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Abstract

An ancient construction involving tangent circles leads to fractals called integral Appolo-
nian circle packings. The curvatures of the circles appearing in such a packing give rise to a
sequence of integers. The so called local-global conjecture predicts that up to at most finitely
many exceptions every integer not ruled out by certain congruence obstructions appears in
this list of curvatures. This conjecture has gotten much attention over the years and many
interesting results in its favor have been obtained. In an surprising turn of events Haag,
Kertzer, Rickards and Stange have found families of counterexamples. In this talk we plan
to explain how these families are constructed using quadratic reciprocity.

1 From tangent circles to Apollonian gaskets

We assume that everyone is familiar with circles, usually denoted by C, in the euclidean plane.
We write r(C) for the radius of C. The intuitive notion of a circle in the plane is extended as
follows:

• A point is a circle of radius 0;

• A straight line is a circle of infinite radius; and

• A circle is equipped with an orientation (i.e. a way of deciding where its interior is).

Given a circle C with r(C) ∈ R>0 and positive orientation (i.e. the interior is the intuitive inside
of the circle), then we define the curvature by

κ(C) =
1

r(C)
.

This notion is extended to points and lines in the obvious way. Given an oriented circle C we
write Cop for the same circle with flipped orientation and we define κ(Cop) = −κ(C). Two circles
C1 and C2 are said to be tangent if they intersect at precisely one point. This unique intersection
point is then called point of tangency.

The following theorem, due to Apollonius of Perga (≈ 262-190 BC) and communicated by
Pappus, is the starting point of the construction of Apollonian gaskets.

Theorem 1.1 (Apollonius). Given three mutually tangent circles with distinct points of tangency
there are exactly two circles that are tangent two all three.
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Proof. We only present the rough idea of proof following [20, Section 2]. Denote the three tangent
circles by C1, C2 and C3. After applying suitable motions of the plane that preserve tangencies
and angles we can arrange that C1 and C3 are parallel lines both tangent to C2. (Note that the
point of tangency of C1 and C3 is infinity!) In this arrangement one can immediately write down
the two solutions to the problem. Indeed the desired circles are simply shifted copies of the circle
C2.

This theorem invites us to construct a collection of circles by applying it over and over. The
idea for such an iterative process goes back to Leibniz (1646-1716). We consider the following
special case. We start with a quadruple (C0, C1, C2, C3) of mutually tangent circles. We further
assume that κ(C0) < 0 and that C1, C2 and C3 are external to C0.1 In the second step we apply
Apollonius’ theorem to construct three new circles that are mutually tangent to precisely three of
our initial circles. Adding these circles to our set and iterating the procedure produces in total
4 · 3n−1 circles after n steps. Continuing ad infinitum produces an infinite set G of circles called
the Appolonian gasket.

The subset of the plane obtained by removing the interiors of the circles in G is called the
residual set of G. It is of fractal nature. Even though a Apollonian gaskets depends on the initial
choice of the circles C0, C1, C2 and C3, they are rigid in the sense that any two gaskets can be
mapped to each other using Möbius transformations of the plane. As a consequence the Hausdorff
dimension δ of a Apollonian gasket is a universal constant. One can compute that δ ≈ 1.30 . . ..

Given a Gasket G we obtain a (multi)-set of curvatures

κ(G) = {κ(C) : C ∈ G}

and (from the perspective of number theorists) it is natural to inquire about properties of these
numbers. The most basic question is concerned with the counting function

NG(T ) = ]{C ∈ G : κ(C) ≤ T}.

It turns out that this is well understood and we have the following theorem:

Theorem 1.2 (Kelmer-Kontorovich-Lutsko 2023). There is a positive constant CG depending on
the gasket G such that

NG(T ) = CG · T δ +O(T
3
5 δ+

2
5 log(T )

2
5 ).

This quite recent result is the finial piece of a long series of historical developments. Without
claiming completeness we want to point towards some of the highlights:

1. To understand NG(T ) it is natural to study the generating function

LG(s) =
∑
C∈G

κ(C)−s,

which is absolutely convergent for <(s) ≥ 2. It was shown in [2] that δ is precisely the
abscissa of convergence of this function. Using analytic properties of the generating function
it was then shown in [3] that NG(T ) = T δ+o(1).

2. The constant δ has been studied numerically in many works. We refer to example to [17].

3. In 2011 Kontorovich and Oh established the asymptotic formula NG(T ) ∼ CG · T δ without
specifying the error term. They proceed by giving a spectral interpretation of the counting
problem and using dynamical properties of certain horocycle flows. See [15].

1Note that since C0 has negative curvature it is negatively oriented, so that C1, C2 and C3 are actually
positioned in what we would intuitively call the inside of the circle C0.
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4. In 2013 the asymptotic formula was refined by Lee and Oh in [16]. Indeed, they show
NG(T ) = CG · T δ + O(T δ−βLO) for βLO = 2

63 (δ − s1) > 0, where s1 is related to a
certain spectral gap. They also give an interpretation of CG in terms of the δ-dimensional
Hausdorff measure of the residual set of G. Similar results were independently established
in Vinogradov’s thesis.

5. A refined analysis performed in [13] improves the power saving in the error term from βLO
to βKL = 2

5 (δ− s1). (Their approach also applies to Kleinian packings in higher dimension.)

6. The theorem stated above is finally obtained in [11, Corollary 2] after resolving Sarnak’s
spectral gap question. More precisely, in loc. cit. it is shown that one can take s1 = 1 in
βKL defined in the previous bullet point. This is to say that the relevant spectral gap is
maximal.

2 Integrality and the rise of the group action

While the above argument is purely geometrically, it is natural to ask for an analytic verification.
In this direction we define the so called Descartes quadratic form2

Q(x1, x2, x3, x4) = 2(x2
1 + x2

2 + x2
3 + x2

4)− (x1 + x2 + x3 + x4)2.

With this at hand Descartes (1596-1650) was able to deduce an algebraic relation between the
curvatures of four mutually tangent circles. This beautiful result was re-discovered several times
over the years and we refer to [6] for more discussion.

Theorem 2.1 (The Descartes Circle Theorem 1643). Let C1, C2, C3 and C4 be four mutually
tangent circles. Then we have

Q(κ(C1), κ(C2), κ(C3), κ(C4)) = 0.

Proof. Instead of giving a full proof of this let us just say the following. One first checks that the
theorem is true if C1 and C2 are parallel lines. Indeed, in this case κ(C1) = κ(C2) = 0 and the
equality reduces to

(κ(C3)− κ(C4))2 = 0,

which happens exactly when κ(C3) = κ(C4). The latter is obviously the case if the four circles
are mutually tangent.

To handle the general case one has to derive formulae for the radii (or curvatures) of the
circles under planar motions. Doing so one can reduce to the easy case described above and verify
directly that the desired equality still holds. We omit the details.

We can now take a look at our Apollonian gasket G or more precisely the set κ(G) from a new
perspective. First, recall that C0, C1 and C2 determine the gasket G completely. The curvatures
of the two circles tangent to the first three circles solve the quadratic equation

0 = Q(κ(C0), κ(C1), κ(C2), x)

= x2 − 2(κ(C0) + κ(C1) + κ(C2))x+ 2(κ(C0)2 + κ(C1)2 + κ(C2)2)− (κ(C0) + κ(C1) + κ(C2)).

Suppose the circles in our gasket are numbered such that the two solutions are precisely x+ = κ(C3)
and x− = κ(C4). We can solve this as

x± = κ(C0) + κ(C1) + κ(C2)± 2
√

∆,

2This quadratic form can be diagonalized to x2 + y2 + z2 − w2 and thus has signature (3, 1).
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where
∆ = κ(C0)κ(C1) + κ(C0)κ(C2) + κ(C1)κ(C2).

In particular we obtain the nice formula

κ(C3) + κ(C4) = x+ + x− = 2(κ(C0) + κ(C1) + κ(C2)).

Thus, in the numbering above C3 and C4 are the two circles tangent to C0, C1 and C2. If κ(C3)
is given, then we can compute κ(C4) by

κ(C4) = −κ(C3) + (κ(C3) + κ(C4)) = 2(κ(C0) + κ(C1) + κ(C2))− κ(C3).

We can write this as(
κ(C0) κ(C1) κ(C2) κ(C4)

)
=
(
κ(C0) κ(C1) κ(C2) κ(C3)

)
· S4,

where

S4 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 −1

 .

Similarly we can obtain new curvatures using the matrices

S1 =


−1 0 0 0
2 1 0 0
2 0 1 0
2 0 0 1

 , S2 =


1 2 0 0
0 −1 0 0
0 2 1 0
0 2 0 1

 and S3 =


1 0 2 0
0 1 2 0
0 0 −1 0
0 0 2 1

 .

Observe that S2
i = 14. We are therefore led to defining

A = 〈S1, S2, S3, S4〉 ⊆ GL4(Z).

This is the so called Apollonian group. This group governs the (curvatures of) a packing. Indeed,
refining the above discussion, shows that the orbit

Oa = a ·A,

for any quadruple of curvatures of mutually tangent circles in G, consists precisely of all quadruples
of curvatures of mutually tangent circles.

Let us consider an example. We denote the gasket generated by three circles with curvatures
5, 8 and 8 by G0. The equation

Q(X, 5, 8, 8) = 0

leads to the quadratic equation X2 − 42X − 135 = 0. We have ∆ = 242 = (24)2, so that we find
the two solutions x− = −3 and x+ = 45. This leads gives us the root quadruple a0 = (−3, 5, 8, 8)
and we obtain the structure pictured in Figure 1. In particular we see that

{−3, 5, 8, 12, 20, 21, 29, 44, 45, 53, 77, 108, 117} ⊆ κ(G0).

This leads to the following observation, which goes back to F. Soddy (1877-1956) in [21].3 If
an Apollonian gasket G contains four mutually tangent circles with integral curvatures, then

κ(G) ⊆ Z.
3Note that F. Soddy was actually a chemist, who won the Nobel price for chemistry in 1921.
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a0 = (−3, 5, 8, 8)

a0S4 = (−3, 5, 8, 12)

a0S4S3 = (−3, 5, 20, 12) · · ·

a0S4S2 = (−3, 29, 8, 12) · · ·

a0S4S1 = (53, 5, 8, 12) · · ·

a0S3 = (−3, 5, 12, 8)

a0S3S4 = (−3, 5, 12, 20) · · ·

a0S3S2 = (−3, 29, 12, 8) · · ·

a0S3S1 = (53, 5, 12, 8) · · ·

a0S2 = (−3, 21, 8, 8)

a0S2S4 = (−3, 21, 8, 44) · · ·

a0S2S3 = (−3, 21, 44, 8) · · ·

a0S3S1 = (77, 21, 8, 8) · · ·

a0S1 = (45, 5, 8, 8)

a0S1S4 = (45, 5, 8, 108) · · ·

a0S1S3 = (45, 5, 108, 8) · · ·

a0S1S2 = (45, 117, 8, 8) · · ·

Figure 1: This figure contains the first layers of the orbit a0 ·A containing the curvatures of the
Apollonian gasket G0.

This is when things become very interesting for number theorists and we will discuss some natural
questions in the following section.

Note that we now also have a natural dynamical interpretation of (quadruples of) curvatures.
Indeed, if a = (κ(C0), κ(C1), κ(C2), κ(C3)), then we call the orbit Oa = a ·A integral if Oa ⊆ Z4.
(As observed above this is equivalent to saying that a is integral.) Similarly, we say that an integral
orbit Oa is primitive if the elements of it have co-prime coordinates. Again this is equivalent to
saying that a is primitive. Analogously, we call an Apollonian gasket G integral (resp. primitive)
if the corresponding orbit of curvature quadruples is integral (resp. primitive).

Since the Apollonian group A plays an important role in the study of Apollonian gaskets let
us summarize some of its properties:

1. Let OQ be the orthogonal group of Q. This is the group4

OQ = {g ∈ GL4 : Q(x · g) = Q(x)}.

It is easy to check that the matrices S1, S2, S3 and S4 preserve Q, so that we obtain

A ⊆ OQ(Z).

4It is actually an algebraic group defined by quadratic equations in 16 variables.
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Here OQ(Z) is nothing but the matrices in OQ with entries in the integers, which is an
arithmetic lattice.

2. The group A has infinite index in OQ(Z) but is Zariski dense in OQ. See [7, Lemma 1.6]
Thus it is a thin group. We refer to [12] for a nice introductory discussion to thin groups.

So far we have discovered that, if we arrange the curvatures in quadruples, then we can
describe all curvature quadruples that occur as the orbit of the Apollonian group. Note that
the gasket G is classified by the curvature quadruple (κ(C0), κ(C1), κ(C2), κ(C3)). We call this
the root quadruple.5 Of course a quadruple of curvatures stores more information then a single
curvature and we immediately face the question: How much information is lost if we forget all
but the first entry in a curvature quadruple? This is answered by the following two results.

Proposition 2.1 (Graham-Lagarias-Mallows-Wilks-Yan 2003). Let 0 6= κ ∈ Z. There is a
bijection between primitive integral positive definite binary quadratic forms of discriminant −4κ2

and primitive curvature quadruples a = (κ, a2, a3, a4) with κ+ a2 + a3 + a4 > 0.6

Proof. This is essentially [9, Theorem 4.2] and we can describe the correspondence explicitly as
follows. Given a solution a = (κ, a2, a3, a4) of Q(a) = 0 with κ+ a2 + a3 + a4 > 0 we associate
the form

qa(x, y) = (κ+ a2)x2 + (κ+ a2 + a3 − a4)xy + (κ+ a3)y2.

This is obviously a integral binary quadratic form. We compute its discriminant

disc(qa) = (κ+ a2 + a3 − a4)2 − 4(κ+ a2)(κ+ a3)

= −4κ2 + κ2 + a2
2 + a2

3 + a2
4 − 2κa2 − 2κa3 − 2κa4 − 2a2a3 − 2a2a4 − 2a3a4

= −4κ2 +Q(κ, a2, a3, a4) = −4κ2.

To see that qa is positive definite it remains to show that κ+ a2 > 0. Suppose that κ+ a2 ≤ 0.
Then we write Q(a) = 0 as

(κ− a2)2 + (a3 − a4)2 = (κ+ a2)(a3 + a4).

We consider two cases:

• Suppose κ+ a2 < 0. Since the left hand side of the above equality is non-negative we get
a3 + a4 ≤ 0. This allows us to deduce κ+ a2 + a3 + a4 < 0, which is a contradiction.

• If κ+ a2 < 0, then the above equality reads (a3 − a4)2 = 0, so that a3 = a4. But this can
only happen if κ = 0, which is also a contradiction.

This proves positivity.
To establish primitivity we first observe that looking at the equality Q(a) = 0 modulo 2

implies κ+ a2 + a3 + a4 ≡ 0 mod 2. Now suppose 2 divides all coefficients of qa. Then we easily
deduce that 2 divides (κ, a2, a3, a4), which is a contradiction to the primitivity of a. Now take a

5There is a technically deffinition of a root quadruple, which ensure that it is the smallest or reduced element in
a given orbit. We do not need this notion here and omit the details. See [9, Definition 3.2] for more information.

6A binary quadratic form is a homogenous polynomial of degree two in two variables: q(x, y) = ax2 + bxy+ cy2.
Its discriminant is given by disc(q) = b2− 4ac. We call q integral if a, b, c ∈ Z and we call it primitive if (a, b, c) = 1.
Finally, we say that q is positive definite if a, c > 0 and disc(q) < 0. There is a natural action of GL2(Z) on

integral binary quadratic forms given by γ.q(x, y) = q(ax+ cy, bx+ dy), where γ =

(
a b
c d

)
. This action preserves

primitivity, definiteness and discriminant. We write [q] for the equivalence class of (positive definite primitive)
integral binary quadratic forms containing q.
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prime p > 2 and suppose it divides the coefficients of qa. Then we note that p2 | disc(qa) so that
p | κ. Using this one concludes that p must also divide a2, a3 and a4 giving a contradiction again.

Finally, given a primitive positive definite binary quadratic form q(x, y) = Ax2 +Bxy + Cy2

of discriminant −4κ2 we associate the quadruple

aq = (κ,A− κ,C − κ,A+ C −B − κ).

we directly see that this is the inverse to the mapping defined above and one verifies directly that
Q(aq) = 0 and that aq is primitive. Note that

κ+ (A− κ) + (C − κ) + (A+ C −B − κ) = 2A+ 2C − 2κ−B.

It can be checked that this must be positive.

Given a primitive integral Apollonian gasket G and a circle C ∈ G we can use the proposition
above to associate a GL2(Z) equivalence class of quadratic forms, called [fC ], as follows. First
we note that one can find four mutually tangent circles C, C1, C2 and C3 in G satisfying
κ(C) + κ(C1) + κ(C2) + κ(C3) > 0. Now we use the proposition above and put fC = qa for
a = (κ(C), κ(C1), κ(C2), κ(C3)). It needs to be verified that the class [fC ] is independent of our
initial choice of mutually tangent circles. We omit this.

Proposition 2.2 (Sarnak 2007). Let G be a primitive integral Apollonian gasket and let C ∈ G

with corresponding equivalence class [fC ]. The multiset of curvatures of circles tangent to C in G

is {fC(x, y)− κ(C) : (x, y) = 1}.7

Proof. This is established in [19]. We start by writing a = (a,x) for a ∈ Z6=0 and x = (x1, x2, x3)
and decompose

Q(a) = g(x + (a, a, a)) + 4a2,

where

g(y) = y2
1 + y2

2 + y2
3 − 2y1y2 − 2y1y3 − 2y2y3 = y

 1 −1 −1
−1 1 −1
−1 −1 1

y>.

Next we observe that curvature quadruples a with fixed first coordinate are fixed by the
subgroup

A1 = 〈S2, S3, S4〉 ⊆ A.

We can study how this group acts on g. Indeed, we find that A1 induces a linear action Γ on
triplets satisfying Γ ⊆ Og(Z). By direct computation one verifies that Γ = 〈S̃2, S̃3, S̃4〉 for

S̃2 =

−1 0 0
2 1 0
2 0 1

 , S̃3 =

1 2 0
0 −1 0
0 2 1

 and S̃4 =

1 0 2
0 1 2
0 0 −1

 .

We note that the point x + (a, a, a) is a primitive point on the quadric g(y) = −4a2 and the
orbit a ·A1 is given by (a, (x + (a, a, a)) · Γ− (a, a, a)). We make the change of variables

A = a+ x1, B = (a+ x1 + x2 − x3)/2 and C = a+ x2.

7Note that we can replace fC by any representative in the same equivalence class. This is because equivalent
quadratic forms have the same value sets.
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For parity reasons one finds that B ∈ Z. Note that qa(x, y) = Ax2 + 2Bxy + Cy2. Write
y = x + (a, a, a). Then we have

(
A B C

)
=
(
y1 y2 y3

)1 1/2 0
0 1/2 1
0 −1/2 0

 .

We compute that

g(y) =
(
A B C

)1 0 1
0 0 −1
0 1 1

 1 −1 −1
−1 1 −1
−1 −1 1

1 0 0
0 0 1
1 −1 1

AB
C


=
(
A B C

) 0 0 −2
0 4 0
−2 0 0

AB
C

 = 4B2 − 4AC = ∆(A,B,C).

One directly computes that the image of Γ in O∆(Z), lets call it Γ′, is generated by the matrices 1 0 0
−4 −1 0
4 2 1

 ,

1 2 4
0 −1 −4
0 0 1

 and

1 0 0
0 −1 0
0 0 1

 .

In summary, we have translated the set-up as follows. We have a primitive point (A,B,C) (i.e.
the image of x + (a, a, a) = y under our change of variables) solving

∆(A,B,C) = −4a2

and we want to understand the orbit (A,B,C)Γ′. Here it gets a bit technical and we refer to
[1, pp.953-954] for details. We write Γ̃ = Γ′ ∩ SO∆. The spin double cover of SO∆ is identified
with the image of GL2(Z) under the homomorphism

ρ :

(
α β
γ δ

)
7→ 1

αδ − βγ

α2 2αγ γ2

αβ αδ + βγ γδ
β2 2βδ δ2

 .

We have
ρ−1(Γ̃) = {γ ∈ GL2(Z) : γ − I2 ≡ 0 mod 2},

where the right hand side is the principal congruence subgroup of level 2. That ρ−1(Γ̃) contains
the principal congruence subgroup can be easily seen by playing with the generators. That
actually equality holds can be verified using a volume computation.

Now we can take an element

γ̃ =

(
2k + 1 2n

2m 2l + 1

)
∈ ρ−1(Γ̃).

Computing ρ(γ̃) as well as its action on (A,B,C) and changing variables back to y yields

(A,B,C)ρ−1(Γ̃) ·

1 0 1
0 0 −1
0 1 1

 = (qa(2k + 1, 2m), qa(2k + 1− 2l, 2m− 2n− 1), qa(2l, 2n+ 1)).

When ranging over all allowed k, n,m, l the right hand side ranges over all values of qa at primitive
points. We recover x = y − (a, a, a) and the result follows.

8



3 The local to global conjecture

Suppose we have an integral Apollonian gasket G. It is very natural to wonder which curvatures
appear in this setting. In other words we are asking about the structure of the set κ(G).

Given k ∈ Z we put
mG(k) = ]{C ∈ G : κ(C) = k}.

Note that we can phrase Theorem 1.2 as∑
|k|≤T

mG(k) ∼ T δ.

Since δ > 1, we must have large multiplicities. However, if the multiplicities are not to badly
behaved, then one might (very naively) expect that every integer appears as a curvature in an
integral primitive packing. (Primitivity is important because otherwise all curvatures that appear
have a common multiple!) The following lemma shows that there is an immediate stumbling
block.

Lemma 3.1. Let G0 be the Apollonian gasket given by the root quadruple (−3, 5, 8, 8). All circles
in G0 have curvatures congruent 0 or 1 modulo 4.

It can even be seen that

{κ(C) mod 24: C ∈ G0} = {0, 5, 8, 12, 20, 21} ⊆ Z/24Z.

This shows that, in the notation of [10, Proposition 2.1], G is of type (6, 5).

Proof. We claim that any curvature quadruple a = (a1, a2, a3, a4) contains exactly two elements
congruent 0 modulo 4 and two entries congruent 1 modulo 4. This is easily verified for the root
quadruple (−3, 5, 8, 8). To see that the claim holds in general we only have to verify that this
property is preserved when applying the matrices S1, S2, S3 and S4. Indeed, if suppose a is as
desired. Then we let a′ = (a′1, a2, a3, a4) = a · S1. We have the two cases

• If a1 ≡ 0 mod 4, then a2 + a3 + a4 ≡ 0 mod 2. Consequently a′1 = −a1 + 2(a2 + a3 + a4) ≡
−a1 ≡ 0 mod 4.

• If a1 ≡ 1 mod 4, then a2 + a3 + a4 ≡ 1 mod 4. We conclude that a′1 ≡ 2− a1 ≡ 1 mod 4.

In both cases the congruence class of the first entry modulo 4 is preserved and the last three
entries remain unchanged. Thus a′ has the desired property. The same argument works for the
action of S2, S3 and S4.

We conclude that there are obviously congruence obstructions that can prevent an integer
from being a curvature for a given gasket G. These congruence conditions have been studied
in [9, Section 6]. There is a deeper reason for these congruence obstructions. Indeed, it can be
shown that the reduction A(q) ⊆ GL4(Z/qZ) modulo q of the Apollonian group A agrees with
the reduction of Oq(Z) modulo q. Studying the structure of the latter is technical but possible.8

This was carried out in [7] and allows for a precise determination of A(q). One arrives at a nice
structure theorem, see [7, Theorem 1.4], for the orbits Oa modulo q. To simplify notation let us
write

Oa(q) = {x mod q : x ∈ Oa} ⊆ (Z/qZ)4.

8One can use that the spin double cover of QQ satisfies strong approximation.
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Note that we assume Oa is integral and primitive. Then, by the Chinese remainder theorem, we
have a natural bijection Oa(q1q2) = Oa(q1)×Oa(q2). Furthermore, for primes p ≥ 5 and k ∈ N
we have

Oa(pk) = {x ∈ (Z/pkZ)4 \ {0} : Q(x) ≡ 0 mod pk}.

It thus turns out that the congruence obstructions must arise from powers of the primes 2 and 3.
One can actually show that the relevant powers are 23 and 31, so that all congruence obstruction
become visible modulo 24. We refer to [10, Proposition 2.1] for a complete classification of possible
obstructions. Given a primitive integral Apollonian gasket G we write

κ(G)(24) = {κ(C) mod 24: C ∈ G} ⊆ Z/24Z.

Taking these into account leads to a conjecture formulated in [9], where it is referred to as
strong density conjecture. We refer to [8, Conjecture 1.1].

Conjecture 3.1 (Local to Global Conjecture). Let G be a primitive integral Apollonian gasket.
Then there is a constant X = X(G) such that for all n ≥ X we have that n ∈ κ(G) if and only if
n+ 24Z ∈ κ(G)(24).

Roughly speaking this says that up to finitely many exception all curvatures that are not ruled
out by congruence obstructions appear as curvatures of a given primitive integral Apollonian
gasket. As pointed out in [8] it is indeed necessary to allow finitely many exceptions.

The following theorem roughly says that the local to global conjecture holds for almost all
integer and thus gives some evidence for the truth of the conjecture.

Theorem 3.1 (Bourgain-Kontorovich 2013). Let G be a primitive integral Apollonian gasket.
Then there is an effective constant η > 0 such that

]{1 ≤ n ≤ X : n+ 24Z ∈ κ(G)(24) and n 6∈ κ(G)} �G X
1−η.

The proof utilizes the so called orbital circle method and giving details goes beyond the
scope of this talk. Let us however end this section by presenting some milestones on the way to
Theorem 3.1:

1. In its first form the local to global conjecture appeared in [9]. In loc. cit. it was also shown
that

{1 ≤ n ≤ X : n ∈ κ(G)} � X
1
2 .

2. An argument by Sarnak sketched in [19] sharpens the previous lower bound significantly to

{1 ≤ n ≤ X : n ∈ κ(G)} � X

log(X)
1
2

.

In her 2010 Princeton University Thesis Fuchs was able to slightly improve the power of
the logarithm from 0.5 to 0.150 . . ..

3. In [1] the so called positive density conjecture was established. This is the estimate

{1 ≤ n ≤ X : n ∈ κ(G)} � X.

4. Finally, Theorem 3.1 was established in [4, Theorem 1.2].
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4 Counterexamples

In a surprising turn of events counter examples to the local to global conjecture were discovered
by Haag, Kertzer, Rickards and Stange in [10]. We have for example the following result stated
in [10, Theorem 1.6].

Theorem 4.1 (Haag-Kertzer-Rickards-Stange 2024). The Apollonian gasket G0, whose curvatures
are generated by the quadruple (−3, 5, 8, 8) admits no square curvatures.

One can go further and also show that κ(C) with C ∈ G0 can not be of the form 6n2. In the
notation of [10, Theorem 2.4] the gasket G0 is of type (6, 5,−1).

Proof. Recall that all curvatures of circles appearing in G0 are congruent to 0 or 1 modulo 4 and
are all non-zero. We now start by constructing an function χ2 : G0 → {±1}. Indeed, we set

χ2(C) =

(
κ(C ′)

κ(C)

)
,

where C ′ ∈ G0 is any circle tangent to C with (κ(C), κ(C ′)) = 1. Here
( ·
·
)

is the Kronecker
symbol.9 Since the G0 is primitive we can always find such a circl C ′, but we still have to prove that
χ2 is well defined. Since κ(C) ≡ 0, 1 mod 4 we need to show that there is AC ∈ Z/κ(C)Z such
that κ(C ′) ≡ AC · x2 mod κ(C). From Proposition 2.2 we recall that κ(C ′) ≡ fC(x, y) mod κ(C)
for some (x, y) = 1. However, since κ(C) | disc(fC) we find that [fC ] contains a representative
which is congruent to AC · x2 modulo κ(C). This establishes well definedness.

Next we observe that if C and C ′ are tangent circles with co-prime curvatures, then

χ2(C)χ2(C ′) =

(
κ(C ′)

κ(C)

)(
κ(C)

κ(C ′)

)
= 1.

In the last step we have used quadratic reciprocity and the observation that at κ(C) ≡ 1 mod 4
or κ(C ′) ≡ 1 mod 4.10 It turns out that this implies that χ2 is actually constant on G0. Indeed,
given any two circles C,C ′ ∈ G0 we can find a (finite) sequence circles

C = C0, C1, . . . , CN = C ′

such that for all i = 1, . . . , N we have Ci and Ci−1 are tangent and κ(Ci) and κ(Ci−1) are
co-prime. To see this we argue in several steps:

9Let n 6= 0 and m = ±pe11 · · · p
er
r 6= 0, then we define( n

m

)
=

(
n

±1

)
·

r∏
s=1

(
n

p

)er

.

Here we have the usual Legendre symbols
(
·
p

)
for odd p. Further, we set

(
n
1

)
= 1,

(
n
−1

)
= sgn(n) and

(n
2

)
=


0 if 2 | n,
1 if n ≡ ±1 mod 8,

−1 if n ≡ ±3 mod 8.

For m 6≡ 2 mod 4 one checks that, if n1 · n2 > 0 and n1 ≡ n2 mod m, then
(n1

m

)
=
(n2

m

)
.

10For the classical Legendre symbol the law of quadratic reciprocity is due to Gauß. It extends to the Kronecker
symbol and reads ( n

m

)(m
n

)
= (−1)

n′−1
2

m′−1
2 ,

for co-prime integers n = 2en′ and m = 2fm′ that are not both negative. Here e and f are chosen such that n′

and m′ are odd.
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1. Take a quadruple a = (a1, a2, a3, a4) satisfying Q(a) = 0 and let Ci be tangent circles with
κ(Ci) = ai for i = 1, 2. Then we claim that

{κ(C) : C tangent to C1 and C2} = {(a1 + a2)x2 − (a1 + a2 + a3 − a4)x+ a3 : x ∈ Z}.

Let f(x) = (a1 + a2)x2 − (a1 + a2 + a3 − a4)x+ a3 and note that f(0) = a3 and f(1) = a4.
We define

ak = (a1, a2, f(2k), f(2k + 1)) for k ∈ Z.

In particular a0 = a. Using induction we check that ak = a · (S3S4)k for k ∈ Z. Indeed, for
k > 0 one needs to verify

2a1+2a2+2f(2k+1)−f(2k) = f(2k+2) and 2a1+2a2+2f(2k+2)−f(2k+1) = f(2k+3).

Similar identities hold for k < 0 after noting that (S3S4)k = (S4S3)−k.

2. We claim that given tangent circles C1, C2 ∈ G0 there is a circle C ′′ tangent to C1 and C2

such that (κ(C1), κ(C ′′)) = (κ(C2), κ(C ′′)) = 1. To see this one simply observes that for
p | κ(C1)κ(C2) the function f(x) constructed in the previous step takes values co-prime to
p. Note that here it is used that the packing G0 is primitive.

3. We can now establish the claim by noting that, by the general definition of Apollonian
gaskets, there must be a path of tangent circles from C to C ′. If a step in this path features
circles with not co-prime curvatures, then we can fix this by inserting an additional circle
as constructed in the step above.

We are almost done. Indeed, recall that all curvatures are generated by the quadruple
(−3, 5, 8, 8). Thus there is a circle C ∈ G0 with κ(C) = 5, which is tangent to a circle C ′ ∈ G0

with curvature 8. Since 5 ≡ −3 mod 8 we apply the definition of the Kronecker symbol and find

χ2(C) =

(
5

8

)
= −1. (1)

Since χ2 is constant on G0 we have χ2(C) = −1 for all C ∈ G0. Suppose now that there C ∈ G0

with κ(C) = k2. Then we must necessarily have

− 1 = χ2(C) =
( ∗
k2

)
=
(∗
k

)2

= 1.

This is a contradiction.

In the remarkable paper [10] they have studied many more packings and established the
existence of certain quadratic and even quartic obstructions. While the basic idea is already
visualized in the proof given above carrying out the details is slightly more technical.

The natural next step is to ask for an updated version of the local to global conjecture.
It seems reasonable to believe that the aforementioned obstructions are the only ones. This
expectation was formally put forward in [10, Conjecture 1.5].

Conjecture 4.1. Let G be a primitive integral Apollonian gasket. Then all but finitely many
natural numbers that are not ruled out by congruence obstructions or by the quadratic and quartic
obstructions given in [10, Theorem 2.4] appear in κ(G).
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5 Concluding remarks

Even though the counter examples given in [10] can be constructed essentially elementarily, they
came quite unexpectedly. It is in general an interesting question to seek a better structural
understanding of these obstructions and maybe extend them to different settings. Let us linger a
bit on the latter question.

The local to global conjecture for Apollonian gaskets can be put into a very general setting.
Indeed, suppose we have a thin integer set Γ ⊆ Matn×n(Z). We can think of this as thin (semi)-
group such as the Apollonian group A that appeared above. Further we take a affine linear map
F : Matn×n(Q)→ Q such that F (Γ) ⊆ Z. In the setting above we take F (γ) = 〈e1,a · γ〉 where
e1 is the first standard unit vector and 〈·, ·〉 is the euclidean inner product. We are interested in
the (asymptotic) structure of F (Γ).

In general there will be certain congruence obstructions, which one can hope to understand
for reasonable F and Γ. We call n ∈ Z admissible if F (γ) ≡ n mod q has solutions for all q ∈ N.
Naively one could expect that every sufficiently large admissible integer actually appears in F (Γ).
Note that this is way to optimistic in general but under favorable circumstances many number
theorists (including myself) were probably inclined to believe such a statement prior to the work
in [10]. It is very likely that obstructions structurally similar to those presented in loc. cit. appear
in many instances of this general local to global philosophy.

While the set-up we have described is very abstract it covers many interesting situations such
as Zaremba’s conjecture. See [5] for details.11 Indeed, in this and also in several other related
set-ups Bourgain and Kontorovich can put their orbital circle method to good use and establish
almost all versions of these local to global conjectures. We refer to [14] for a nice survey in this
direction.

It is very interesting to see if and how the obstructions in [10] appear in these more general
settings. A particular interesting set-up is the one related to Zaremba’s conjecture. Indeed certain
generalizations of Zaremba’s conjecture have been disproven in [18] using reciprocity obstructions
that are related to those discussed here.
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