Relative Trace Formulae in Analytic Number Theory Set 2: Analytic applications of the Kuznetsov formula

In the beginning we will state two versions of the Kuznetsov formula that can be used as black boxes 1^{1} After stating the exercises there is a list of useful facts that might be helpful solving them.

Basic notation: Let $\mathbb{H}=\{z=x+i y: x \in \mathbb{R}, y>0\}$ be the upper half plane equipped with the measure $d z=\frac{d x d y}{y^{2}}$ and the hyperbolic Laplacian $\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right)$. The Hecke operators are defined by

$$
\left[T_{n} f\right](z)=\frac{1}{\sqrt{n}} \sum_{\substack{a d=n, b \\ d>0}} \sum_{\bmod d} f\left(\frac{a z+b}{d}\right) \text { for } n \geq 1 \text { and }\left[T_{-1} f\right](z)=f(-\bar{z})
$$

We write $G=\mathrm{SL}_{2}(\mathbb{R})$ and $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$. We have the action

$$
\gamma . z=\frac{a z+b}{c z+d} \text { for } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { and } z \in \mathbb{H} .
$$

Let $\mathcal{F}=\left\{z=x+i y:|x| \leq \frac{1}{2},|z| \geq 1\right\}$ be the standard fundamental domain for $\Gamma \backslash \mathbb{H}$. The space $L^{2}(\Gamma \backslash \mathbb{H})$ of Γ-invariant functions on \mathbb{H} that are square integrable on \mathcal{F} has a spectral expansion featuring the constant function ϕ_{0} with Δ-eigenvalue $\lambda_{0}=0$, so called Maaß cusp forms and Eisenstein series.

Maaß Forms: A Hecke-Maaß cusp form ϕ is a square integrable eigenfunction of Δ that is also an eigenfunction of all Hecke operators T_{n} with $n \in \mathbb{Z}$. We sort the corresponding Laplace eigenvalues by size and numerate them: $0<\lambda_{1} \leq \lambda_{2} \leq \ldots$. The corresponding Hecke-Maaß cusp forms are denoted by $\phi_{1}, \phi_{2}, \ldots$. Note that $\frac{1}{4}<\lambda_{1}$ and $\lambda_{j} \sim 12 j$ as $j \rightarrow \infty$. These are already non-trivial facts. We normalize our Maaß forms by

$$
\left\langle\phi_{i}, \phi_{j}\right\rangle=\int_{\mathcal{F}} \phi_{i}(z) \overline{\phi_{j}(z)} d z=\delta_{i=j} \text { for } i, j \in \mathbb{Z}_{\geq 0}
$$

One has the Fourier expansion

$$
\phi_{j}(z)=\sqrt{y} \sum_{n \neq 0} \rho_{j}(n) K_{i t_{j}}(2 \pi|n| y) e(n x) \text { where } t_{j}=\sqrt{\lambda_{j}-\frac{1}{4}}
$$

If $\lambda_{j}(n)$ denotes the eigenvalue of the n 'th Hecke operator (i.e. $T_{n} \phi_{j}=\lambda_{j}(n) \phi_{j}$), then one can compute that

$$
\rho_{j}(n)=\rho_{j}(1) \lambda_{j}(n) \text { and } \rho_{j}(-n)=\epsilon_{j} \rho_{j}(n) \text { with } \epsilon_{j}=\lambda_{j}(-1) \in\{ \pm 1\}
$$

Finally we associate the L-function

$$
L\left(s, \phi_{j}\right)=\sum_{n \geq 1} \lambda_{j}(n) n^{-s}=\prod_{p}\left(1-\lambda_{j}(p) p^{-s}+p^{-2 s}\right)^{-1}
$$

[^0]Eisenstein Series: We define the Eisenstein series by

$$
E(z, s)=\frac{1}{2} \sum_{\Gamma_{\infty} \backslash \Gamma} \Im(\gamma \cdot z)^{s} \text { where } \Gamma_{\infty}=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right): x \in \mathbb{Z}\right\} .
$$

For $\Re(s)>1$ the series converges and defines a non square integrable eigenfunction of Δ with eigenvalue $\lambda=s(1-s)$. The Eisenstein series features a meromorphic continuation to all $s \in \mathbb{C}$. Further we have

$$
T_{n} E\left(\cdot, \frac{1}{2}+i t\right)=n^{-i t} \sigma_{2 i t}(n) E\left(\cdot, \frac{1}{2}+i t\right) \text { for } \sigma_{s}(n)=\sum_{d \mid n} d^{s} .
$$

Of course Eisenstein series feature a Fourier expansion (with constant term) and one can form a Dirichlet series using their Hecke eigenvalues.

The forward Kuznetsov Formula: For $m, n \in \mathbb{N}$ and $r \in \mathbb{R}$ we have

$$
\begin{aligned}
& \pi \sum_{j=1}^{\infty} A\left(r, t_{j}\right) \overline{\rho_{j}(m)} \rho_{j}(n)+\int_{-\infty}^{\infty} A(r, t)\left(\frac{m}{n}\right)^{i t} \sigma_{2 i t}(n) \sigma_{-2 i t}(m) \frac{\cosh (\pi t)}{|\zeta(1+2 i r)|^{2}} d t \\
& \quad=\frac{r}{2 \pi^{2}} \delta_{m=n}+\frac{r}{\cosh (\pi r)} \sum_{c=1}^{\infty} \frac{S(n, m ; c)}{c} \cdot \frac{4 \pi \sqrt{m n}}{c} \cdot \int_{4 \pi \sqrt{m n} / c}^{\infty}\left[J_{2 i r}(u)+J_{-2 i r}(u)\right] \frac{d u}{u},
\end{aligned}
$$

where

$$
A(r, t)=\frac{\sinh (\pi r)}{\cosh (\pi r)^{2}+\sinh (\pi t)^{2}}
$$

and

$$
S(n, m ; c)=\sum_{\substack{d \text { mod } c,(c, d)=1}} e\left(\frac{n d+m \bar{d}}{c}\right) .
$$

The backward Kuznetsov Formula: Let $f \in \mathcal{C}_{\mathbf{c}}^{2}\left(\mathbb{R}_{>0}\right)$. Then for $m, n \in \mathbb{N}$ we have

$$
\begin{aligned}
\sum_{c=1}^{\infty} \frac{S(n,-m ; c)}{c} & f\left(\frac{4 \pi \sqrt{m n}}{c}\right) \\
& =4 \sum_{j=1}^{\infty} \rho_{j}(n) \rho_{j}(m) \tilde{f}\left(t_{j}\right)+\int_{-\infty}^{\infty}(n m)^{i t} \sigma_{2 i t}(n) \sigma_{2 i t}(m) \frac{\tilde{f}(t)}{\left|\Gamma\left(\frac{1}{2}+i t\right) \zeta\left(\frac{1}{2}+2 i t\right)\right|^{2}} d t
\end{aligned}
$$

where

$$
\begin{equation*}
\tilde{f}(t)=\int_{0}^{\infty} K_{2 i t}(x) f(x) \frac{d x}{x} . \tag{1}
\end{equation*}
$$

Exercise 2.1: Prove the following estimate: For large parameter T, N and any sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of complex numbers we have

$$
\begin{equation*}
\sum_{T / 2 \leq t_{j} \leq T} \frac{1}{\cosh \left(\pi t_{j}\right)}\left|\sum_{N / 2 \leq n \leq N} a_{n} \rho_{j}(n)\right|^{2} \ll\left(T^{2}+N\right) N^{\epsilon} \sum_{N / 2 \leq n \leq N}\left|a_{n}\right|^{2} \tag{2}
\end{equation*}
$$

a) For $N / 2<N_{1}<N$ and $1 \leq|\theta|<3$ define

$$
B(c, N)=\sum_{N_{1}<n, m \leq N} \overline{b_{m}} b_{n} S(n, m ; c) e\left(\theta \frac{\sqrt{n m}}{c}\right) .
$$

Show that

$$
\begin{align*}
& B(c, N) \ll c^{\frac{1}{2}+\epsilon} N \sum\left|b_{n}\right|^{2} \text { for all } c \geq 1, \tag{3}\\
& B(c, N) \ll(c+N) N^{\epsilon} \sum\left|b_{n}\right|^{2} \text { for } c>N^{1-\epsilon} \text { and } \tag{4}\\
& B(c, N) \ll c^{\frac{1}{2}} N^{\frac{1}{2}+\epsilon} \sum\left|b_{n}\right|^{2} \text { for } c \leq N^{1-\epsilon} . \tag{5}
\end{align*}
$$

b) Choose a suitable function $\varphi(x)$ so that for $t \in[T / 2, T]$ the bound

$$
\int_{0}^{\infty} \varphi(x) A(x, t) d x>\cosh (\pi t)^{-1}
$$

holds. Conclude that

$$
\begin{aligned}
& \pi \sum_{T / 2 \leq t_{j} \leq T} \frac{1}{\cosh \left(\pi t_{j}\right)}\left|\sum_{N / 2 \leq n \leq N} a_{n} \rho_{j}(n)\right|^{2} \\
& \quad \leq \frac{1}{2 \pi^{2}}\left(\int_{0}^{\infty} t \varphi(t) d t\right) \sum_{n}\left|a_{n}\right|^{2}+\sum_{c=1}^{\infty} \frac{4 \pi^{2}}{c^{2}} \sum_{m, n} \overline{a_{m}} a_{n} \sqrt{m n} S(n, m ; c) \Phi\left(\frac{4 \pi \sqrt{m n}}{c}\right)
\end{aligned}
$$

where

$$
\Phi(x)=\int_{0}^{\infty} \frac{t \varphi(t)}{\cosh (\pi t)} \int_{x}^{\infty}\left(J_{2 i t}(u)+J_{-2 i t}(u)\right) \frac{d u}{u} d t .
$$

c) Show that $\Phi(x)=\Delta(x)+O\left(T N^{-2}\right)$ where

$$
\Delta(x)=\iint K(t, z) \sin (x \cosh (z)) d t d z
$$

for some $K: \mathbb{R}^{2} \rightarrow \mathbb{C}$ with $\|L\|_{L^{1}} \ll \frac{N^{\epsilon}}{T}$. Furthermore, if $x>T^{2}$, then we have

$$
\Delta(x)=\frac{1}{x} \iint L(t, z) \cos (x \cosh (z)) d t d z
$$

for some $L: \mathbb{R}^{2} \rightarrow \mathbb{C}$ with $\|L\|_{L^{1}} \ll N^{\epsilon} T$.
d) Conclude the proof by combining the estimates obtained above.

Exercise 2.2: Prove the following estimate: For large parameter $L \geq 1,1 \leq N \ll K$ and any sequences $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}$ of complex numbers we have
$\sum_{T / 2<t_{j} \leq T} \frac{1}{\cosh \left(\pi t_{j}\right)}\left|\sum_{N / 2<n \leq N} a_{n} \rho_{j}(n)\right|^{2}\left|\sum_{L / 2<l \leq L} b_{l} \cdot l^{i t_{j}}\right|^{2} \ll T^{1+\epsilon}(T+L)\left(\sum_{n \leq N}\left|a_{n}\right|^{2}\right)\left(\sum_{l \leq L}\left|b_{l}\right|^{2}\right)$.
a) Use the function φ from Exercise 2.1, (2) and the forward Kuznetsov formula to show that

$$
\begin{aligned}
& \pi \sum_{T / 2<\kappa_{j} \leq T} \frac{1}{\cosh \left(\pi t_{j}\right)}\left|\sum_{N / 2<n \leq N} a_{n} \rho_{j}(n)\right|^{2}\left|\sum_{L / 2<l \leq L} b_{l} \cdot l^{i t_{j}}\right|^{2} \\
& \leq S_{1}(T, L, N)+S_{2}(T, L, N)+O\left(T L\left\|a_{n}\right\|_{2}^{2}\left\|b_{l}\right\|_{2}^{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
S_{1}(T, L, N) & =\frac{1}{2 \pi^{2}} \int_{\mathbb{R}} t \varphi(t) \sum_{l_{1} l_{2}} \frac{b_{l_{1}} \overline{b_{l_{2}}}}{\alpha\left(l_{1} / l_{2}\right)}\left(\frac{l_{1}}{l_{2}}\right)^{i t} d t\left\|a_{n}\right\|^{2} \text { and } \\
S_{2}(T, L, N) & =\sum_{l_{1}, l_{2}} \frac{b_{l_{1}} \overline{b_{l_{2}}}}{\alpha\left(l_{1} / l_{2}\right)} \sum_{c=1}^{\infty} \frac{4 \pi}{c^{2}} \sum_{m, n} \overline{a_{m}} a_{n} \sqrt{m n} S(n, m ; c) \Phi\left(\frac{4 \pi \sqrt{m n}}{c}, \frac{l_{1}}{l_{2}}\right) \text { with } \\
\Phi(x, y) & =\int_{\mathbb{R}} y^{i t} \frac{t \varphi(t)}{\cosh (\pi t)} \int_{x}^{\infty}\left(J_{2 i t}(u)+J_{-2 i t}(u)\right) \frac{d u}{u} d t .
\end{aligned}
$$

The function α should be well behaved: $\alpha(y)=\alpha(1)+O(\log (y))>\frac{1}{2} \alpha(1)$.
b) Show that

$$
\int_{\mathbb{R}} t \varphi(t)\left(\frac{l_{1}}{l_{2}}\right)^{i t} d t \ll \min \left(T^{2}, \log \left(l_{1} / l_{2}\right)^{-2}\right)
$$

and deduce that

$$
S_{1}(T, L, N) \ll T(T+L)\left\|a_{n}\right\|_{2}^{2}\left\|b_{l}\right\|_{2}^{2}
$$

c) Show that $\Phi(x, y) \ll T^{-1}$ for $|\log y| \ll 1$ and $x \ll T$. Use this to prove

$$
S_{2}(T, L, N) \ll T^{1+\epsilon} L\left\|a_{n}\right\|_{2}^{2}\left\|b_{l}\right\|_{2}^{2}
$$

This is the final missing piece to complete the exercise.

Exercise 2.3: An interesting application of the backward Kuznetsov formula and the results from Exercise 2.1 and 2.2 is the following fourth moment of zeta. Let $T \geq 2, T^{\frac{1}{2}}<T_{0} \leq T$ and $T \leq t_{1}<t_{2}<\ldots<t_{R} \leq 2 T$ with $t_{r+1}-t_{r} \geq T_{0}$. Then

$$
\begin{equation*}
\sum_{r=1}^{R} \int_{t_{r}}^{t_{r}+T_{0}}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} d t \ll\left(R T_{0}+R^{\frac{1}{2}} T_{0}^{-\frac{1}{2}} T\right) T^{\epsilon} \tag{6}
\end{equation*}
$$

Choosing $R=1$ and $T_{0}=T^{\frac{2}{3}}$ yields

$$
\int_{T}^{T+T^{\frac{2}{3}}}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} d t \ll T^{\frac{2}{3}+\epsilon}
$$

Another nice corollary is the bound

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{12} d t \ll T^{2+\epsilon}
$$

originally due to Heath-Brown. We will now sketch the proof of (6) up to the point where Kloosterman sums come into play. Then the exercises will start.

We set

$$
M\left(\frac{1}{2}+i t\right)=\sum_{m \in \mathbb{Z}} \alpha(m) m^{-\frac{1}{2}-i t}
$$

for a smooth function α with support in $[M, 2 M]$, with $M<T^{\frac{1}{2}} \log (T)$. Further we require $\alpha^{(p)}(m)<_{p} M^{-p}$. By the typical approximate functional equation yoga we can reduce the problem to showing that

$$
\sum_{r=1}^{R} \int_{t_{r}}^{t_{r}+T_{0}}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}\left|M\left(\frac{1}{2}+i t\right)\right|^{2} d t \ll\left(R T_{0}+R^{\frac{1}{2}} T_{0}^{-\frac{1}{2}} T\right) T^{\epsilon} .
$$

Let $\theta(x)$ be a positive smooth function with support in $[-2,2]$ dominating the indicator function on the unit interval. Set $f(x)=\theta\left(T x / T_{0}\right)$ and $j(\tau)=\theta(\tau / T-1)$. Opening $\left|M\left(\frac{1}{2}+i t\right)\right|^{2}$, sorting the resulting double sum by greatest common divisor and including the test functions f and j shows that it suffices to estimate

$$
\sum_{\tau=t_{1}, \ldots, t_{R}} j(\tau) \int_{0}^{\infty} e^{-\frac{2 \pi t}{T}} f\left(\frac{t-\tau}{T}\right)\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} G(t) d t \ll\left(R T_{0}+R^{\frac{1}{2}} T_{0}^{-\frac{1}{2}} T\right) T^{\epsilon}
$$

where

$$
G(t)=\sum_{(h, k)=1}(h k)^{-\frac{1}{2}}\left(\frac{h}{k}\right)^{i t} g(h) g(k)
$$

for any positive smooth function g with support in $[M, 4 M]$ for $1 \leq M \leq T^{\frac{1}{2}} \log (T)$ satisfying $g^{(p)}(x) \ll_{p} M^{-p}$.

Using Fourier inversion we write

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\frac{2 \pi t}{T}} f\left(\frac{t-\tau}{T}\right)\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} G(t) d t=2 \Re \int_{0}^{\infty} \hat{f}(v) e\left(-\frac{v \tau}{T}\right) W(v) d v \tag{7}
\end{equation*}
$$

where

$$
W(v)=\int_{0}^{\infty} e\left(\frac{v+i}{T} t\right)\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} G(t) d t
$$

Partial integration gives the bound $\hat{f}(v) \lll \frac{T_{0}}{T}\left(\frac{T}{(|v|+1) T_{0}}\right)^{p}$, which we should keep in mind.
At this point classical results give the bound $W(v) \ll T^{1+\epsilon}$, which suffices to treat the ranges $v<T^{\epsilon}$ and $v>T^{1+\epsilon} / T_{0}$. By a common dyadic dissection one reduces the problem to showing

$$
\sum_{\tau=t_{1}, \ldots, t_{R}} j(\tau) S(M, N, \tau) \ll\left(R T_{0}+R^{\frac{1}{2}} T_{0}^{-\frac{1}{2}} T\right) T^{\epsilon}
$$

for the integrals

$$
S(M, N, \tau)=\int_{N / 2}^{N} \hat{f}(v) S(\log (v)) e\left(-\frac{v \tau}{T}\right) W(v) d v
$$

with $1 \leq M \leq T^{\frac{1}{2}} \log (T)$ and $T^{\epsilon}<N \leq T^{1+\epsilon} T_{0}^{-1}$. We can assume that the integrand (and all its derivatives) vanishes at the end points of the integral.
A Lemma of Titchmarsh gives the Laplace transform of $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ as

$$
\int_{0}^{\infty} e^{-z t}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t=2 \pi e^{\frac{i z}{2}} \sum_{l=1}^{\infty} \tau(l) \exp \left(2 \pi i l e^{i z}\right)+p(z)
$$

for $\Re(z)>0$ and a function p, which is regular for z sufficiently close to 0 . Define

$$
S\left(z, \frac{h}{k}\right)=\sum_{l=1}^{\infty} \tau(l) e\left(l \frac{h}{k}\right) \exp (-l z) .
$$

Recalling the definition of $G(t)$ and inserting Titchmarsh's result yields

$$
W(v)=2 \pi \exp \left(\pi \frac{v+i}{T}\right) \sum_{(h, k)=1} \frac{1}{k} g(h) g(k) S\left(2 \pi i \frac{h}{k}\left(1-e^{2 \pi(v+i) / T}\right), \frac{h}{k}\right)+O(M) .
$$

The sum $S\left(z, \frac{h}{k}\right)$ can be written as the Mellin transform

$$
S\left(z, \frac{h}{k}\right)=\frac{1}{2 \pi i} \int_{(c)} D\left(s, \frac{h}{k}\right) \Gamma(s) z^{-s} d s
$$

of the (Estermann-type) zeta function

$$
D\left(s ; \frac{h}{k}\right)=\sum_{l=1}^{\infty} \tau(l) e\left(-l \frac{h}{k}\right) l^{-s}, \text { for } \Re(s)>1 .
$$

The function $D\left(s, \frac{h}{k}\right)$ extends meromorphically to \mathbb{C} and has a pole of order 2 at $s=1$. The Laurent expansion at $s=1$ is

$$
D\left(s, \frac{h}{k}\right)=\frac{1}{k}(s-1)^{-2}+\frac{2}{k}(\gamma-\log (k))(s-1)^{-1}+\ldots
$$

Further we have the nice functional equation

$$
D\left(s, \frac{h}{k}\right)=2(2 \pi)^{2 s-2} \Gamma(1-s)^{2} k^{1-2 s}\left[D\left(1-s ; \frac{\bar{h}}{k}\right)-\cos (\pi s) D\left(1-s ;-\frac{\bar{h}}{k}\right)\right] .
$$

Finally, one has the bound $\left|D\left(0, \frac{h}{k}\right)\right| \leq k \log (2 k)^{2}$. Using these properties (due to Estermann) together with typical contour shift arguments yields the decomposition

$$
\begin{equation*}
S\left(z ; \frac{h}{k}\right)=R_{0}\left(T ; \frac{h}{k}\right)+R_{1}(T, v ; h, k)+R_{2}\left(T, v ; \frac{h}{k}\right)+R_{3}\left(T, v ; \frac{h}{k}\right) \tag{8}
\end{equation*}
$$

with

$$
\begin{aligned}
R_{0}\left(T ; \frac{h}{k}\right) & =D\left(0 ; \frac{h}{k}\right), \\
R_{1}(T, v ; h, k) & =\frac{1}{z k}(\gamma-2 \log (k)-\log (z)), \\
R_{2}\left(T, v ; \frac{h}{k}\right) & =\frac{1}{2 \pi i} \int_{(1-c)} 2(2 \pi)^{2 s-2} \Gamma(1-s)^{2} \Gamma(s) k^{1-2 s}\left[D\left(1-s ; \frac{\bar{h}}{k}\right)-e^{-\pi i s} D\left(1-s ;-\frac{\bar{h}}{k}\right)\right] z^{-s} d s \text { and } \\
R_{3}\left(T, v ; \frac{h}{k}\right) & =-\frac{1}{\pi} \int_{(1-c)} 2(2 \pi)^{2 s-2} \Gamma(1-s)^{2} \Gamma(s) \sin (\pi s) k^{1-2 s} D\left(1-s ;-\frac{\bar{h}}{k}\right) z^{-s} d s .
\end{aligned}
$$

The total contribution of $R_{0}\left(T ; \frac{h}{k}\right)$ to $S(M, N M \tau)$ is

$$
\begin{aligned}
S_{0}(M, N, \tau)=2 \pi \int_{N / 2}^{N} \hat{f}(v) S(\log (v)) e\left(-\frac{v \tau}{T}\right) \exp \left(\pi \frac{v+i}{T}\right) d v \sum_{(h, k)=1} \frac{1}{k} g(h) g(k) D\left(0 ; \frac{h}{k}\right) & \\
& \ll T_{0} T^{\epsilon},
\end{aligned}
$$

simply by integration by parts. Similarly easy one can estimate the contribution of $R_{1}\left(T, v ; \frac{h}{k}\right)$ to $S(M, N, \tau)$ by

$$
\begin{array}{r}
S_{0}(M, N, \tau)=2 \pi \int_{N / 2}^{N} \hat{f}(v) S(\log (v)) e\left(-\frac{v \tau}{T}\right) \exp \left(\pi \frac{v+i}{T}\right) d v \sum_{(h, k)=1} \frac{1}{k} g(h) g(k) R_{1}\left(T, v ; \frac{h}{k}\right) \\
\ll T_{0} \log (T)
\end{array}
$$

The contribution of $R_{2}\left(T, v ; \frac{h}{k}\right)$ is handled using Stirling's formula and trivial bounds for $\left|D\left(1-s ; \frac{h}{k}\right)\right| \leq \zeta^{2}(c)$ on the contour ($1-c$). One can deduce

$$
S_{2}(M, N ; \tau) \ll T_{0} .
$$

It remains to bring $R_{3}\left(T, v ; \frac{h}{k}\right)$ in shape. We expand $D\left(1-s ;-\frac{\bar{h}}{k}\right)$ into its Dirichlet series, recall the duplication formula $\Gamma(1-s) \Gamma(s) \sin (\pi s)=\pi$ as well as the Mellin integral $\frac{1}{2 \pi i} \int_{(\sigma)} \Gamma(w) x^{-w} d x=\exp (-x)$. With this we can rewrite

$$
R_{3}\left(T, v ; \frac{h}{k}\right)=-\frac{2 \pi i}{z k} \sum_{l=1}^{\infty} \tau(l) e\left(-l \frac{\bar{h}}{k}\right) \exp \left(-\frac{4 \pi^{2} l}{z k^{2}}\right), \text { with } z=2 \pi i \frac{h}{k}\left(1-e^{2 \pi(v+i) / T} .\right.
$$

Gathering everything gives the contribution

$$
\begin{aligned}
& S_{3}(M, N, \tau)=\pi \int_{N / 2}^{N} \hat{f}(v) S(\log (v)) \sinh \left(\pi \frac{v+i}{T}\right)^{-1} e\left(-\frac{v \tau}{T}\right) \\
& \quad \cdot \sum_{l=1} \tau(l) \sum_{(h, k)=1} \frac{g(h) g(k)}{h k} e\left(-l \frac{\bar{h}}{k}-\frac{l}{h k}\left(e^{2 \pi(v+i) / T}-1\right)^{-1}\right) d v
\end{aligned}
$$

of $R_{3}\left(T, v ; \frac{h}{k}\right)$ to $S(M, N, \tau)$.
Put $L=2 \pi M^{2} N^{2} T^{-1}$. The part of $S_{3}(M, N, \tau)$ where l lies outside the interval $[L / 16,16 L]$ can be estimated trivially using partial integration (for the v-integral). This can be detected using a positive smooth function $b(x)$ supported in $[L / 32,32 L]$ that satisfies $b^{(b)}(x) \ll x^{-p}$ and dominates the indicator function on $[L / 16,16 L]$. We get

$$
S(M,, \tau)=S_{4}(M, N, \tau)+O\left(T_{0} T^{\epsilon}\right)
$$

with

$$
\begin{equation*}
S_{4}(M, N, \tau)=\sum_{l} \tau(l) \sum_{(h, k)=1} C(h, k, l, \tau) e\left(-l \frac{\bar{h}}{k}\right) \tag{9}
\end{equation*}
$$

and
$C(h, k, l, \tau)=\pi b(l) \frac{g(h) g(k)}{h k} \int_{N / 2}^{N} \hat{f}(v) S(\log (v)) \sinh (\pi(v+i) / T)^{-1} e\left(-v \frac{\tau}{T}-\frac{l}{h k}\left(e^{2 \pi(v+i) / T}-1\right)^{-1}\right) d v$.
Using the method of stationary phase (for the v-integral) one can show that

$$
j(\tau) S_{4}(M, N, \tau)=M^{-1} N^{-\frac{1}{2}} T_{0} \sum_{l} \tau(l) \sum_{(h, k)=1} \frac{1}{k} b(h, k, l, \tau) e\left(-l \frac{\bar{h}}{k}-\left(\frac{2 l T^{2}}{\pi h k \tau}\right)^{\frac{1}{2}}\right)
$$

for a smooth function $b\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, which is non-zero only for

$$
x_{1}, x_{2} \asymp M, x_{3} \asymp L \text { and } x_{4} \asymp T
$$

and satisfies

$$
\frac{\partial^{|\mathbf{j}|}}{\partial \mathbf{x}^{\mathbf{j}}} b(\mathbf{x}) \ll_{\mathbf{j}} \mathbf{x}^{-\mathbf{j}}
$$

where we use standard multi index notation.
Put

$$
H(x, k, l, \tau)=b(x, k, l, \tau) e\left(-\left(\frac{2 l T^{2}}{\pi h k \tau}\right)^{\frac{1}{2}}\right)
$$

We can expand this in a Fourier series

$$
H(x, k, l, \tau)=\sum_{u \in \mathbb{Z}} \hat{H}(u, k, l, \tau) e\left(u \frac{x}{k}\right)
$$

with

$$
\hat{H}(u, k, l, \tau)=\frac{1}{k} \int_{\mathbb{R}} b(x, k, l, \tau) e\left(-u \frac{x}{k}-\left(\frac{2 l T^{2}}{\pi h k \tau}\right)^{\frac{1}{2}}\right) d x
$$

Another application of the method of stationary phase leads to

$$
\begin{equation*}
j(\tau) S_{4}(M, N, \tau)=\frac{T_{0}}{M N} \sum_{u, l, k} \tau(l) \frac{1}{k} a(k, l, u, \tau) S(u,-l ; k) e\left(-3\left(\frac{u l T^{2}}{2 \pi k^{2} \tau}\right)^{\frac{1}{3}}\right)+O\left(T_{0}\right) \tag{10}
\end{equation*}
$$

Now $a\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a smooth function non-vanishing only for

$$
x_{1} \asymp M, x_{2} \asymp L, x_{3} \asymp N \text { and } x_{4} \asymp T
$$

satisfying

$$
\frac{\partial^{|\mathbf{j}|}}{\partial \mathbf{x}^{\mathbf{j}}} a(\mathbf{x}) \ll_{\mathbf{j}} \mathbf{x}^{-\mathbf{j}}
$$

Kloosterman sums finally arrived on stage for the grand finale. Note that estimating trivially using the Weil bound suffices for $T_{0} \geq T^{\frac{9}{8}}$.
a) Put $f(x)=a\left(\frac{4 \pi \sqrt{u l}}{x}, l, u, \tau\right) e\left(-\frac{3}{2 \pi}\left(\frac{T^{2} x^{2}}{4 \tau}\right)^{\frac{1}{3}}\right)$. Recall the Bessel transform \tilde{f} from (11) and show that

$$
\tilde{f}(r)=\theta(r) c(l, u, \tau, r) \tau^{i r}+O\left((|r|+N)^{-6} e^{-\pi|r|} \log (T)\right),
$$

where $|\theta(r)| \leq r^{-1} e^{-\pi r}$. Furthermore $c\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a smooth function non-vanishing only for

$$
x_{1} \asymp L, x_{2} \asymp N, x_{3} \asymp T \text { and } x_{4} \asymp N
$$

satisfying $\frac{\partial^{|j|}}{\partial \mathbf{x}^{j}} c(\mathbf{x}) \ll_{\mathbf{j}} \mathbf{x}^{-\mathbf{j}}$. (Recall that $L=2 \pi M^{2} N^{2} T^{-1}, M<T^{\frac{1}{2}} \log (T)$ and $T^{\epsilon}<N<$ $T^{1+\epsilon} T_{0}^{-1}$.)
b) Locate the function f from a) in our expression for $S_{4}(M, N, \tau)$ and apply the backward Kuznetsov formula to the k-sum. Derive

$$
\begin{aligned}
\sum_{v=1}^{R} j\left(t_{v}\right) S_{4}\left(M, N, t_{v}\right) \ll & R T_{0} T^{\epsilon} \\
& +\frac{T_{0}}{M N} \int\left|\sum_{v=1}^{R} \sum_{u, l} \tau(l)(u l)^{i r} \sigma_{2 i r}(u) \sigma_{2 i r}(l) t_{v}^{i r} c\left(l, u, t_{v}, r\right)\right| \frac{d r}{r|\zeta(1+2 i r)|^{2}} \\
& +\frac{T_{0}}{M N} \sum_{j=1}^{\infty} \frac{1}{t_{j} \cosh \left(\pi t_{j}\right)}\left|\sum_{v=1}^{R} \sum_{u, l} \tau(l) \rho_{j}(u) \rho_{j}(l) t_{v}^{i t_{j}} c\left(l, u, t_{v}, t_{j}\right)\right|
\end{aligned}
$$

c) Apply the results from Exercise 2.1 and 2.2 to derive the desired bound.

List of useful facts:

- The classical Rankin-Selberg estimate

$$
\sum_{n \leq N}\left|\rho_{j}(n)\right|^{2} \ll\left(\left|t_{j}\right|+1\right)^{\epsilon} \cosh \left(\pi t_{j}\right) N
$$

- The Weyl law

$$
\sharp\left\{j \in \mathbb{N}: t_{j} \leq X\right\}=\frac{1}{12} X^{2}+O(X)
$$

as well as the estimate

$$
\sharp\left\{j \in \mathbb{N}:\left|t-t_{j}\right| \leq 1\right\} \ll t
$$

- One also has the (elementary) identity

$$
S(n, m ; c)=\sum_{d \mid(n, m, c)} d \cdot S\left(1, \frac{n m}{d^{2}}, \frac{c}{d}\right)
$$

The Weil bound for Kloosterman sums is

$$
|S(n, m ; c)| \leq(n, m, c)^{\frac{1}{2}} c^{\frac{1}{2}} \tau(c)
$$

- The large sieve inequality

$$
\sum_{h \bmod c}\left|\sum_{m \leq M} a_{m} e\left(m \frac{h}{c}\right)\right|^{2} \leq(c+M) \sum_{m \leq M}\left|a_{m}\right|^{2}
$$

- For $x>0$ and $-1<\Re(v)<1$ one has

$$
\pi J_{v}(x)=2 \int_{0}^{\infty} \sin \left(x \cosh t-\frac{\pi v}{2}\right) \cosh (v t) d t
$$

- Basset's formula reads

$$
K_{2 i r}(x)=\frac{3}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}+2 i r\right) \int_{0}^{\infty}\left(\frac{2 x}{w^{2}+x^{2}}\right)^{2 i r} \frac{w \sin (w)}{\left(x^{2}+w^{2}\right)^{\frac{3}{2}}} d w
$$

Furthermore $K_{2 i r}(x)=\frac{\pi}{2} \frac{1}{\sinh (2 \pi r)}\left(I_{2 i r}(x)-I_{-2 i r}(x)\right)$ and we have the power series expansion

$$
I_{2 i r}=(x / 2)^{2 i r} \frac{1}{\Gamma(1+2 i r)} \sum_{m=0}^{\infty} \frac{(x / 2)^{2 m}}{m!}(1+2 i r) \cdots(m+2 i r)
$$

- A mean-value theorem for Dirichlet polynomials:

$$
\int_{r \asymp N}\left|\sum_{v=1}^{R} t_{v}^{i r} e\left(x t_{v}\right)\right|^{2} d r \ll\left(N+\frac{T}{T_{0}}\right) R
$$

where the t_{v} are of size T and are at least T_{0} apart.

A version of the stationary phase lemma:

Let \mathbf{D} be the domain in \mathbb{R}^{r+1} given by $\left(1-c_{i}\right) X_{i}<x_{i}<\left(1+c_{i}\right) X_{i}$ for $1 \leq i \leq r$ and $(1-c) Y<y<(1+c) Y$ for some constants $0<c_{1}, \ldots, c_{r}, c<\frac{1}{2}$. Further, let $f\left(x_{1}, \ldots, x_{r}, y\right)$ be a real function in $\mathcal{C}^{\infty}(\mathbf{D})$ satisfying the following properties:

- For $(\mathbf{x}, y) \in \mathbf{D}$ we have $\Delta \leq \frac{\partial^{2}}{\partial y^{2}} f(\mathbf{x}, y) \leq 2 \Delta$;
- For $(\mathbf{x}, y) \in \mathbf{D}$ we have

$$
\left|\frac{\partial^{|p|+q}}{\partial \mathbf{x}^{p} \partial y^{q}} f(\mathbf{x}, y)\right| \leq c(p, q) \Delta Y^{2-q} X_{1}^{-p_{1}} \cdots X_{r}^{-p_{r}}
$$

for some constants $c(p, q)$ so that $c(0,3) \leq \frac{1}{4 c}$.

- The equation $\frac{\partial}{\partial y} f(\mathbf{x}, y)=0$ has a smooth solution $y=y(\mathbf{x})$ in \mathbf{D} so that

$$
\frac{\partial|p|}{\partial \mathbf{x}^{p}} \ll_{p} X_{1}^{-p_{1}} \cdots X_{r}^{-p_{r}}
$$

Finally let $a(\mathbf{x}, y)$ be a function smooth function with $\operatorname{supp}(a) \subseteq \mathbf{D}$ satisfying $\frac{\partial^{|p|+q}}{\partial \mathbf{x}^{p} \partial y^{q}} a(\mathbf{x}, y)<_{p, q} X_{1}^{-p_{1}} \cdots X_{r}^{-p_{r}} Y^{-q}$. Then

$$
\int_{\mathbb{R}} b(\mathbf{x}, y) e(f(\mathbf{x}, y)) d y=\Delta^{-\frac{1}{2}} b(\mathbf{x}) e(f(\mathbf{x}, y(\mathbf{x})))
$$

where b is a smooth function supported in the ranges

$$
x_{i} \asymp X_{i} \text { for } i=1, \ldots, r
$$

satisfying

$$
\frac{\partial^{p}}{\partial \mathbf{x}^{p}} b(\mathbf{x}) \ll X_{1}^{-p_{1}} \cdots X_{r}^{-p_{r}} .
$$

Remark: This is a version of the stationary phase lemma featuring non-degenerate critical points and a set of r parameters. There are many versions of this result in the literature. Important for our application is that we do not lose control over the new weight function $b(\mathbf{x})$.

[^0]: ${ }^{1}$ Some of the notation differs from the one used in the lecture series. Sorry for the inconvenience.

