞
on SLn(R).

Remark 6.8. Note that for n = 2 we have ‖g‖∞ = ‖g−1‖∞ for g ∈ SL2(R). Thus in this case we
would simply have ‖g‖∗ = ‖g‖2∞. However, for higher rank (i.e. n ≥ 3) the two gauges ‖ · ‖∞ and
‖ · ‖∗ can differ drastically.

Theorem 6.9 (Theorem 5.2, [KaLa23]). There is a constant C > 0 such for every prime l and
T ≤ Cl3 we have

]{(γ, x) ∈ SL3(Z)×Bl : ‖γ‖∗ ≤ T and Φl(γ)(x) = x} �ε (l3T )1+ε.

Note that the exponents do not exactly match the ones in Conjecture 6.7. The reason for this is
that the balls {‖g‖∞ ≤ T} and {‖g‖∗ ≤ T} have different volumes. However, qualitatively the two
statement essentially agree.

The proof of Theorem 6.9 proceeds without making any reference to the density hypothesis.
Instead it is obtained by a direct counting argument. This counting argument is very involved and

10For technical reasons we have chosen the standard flag so that its stabilizer is the transpose of the Borel type
congruence subgroup. This is however inessential.
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is unlikely to generalize to n > 3. However, by using ideas from [JaKa22] together with the density
theorem for Γ2(N) we can establish the following:

Theorem 6.10 (Theorem 10.1, [Ass23a]). Conjecture 6.7 holds for all n ≥ 3.

Since it seems fitting we can formulate a similar statement for the Hecke congruence subgroup
Γ0(N). Here we have to replace the space of flags by projective space. Let

Pl = Pn−1(Fl) = {x ∈ Fnl \ {0}}/ ∼,

where the equivalence relation ∼ on Fnl \{0} is given by x ∼ y if there is α ∈ F×l such that y = αx.
Again reduction modulo l (coupled with the canonical action of SLn(Fl) on Pl) yields an action

Ψl : SLn(Z)→ Sym(Pl).

The Hecke congruence subgroup arises as

(50) Γ0(l)> = {γ ∈ SLn(Z) : Ψl(γ)en = en},

where en denotes the image of en in Pl.

Theorem 6.11 (Theorem 1.4, [KaLa23]). Then there exists a constant C > 0 such that for every
prime l, T ≤ Cl2 and ε > 0 it holds that

]{(γ, x) ∈ SL3(Z)× Pl : ‖γ‖∗ ≤ T and Ψl(γ)x = x} �ε (l2T )1+ε.

Again this result is obtained by a direct counting argument, which is hard to generalize directly
to higher rank. However, using the density hypothesis for Γ0(l) established in [Blo23] one can prove
the following:

Theorem 6.12. For every prime l and ε > 0 we have

]{(γ, x) ∈ SLn(Z)× Pl : ‖γ‖∞ ≤ T and Ψl(γ)(x) = x} �ε (T l)ε
(
Tn(n−1) + T

n(n−1)
2 ln−1

)
.

Remark 6.13. The proof of this result combines the density estimate Theorem 5.12 with the
methods from [JaKa22]. The proof is analogous to the one given in [Ass23a, Section 10] and was
anticipated in [GoKa23, Section 2.5] as well as in the introduction of [KaLa23].

We turn towards optimal lifting. Optimal lifting was introduced in [Sar15] as a close analogue
of studying the least prime in arithmetic progressions. For SL2(Z) the following statement is taken
from [KaLa23, Theorem 1.1].

Theorem 6.14 ([Sar15]). For all ε > 0 as N →∞ there exists a set Y ⊆ SL2(Z/NZ) with

]Y ≥ ]SL2(Z/NZ) · (1 + oε(1))

such that for every y ∈ Y there is γ ∈ SL2(Z) with ‖γ‖∞ ≤ N
3
2 +ε and γ ≡ y mod N .

Remark 6.15. In [Sar15] this is proved using the spectral theory of automorphic forms. As a
key input a density theorem for the principal congruence subgroup is used. On the other hand,
in [KaLa23] a different proof is given. Indeed, in loc. cit. the elementary counting result (46) is
combined with Selberg’s spectral gap to establish the optimal lifting property.

It is now very natural to conjecture the following for SLn(Z).
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Conjecture 6.16 (Conjecture 1.2, [KaLa23]11). For all ε > 0 as N → ∞ there exists a set
Y ⊆ SLn(Z/NZ) with

]Y ≥ ]SLn(Z/NZ) · (1 + oε(1))

such that for every y ∈ Y there is γ ∈ SLn(Z) with ‖γ‖∞ ≤ N1+ 1
n+ε and γ ≡ y mod N .

Remark 6.17. The bound ‖γ‖∞ ≤ N1+ 1
n+ε for the least pre-image of an element in SLn(Z/NZ)

is suggested by the pigeon hole principle. Thus, Conjecture 6.16 is based on the expectation that
the pigeon hole principle gives the correct upper bound for generic elements in SLn(Z/NZ). On the
other hand, in [Sar15] Sarnak constructed examples of matrices with exceptionally large smallest
pre-image. Thus, one can not expect the statement to hold with Y = SLn(Z/NZ), making the
conjecture in some sense optimal. We refer to [KaVa23] for more interesting results concerning the
size of lifts of matrices.

The first step towards the resolution of Conjecture 6.16 was taken in [AsBl24] using the density
theorem for the principal congruence subgroup.

Theorem 6.18 (Theorem 1.5, [AsBl24]). For N squarefree Conjecture 6.16 holds conditionally on
[AsBl24, Hypothesis 1].

As in the case of the uniform counting conjecture this was made unconditional in [JaKa22].

Theorem 6.19 (Theorem 6, [JaKa22]). For N squarefree Conjecture 6.16 holds unconditionally.

Finally, optimal lifting was established in full generally in [ABN24].

Theorem 6.20 (Corollary 1.7, [ABN24]). Conjecture 6.16 holds unconditionally for arbitrary N .

Let us briefly discuss optimal lifting in the context of different families of congruence lattices.
The prototypical result in this direction were formulated in [KaLa23] for Γ0(N) ⊆ SL3(Z) and
Γ2(N) ⊆ SL3(Z).

Theorem 6.21 (Theorem 1.3, [KaLa23]). For every ε > 0, as l →∞ through primes, there exists
a set Y ⊆ Pl of size

]Y ≥ ]Pl · (1 + oε(1)),

such that for every x ∈ Y , there exists a set Zx ⊆ Pl of size

]Zx ≥ ]Pl · (1 + oε(1)),

such that for every y ∈ Zx, there exists an element γ ∈ SL3(Z) satisfying ‖γ‖∞ ≤ l
1
3 +ε, such that

Ψl(γ).x = y.

Theorem 6.22 (Theorem 5.1, [KaLa23]). For every ε > 0, as l →∞ through primes, there exists
a set Y ⊆ Bl of size

]Y ≥ ]Bl · (1 + oε(1)),

such that for every x ∈ Y , there exists a set Zx ⊆ Bl of size

]Zx ≥ ]Bl · (1 + oε(1)),

such that for every y ∈ Zx, there exists an element γ ∈ SL3(Z) satisfying ‖γ‖∞ ≤ l
1
2 +ε, such that

Φl(γ).x = y.

11We refer to [KaLa23, Conjecture 1.2], because it offers a clean statement of the optimal lifting conjecture in

our context. Note however that this is not the place where the conjecture was first formulated. We refer also to
[Sar15, GoKa23, JaKa22] for more discussion.
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In [KaLa23] these two lifting theorems are obtained from the counting results Theorem 6.11 and
Theorem 6.9 respectively together with a spectral gap. In view of the generalizations Theorem 6.12
and Theorem 6.10 one can hope to adapt this argument to higher rank (i.e. for n > 3). Another
approach, which was taken in [Ass23a], is to use appropriate density theorems and the spectral
theory of automorphic forms directly. Either way one obtains the following theorems.

Theorem 6.23. For every ε > 0, as l→∞ through primes, there exists a set Y ⊆ Pl of size

]Y ≥ ]Pl · (1 + oε(1)),

such that for every x ∈ Y , there exists a set Zx ⊆ Pl of size

]Zx ≥ ]Pl · (1 + oε(1)),

such that for every y ∈ Zx, there exists an element γ ∈ SLn(Z) satisfying ‖γ‖∞ ≤ l
1
n+ε, such that

Ψl(γ).x = y.

Theorem 6.24 (Theorem 10.2, [Ass23a]). For every ε > 0, as l→∞ through primes, there exists
a set Y ⊆ Bl of size

]Y ≥ ]Bl · (1 + oε(1)),

such that for every x ∈ Y , there exists a set Zx ⊆ Bl of size

]Zx ≥ ]Bl · (1 + oε(1)),

such that for every y ∈ Zx, there exists an element γ ∈ SLn(Z) satisfying ‖γ‖∞ ≤ l
1
2 +ε, such that

Φl(γ).x = y.

7. A density hypothesis for Sp4

The local and global theory of automorphic forms for groups beyond GLn is more intricate
and comes with several new features. This can already be seen when comparing the Ramanujan
conjecture for GLn, see Conjecture 3.3, with the generalized Ramanujan conjecture stated in Con-
jecture 3.5. The group G = GSp4 (or PGSp4) is one of the easiest groups where (essentially) all
the complications arising for general classical groups are visible. On the other hand, the theory of
automorphic forms is developed well enough for analytic purposes. Therefore, studying the density
hypothesis for this setting promises to shed some light on the general case.

The endoscopic classification of automorphic representations for GSp4 and PGSp4 has been
addressed in [Art04, Art13, GeTa19].12 This classification gives a detailed description of the discrete
spectrum of GSp4 in terms of automorphic forms on GL4 and partitions it in so-called Arthur
packets. These packets have been explicitly computed in [Sch18, Sch20]. As a consequence a precise
description of the part of the spectrum that is known to violate the naive Ramanujan conjecture
(i.e. the residual spectrum and the CAP-representations) is available. Note that the residual
spectrum was already described in [Kim95]. Another by-product of the classification is a proof of
the local Langlands conjecture, which was also established in [GaTa11]. Also the analytic theory
of automorphic forms on GSp4 is quite well developed. We refer to [KWS24] for an explicit version
of the trace formula with interesting applications. More generally, but less explicit, the methods
from [FiMa21] apply to the symplectic group. More precisely, [FiMa21, Theorem 1.2] shows that
representations that are non-tempered at infinity are of lower order. On the other hand, an explicit

12Strictly speaking these works and the results within seem to be conditional on the resolution of certain issues in
connection with some not yet published items in the reference list of [Art13]. See also [LLS24] for recent developments.

Throughout this section we will assume in good fate that these will be sorted out sooner or later. In particular, we

take the endoscopic classification for GSp4 and its variants for granted.
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Kuznetsov formula has been developed in [Com21] using the relative trace formula approach. See
also [Man22a, Man22b] for relevant results concerning Poincaré series and Kloosterman sums.

We see all this as good evidence that the automorphic machinery for GSp4 is sufficiently mature
to allow for good progress towards Sarnak’s density hypothesis in this setting. The first density
estimate was established by Man in [Man22b]. In loc. cit. the ideas from [Blo23] are transferred
to Sp4. To state the theorem we introduce some notation.

We closely follow the set-up from Section 5 and work with automorphic forms

$ ∈ L2
disc(Γ\Sp4(R)/K∞).

We assume that $ is an eigenfunctions of the algebra of invariant differential operators. The
spectral parameter is denoted by µ$(∞) = (µ$(∞, 1), µ$(∞, 2)) ∈ C2. At a finite place v = p,
where $ is unramified, we can further assume that $ is an eigenfunction of all (spherical) Hecke
operators. This leads to the definition of the Satake parameter µ$(v) ∈ C2. For comparison we
note that the constant function $ = 1 satisfies

µ$(v) =

(
3

2
,

1

2

)
in our normalization. As before $ is tempered at v if and only if µ$(v) ∈ (iR)2. We define

σ$(v) = max
j=1,...,n

|<(µ$(v, j))|.

This is a direct adaption of (8) to the current setting. Translating (23) from the SLn-setting to Sp4

leads us to the following definition. For any finite orthogonal family F ⊆ L2
disc(Γ\Sp4(R)/K∞) we

define the counting function

(51) Nv(σ,F) = ]{$ ∈ F : σ$(v) ≥ σ}.

Put ΩM = {µ ∈ C2 : ‖µ‖ ≤M}. We introduce the family F(ΩM ,Γ) as a maximal orthogonal set
of automorphic forms in L2

disc(Γ\Sp4(R)/K∞) with µ$(∞) ∈ ΩM . As usual we can form the sub-
family Fcusp(ΩM ,Γ) of cusp forms. Going even further we write Fcusp,gen(ΩM ,Γ) for the sub-family
of all $ ∈ Fcusp(ΩM ,Γ) that are (globally) generic.

Remark 7.1. In contrast to the SLn case we have a strict inclusion

Fcusp,gen(ΩM ,Γ) ⊂ Fcusp(ΩM ,Γ).

The reason for this is that Sp4 (or PGSp4 when working on the level of representations) features
certain functorial lifts which are known to violate the naive Ramanujan conjecture and which are
non generic.

Note that generic forms will never belong to CAP-representations, and are therefore believed to
be tempered at all places, see Conjecture 3.5. Thus, we expect that all elements in Fcusp,gen(ΩM ,Γ)
are tempered everywhere.

In [Sar05] the generalized Ramanujan conjecture is precisely formulated for (globally) generic
representations. However, even for Sp4 there are non-generic forms that are non-CAP. According
to the formulation given in Conjecture 3.5 these are also believed to be tempered. (Using structural
results concerning the GSp4 Arthur packets one can actually show that Conjecture 3.5 follows from
the formulation in [Sar05], which in turn follows from the Ramanujan conjecture for GLn with
n = 2, 4. See also Remark 3.6 above.)

The first density estimate concerns families of generic forms.
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Theorem 7.2 (Theorem 1.1, [Man22b]). Take M ≥ 1, a place v of Q and a prime N . Define the
Siegel congruence subgroup

Γ0(N) =

(
Mat2×2(Z) Mat2×2(Z)

N ·Mat2×2(Z) Mat2×2(Z)

)
∩ Sp4(Z).

If v = p is finite, then we assume that (N, p) = 1. We have

Nv(σ,Fcusp,gen(ΩM ,Γ0(N)))�M,v,ε [Sp4(Z) : Γ0(N)]1−
4
3σ+ε.

Remark 7.3. Unfortunately the proof of Theorem 7.2 contains a gap. See [Ass23b, Remark 5.1]
for a detailed explanation. With some additional local computations this gap can be filled con-
ditional on a conjecture by Lapid-Mao formulated in [LaMao15]. However, the machinery from
[Man22b] applies with minor modifications to other congruence subgroups. It turns out that for
the paramodular group

Γpa(N) =


Z Z N−1Z Z
NZ Z Z Z
NZ NZ Z NZ
NZ Z Z Z

 ∩ Sp4(Q)

the result can even be made unconditional. The details were carried out in [Ass23b, Theorem 5.6]
and lead to the bound:

(52) N∞(σ,Fcusp,gen(ΩM ,Γpa(N)))�M,ε Vol(Γpa(N)\Sp4(R))1−σ+ε

for squarefree N and

N∞(σ,Fcusp,gen(ΩM ,Γpa(N)))�M,ε Vol(Γpa(N)\Sp4(R))1− 9
8σ+ε

for N prime.

One caveat of Theorem 7.2 and its variation (52) is that it only concerns the generic part of the
discrete spectrum. However, Sarnak’s density hypothesis should apply to the full discrete spectrum.
This is natural on a philosophical level but it is also important for potential applications.

The main tool behind the proof of Theorem 7.2 is the Kuznetsov formula, which by default only
detects generic representations. Thus, in order to upgrade the density result to the full spectrum,
one has to manually account for all the missing representations.13 Carrying out this argument is
the main achievement of [Ass23b].

Theorem 7.4 (Theorem 1.1, [Ass23b]). For N squarefree we have

N∞(σ,F(ΩM ,Γpa(N)))�M,ε Vol(Γpa(N)\Sp4(R))1−σ+ε + 1.

Remark 7.5. We make some comments:

• The bound presented in Theorem 7.4 is slightly sharper than the density hypothesis. Indeed,
because σ1(∞) = 3

2 , we would expect

N∞(σ,F(ΩM ,Γpa(N)))�M,ε Vol(Γpa(N)\Sp4(R))1− 2
3σ+ε.

The improved version stated above has its root in the estimate (52), which is also subconvex.
A more detailed statement containing the densities of all types of forms for Sp4 separately
is given in [Ass23b, Theorem 5.9].

13Of course, one can also start with a different strategy. For instance, if one can proof the density hypothesis
directly using the Arthur-Selberg trace formula, then it would include the full discrete spectrum by default.
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• The method developed in [Ass23b] is robust enough to carry over to other families of con-
gruence lattices. Treating the Siegel congruence subgroup Γ0(N) (for squarefree N) or the
principal congruence subgroups in Sp4(Z) would require some additional local computations
and some other minor modifications. However, the results would most likely be conditional
on the conjecture of Lapid and Mao as formulated in [Ass23b, Conjecture 4.1]. See [Ass23b,
Remark 3.3, 4.4, 4.6, 4.8 and 5.7] for more explanation in this direction.

• Note that the density theorem above uses σ$(∞) as a measure of non-temperedness. For-
mulations of the density hypothesis using this invariant are called the Satake variant in
[EGG23]. In loc. cit. it is also stressed that the original formulation of Sarnak’s density hy-
pothesis uses the formulation involving p$(∞) (corresponding to p(π∞) as defined in 7 for
appropriate π∞ depending on $). However, using the classification of unitary unramified
representations one observes that

1− σ$(∞) ≤ 2

p$(∞)
.

Thus, Theorem 7.4 directly implies

]{$ ∈ F(ΩM ,Γpa(N)) : p$(∞) ≥ p} �M,ε Vol(Γpa(N)\Sp4(R))
2
p+ε.

This is essentially Conjecture 3.11 for the paramodular group Γpa(N) of squarefree level.
With slightly more work in the archimedean analysis of the Sp4-Kuznetsov formula one can
also show the desired uniformity in M obtaining Conjecture 3.11 in full.

• Artificially adding the non-generic part to the estimate (52) heavily uses Arthur’s endoscopic
classification of representations for PGSp4

∼= SO5 and the explicit computations of Arthur
packets given in [Sch18, Sch20]. At the time of writing this is all conditional on the validity
of the main results from [Art13]. Thus, Theorem 7.4 inherits this conditionality.

Shortly after [Ass23b] first appeared closely related ideas were independently developed in
[EGG23]. More precisely, in [EGG23, Theorem 1.4] a cohomological version of the pointwise multi-
plicity hypothesis (see Conjecture 3.10) is shown for principal congruence subgroups of PGSp4(R) ∼=
SO5(R). The article also contains results towards p-adic versions of the Sarnak-Xue conjecture for
so-called Gross inner forms of SO5. While the strategy suggested in [Ass23b] is to take a density
theorem for the generic part of (spherical) spectrum and upgrade it to a full (spherical) density
theorem using the endoscopic classification, in [EGG23] the seed is the Ramanujan conjecture for
cohomological self dual cuspidal representations of GLn (see [EGG23, Theorem 6.2]). This is then
used together with Arthur’s endoscopic classification, more precisely with the resulting multiplicity
formula, to show that the pointwise multiplicity hypothesis holds for cohomological, (i.e. algebraic)
representations. The two approaches have in common that they require a detailed analysis of local
and global Arthur packets as computed by Schmidt in [Sch18, Sch20].

8. Open questions

Of course all the conjectures formulated in Section 3 are still open in general. While most of
them, in particular the Ramanujan conjecture and its generalizations, are out of reach of current
technology, there is hope of establishing Sarnak’s (spherical) density hypothesis in quite some
generality. Indeed, we expect that it is feasible to establish Conjecture 3.11 for (quasi)-split classical
groups. Modelled on the strategy pioneered in [Mar14, MaSh19, Ass23b, EGG23] this is a two step
process:
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(1) Establish a suitable density estimate for the generic part of the spectrum using a Kuznetsov-
type relative trace formula. Handling the geometric side might require assuming a con-
jecture of Lapid and Mao concerning the Whittaker-Fourier coefficients put forward in
[LaMao15].

(2) Bootstrapping the generic estimate to a full estimate using Arthur’s multiplicity formula for
the discrete spectrum. This requires a careful analysis of local and global Arthur packets
and is by default conditional on the endoscopic classification for the groups in question.

Turning this two step sketch into a complete argument is an ambitious undertaking and will require
many new technical insights. However, at least for certain families of congruence lattices, we believe
that the obstacles can be overcome. A slight caveat is that the resulting density theorem would
be conditional on a conjecture of Lapid and Mao as well as on the endoscopic classification of
representations. Fortunately there has been much progress towards these two conjecture, so that
we believe these are reasonable assumptions to be made.

We end with a list of problems and question that we find worth thinking about. These are
of varying difficulty, but all promise to provide some new stepping stones on the road to a fuller
understanding of Sarnak’s density hypothesis and applications.

• For n = 3 versions of a non-spherical Kuznetsov formula have been developed in [But20,
But21]. Using these one can prove density theorems involving non-spherical representa-
tions. Ultimately it seems possible to establish Sarnak’s full density hypothesis as stated
in Conjecture 3.9 for certain families of congruence subgroups of SL3(Z).

• Theorems 5.12, 5.15 and 5.19 establish strong density estimates for the number of repre-
sentations that are non-tempered at a fixed place v. If v = p is finite the implicit constant
is allowed to depend on p. Making the dependence explicit is not to hard, but the result is
quite large. More precisely it can be shown that

Np(σ,Fcusp(ΩM ,Γ0(N)))�M,ε p
2(n−1)σ+1[SLn(Z) : Γ0(n)]1−

2
n−1σ+ε

and similar estimates are true for the principal congruence subgroup. It is an interesting
problem to find possible combinations of Hecke-eigenvalues that effectively amplify forms
that are highly non-tempered and improve the dependency on p. Remarks in this direction
have been made by Matz and Templier, see [MaTe21, Example 3.2].

• Playing with different test functions (archimedean and non-archimedean) on the spectral
side of the Kuznetsov formula for SLn allows one to replace σ$(v) in the density estimate
by different measures of non-temperedness. Note that making such changes will necessar-
ily effect the lengths (and shapes) of the sums on the geometric side. Working out the
required combinatorics is an interesting exercise and can be useful in other applications of
the Kuznetsov formula to high rank analytic number theory.

• A challenging problem is to prove a general density theorem for SLn in the spectral aspect.
More precisely, we are asking for an extension of Theorem 5.6 from SL3 to SLn. This
requires some hard analysis of the archimedean orbital integrals. Note that, as discussed
in [JaKa24, Theorem 3], such a result has immediate applications to optimal diophantine
exponent.

• Theorem 5.14 establishes the density hypothesis for cuspidal automorphic forms of level 1
sorted by archimedean conductor. Going beyond the density hypothesis is an interesting
problem already mentioned in [Jan21]. Furthermore, if such an improvement can be made
while also allowing different levels, there is hope of establishing the density hypothesis for
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the universal family of PGLn(Q). Note that the corresponding Weyl-Schanuel-law for this
family established in [BrMil24].

• For SLn density theorems are available for the principal congruence subgroup Γ(N) (resp.
the Hecke congruence subgroup Γ0(N)), see Theorem 5.19 (resp. Theorem 5.12). It is an
interesting problem to consider more general families of lattices. Good candidates to start
are lattices in the Moy-Prasad Filtration or parahoric families. One example of a parahoric
lattice is the Borel type congruence subgroup, which has been studied in [Ass23a] for prime
level. See also Theorem 5.23.

• In Corollary 5.22 a density theorem for co-compact lattices in SLn(R) is given. More
precisely we fix a lattice ΓO arising from an order O in a quaternion division algebra over Q
and then move through a family of principal congruence subgroups ΓO(N) thereof. Doing
so we ignore any dependence on the original lattice. It would be interesting to achieve
uniformity in say the discriminant of O. One way of doing so would be to careful analysis
how local representations with O-invariant vectors are transformed under the Jacquet-
Langlands correspondence. Even for SL2, where this can be done very concretely, this
seems be interesting.

• In [GoKa22] the density hypothesis is discussed in the context of graphs. An particular
interesting feature is the so-called density amplification feature discussed in [GoKa22, The-
orem 1.5]. Roughly speaking it is established there that if a graph Xt satisfies the density
hypothesis, then certain quotients of Xt also satisfy a density hypothesis with slightly worse
exponent. It would be interesting to find instances of this phenomenon also in the setting
of automorphic forms.

• In Section 6 we have discussed how the density hypothesis implies certain uniform counting
results. Here we have usually used the Frobenius norm ‖γ‖. Often it is however useful
to count with respect to other gauges such as for example ‖γ‖] = max(‖γ‖, ‖γ−1‖). This
corresponds to a different choice of α in (45). The asymptotic formula given in (45) is for a
large variety of gauges, see [Mau07]. It is reasonable to expect that the density hypothesis
should imply uniform counting results for other gauges (i.e. it should imply Conjecture 6.1
for different choices of α.) Even though this is certainly folklore, working out the details
can shed some light on the mechanics of the spectral theory of automorphic forms in higher
rank.

• With some more work the uniform counting results stated in Theorem 6.5 can be upgraded
to an asymptotic formula with good error term in the level (i.e. volume) aspect. On
the other hand, an impressive asymptotic formula with power saving in the radius was
established recently in [BlLu24]. Making this result uniform in the level can then lead to an
asymptotic formula for the counting problem with hybrid power saving in the error term.
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