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1 Measure theory

In Analysis II we used an approach to integration in R" defining integrals
of continuous, compactly supported functions in R". Certain technical steps
were then taken, to extend this notion to integrals over certain bounded
domains, say boxes @, in R".
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Figure 1: Restriction of a continuous function to an interval () C R.

A natural way to integrate such functions we would be to make sense of the
expression
flg
R™

where 1 equals 1 if 2 € ) and it equals 0 otherwise. However, the function
f1g is in general not continuous on R", so a number of technical steps were
needed to circumvent this issue. This example shows the potential usefulness
of more general notions of integrals.

The function 1 is one of the most basic examples of discontinuous functions.
It is called the characteristic function of () and can be defined for any set E
by setting

1, zeFk
1w ={ o 158

If we knew how to integrate such functions, we would define

/ 1p(e)da

to be the volume (or measure) of E.

On the other hand, we can see (exercise) that we can approximate any
bounded compactly supported function with finite linear combinations of
characteristic functions, all supported on the same compact set, uniformly.
This will then allow by linearity of the integral and approximation arguments



to extend the definition of the integral from characteristic functions to such
functions as well.

Question: Can one assign a volume to every set £ C R"?

Of course, the volume should have certain properties which agree with our
intuitive notion of volume. For instance, the volume of a set should be
invariant under translations of that set. In higher dimensions it should also
be invariant under its rotations. The unit ball should have a finite volume.
Moreover, the volume of a union of disjoint sets should equal the sum of the
volumes of these sets, which is a natural condition related to linearity of the
integral. Namely, if £ N F = (), then 15, = 1 + 1, which implies

/]-EUF:/ 1E+/ 1p
Rn n n

and hence volume(F U F') = volume(E) + volume(F').

The following theorem says that under these conditions, it is not possible to
assign volume to every subset of R.

By P(R) we denote the power set of R, i.e. the set of all subsets of R.

Theorem 1.1. There does not exist p: P(R) — [0, 00| such that

1. (Translation invariance) u(E + y) = u(y) for all E € P(R),y € R,
where E+y:={x+y:x € E}

2. (Countable additivity) If A;, j € N are pairwise disjoint, i.e. Aj N Ay

for j # k, then
p(U45) =D w4y
j=1 j=1

3. 0<pu([0,1) < oo

Note that since the function p takes vaues in [0,00], it is very natural to
consider countable sums as in the last item.

Proof. Assuming existence of such a map we are going to derive a contradic-
tion. We start with some preliminary observations.

o 1(0) =0
To see this set A; = [0,1), A; = 0 for j > 1. These sets are pairwise
disjoint. Then

o0

:M<QAJ‘> Zu ([0,1)) +Zu



By 3. u([0,1)) # oo, so we have » 2%, ji(A;) = 0. Since pu(A;) > 0 for
each j, we must have u(Ay) = 0. That is, u(0) = 0.

e (Finite additivity) Property 2. holds also for finite families A;, j =
1,...,N.

This follows by setting A; = () for j > N and using () = 0.

e (Monotonicity) If A C B, then u(A) < pu(B).

To see this we write B = AU (B \ A), which is a disjoint union. Then
we use finite additivity of u to conclude

u(B) = u(A) + u(B\ A).

Each of the terms on the right hand-side is non-negative, so we must
have 1i(A) < p(B).

e (Countable subadditivity) For any (not necessarily pairwise disjoint)
sets A;, 7 € N, we have

u(UA) <)

To see this for two sets A, B write AUB = AU (B \ A) and conclude
W(AU B) = ju(A) + p(B\ A) < () + u(B),

the last inequality following by monotonicity (since B\ A C B). For
countably many sets induct, the details are left as an exercise.

We return to the proof of the theorem. Define
R={z+Q:z€R}

If M,N € R, then M = N or MN N = (0. Indeed, suppose that M =
r+Q, N =12 +Q for some 2,2/ € R. If M NN # (), then there exists
y € M N N and therefore ¢,¢ € Q such that x + ¢ =y = 2/ + ¢’. Then for
each p € @) we have

t+p=a'+¢—q+peN,
Q
S

which implies M C N. By symmetry it follows N C M and hence M = N.



Next we claim that for each M € R there exists y € M such that y € [0,1).
That is, M N[0,1) # 0 for each M € R. To see this we write as before
M = x4+ Q for some x € R. Since Q is denseﬂ in R there is ¢ € Q with
lz—1/2—¢q| <1/4,ie. 1/4<x—q<3/4. Sosety:=x—qec M.

By the axiom of choice there exists a function ¢ : R — [0,1) such that for
each M € R : o(M) € M. The range of this map ¢ is a subset of [0,1)
which contains exactly one element of each M € R. We denote this subset
by A := ¢(R). Now we claim that

UA+q:R,
q€Q

i.e. the union of all possible translates of A by rational numbers is the whole
real line. Indeed, note that for 2= € R we have z € 2+ Q € R. Then
z—p(z+Q) € Q and so

z € p(z+ Q) +Q.
——

€A

This implies R C U,A + g, the other inclusion being trivial.
Now we can conclude

0<u(0.1) < u®) < (A +9) 2 Y u()

q€Q q€Q

where (%) follows by monotonicity and (sx) by 1. This implies p(A) # 0.
Let us now consider all possible translates of A by rational number smaller
than 10. We must have

U A4+q)cl-11,1)
7€Q,[q|<10
Since [—11, 11] can be viewed as the union of translates of 22 copies of [0, 1),
by translation invariance and additivity we have

But then
(* (%)

o> uL) S Y parg P Y w T Y =

q€Q,lg|<10 q€Q,|q|<10 q€Q,|q|<10

~

which is a contradiction. We used: (%) monotonicity and additivity, ()
translation invariance, (x*x) p(A) # 0 and thus p(A) > € for somee > 0. O

LAt this point we observe that the same proof would work with Q replaced by the
dyadic numbers.



In R? it is natural to require that the volume of a set is invariant under
rotations of this set. Our next goal is to show that in R®, a map satisfying
rotation invariance and properties 1.-3. from Theorem does not exist
even if we replace 2. by the weaker notion of finite additivity. The interval
[0,1) is now replaced by the unit ball around the origin B;(0) (the exact
choice of this set is not so important).

Theorem 1.2. There does not exist p: P(R?) — [0, 00] such that

1. (Translation invariance) w(E +y) = p(y) for all E € P(R),y € R,
where E+y:={r+y:z €L}

2. (Finite additivity) For any natural number N > 2, If A;, j=1,...,N
are pairwise disjoint, then

M(CJAJ) = J_V 1(A;)

3. 0 < u(B1(0)) < 0

4. (Rotation invariance) u(E) = p(TE) for all rotations T € SO(3) and
for all E € P(R?)

We remark that the theorem holds more generally for R™, n > 3.

Proof (sketch). Consider the rotations

1 3 =4 0 5 0 0
0 0 5 0 —4 3
One can compute
1 3 40 5 0 0
p=o| 430 ), wTi=| 03 4
0 05 0 4 3

We first note that these are indeed rtotations (exercise) and these rotations
are by angles 2w with irrational «, in other words positive integer powers
of these matrices can not be the identity matrix. By symmetry it suffices to
prove this for ¢. The entries of 5 modulo 5 are

3 —4 0
4 3 0
0 0 0
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and the square of this matrix is congruent itself modulo 5. Hence any positive
integer power of this matrix is congruent to itself. Hence 5"¢" has some
entries not divisible by 5, and hence ¢" does not have integer entries and
cannot be the identity matrix.
Let GG be the set of all products of the form

g9=91"9" -9\ (1)
where N € N (the case N = 0 is the empty product, which is equal to the
identity matrix), where each n; > 1 and each g; € S = {p,p ', ¢, ¢!}
and we have the property that if g; € {p,¢ ™'} then g;41 € {¢,¢'} and
conversely if g; € {1,191} then g;11 € {¢,p '} forall j < N. Then G forms
a multiplicative group, that is the product of two such matrices is again in
G, and the inverse matrix of an element in G is also in G (exercise).
Note that can be written as

1

gzg

QO o9
g < e
INEENS

with integers a, b, ¢, u,v,w,x,y, z and k = ny +ng + - - - + ny We claim that
the central entry v is not divisible by 5.

If N = 0 this claim is obvious. If N = 1 then the claim follows from the
previous remarks on powers of elements of S. We then proceed by induction
on N. Assume the claim holds for the matrix g as above with certain N > 1
and let gy € {p,9 '} if gv € {¢,07'} and gy € {071} if gy €
{p, 7'}, Of the various cases we consider by symmetry the case gn.1 = .
Then since the last factor of g is in {¢),1 ™'} we note that b is divisible by 5.
By the discussion of powers of ¢ we see that the middle entry of 5+!ggy\ 4"
is congruent —4b + 3v modulo 5, which is congruent 3v modulo 5 and since
v by induction is not divisible by 5 the middle entry of 5“1991@?? is not
divisible by 5 neither. The other cases follow similarly.

We call k the length of g as in (2)) and the above argument shows that
the length of g can be read off the middle entry of g as the power of 3 in
the denominator of the reduced fraction. We next claim that if some other
element

ho=RMpme R 2)

of analoguous form as in is equal g, then N = M and n; = m; for all
j and g; = h; for all j. To see the claim we may induct by the length of
g, which has to be the length of h as well since the length is determined by
the two central entries which by assumption are the same. If the length is



zero then necessarily N = M = 0 and the claim is clear. If teh length is
positive, then by induction it suffices to show that g, = h;, since one can
then apply induction hypothesis on the elements g;'g and h;'h which after
cancelling the first two factors are seen to be of shorter length. However, g;
is the unique element in S so that g;'¢ has smaller length than g (exercise)
and thus g; is determined by g and therefore g; = h;.

We can now partition G as

G:{[}UGLPUG@AUGd,UGdJ—l (3)

where G, contains those elements g from G for which the representation (2]
starts with g = ¢ etc.
However, we claim that we can also write

G=G,Up G, (4)

and symmetrically

G =Gy UGy,

To see () we note p'G,, C {I}UG,UG,UG -1 since for g € G, of the form
we can express ¢~ g in the corresponding form by erasing one g; from the
left in the product and the remaining product is of the form starting
with an element not equal to ¢~!. Conversely, o 'G, D {I}UG,UG,UG ;-1
since any element ¢’ in the set on the right hand side can be written as ¢ ~1pg’
where ¢’ € G,.

Now we proceed similarly as in the proof Theorem ([1.1)). We consider GG
acting on the set

K :=B1(0)\ {z € B1(0) : z = gz forsome g € G, g # 1} .

One can show (exercise) that u(K) = pu(B1(0)) and thus this set can be seen
as "almost all” of the unit ball. If z € K then gz € K for g € G (exercise).
We denote

R:={Gx:z € K}

and show as before that any M, N € R which are not disjoint must coincide.
Then we use the axiom of choice to find a set A C B;(0) which contains
exactly one element of each M € R. By we can write K as the union

K=AG=AUG,AUG,1AUG,AUG,-A.

Since K contains no fixed points under rotations in G, one can see that
the union on the right hand side is disjoint. For example if ga € G,A and
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hb € GyA and ga = hb then a = g~'hb and by definition of A we have
a = b and since K is fixed point free we have g~'h = I, and hence g = h, a
contradiction to g € G, and h € Gy.
However, by we can also partition
K =G AU 'G,A = Gy1 AUYTIGA.
By rotation invariance of p we have u(G,A) = pu(p 'G,) and u(GyA) =
(1 ~*Gy). Finite additivity of x then implies
p(K) = w(GA) = (A) + p(Gp1 A) + (G A) + (G A) + (G A)

— 1y A) + (G, A)
H(Gor A) + (G A)
and hence 2u(K) < u(K). This contradicts 0 < p(K) < oo. O

End of lecture 1. October 20, 2015

Theorem |[I.1]from the previous lecture states that one cannot assign a volume
to every subset of R if we require that it is non-zero and finite for the unit
ball, translation invariant and countably additive on disjoint sets. We remark
that it generalizes to higher dimensions:

Theorem 1.3. There does not exist ju : P(RY) — [0,00] such that the fol-
lowing holds

1. (Translation invariance) p(E +y) = p(y) for all E € P(R),y € R,
where E4+y:={x+y:x € E}

2. 0 < u(B1(0)) < 0
3. (Countable additivity) If E;,j € N are pairwise disjoint, then

W(UR) =3 ni)

Therefore we would like to relax some of the assumptions. Recall that we
would like to have additivity of the volume since this would be related to
linearity of the integral. Replacing countable with finite additivity is not
sufficient if the volume should also be rotation invariant, as seen in the last
lecture.

It seems likely that one would have to restrict the domain of p and define
the volume just for certain subsets of R?. However, our strategy it to first
consider only countably subadditive maps on P(R?) which are called outer
measures. Later we shall state a condition on the subsets of R on which
these subadditive maps are actually additive.

9



1.1 Owuter measure

Definition 1.4. Let X be a set. A map p: P(X) — [0, 00] is called an outer
measure, if

L (@) =0
2. (Monotonicity) If Fy, Es C X, then u(Ey) < p(Es).

3. (Countable subadditivity) For any E; C X, j € N we have
nlJE) <) n(E).
i=1 i=1

In our applications, X will typically be R?. In the previous lecture we showed
that 1.-3. follow provided u is countably additive on disjoint sets. Since now
we assume only countable subadditivity of u, 1. and 2. do not follow. To
avoid possible pathological examples we now additionally assume these two
properties.

How to define an outer measure for any subset of R?? The power set P(R?)
has the cardinality larger than continuum! The idea is to assign a certain
concrete quantity to the sets in some smaller subcollection of P(R?). We
call these sets generating sets. Then one abstractly defines an outer measure
of any set in R? by covering this set with generating sets. Let us make this
construction precise.

Theorem 1.5. Let X be a set. Let T C P(X) and 7 : T — [0,00]. The
map u: P(X) — [0,00] given by

E)= inf T
wE) = inf > 7(T)
UTeT’TDE T!

1S an outer measure.

If X = R? we may take T to be the collection of all balls B with rational
radii  and rational centers. We assign them the quantity 7(B) = r?, which
up to a constant coincides with our naive notion of the volume of a ball. The
collection of all such balls is countable, which is much less than the cardinality
of P(R). Then we generate the outer measure of any set by covering it
with balls. Since the collection of balls with rational radii is translation
and rotation invariant, this implies translation and rotation invariance of the
generated outer measure.

10



Figure 2: Covering a set with balls.

Proof. We need to check the three defining properties of outer measures.

1. The empty collection 7 = () covers the empty set and » .., 7(T) = 0,
so u(0) = 0.

2. Let By C E, and assume that u(Es) < p(FEp). Then there exists 7'
such that Fy C Jpers T and Y ;o 7(T) < p(Ey). This contradicts
FE, C By C UTET’ T.

3. We need to show that for any € > 0 we have
U E) <D nE) +e
i=1 i=1

Let € > 0. By definition of inf we may choose a collection 7; such that
Urer, T D Ei and

N (T) < wlE) +

TeT; 2
Then U2, Ei C U2 Uper T and we have

U <> uE) +ed o < S ub) +=
TET; =1 i=1 i=1

1=

wlJ B <

1= =1

Observe that having only countably many sets F; is crucial, as other-
wise we would not get a summable geometric series Y .-, 27"

]
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Note that in this theorem we may choose 7 freely. However, it is not clear
whether the generated u is then a reasonable quantity. Note that for £ € T
we know that p(F) < 7(F) since the set is its own cover. It seems reasonable
that this should be the best open cover and that we should have u(E) = 7(E)
for £ € T. However, this is not true in general. In principle it could happen
that pu(E) = 0 for all E € 7. But in many examples in practice, g and 7
agree on generating sets.

Example. Let X = R? and let 7 be the set of all dyadic cubes in R, i.e.
T ={Q = [2"n1,2%(n1 + 1) x -+ x [2"ng, 2%(ng + 1)) : k,ny, ... ,ng € Z}.

The number k is called the scale of (). An example of a dyadic cube of scale
0 is the unit cube [0,1) x - -+ x [0,1). Since the sides of a dyadic cube are half
open intervals, any two dyadic cubes are either disjoint or one is contained
in the other. Each dyadic cube of scale k partitions into 2¢ dyadic cubes of
scale k — 1, called the children of the cube.

****************************

Figure 3: A dyadic square in R? and its children.

For Q € T we set
(Q) =2

which coincides with our naive interpretation of the volume of ). The outer
measure i generated by 7 via coverings as is called the Lebesgue outer mea-
sure on RY.

Theorem 1.6. Let everything be as in the previous example. Then for each
dyadic cube Q € T we have u(Q) = 7(Q).

Therefore the Lebesgue outer measure is indeed a ”reasonable” quantity.
This is a very important result and showing it requires some work. If we
generate the outer measure by arbitrary cubes or balls and define 7(Q) anal-
ogously (i.e. as their ”volume”), then u also agrees with 7 on generating sets.
However, the proof of this fact is more technical than in the dyadic case.

12



Proof. We have u(Q) < 7(Q) since @ covers itself. So it remains to show
that if @ € T and 7' C T with Uy @ D Q, then

Q) < ) (@)

QleTl

First we consider the special case when T is finite. Let QQ € T be of scale
k. Without loss of generality we may remove the cubes from 7’ which do
not intersect (). That is, we may assume that for each Q € T’ we have
QNQ # (. Denote by kpi, be the smallest scale of the cubes in 7. If
kmin > k we have
7(Q) < 7(Quin) £ > 7(Q)
Qe

for any cube Qi of scale ki, which shows the claim. So we may assume
that kmin S k.

,,,,,,,,,,,,,,

Figure 4: k < kuyin

Now we induct on k — kpin > 0. If & — kpyn = 0, e, k = ki, we are done
by the same reasoning as above. Assume now that k — k,;, > 0. Denote by
kmax the largest scale of the cubes in 7'. Without loss of generality we may
assume kyay < k, otherwise we reason as above and get 7(Q) < 7(Qumax) <
> grer T(Q'). In other words, we may assume that the scale of any cube in
T is strictly smaller than k.

The cube @ partitions into 2% dyadic children Q; of scale k — 1, i.e.

2(i
Q=
j=1

Since any two dyadic cubes are either disjoint or one is contained in the
other, every )’ € T is contained exactly one of the children @), E|

2Here we crucially use the dyadic structure. If we had an arbitrary collection of cubes,
we would not be able to draw the same conclusion.

13



Figure 5: Covering @ with Q" € T".

Set now

T,={Q €T :Q CQ,}.
We have @); C UQ’EE (', which follows by a similar dyadic argument. The
cubes @); are of scale k — 1, so by induction

Q) < > T(@).

Q'ET;

Together with 7(Q) = 29 = 2424(k=1) = Zfil 7(Q;) we may then estimate

Q)= 7Q) <> Y @)<Y Q.

J J=1 Q'eT; QEeT

For the last inequality we used disjointness of the collections 7; for different
j. This shows the claim for finite 7.

For a general collection 7' we argue by compactness. If ) were compact and
the cubes in 77 open, then we would have an open covering of a compact
set. So there would exist a finite subcovering of () and we could apply the
argument for finite collections. Dyadic cubes are half open, so this is not the
case. However, we can approximate dyadic cubes in question by open/closed
sets, respectively, and obtain the desired bound within a factor (1+4-¢)%. More
precisely, we show the following: for every € > 0 we have

T(Q) < (1+¢)” ) 7(Q).
QeT’

To show this pick a number L which is large enough. We consider the L—th
generation of () consisting of cubes of scale k — L. They partitions @), so

2dL

Q=Ja;
j=1

14
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Figure 6: Partitioning of () and covering it by open sets.
Denote by T the set of all cubes (Q); with Q_j C Q. (In Figure @ this would
be the dyadic cubes contained in the light blue cube.) We have

1
1+e¢

Z Q) = 9k _ god-1)Lod(k-L) > Q)

Qje’f

where the last inequality holds provided L is sufficiently largeﬂ
For the sets in our covering we use a similar argument to pass to open sets.
For every Q' € T of scale k' define T¢ to be the set of all Q" of scale k' — L
such that Q"N Q" # 0. (In Figure @ these would be the small cubes in and
around @)'.) Then

S HQ) < T(Q)(1+e)

Q"ETey

provided L is large enough. The proof of this is similar as before using the
definition of 7 and we leave it to the reader. Now we have

K = U@c@c UeclimJ @
QeT QeT QEeT  QUeTy

The set K is closed and bounded and hence compact, while on the right
hand-side we have an open covering of K indexed by the cubes in 7. By

3Note that for the argument we used only the definition of 7 and no additivity of
volume.

15



compactness there exists a finite subcollection 7" C T’ which already covers

K. Hence B
Jec U U @

QeT QET" Q'ETy

Putting everything together and using the claim for finite collections 7" we
obtain

Doy @< Y X @)= X r@)e),

OeT QET" Q€T QeT’
Therefore, for every € > 0 we have
7(Q) < ) (@)1 +e).
Q/ET/
This establishes the claim. O

It is important to note that the fact u(Q) = 7(Q) for dyadic cubes @) relies
on our particular choice of 7. If we defined 7(Q) = 2 with o > d, then it
would be more efficient to cover ) with smaller cubes. One can show that
in this case u(Q) = 0 for all dyadic cubes Q.

The Lebesgue outer measure p : P(R?) — [0, 00| satisfies
1. Translation invariance
2. 0 < u(B1(0) <
3. Countable subadditivity

The property 2. holds by monotonicity of pu, since the unit ball contains a
dyadic cube and is also contained in a dyadic cube. Translation invariance
will be proved later. For the outer measure generated by dyadic cubes trans-
lation invariance is not obvious, since the collection of dyadic cubes is not
invariant under arbitrary translations.

1.2 Measurable sets

To build a linear integration theory we would like to have countable additivity
of p rather than subadditivity. For this we restrict ourselves to a certain class
of sets for which an outer measure is countably additive.

16



Definition 1.7 (Caratheodory). Let X be a set and p an outer measure on
X. A set £ C X is called measurable, if for all FF C X

p(F) = p(F N E) + p(FNES). (5)

The intuition behind this definition is that inequalities 7 < ” for F translate
into inequalities 7 > 7 for E¢, and both together can be used to imply
equalities. To work out this intuition in detail, one needs the Caratheodory
condition.
Note that

u(F) < w(FNE)+ p(FNE)

is always true by subadditivity of p (applied to F' = (F'N E) U (F N E°)).
Thus, a set is measurable, if we have additivity of p on these special sets.
In general outer measures need not have many measurable sets. However,
given some measurable sets, the following theorem shows how to construct
new measurable sets using finitary operations.

Theorem 1.8. Let Ey, Ey be measurable. Then
1. 0 is measurable.
2. LY is measurable.
3. E1 U E5 1s measurable.
4. E1N Ey is measurable.
5. E1\ Ey is measurable.
Proof. By subadditivity we only need to show the inequality ” > 7 in ([5)).
1. We have pu(F) =0+ pu(F) = u(0) + u(F).
2. Clear by symmetry.
3. Since F; is measurable, we have
p(F) = p(F 0 Ey) + p(F N EY)
Since F5 is measurable, this equals
pw(FNELNEy) + p(FNENES)+ pw(FNETN Ey) 4+ p(FNE;NES)

Note that £y U Ey = (E1 N Ey) U (EL N ES) U (BN Ey).

17



Figure 7: Partitioning of F; U Fj.

By subadditivity of ;1 we then have
w(FNE N Ey) +pu(FNENES) 4+ pu(FNE{NEy)) > p(Ey U Es).
Together with F'N ES N ES = F N (E; U Ey)° this shows
p(F) = p(F N (B U Ey)) + p(F N (B U Ey)°)
for any set F' C X.

4. We write
El N E2 - (Ef U E2c>c

and use 2., 3. and again 2.
5. We write E; \ Fy = Ey N ES and use 2. and 4.
]

By induction, 3. and 4. easily generalize to finite unions and intersections.
Our next theorem states a countable version of 3. and shows that is
indeed sufficient for additivity on any countable collection of pairwise disjoint
measurable sets.

Theorem 1.9. Let E; be pairwise disjoint measurable sets. Then U;’il E; is

measurable and - -
u( U Ej) = ().
j=1 j=1

Proof. Special case 1: Two sets E7, F,. We have already seen that F; U FEs
is measurable. Furthermore we have

(%)

p(EyL U Ey) Y p(Er N (B U Ey)) + p(EY N (B U Ep)) =" p(Er) + p(E2)

18



which shows the claim in this case. We used (x) : E} measurable (sx) : Ey C
ES.

Special case 2: Finitely many sets Fy,..., E,. By induction we show that
G, = j_, Ej; is measurable and that

= u(GEJ’) = iu(Ej)

(exercise, write Gpo1 = G U Epyq).
Case 3. Countably many sets £}, 7 € N. Denote G = U2, G,,. We have

w(F) 2 uw(F NG+ p(F NG

(4) .

= ZM(FﬂEj)+M(FﬂGn)
j=1

(***)

> Z“ FNE;)+ u(FNG°)

7j=1

where we used (*): measurability of G,,. (xx): finite additivity. (% * *):
G, C G and monotonicity. In the limit we obtain

Z (FNE;)+ u(FNnGe)
By subadditivity of u we estimate this further as

>ZN FOE) +u(FNG) 3 u(FNG) +u(FNG) > u(F).

7j=1

Since the left and the right hand-side of the last display coincide, all in-
equalities must be equalities. In particular, equality in 2. shows that G is
measurable. Equality in 1. then implies that (setting F' = G and using
GNE;=E;,GNG=G, GNG*=10)

Z N(EJ) =

This shows countable additivity of pu. O]

19



The last two theorems described how to construct measurable sets from ex-
isting measurable sets. However, we still do not know if there are any mea-
surable sets at all. If X = R? and the measure is generated by the dyadic
cubes (the Lebesgue measure), the answer is afﬁrmativeﬁ

Theorem 1.10. Dyadic cubes are Lebesgue measurable.

This theorem is a consequence of the following lemma, which states that it
suffices to verify the Caratheodory condition (b)) on generating sets.

Lemma 1.11. Let p on P(X) be generated by T,7. A set E is measurable
if and only if for each T € T we have
w(T) = (TN E) + p(T N E°).
Proof. We only need to show (<). Assume that for each T" € T we have
W(T) = W(T N E) + u(T 1 E°).
Let FF C X. We need to show that for any ¢ > 0 we have
e+ u(F) > pu(FNE)+ u(FNES.

If u(F') = oo there is nothing to show. So assume that p(F) < co. Let € > 0
and pick 7' C T with F' C Uy T and

e+ pu(F) > Z T
TeT’
Since F'NE C Jpen £ NT, by monotonicity and subadditivity we have
W(FNE) < 3 p(BNT)
TeT
In the same way we show
p(FNE) < Y w(E N T)
TeT
Summing the last two displays we obtain

WFNE)+u(FNE)< > wENT)+pENT)
TeT!
= 3" W) < ulF) +<
TeT
as desired. O

4This is also true if the generating sets are balls or arbitrary cubes, but the proof is
the easiest in the dyadic case.
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Since any two dyadic cubes are either disjoint or one is contained in the
other, measurability of dyadic cubes follows from this characterization.

To see Theorem [1.10} it suffcies to show for any two dyadic cubes T amd T’
W(T) = W(T AT + p(T O (T'Y)

This is immediate if u(7") > p(T') since then one of the sets on the right
hand side is empty. If u(7") < p(T), then one may argue by induction on
the difference in scales between T' and T”, applying the inductive hypothesis
to the children of T', at most one of which may intersect T".

Observe that Theorem implies that all open sets in R? are measurable
since we can write them as a countable union of dyadic cubes. Closed sets
are also measurable, since they are complements of open sets.

o———— End of lectures 2 and 3. October 27 and 29, 2015 —

So far we have been working with the space X = R" and the space of all
dyadic cubes T. Then, on the set of dyadic cubes, we defined

7 T = [0,00], 7(Q)=2%,

and used the above to generate the Lebesgue outer measure p on the power
set P(X) via

We could have as well taken all cubes or balls instead of dyadic cubes, however
this would make the combinatorics more difficult. This time we are going to
state an abstract theorem that lets us to validate that the outer measures
generated in a number of ways are again the Lebesgue outer measure pu.

Theorem 1.12. Let X be a set, T, C P(X), 7.2 T — [0, 00| and let p; be the
outer measure generated from 1; fori = 1,2. If for allT € Ty, 7 (T) > ps(7T)
and for all T € Ty, 7o(T) > 1 (T'), then we have py = po.

Proof. We show 1y > po and py < po.
Let £ C X. We obtain

Assumption Subadditivity

Definition . .
E = inf (T > inf T > E),
p(B) it @ TE e )2 ()
BcUp@ T BcUp@ M

where in the first equality we used the definition of uq, in the first inequality
we used the assumption 7 > py and the subadditivity of ps in the second.
Symmetrically we get that us(F) < pi(E). O
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Now we apply the theorem we have just proven to show that the outer mea-
sures generated by the set of all axe parallel rectangular boxes and the dyadic
cubes are equal.

Let

7: = the family of dyadic cubes, 7(Q) = 2%, where k is the order of Q

d
To = {[a1,b1) X ... X [ag,bq): a; < b; for 1 < j <d}, 7(Q)= H(bj —a).

j=1
First of all, note that 77 C T5 and essentially “for free” we obtain that
n(Q) =2" = 1(Q) > p2(Q).

We are left with proving the reverse inequality, which follows from the next
proposition.

Proposition 1.13. For all € > 0 and for all Q € Ty
(1+6)'n(Q) > 1(Q).

Proof. The idea of the proof is to effectively approximate any box ) by
dyadic cubes, one can see the two dimensional situation in the picture [1.2]
Choose k small enough so that

2
€ J

__________________________

Figure 8: Covering of ) by small dyadic cubes in R?
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Define
N; = {n € Z: [2n,25(n + 1)) [0y, by) £ 0},
so the cardinality #N; is the number of dyadic intervals of order k, which
cut () in the j-th coordinate. Moreover, observe that
QcC U 228+ 1) x ox 204,28 (ng + 1)),
ni1€Ny,..., ng€Ng

SO

d
m(Q) < 2 T #N;.

j=1
Denote by [; and m; the minimal number and the maximal number in V;
respectively. Note that

2514+ 1) > aj,

kaj S bj.
Substracting the second inequality from the first we obtain
2k(mj — lj — 1) > bj —a; = Qk(#N] — 2) < bj — aj.
Recall, we defined € in such a way that
2PN < (b —a;)(1+e€)
Putting the facts together we have
d d
(@ < 2 [T #N; <227 [[ 4 - )1 + 9" = (@1 + )"

j=1 j=1

This finishes the proof of the proposition. ]

Because € in the proposition is arbitrarily small we have the following inequal-
ity 72(Q) > p1(Q), what implies the equality of outer measures generated by
71 and 7, i.e. (g = Us.

Now we shall prove that the Lebesgue outer measure is invariant under di-
lations. Let A € R¥9 be a fixed diagonal matrix with positive entries, in
particular we have det(A) > 0. For a set E C R? define

AE ={Ax: x € E}.
Let 75 and 7 be as before and let
T3 ={AQ: Q € T2}.
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Note that the map @ — AQ is a bijection between T3 and T3, where the
inverse is given by @ ~— A~'Q. This means that any element of 73 can be
uniquely represented as AQ. For any Q) € T3 put

73(AQ) = det(A)72(Q)

and observe that if 75 covers E, then 7] = {AQ: Q € TJ} covers AE and
T2 ="Ts.

Proposition 1.14. For E C R?, 3(AE) = det(A)ua(E).
Proof. For any Q = [a1,b1) X ... X [ag,bq) € To = T3

m(AQ) = [TOubs = Ajay) = det() [T - ) = det(M)m(Q) = (AQ),
50 1a(A) = aa(A) = det(A)pa(-). 0

Observe, we can similarly argue that the Lebesgue measure is invariant under
translation, i.e. that for £ C R™ and y € R" it satisfies the relation

W(E+y) = uE).

Let us proceed with showing that the outer measure generated by balls and
the Lebesgue measure are in fact the same. In the following we denote by 7
the measure generating function defined on all boxes and by u the Lebesgue
outer measure. First of all we shall make sure that p of the unit (and as
a consequence any) ball, denoted by Bj(0), is strictly positive and finite.
Note that [0,1/d)? C B;(0) C [~1,1)¢, so by the monotonicity of the outer
measure
0 < (0, 1/d)" < u(By(0)) < pu(—1, 1)) < o0

\

Figure 9: [0,1/d)? C By(0) C [-1,1)? for d = 2
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Put ¢ := p(B1(0)) and let
Ti=A{B.(z): z € R? r e (0,00)}, m(B.(x)) = cr,

Proposition 1.15. We have p = 4, where p is the Lebesque outer measure
and py 18 the outer measure generated by 7.

Proof. We shall prove that 7 > u4 on 7 and p < 74. Because of the transla-
tion and dilation invariance of the Lebesgue outer measure we obtain

By () = er = 74(B, ().

This gives the “>” inequality. The inequality in the other direction is a bit
more difficult and will follow from the next proposition.

Proposition 1.16. For all ¢ > 0 we have
pa((0,1)%) = (1 +€)7([0,1)7).

Proof. The point is to cover [0,1)¢ by balls efficiently. For a dyadic cube
Q € T of order k define the “frames” (where ¢(Q)) denotes the center of Q)

Rg = Q\ By—1(c(Q))

We will now show that for any dyadic cube @) there exists a disjoint decom-
position such that
_ pl 2
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with pu(Rg) < 0u(Q) and Rp is a disjoint union of dyadic cubes. Let k be
the order of @ and let &’ < k be small enough, we will specify it later. Define

T ={Q C Q: the order of Q' = k'}.

Observe that we can decompose () into disjoint subsets as follows

R2

Q
——~
= |l @= |y eu |y eule.
QIET’,Q/CQ QIGT/,Q/CQ QIET/,Q/CQ 7’//
Q'CRg Q’CRCQ

where

T'={Q eT:Q CQ, Q¢ Ry, Q¢ Ry},

R| CRq

Lemma 1.17. Let Q be the unit cube. For each Q' € T" there exists 1 <
j < d such that there are at most 8d* elements of T" which differ from Q'
only in the j-th coordinate.
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Figure 10: The situation in R? - the two blue cubes are elements of 7" which
differ from each other only in the second coordinate.

Proof. Let 2/ € Q' with Z‘;:l(a:;)Q = 1. Choose 1 < j < d such that
2| > 1/d. Let Q" € T" differ from @’ only in the j-th coordinate. There
also exists 2 € Q)" with Z?Zl(x;’ )2 = 1. Now observe that we have

|2, — 2| < (2d° — 1)2¥ or |2 + 2| < (2d* — 1)2~".

Assume on the contrary that, for example, the left hand side of the alternative
above does not hold. We have the equality

> (@) = (@) = |(2)* = ()7,
i#]
which would give by our assumption

vl

(d—1)2%.2.2% > |Z(x;—x;')(:v;+x;')| = | (2} —2}) (@ )| > (2d*—1)2 5

i#]

This would mean that (d — 1)2¥ - 2.2 > (24% — 1)2* . (1/d), what is a
contradiction.
[

]

With a use of the fact that we have just proven we can decompose 7" into
pairwise disjoint collections 7; of the cubes which differ from each other only
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in the j-th coordinate. Hence
d
7—// — U 7;
j=1

and for each j we can bound the cardinality of 7; by 8d*. This gives at most
8° cubes in 7" and each cube has measure equal to 2%'. Therefore the
cubes in 7" have total measure not greater than 2%'8d°, what is < § if &’ is
small enough. Now we can summarize what have done so far in the proof as
follows.

Lemma 1.18. Let E be a disjoint union of frames. Then we can write it as
a disjoint sum
E=AUBUC,

where p(A) < du(E), B is a disjoint union of balls and C' is a disjoint union
of frame with the property u(C) < (1 — (1/d)Y)u(E).

End of lecture 4. November 3, 2015

We use the lemma to define recursively
E1 - RQ,
E;i1 = Cj, where E; = A; U B;j UCj as in the lemma,

H(A)) < Dp(By), () < (1 (1/ady"Yu(E).

Thus, we rewrite () as

and

M
U B,,(z;) is a disjoint union of balls,

(1—(1/d)H)N < § for N big enough.

=
&
I

<
Il
_
-
—

w(Cn)

IN
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Note that
M

i(Bayr1(e(Q)) + Y il Br () < 1(Q)

i=1

The set F' = Ujvzl A; U Cy has small outer measure, namely p(F) < du(@Q),
what means that there exist cubes @, such that (J;°, Q; cover F' and

o0

> (@) < 35u(Q).

Let 7, = 2% where k; is the order of the cube Q; and #; be the center of Q;.
Then of course the union of By, (#;) covers F' and because of the monotonicity
and the dilation invariance its measure is small (the constant ¢ below stands
for the measure of the unit ball)

o0

pllJ Br(@) <Y w(Br (@) < 3e2%u(Q).

=1

Putting everything together, () is covered by a union of balls
Q - BQk_l(c(Q)) U U Bn(xl) U U Bﬁ(i‘l%
i l

SO

14(Q) < p(Q) + 3c62°1(Q).

This means that for any dyadic cube @ and any € > 0, 4(Q) < (14 €)7(Q)
and finishes the proof of the proposition. O

As a corollary we obtain the invariance of the Lebesgue measure under or-
thogonal transformations (rotations and reflections).
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Corollary 1.19. Let U € R¥4 be a matriz satisfying UUT = Id. Then we
have W(UE) = u(E) for all E C RY.

Proof. We use that one can generate the Lebesgue measure via balls. This
collection of sets as well as the corresponding map 7 is invariant under or-
thogonal transformations, hence Lebesgue outer measure is invariant under
orthogonal transformations. O

Corollary 1.20. Let A be a reqular linear transformation of R®. Then it
holds that p(AE) = | det A|u(E).

Remark. Recall, one can represent a regular linear transformation A as
A = UAN?V, where UUT = Id, VVT = Id and A is a diagonal matrix
with positive diagonal entries. This is a way to see it: notice that AAT
is a symmetric positive-definite matrix, so it can be diagonalized - let A
be its diagonalization, it clearly has positive entries. Hence there exists an
orthogonal matrix U with AAT = UAUT and

A YPUTAATUN Y2 = [d —= A= UANY?V.

=V :;VT

Proof. Following the remark, write A = UA/?V.

M(AE),M(UAI/QVE) orthogonal:invariance M(A1/2VE)
dilation i:nvariance det(Al/Q)M(VE) orthogonal:invariance det(Al/Z),u(E) .

We conclude the proof by observing
| det(A)| = |det(UAY2V)| = |det(U)|det(AY?)| det(V)| = det(A/?),
since the determinant of an orthogonal matrix is equal to +1. O]

Now we define the notion of g-algebra. In a nutshell, g-algebra is a family
subsets that is closed under countable unions and complements, containing
the empty set.

Definition 1.21. A subset A of P(R?) is called a o-algebra if the following
three conditions hold

1. e A,
2. Fe A = FE°cA
3. EiGAfOTiGN — U;’ilEZGA
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We have already seen the collection of measurable sets M(R?) is a sigma
algebra. We also saw in the first lecture that M(R9) is strictly contained in
the power set P(R?). The Borel o-algebra B(R?) is the smallest o-algebra
containing all the open sets in R?. We are going to see that also B(R?) is
strictly contained M (R?).

Theorem 1.22. B(R?) C M(R?).
Before we proceed with the proof we state and prove severals helpful facts.

Lemma 1.23. Let f: R — R? be a continuous function. Let

A={EcCRY E=fY(V) for someV € B(R%)},
where f~Y(U) is the preimage of V. Then A C B(R?).
Remark. Note that A is a o-algebra.

Proof. Let B’ be the collection of all V € B(R?Y) with f~1(V) € B(R?).
B’ contains all open subsets, because if V is open, then also f~(V) (by
continuity). B’ is a sigma-algebra as well, let us validate the three conditions:

L f710)=0¢€ B[R, s00eB.

2.V e B = [fHV)e BRY) = [fLV) = (f(V))e ¢
BRY) = Veep.

3. Similarly as 2.

That means, B is a o-algebra which contains all open sets, so by the definition
of the Borel g-algebra B(R?) C B’ and consequently A C B(R?). O

Now let us define the Cantor ternary set:

C:{x:Z%:aiE{Oﬂ} foralli}.

=1

Note that clearly C' C [0,1] with 0,1 € C.
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ap =1

a #1, aa=1

a #1, aa#1, a3 =1

Figure 11: Construction of the Cantor set: at each step we remove the blue
open intervals - the middle “one third” from each of the intervals that were
not removed before. Here we present only three steps, the full construction
is repeating continuing the procedure infinitely many times.

Let us calculate the outer measure of the Cantor set. Notice that at each the
1-th step of the construction, which we presented in the picture, we remove
an interval of measure 2/3°. This gives for every N > 0

Al
p(C) <1-— Z 30
i=1
Since this holds for all N > 0, we conclude
52
=1 SZ

so the measure the Cantor set is a nonempty set whose outer measure is
equal zero. Moreover the cardinality of C is equality to the cardinality of
the set of real numbers. This is because C' has at eleast as many elements
as the set of infinite sequences taking values in {0, 2} and taking both values
infinitely often.

Remark. Take £ C R? with u(E) = 0. Then for any F' C R?
p(F) Z p(F N E) +p(F N E").
——
<u(E)=0
This means that F is Lebesgue measurable.

Hence, the Cantor set is also Lebesgue measurable.
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Example (Devil’s staircase). Note that any number = € [0, 1] we can write
as

r=3" g— with a; € {0,1,2}.
=1
Define f: [0,1] — [0, 1]
Fa) = {Zjil Lo if all o, € {0,2},

N-11gq o :
Sy 3%+ o5 if ming i =N

i=1 272i
1 A
3/4 -
f “devil’s staircase*
1/2
1/4 _—
0 1
the intervals excluded from the Cantor set

Figure 12: The first three steps of the construction of the devil’s staircase.

f is well defined: let
o0 a; [e%¢) bl
o i=1 3 i=1 3

be two different expansions of x. Then, without loss of generality, there exists
a natural number N such that for all i < N, a; = b;, and ay = 0, by = 0, and
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for i > N a; = 2, b; = 0. Notice that our definition of f gives the same value
for both expansions. Similarly we obtain that f is monotone. We may then
also conclude that f is continuous: we know from methods from Analysis I
that if a monotone function ¢ defined on [0, 1] has the property that g([0, 1])
contains all dyadic numbers in [0, 1], then it is continuous (exercise). One
can easily check that the range of our function f certainly contains all dyadic
numbers between 0 and 1.

Remark. Let E be a countable subset of R%. Then u(E) = 0. That is
because E = {x;}ien and we have the following covering

where § > 0 is arbitrary. Thus, by monotonicity and subadditivity we can
bound the outer measure of E' by the sum of measures of the small intervals

WE) < gﬂ (((m - §x+2§)) = 2.

We can take § as small as we wish, so p(E) = 0.

End of lecture 5. November 5, 2015

Recall that we want to show Theorem which states that the inclusion
B C M is strict. That is, that there exists Lebesgue measurable sets which
are not Borel sets.

For this we need some more preparatory statements.

Definition 1.24. Let X be a space with a o-algebra A. Let Y be a metric
space. A function f : X — Y is called A-measurable if for every open ball
BcCY, f74(B) e A

Thus a function is measurable if the preimage of any open ball is measurable.
Lemma 1.25. If Y = R, then the following are equivalent]
1. For every x € YU —Y we have f~'((z,00)) € A.

2. For every x € YU —Y we have f~([z,00)) € A.

Y denotes the dyadic numbers
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3. f is A-measurable

Proof. 3. = 1. The open set (x,00) is a union of open balls (x, c0) = U; B;(x;)
with z; € Y. Then

£ (00) = £

Since B; are measurable, so are f~1(B;) and hence the countable union.

1. = 2. We write
[,00) = (] (y.00)

yeY,y<z
so that

oo = () £ 00,

yeY,y<z

and argue argue analogously as in 1.
2. = 3. For any interval (a,b) write

(a,0)= | [z,00)\ [ [y, 0)

zeY,z>a yeY,y<b
]

Theorem 1.26. If f is A-measurable, then the preimage of every Borel set
is A-measurable.

The proof is analogous to the proof of Lemma from the previous lecture.

Now we are ready to prove existence of Lebesgue measurable sets which are
not Borel sets.

Proof of Theorem[1.23. Denote by f be the devil’s staircase function. Define
its "inverse function”

9(x) ;inf .
This is not really the inverse function since for a given x there is no unique
y which would be mapped to x with f. But we may define the value of g at
x to be the infimum over all such y. Since f is continuous, the infimum g(x)
also satisfies

flg(x)) ==

for all x € [0,1]. This implies that g is injective. Since g is monotone, g is
Borel measurable (exercise). Observe that ¢([0, 1]) C C' where C' denotes the
Cantor set.
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Let now A C [0, 1] be a set which is not Lebesgue measurable. In particular,
A is not a Borel set. By injectivity of g we have

A= g7 (g(A))

(Recall that in general A C g~'(g(A)), but for injective function there is
an equality.) We have g(A) C C and hence g(A) is Lebesgue measurable.
However, g(A) is not Borel. If it were, g7!(g(A)) would have to be Borel by
the previous theorem, which is a contradiction. O

The next theorem states that any Lebesgue measurable set can be approxi-
mated, up to a set of measure zero, from the outside with open and from the
inside with closed sets, respectively.

Theorem 1.27. If E C R? is Lebesgue measurable, then

1. there exist open sets F;, 1 =1...,00, such that

F;5E and pu([F\E)=0.

=1

2. there exist closed sets G, 1 = 1,...,00, such that

G; C E and /L(E\UGZ) = 0.

i=1
Proof. Note that 2. follows from 1. by taking complements since closed sets
are complements of open sets. So we only need to show 1.

Case 1. E is bounded, i.e £ C By(0) for some N > 0.
Then pu(E) < oco. For n > 1 we find an open covering

=1

with x; € E,n; > 0, such that

Define



which is a open set. We have F, 1 C F),. Since E C N2, F,, and p(F,\ F) <
27" it follows

p((F.\E) =0.

Case 2. F is unbounded.
We intersect E with a sequence of annuli and for m = 1,..., 0o, inductively
define

E, := EN By(0)
By i= EN Byp(0) \ Byi(0)

Each E,, is bounded. So we can apply the theorem to each of these bounded
sets and take the union over m. Since each bounded piece can be approxi-
mated up to an error of measure zero, the error of the union amounts to a
countable union of measure zero sets, which has measure zero. The details
are left as an exercise. O

1.3 Littlewood’s three principles

Littlewood gives an intuitive guide for understanding measurable sets and
functions.

1. Every measurable set in R is nearly a disjoint union of dyadic cubes.
2. Every measurable function is nearly continuous.

3. Every convergent sequence of measurable functions is nearly uniformly
convergent.

Now we will explain how to understand the word "nearly” in each of the
statements and make them precise.

Principle 1.

Theorem 1.28. Let E C R? be Lebesque measurable and p(E) < oco. For

every € > 0 there exists F which is a finite disjoint union of dyadic cubes
such that W(EAF) < e.

Recall that for two sets E and F, the symmetric difference FAF is defined
as EAF = (E\F)U(F\E)=(ENF°)U(FnNE"°).
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Proof. Let T' be a collection of dyadic cubes with
€
EclJ@ uB)+5=) nQ.
QeT’ QeT’

Note that without loss of generality we may assume that 7’ consists of pair-
wise disjoint cubes. Choose a finite subcollection 7" C T’ such that

SouQ-5< Y Q).

QeT’ QeT"

F::UQ.

QeT"

Set

Then we have

WEAF) < p(E\ F) + u(F \ E)

<u( U @ +u((J)\E)
TAT? T
<ELf_,
-2 2
where we used that u((U, @)\ E) = p(Ur Q) —p(E) since E is measurable.

O
Principle 3.

Theorem 1.29 (Egorov). Let E C R? be Lebesque measurable and u(E) <
oco. Let f, fr : E — R be measurable and for each x € E, limy_, fr(z) =
f(z). Then for every e > 0 there is a closed set F' C E with (E\ F) <
such that fy|p converges to f|p uniformly.

m

Proof. For k,n € N define
Ep ={x e E:|fj(x)— f(z)| <27 " forall j >k}

Exercise: show that Ej are Lebesgue measurable. We have E}} C £}, and

G E'=E.
k=1

(The inclusion ” C 7 is obvious, while ” O ” holds due to pointwise conver-
gence.) We claim that

lim pu(Ey) = p(E).

k—o0
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To see this we split £} into disjoint annuli, i.e.
k
Ef =Eru|JE}\ B},
j=2

By additivity of u we have

n(ER) = n(BY) + Y p( B} \ Efy)

=2

Taking the limit on both sides we establish the claim. Now we choose k,
large enough such that
wEN\E) <27

We also choose N large enough such that

w(E\ ﬂ Ep ) < 22‘” <e/2.
n=N n=N
F

On F, f, converges to f uniformly. Indeed, for every § > 0 we find n > N
such that 2™ < §. Then for each z € F C Ep and for all & > k,, we
have |fx(z) — f(x)| < §. By Theorem we find a closed set F C F with
uw(E\ F) < e/2. Then the convergence of fy|p — f|p is uniform on F. [

Before proceeding with principle 2. we state a result on pointwise approxima-
tion of measurable functions with finite linear combination of characteristic
functions.

Theorem 1.30. Let E C R? be measurable with u(E) < oco. Let f: E — R
be measurable. Then there exists a sequence of functions f, : R — R
which are finite linear combinations of characteristic functions of dyadic
cubes and a set E' C E with u(E \ E') = 0 such that for all x € E' we

have limy_, fr(z) = f(x).

One also says that f; converges to f almost everywhere on E, abbreviated
a.e. on E. In general we say that some property holds almost everywhere if
the set of elements on which the property does not hold has measure zero.

The proof of this theorem is left as an exercise. One first considers functions

f = 1r which are characteristic function of measurable sets in R™ and one
approximates I’ with dyadic cubes. For a general f one has to pass to finite
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linear combinations of characteristic function of measurable sets and finally
to finite linear combinations of characteristic functions of dyadic cubes.

Now we have everything prepared to state a precise formulation of the second
principle.

Principle 2.

Theorem 1.31 (Lusin). Let E be Lebesgue measurable with p(E) < oco. Let
[+ E — R be measurable and bounded. Let € > 0. Then there exists a closed
set F' C E with p(E\ F) < € such that f|r is continuous.

Proof. By the previous theorem we find a sequence f; of finite linear combi-
nations of characteristic function of dyadic cubes such that

lim fy(z) = f(z) ae onFE

k—o0
Note that each f; is continuous a.e., since each characteristic function has
only two points of discontinuity. Since countable unions of sets with measure
zero have measure zero, almost everywhere are all f;, continuous and converge
to f. By Egorov’s theorem, there is a closed set F' C E with u(E\ F) < ¢
such that fi, — f uniformly on F. Therefore, f|r is continuous. m

End of lecture 6. November 11, 2015

2 Integration theory

This lecture we pass from the measure therory to integration theory.
Reminder: In Analysis I we have defined the integral for montone increasing
or decreasing functions. Let X := [0, 00) and denote the dyadic numbers of
order —k by Y,. Let f: X — X be a montone decreasing function. For
a,b € Yy, we defined

/ faydr=swp Y 2w =i Y 27 ()

k>k
k>ko yeEYy 0 yEYy
a<y<b a<y<b
=:Li(f) - lower Riemann sum =:Ug(f) - upper Riemann sum

We used that Ug(f) < Li(f) + 27% f(a) and monotonicity of the lower and
the upper sums in k£ , which together gives equality of the supremum of
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lower Riemann sums with infimum of the upper Riemann sumds, the value
of which we call the Newton integral. The same argument applies if b = oo,
the value of the newton integral may be finit or infinte in this case. Now, let

f: X — XU{oc}. We the define

| e s 3 2

F>0 v\ (o}

This has a chance to be finite if f takes the value co at most at the point
0. If f takes the value oo at 0, the upper Riemann sums will all be infinte,
which is why we base the theory on the lower Riemann sums in this case.

Our aim will be to reduce the integral on a general outer measure space
to the integral of monotone decreasing functions X — X U {oo}. The idea
is to consider dyadsic intervals mnot one the domain of the function to be
integrated, which will be an arbitrary outer measure space, but on the range
of functions, whjich will still be (contained in ) X, see the nearby figures.

Figure 13: The idea of integration by decomposing the domain into dyadic
intervals (works e.g. if the domain X is X)
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Figure 14: The idea of integration by decompositng the range into dyadic
intervals

Definition 2.1. Let X be a set with an outer measure . Let f: X — X
We define

/X flp = /OOo p({z: fz) > A})dA.

Remark. Note that the function g(\) = pu({z: f(z) > A}) is monotone
decreasing, so the Newton integral on right hand side is well defined! Indeed,
if A< )\2, then

{z: f(z) > M} D{z: f(x) > Ao},
so by the monotonicity

p{z: f(x) > M}) = p{a: f(z) > Aa}).

Remark. We also have

/de“ - /000 p({a: f(z) > A})dA,

because the functions g1 (A) = p({z: f(z) > A}), 2(A) = p({z: f(z) > A})
have the same right-sided limits, so the respective Newton integrals are equal.

Definition 2.2.
p(f > A) = p({z: f(z) > A}).

Remark. If f = g almost everywhere in X, then

/deu=/xgdu-
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Let £ ={z: f(z) # g(x)}. We have that u(F) =0 and

u(f > A) < plg > A) + p(E) = pulg > A).

Exactly the same argument gives pu(g > A) < u(f > N), so u(f > N) = p(g >
A).

Remark. Note that if f < g, then for each A,

p(f >A) <ulg>A),

l[;fdufi‘[;gdu-

We will prove two important theorems that let one to pull out a pointwise
limit of functions outside of the integral.

SO

Theorem 2.3 (Monotone convergence). Let u be an outer measure on a
space X with the family of Caratheodory measurable sets M(X). Let f,: X —
X be a monotone increasing sequence of M(X )-measurable functions, i.e. for
allz € X andn €N, f,(z) < for1(z). Then

sup /X fadp = /X (Sglpfn)du.

Remark. Both supremums above are actually limits.

Proof. Let E, :={z: f,(x) > A}. First of all, we notice that
{z: sup fu(x) > A} = UE”

We show “D” and “C”. If there exists k such that fi(z) > A, then the
supremum at point x is clearly bigger than A. This shows “2”. On the other
hand, if sup,, fo(z) > A, then there exists k such that fx(z) > A, we have
“C” .

The sequence of functions is increasing, so F,, C F,.;. Hence, we can write
E,, as the following disjoint sum

E,=FEU UEk;\Ek—la

k=2

where all the sets are measurable. Using this we can express the sum of E,,’s
a disjoint sum of measurable sets

UE.=Eul] B\ Bia,
n k=2
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what gives
p((JEn) = n(B) + ) (B \ Ee).
n k=2
The considerations above show that

u(sup fo > A) = ) Bn) = sup u(Ep).

Using this we can rewrite [ (sup,, fn)dp as

sup sup Zp(sup fo>N27% =sup sup Zsup w(fn > N)27F

k=0 AAfiCnEQZ A€A " k=0 AAfiCnEQZ rea "
Now we can simply pull the innermost supremum, which is a supremum of
a monotone sequence and thus a limit, first out of the finite sum over A and

then outside of the two remaining supremums, to obtain

supsup sup Z,u(fn > \)27F = sup/ fndp.
n Jx

n k>0 ACYg
A finite AeA

O
Theorem 2.4 (Fatou). Let p be an outer measure on a space X with the

family of Caratheodory measurable sets M(X). Let f,: X — X be a sequence
of M(X)-measurable functions. Then the following inequality holds

/ liminf f,dy < liminf/ fndpt.
x " n X

Proof. Rewrite the right hand side of the inequality similarly as we did in
the proof of the monotone convergence

sup inf sup sup Z,u(fn > \)27",
ng M>T0 k>0 ACY,\{0} \eA
A finite
Notice that if we move the infimum above inside the inner sum we obtain a
quantity that is smaller or equal.

> supsup  sup Z,u( inf f, > \)27".
no k>0 A?ék\{O} ea T
nite

Moreover, we can move the most outer supremum inside the sum exactly the
same way as we did in the previous proof (or one can say that we are simply
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applying the monotone convergence here) and obtain that the display above
1s

> sup  sup Z,u(sup inf f, > \)27* —/ liminf f,,dpu.
k>0 A?ék\{()} Yea Mo mo x
nite

Remark. Note that for a measurable set £ we have

/ 1Ed/JJ _ / ,U/(lE S )\)d,u ﬂ(1E>)\);0 for A>1 / ,U,(lE > )\)d,u
X 0 0
1
(1g>N)=p(F) for A<1
e | ue) = ne)
0

Theorem 2.5. Let \j € X and E; for 1 < j < N be measurable and pairwise
disjoint sets with ,u(E ) < o00. Then

N N
/ > Ailgdu = Au(E))
X j=0 j=1

Remark. A function Z;V:o Ajlg, with pairwise disjoint measurable sets £
we call simple.

Proof. Without loss of generality let A\; < A;1; and A9 = 0 (if not \; = 0,
then we can simply add the empty set to the collection with coefficient 0).
We compute, starting from the left hand side

N 00 N
/ Z )\JlE]d,u Deﬁgtlon/ M(Z )\lej > )\)d)\
X j=1 0 =0
measurablhty of B / Z d \ = Z / d A\

3: A >A Ak1]j>k

N
_ Z<>\k_/\k_1) Z ,u(E reordermg of the sum Z Z >\k: /\k 1 Z /\]/L
k=1

ji>k 7j=0 j>k

]

End of lecture 7. November 12, 2015
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In the previous lecture we showed linearity of the integral for characteris-
tic functions of pairwise disjoint measurable sets (Theorem Note that
measurability of the sets is crucial for that.). Using this we can now show ad-
ditivity of the integral for simple functions, i.e. for finite linear combinations
of characteristic functions of pairwise disjoint measurable sets.

Lemma 2.6. Let f, g be simple functions. Then

/Xf+gdu=/deu+/X9du-

Proof. Let f = ZZL Ailg, and g = Zj\il vjlg,. We may assume that
UE; = UE}, as otherwise we add 0-1yg,\ug, to the sum for g and 0-1yg,\uE,
to the sum for f. Then

N M
FH9=)) N+ v)lmns)
i=1 j=1

which is a simple function. We have
/Xf +gdp Z Xj:(Ai +v)u(E; 0 Ej)
=Y > AuENE)+) > vp(ENE))
i i
EY B+ 3 (B
i J

Z/dewr/xgdu

where we used (x): linearity for characteristic functions of meas. sets, (xx):
measurability of E; N E;. m

By approximating measurable functions from below by simple functions, we
can now show additivity of the integral for measurable functions.

Theorem 2.7. Let f,g: X — X be measurable. Then

/Xf+gdu=/deu+/ngu

92k

Tk = Z 27" N1 (o kne fay<a-F(ni1))

n=0

Proof. Define
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(see Figure [L5). Then for each z, fy(z) < f(z) < fi(z) +27%, so we have
sup fr = f. Observe that the sequence f; is monotonously increasing and
that f are measurable (since f is measurable). We have

/f+gdu=/SUPfk+supgkdu
X X k k
— [ suptfe+ 90
X k
)
—SUP(/ fk+gkdﬂ>
k X
)
—SUP(/ fkdﬂ‘i‘/ gkdﬂ>
k X X
= sup / fkdu+81;p / grdp

@/ fdu+/ gdp
X X

We used (2): additivity for simple functions. (1), (3): monotone convergence.

Figure 15: Function 2716711{ngfkn<f(x)§27k(n+1)}.

To establish linearity of the integral it remains to show homogeneity.

Theorem 2.8. Let c € X, f: X — X measurable. Then

c/de,u:/chdu

Proof (sketch). 1. ¢=2F k > 0: Induct on k. (Write 2f = f + f etc.)
2. ¢ =27% k> 0: Write f = 2¥27%f and use homogeneity for 2*.

3. c=2n, k € Z,n € N: Induct on n.
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4. ¢ € X: Approximate ¢ with an increasing sequence of numbers of the
form 2¥n and use monotone convergence theorem.

m
The third convergence theorem (the first two being monotone convergence
theorem and Fatou’s lemma) is the following.

Theorem 2.9 (Dominated converge theorem). Let f, : X — X be measur-
able. Assume that for each x € X lim, o fn(x) = f(x) exists. Assume that
fn < h for some measurable function h with fX h < oco. Then

lim fnd,u / lim fnd,u:/ fdu
XTLA)OO X

n—0o0

Proof. Define g, via f, + g, = h. Then g, is measurable (exercise), g(z) =
lim,, o0 gn () exists and f + g = h. We have

/ hdu —/ liminf(fn + gn)dp
X

W / llmlnffnd,u—F/ liminf g, du
X n—oo

n—0o0

(2
Sliminf/fndu—i-liminf/gnd,u
n—oo

n—oo

gliminf /fndu+/gndu>
n—oo

_hmmf/ fo+ogndu

n—oo

zliminf/ hd,u:/ hd

(1): Linearity for measurable functions liminf f, and liminf g, (Exercise:
they are indeed measurable.) (2): Fatou. (3): Additivity of the integral.

The above sequence of inequalities shows that all inequalities must be equal-

ities. In particular, equality in (2) implies that
lim 1nf/ fudu = / fdu (6)
n—oo

liminf/ gndu:/ gdp (7)
X X

n—oo

Since liminf( [ g,) = h + liminf(— [ f,) = h — limsup( [ f,), we have

1iminf/ gnd,u+hmsup/ fndu:/ hdu:/gdu+/ fdpu.
n—oo n—oo X X X



The equality (7)) then implies that

lim sup/ fndp = / fdu.
n— 00 X X
Together with ([6) this implies that lim,,_ [, fudp exists and

lim fndu:/ fdp.
O

The following examples show that the inequality in Fatou’s lemma can in
general not be turned into an equality. (See also Figure )

Example. (Escape to vertical infinity.) Let f = 2¥1(o-s. Then [ frdp =
1 and hence

hm 1nf/ frdp = 1.

But liminf, ,, fr = 0 and so

/ liminf f; = 0.
X k—o0

Example. (Escape to horizontal infinity.) Let f, = 2*’“1(07216}. Then [ frdp =
1, but liminfy_ fr(z) < liminf,_o 275 = 0.

ok T—

o=k ok
Figure 16: Escape to vertical and horizontal infinity.

Our next goal is to show that if f : [a,b] — X is monotone, its Lebesgue and
Newton integral coincide.
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Theorem 2.10. Let [ : [a,b] — X be monotone increasing. Then

/ e = | s

The integral on the left hand-side should be understood in the Newton sense,
while the integral on the right hand-side in the Lebesgue sense.

Proof. The idea is to prove the theorem for simple functions and use mono-
tone convergence theorem to extend it to general monotone functions. Sup-
pose f is a positive monotone simple function of the form

Z Alej
j=1

with \; < Aj11, UE; = [a,b]. Since f is monotone, E; lies left of Ej ;. The
intervals E; are of the form (a;, b;) or (a;, b;] if f is left continuous and [a;, b;)
or [aj,b;] if f is right continuous. Depending on that we also define E; as
(aj,b] or [a;, b], respectively.

We have

7=1 b—a;
n by ~
=3[ uEix
j=1 X1

To prove the theorem for general monotone functions, approximate them
with an increasing sequence of monotone simple function and use monotone
convergence theorem. The details are left as an exercise. O]

Now we extend the notion of integrability to functions mapping into R.
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Definition 2.11. Let (X, ) be an outer measure space. A function f : X —
R is called integrable, if we can write it as

f=h-1r
with
f1: X = X measurable, / fidp < oo
X

fo: X — X measurable, / fadp < 00
b's

Definition 2.12. The integral of an integrable function f : X — R is defined

as
[&w=éﬁw—éﬁw

Since f, f1, fo are measurable, the integral is well defined, i.e. it is indepen-
dent of the choice of fi, fo. Indeed, assume we have two representations

fi—fo=hHh-F
Then
f1+f2:f1+f2

Since the functions are measurable, by additivity of the integral

[r+ [R=[q+ [+
[h-[n=[0- [k

Remark. The function 1/t is integrable as a function X — X with an infinite
integral
>1
/ —dt = o0
o t

However, it is not integrable as a function X — R (since this would contradict
the above integral being infinite).

and hence

o1



Further remarks.

Let X be a set and A C P(X) a o—algebra. Let u be a o-additive measure
on A. It is a natural question whether A consists of Caratheodory measur-
able sets with respect to some outer measure.

More precisely, set T = A and 7(F) = u(E). Denote by p* the outer mea-
sure generated by 7,7 and denote by M(X) the set of all Caratheodory
measurable sets with respect to u*.

Question 1: For E € T, do we have u*(E) = 7(E) (= p(E))?
Answer: Yes. suppose that &/ C UE;. Since p is a o-additive measure,

7(E) = ulB) £ Y u(E)).

Question 2: Is A = M, i.e. are all sets in A Caratheodory measurable with
respect to pu*?

Answer: No. The inclusion A C M holds, i.e. if £ € A, then it is
Caratheodory measurable. To see that we need to check that for each
F e T (= A) we have

pr(F) = p*(F O E) + p(F N E").
But from the answer on the first question it follows
pr(F) = p(F) = p(FNE) + p(FNE)

where the last equality holds since p is o-additive. However, we do not have
M C A. This can be seen by taking A = B the Borel o-algebra and p the
Lebesgue measure restricted to B. One can check that the generated outer
measure p* is the Lebesgue outer measure and M are the Lebesgue measur-
able sets. But we already know that B C M.

The inclusion A C M is strict in general. M is the largest o-algebra on
which one can define a measure extending the measure p on A. M is called
the completion of A. Note that our theory is built in such a way that we
always work with the complete o-algebra.

End of lecture 8. November 17, 2015
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2.1 Product measures

We consider products of two measure spaces, for example one can think of
R? = R x R. The theory we discuss in this section can be then be extended
to any finite product of measure spaces by induction. In certain situations,
for example in probability theory, one deals with infinite products of measure
spaces, we will also discuss such spaces in the future.

Let (X1, p1), (X2, p2) be outer measure spaces. Assume that the outer mea-
sure p; is generated by the collection 7; of Caratheodory measurable sets
with map p;(F) = 7(F) for E; € T;. Let X = X; x X3 be the Cartesian
product of the respective sets. Consider the outer measure y on X generated
by the family of subsets

T ={F; x Ey: E; C X;, E; C Xy Caratheodory measurable subsets}

and the function
T(Ey x Ey) = puy (E1) po(Es).

Theorem 2.13. Consider the setup as above and assume p(X7), pe(Xz) <
0. If E C X is measurable, then for almost all x5 € X5 the set

Ei(xg) :={x1 € X1: (x1,22) € E}

is measurable and pi(E1(z2)) is a measurable function of xo. Moreover, we
have

W(E) = /X i1 (B2 ())dpa.

The same statement holds with 1 = 1,2 interchanged.

N 3</
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Proof. Our goal is to show that for any €, > 0, the ps-measure of the set
Se:={mzy: AF,G1 C X7 measurable such that
Ei(x2) C Fy, Xi\ Ei(22) C Gy, pun(F1) + pa(Gr) < pa(Xa) + €}

is smaller than 7. Let us see how this implies the first statement of our
theorem.

First, note that if the above holds for any n > 0, then we have ps(S.) = 0
for any e > 0. Hence ps(|U;—; So-+) = 0. It suffices to show measurability
of Ey(z2) for all x5 € X5\ Up; So-+. In this situation for all natural & > 0

there exist measurable subsets Fl(k), ng) of X such that
Br(r2) € FY, X0\ By(wo) € 61, imn(FY) + (@) < () + 27

Next, note that the sets
Fr=F", G, =G
k k

are both measurable and F; C Fy, X \ E; C G; and
p(F1) + pa(Gr) < pa(Xy).
(B (22)) + (B (22)) = pn (X1).
We then have for all Caratheodory measurable sets Y; C X,
(B (22) N Y1) + pn(Ei(22) N Y1) = pa (Y1)

Sinxce the Caratheodory measurable sets generate p1, we see that Fy(xs) is
measurable.

We saw how the first statement of the theorem follows if we show our goal.
Now let us see how to achieve the goal.

Let £ C X be measurable. Choose coverings of E and X \ £

EcC DfoF;,

n=1

X\Ec|Jarxay,
n=1

with F'’s measurable and such that

ne + u(E) > ZMI(FITL)MQ(FQHL
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ne+ pu(X \ E) >ZM1 1)h2(G3).

For z5 € X, define

and similarly

Figure 17: Defining set F(x3): the yellow squares represent the elements of
the covering of E that intersect Ej(z3). F(x2) is the intersection of these
squares with the line y = z».

Integrating 1 (F(x2)) we obtain

/Nl (w2))dpy < / Z p (Fy')dpg = /Zﬂl V) Epdps
X

2 n: xa€FY

additivit, + mon. conv.
Y > m(Fpua(F3) < p(E) + en,

n

Analogously we get the inequality
[ (Gl < X\ E) + e
Xo

Note the following simple identity for measurable sets

H(A) + p(B) = p(AN B) + u(AU B).
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In the following we will use it several times. Notice that adding up the last
two inequalities and using the last identity we obtain

| i+ [ n(Plen) 0 Glaa))dua < ) + 261
X2 X2
This, however, implies that
({2 pa(F(22) N G(x2)) > €}) < 2.
The last thing we need to notice is that if for some x5 it holds that
i (F(z2) N G(x2)) > €,
then, again, by the identity above
i (F(a2)) + 1 (Gla)) < pu(X) +e.

This proves the inequality we stated at the very beginning of this proof.
We still need to argue that u(E) can be recovered integrating pu;(E1(x2)).
Since Ei(z2) C Fi(x2) and X; \ Ey(x2) C Gi(x2), by the previous step of the
proof we also have

/X r (B (aa))dpn < p(X\ E) + en.

[ om0\ Biwa))die < X\ E) + e

Xo

Given four numbers a,b, A, B, such that a < Aand b < B
a+b=A+B = a=A, b=B.

Letting €, 7 — 0, this is exactly the case here, hence in particular
u(B) = [ Er(e))dia
X2

Taking better and better coverings (™ of E we obtain a decreasing sequence
of nonnegative functions j;(F™(-)) convergent to ui(E(z3)), so the mea-
surability follows. O

The above theorem holds also if both spaces X; and Xy are o-finite.

Definition 2.14. A measurable space X is called o-finite if there exists a
countable family of subsets {F},: n = 1,2,...}, such that for all n, u(F,) < oo
and X =, F.
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Note that in the above definition we can assume that F,, C F, ;. In this
case, the previous theorem holds for X N F},, for any n. A suitable (exercise)
limiting argument n — oo shows the theorem for for the whole space X.

Proposition 2.15. If an outer measure p; on X; is generated via sets E; € T;
and a nonnegative function ; for i = 1,2, then the function

T(E1 X Ey) = 1 (Ey)12(Es),

defined for F1 X Fs € T = Ty x Ta, generates a product measure on X =
X1 X Xy and for E; € T; we have

p(Er X Ep) = pin(Eq)pa(E2).

Now we will prove the theorems of Tonelli and Fubini, which let us to write
an integral over a product measure space as an iterated integral over the
respective spaces as well as change the order of integration under certain
assumptions.

Theorem 2.16 (Tonelli). Let (X1, 1), (X, u2) be o-finite outer measure
spaces. Let f: X1 x X9 — X be a measurable function. Then the function
fun: X1 — X, defined as fr,(x1) = f(x1,22) is measurable. Moreover, the
function
f:(:zd,ul : X2 —- X
Xy
18 measurable and the following equality holds

/| { / fmdm} dns = [ o

Proof. 1If f = 1g is the characteristic function of a measurable set, the state-
ment follows from the previous theorem. Otherwise we can approximate f by
a monotone sequence of simple functions, for which the statement is true by
linearity of the integral, and use the monotone convergence theorem, which
gives the measurability statements and the equality of the integrals. O

Remark. One has to be a bit careful concerning the notion of measurability
in product spaces. Take a subset £ of R that is not measurable. Note that
the set {0} x F has measure zero in R?, so it is measurable!

Recall the definition of integrable functions: a function f: X — R integrable
if there exists a decomposition f = f; — fo, with f1, fo: X — X measurable
and [ f1 < oo, [ fo < co. Then we also have that

[i=[n-[n



Theorem 2.17 (Fubini). Let Xy, X5 be as in the statement of Tonelli’s theo-
rem. Let f: X — R be an integrable function. Then the function f,,: X — R
15 integrable for almost all xo € X5 as well as the function

fmdul : XQ — R
X3
1s integrable. Moreover, the following equality holds

/X 2 [ /X | f@dul} s = /X F.

Example. Let f: R? — R be defined as follows.

22(k=1) if o € (27,2751 x (27F 27%+1] for k € N,
f(z) = —22k=DFLif g e (27F=1 27K x (27F 27F+1] for k € N,
0 otherwise

0 =7 1

0 -8 4 0
16 0

0

Figure 18: First steps of the construction of function f.

Notice that all f,, and all f,, are integrable, and [ X, faydiy is integrable in
z9 and [ Xa fz,dps is integrable in xy, but f is not integrable!
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End of lecture 9. November 19, 2015

2.2 Outer Radon measures

Recall the construction of the Lebesgue measure on R%. We define 7 to be
the set of all dyadic cubes in R?, which are of the form Q = H?zl [a;, b;) where
a; = 28n,b; = 2%(n + 1) and n,k € Z. Their side-length is |a; — b;| = 2.
We define 7 : T — [0, 00) by setting 7(Q) = 2%, which is the product of the
side-lengths of ). Then we generate the outer measure yu of any set £ C R?
by covering it with dyadic cubes. We have shown with some work that the
generated outer measure satisfies (@) = 7(Q), which got us started for the
development of the theory.

In this chapter we generalize this construction by considering different maps
7 than above. Since we want that the generated u satisfies u(Q) = 7(Q) for
all @ € T, we need to impose certain conditions on 7.

Definition 2.18. Let T be the set of all dyadic cubes in R? and 7 : T —
[0,00) a map satisfying

(1) (Martingale condition) For every @ € T

Q'CQ
k' +1=k

(2) (Regularity condition) For every ) € T and every € > 0 there exists

ko such that
> 7(@) <eT(Q).

Q'CQ
k' +ko=Fk
QZQ

The outer measure generated by 7,7 is called an outer Radon measure.

Note that 7(Q) = 2% which generates the Lebesgue outer measure satisfies
both conditions. The first one is immediate, while the second one can be
obtained by counting the cubes )" at the boundary of Q.

Recall that these properties were crucial to show that u(Q) = 7(Q) for the
Lebesgue measure. Indeed, suppose that () is covered by dyadic cubes in
some collection 7. For finite 7”7, induction and the martingale condition are
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used to show that the best covering of Q is itselff| If 77 is countably infinite,
then we argue by compactness to reduce to the finite case. For that we need
to make sure that we can approximate () from inside by a compact sets and
from the outside by open sets. This used to the condition (2).

Theorem 2.19. If T,7 generate an outer Radon measure u on RY, then

w(Q) =7(Q) for allQ € T

Proof. The proof proceeds as in the Lebesgue case, using (1) and (2) at
appropriate places. Here we only briefly sketch the argument. We need to
show that if Q C (J, @', then

Q) <) 7(Q)
~

If 77 is finite, this can be shown using the martingale property (1) and induc-
tion of the scale of cubes. If 77 is is countably infinite, we use a compactness
and e-argument together with the regularity condition (2). O]

Restricting the outer measure to Caratheodory measurable sets gives rise to
a Radon measure . The dyadic cubes are py-measurable. This can be seen
using 7(Q) = (@) and the martingale condition (1).

Example. Now we discuss some examples of Radon measures.
1. Lebesgue measure
2. Dirac measure. For (Q € T we set

1:(0,...,0) €@
T(Q):{ 0:(0,...,0) € Q

Martingale condition (1): If 7(Q) = 0, then (0,...,0) ¢ @ and hence
(0,...,0) € Q' for every Q' C Q. Then 7(Q’") = 0 for every )’ C @ and
both sides of the equality in (1) are 0. If 7(Q) = 1, then (0,...,0) € Q.
There is exactly one cube Q' C @, k' +1 = k which contains (0, ..., 0).
Both sides of the equality in (1) are 1.

Regularity condition (2): We have (exercise)

N U o=

koeN Q:Q'cQ
k'+ko=k

6For this we need only ” <7 of the martingale condition.
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So there exists ko such that (0,...,0) & Uy .gcq - This implies

k' +ko=k
Y Q) =0<e7(Q).
Q:Q'cQ
k' +ko=k

. Let (™ be a sequence in R? and let )\, be a sequence in [0, 00) with
YA <o00. For Q € T define

Q)= Y

nx(MeQ

The conditions (1) and (2) hold. This can be shown similarly as for the
Dirac measure. The generated measure can be seen as a finite linear
combination of Dirac measures at different points.

. Let 2™ be a sequence in R? and let A, be a sequence in [0, c0) such
that for every bounded set £ C R? we have

We define 7 as before by

Q)= Y

n:x(meQ

This is a generalization of the previous example and (1) and (2) can be
shown similarly.

. Let d=1. Let f: R — R be monotone. For [a,b) € T defind/|

(a.) = Ly £(¥) ~ lim f(@)

Both conditions are fulfilled. (1): For ¢ = (a + b)/2 we have
r(lo0) = (i 7() = lim £(&)) + (Jim ) ~ T ()
=7([a,¢)) +7([¢,0))

"Every monotone function has one-sided limits. Here we consider left-hand limits since
our intervals are open on the right. If we had (a,b] we would consider right-hand limits.
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(2): We need to show that for &' large enough
7([b—27",b)) < e7([a, 1))
This follows from

. . /_ . / —
Jim (Jim f@) —  lim | f(e)) =0

The abstract measure theory carries over from the Lebesgue case. In partic-
ular, we have the following theorem.

Theorem 2.20. If p is an outer Radon measure, then every Borel set is
p-measurable.

Proof. As for the Lebesgue measure. m

Thus, Borel sets are measurable with respect to any Radon measure. How-
ever, for a general set in R, measurability depends on the considered mea-
sure.

Example. Every subset of R? is measurable with respect to the Dirac mea-
sure.

Thus there exist sets which are measurable with respect to the Dirac measure
but are not Lebesgue measurable. On the other hand, there exist Radon
measures i such that there are Lebesgue measurable sets which are not u-
measurable. This can be seen from the following example.

Example. The devil’s staircase is a monotone functions. So we can 7 as in
Example [2.2] 5] with f begin the devil’s staircase. This generates an outer
measure ;. Denote by C' the set of all elements in the Cantor set which do
not have a finite tertiary representation. Denote by I the set of all elements
in [0,1) with do not have a finite binary representation. Then f restricts to
a bijection f : C — I. This map transports y onto the Lebesgue measure
(it can be interpreted as transporting the structure from C' to [0,1)). More
precisely, if E C C, then

1(E) = prev(f(E))

If E C I is not Lebesgue measurable, then f~(E) is not p-measurable in C.
But f~!(E) C C and hence pre,(F) = 0.
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Integration with respect to a Radon measure

If u is a Radon measure, we define the integral

fdp
Rd

in the same way as in the Lebesgue case. The abstract theory carries over
(except for translation invariance, which can already be seen to fail for the
Dirac measure). In particular, the convergence theorems hold etc.

Continuous functions f : R? — [0,00) are y- measurable. If f is also com-
pactly supported, then
fdu < oo
Rd
This can be seen as follows. Denote K = supp(f). One can cover K with
finitely many dyadic cubes " € 7" of scale 0. Denote by C' the maximum of
f on K (it exists by continuity of f and compactness of K). Then we have

f<Cy 1y

Q/eTl

and therefore
| tdu< oY n@) <
]Rd 7‘/

which shows the claim.
Our next goal is to give a characterisation of Radon measures. For a Radon
measure p we can define | A : C.(R?, [0,00)) — [0, 00) given by

A(f)= [ fdu
Rd
It is additive, i.e.

A(f,g9) = A(f) + Ag).

Our main point is that the ”converse” also holds. Every such additive positive
functional A is given as an integral with respect to a unique Radon measure.
We remark that since A acts on positive functions, additivity implies mono-
tonicity, i.e.

f<g=A(f) <Ay)

We also remark that there is one-to-one correspondence between the Radon
measure and its generating data. More precisely, let 7 be the collection of

8C,, denotes continuous compactly supported functions.
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generating sets on X and define 7, 7" which generate Radon measures pu, 1,

respectively. If 7 # 7' (on generating sets), then p # p'. Indeed, assuming
=, for every QQ € T we obtain

which is a contradiction.

Theorem 2.21. Let A : C.(R%,[0,00)) — [0,00) be such that for each f,g €
C.(R%,[0,00))

A(f+9) = Af) +Alg)
Then there exists exactly one Radon measure p on R such that
A(f)= | fdp
R4

Proof. We prove the theorem in case d = 1, in higher dimensions one argues
similarly. We construct 7 which generates a unique measure pu. Let QQ € T
and write Q = [a,a + 2¥) where a,k € Z. For n > 1 we define the functions
f9 as shown in Figure ﬂ

1

|

|

|

!

!

|

|

|
&
@

a4 2k _ 2k7n a -+ 2k

e --------

a— 5’“*”
Figure 19: Functions fg (blue) and fg' (red), n < m.

The reason we chose this function and not 1y, ;o) is that the characteristic
function is not continuous and hence does not lie in the domain of A.
Define g9 and h9 such that

£ =92 +n?

as shown in Figure [20] (we write b = a + 2F).

9Here we only provide a picture corresponding to the construction. One can write the
function explicitly as an exercise. In higher dimensions one would take tensor products of
such functions.
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Figure 20: Functions gg, k¢, (blue) and gy, hgy (red), n < m.

Then gg is monotonously decreasing in n and hg monotonously increasing.
By monotonicity of A we have that A(gg) is monotonously decreasing and
A(hg) monotonously increasing. Therefore the limits

lim A(gs) and  lim A(hg)

n—oo n—oo

exist. Hence also
Tim (A(gf) + A(hY)) = lim A(gh + h)
= lim A(fg)

n—o0

exists. For Q) € T we set

~(Q) = lim A(f3).

n—oo

Now we check the martingale and regularity condition. Martingale condition:
Observe that

12 = 12+ R
where Qee and Qyighy denote the left and the right child of @), respectively.
See figure [21]

anie{t eri%ht

Figure 21: Functions 2 and fors
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Applying A to f@ and taking the limit we obtain

T(Q) = T(Qleft) + T(Qright)

Regularity condition: We show that for every @) = [a,b) and every ¢ > 0
there exists ko such that 7([b — 27%~*0 b)) < e. For k; > ko this then holds
by monotonicity of A. Pick ng so large that for any n > ng

A(hy?) = A(hi,) <

DN ™

See Figure Choose kg such that h%?o < Son[b—2-27%% b) Denote
Q' = [b—27F"" p). Then we can estimate for m big enough

hg() + (1 - g)ffgl S hg()+k07

and in consequence

(1—e)A(fY) < AR

no+ko - h??o) S

DN ™

So passing to the limit as m — oo and choosing ny and kqy so that ¢ < 1/2
we obtain

e --------

Figure 22: Functions ff% and f9

End of lecture 10. November 24, 2015

Hence we get that 7 generates a Radon measure p. We still have to verify
that for f € C.(R? [0, 00)) we have

A(f) = [ fdu.
R4
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In order to do that, we will show that for any f € C.(R%,[0,00)) and any
€ > 0 there exists a constant C, possibly dependent on f, such that

IA(f) — » fdu| < Cye.

Let N be such that f is equal to zero on [N, N]°. We define h as in Figure
23

“N—-2 -N-1 N+1 N +2

Figure 23: Function A a piecewise linear function supported on [-N —2, N+2]
and equal to 1 on [-N — 1, N + 1].

Let £ > 0 be such that
o -yl <3-27" = |f(x) - fly)| <e,
we can do this because f is a uniformly continuous function. Define
T’ = {dyadic cubes in [—N, N]| of the order k}.

Because of the last the previous display we obtain a good approximation of
f via a simple function constant on () € 77, in the sense that

[ fdn= [ el@igdnl < (=N, N

QET’

where ¢(Q) is, as usual, the center of () and the measure of [— N, N] appeared,
since it is the actual domain of the integration above.
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v

Figure 24: Function f(blue) and its simple approximation »_ . f(c(Q))1q
(red).

The integral of the simple function is equal to

> Fe@)u@).

QeT!
For n big enough, by the previous part of the proof, we have
| > Fe@)m@) = D Fe@DAUSD)] <=
QeT QeT’
The above means that we reduced the situation to showing
A Fe@)FD) — A <e.
QleT/

Note that we used the additivity of A to pull it outside of the sum. Now we
are going to make a use of the function A we introduced earlier. Notice that

> Fe@Q)fE < f+eh

Q/eT/

and

F< S HQ) S +<h,

Q/ET/
so we get

IACD T F(el@)fF) — A < eA(h).

QleT/
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We are left with arguing that u is unique. Suppose that there exists a Radon
measure /i such that

Af) = dp = djt.
= [ fdn= [ s

Then in particular for any dyadic cube ) and n

/ [y = / 19,
Rd Rd

so passing to the limit on both sides as n — oo and using the Lebesgue

dominated convergence
/ lodp = / lodf
R R4

7(Q) = u@Q) = i(Q) = 7(Q),

and we have already seen that if the generating functions of two measures
are equal, then the generated measures coincide. O

what gives

Let 1 be the Lebesgue measure on R? and f: RY — [0,00) a measurable
function with the additional condition for Q € T

led,u < 0.
Rd
Proposition 2.22. The map T generates a Radon measure v.

Proof. We shall check the martingale and the regularity conditions.
(1)
lodp = lod
/R Hadn > /R RACTIE

Q'cQ
ord of Q'=ord of Q+1

by the additivity of the integral.

(2) Note that the condition

limsup sup floledu
e—0 EcCRY JRA
wE)<e
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implies the regularity. Let us prove that this statement is actually true.
Take a measurable E with u(F) < e. Indeed, we have

/ min(pu(E), u(flg > N)) / min(e, p(flg > A))dA.

The function inside the last integral is bounded from above by u(f1g >
A), which is integrable. Moreover, it is pointwise convergent to 0 as € —
0. Hence, we can use the Lebesgue dominated convergence theorem to
see that as € — 0, the last integral goes to

/ 0dA = 0.
0

Example. Define 7: 7 — [0, 00) as follows

L req
7(Q) = {O,Qng

Denote by v, the Radon measure generated by 7,. Let QF be the dyadic
cube of order k that contains z. Here a dyadic cube of order (scale) k has
side-length 27%. Notice that

lim 1(QY) =

k—o00

but

lim v, (Q%) = 1!

k—o0
The previous example motivates the following definition of a measure abso-
lutely continuous with respect to the Lebesgue measure.

Definition 2.23. A Radon measure v is called absolutely continuous with
respect to the Lebesgue measure p if

limsup[ sup v(E)| =0.

e=0 | E: u(BE)<e
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Theorem 2.24. Let f: R — [0,00) be a Lebesgue measurable function such
that for any Q € T

flodp < oo.
Rd
Then we have for almost all v € R?

o Jpa Flgedp
]}g{;w = f(z),

where Q% is, as in the example before, the cube of order k that contains x.

End of lecture 11. November 26, 2015

Note that one cannot recover f at every point. Namely, if we change f
on a set of measure zero, then 7 remains unchanged. Therefore the above
limit cannot equal f(x) for all z € R%. We also remark that not all Radon
measures are given as v in the theorem, i.e. by integration with respect to
the Lebesgue measure. For instance, if v is the Dirac measure, then for all
x # 0 the above limit is zero. If it were given as stated in the theorem,
then one would recover f at almost every point. This is not possible unless
f is zero almost everywhere. But then 7 would be zero for all dyadic cubes,
which is a contradiction.

Proof. 0) It suffices to show the claim for functions of the form f1¢,, where
(o is a cube of scale 0. That is, we may assume that f is supported on such
a cube. Indeed, since cubes of any fixed scale partition R? we can write

f= > flg

Q of scale 0

and apply the theorem to f1g. For each ) we obtain an exceptional set Fy
of measure zero such that for x in its complement the sequence v(Q*)/u(Q¥)
converges to flg(x). Then we define

F= |J F

Q of scale 0

which has measure zero and for x in the complement of F', the above sequence
converges. It converges to f(x) since as soon as k > 0, the sequence is the

same in case of f and flg. From now one we thus assume f is supported on
a fixed cube Q.
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1) Next we observe the claim if f is a finite linear combination of the char-
acteristic functions of dyadic cubes. Let k£ be the highest of orders of these
cubes. Then f is clearly constant on each dyadic cube of order k£ and the limit
considered in the statement of the theorem stabilizes at k being equal to f(x).

2) Let now f be the characteristic function of a measurable set F C Q.
Claim: for each € > 0 there exists an exceptional set F' with u(F) < ¢ and
ko such that for all £ > kg and for all x € F

]%—ﬂx)( <e

Once the claim is established we define

Gn = U F_n/

n'>n

where F,,_,/ is the exceptional set for ¢ = 2" Summing the geometric series
we have p(G,) < 27" If x € G, then x € F,_,» for all n’ > n. Thus for
every n’ > n there exists kg such that for all & > kg

v(QF)
(@)
This shows that if = ¢ G, for some n, then

@y
gy ~ /@

G:=()Gn

n

— flx)| <27

Define now

and note that p(G) = 0. If x ¢ G, then x € G,, for some n and hence

QY
QY

= f(x)

This shows the theorem.
Now we prove the claim. Let < ¢ < 1. By Littlewood’s first principle we can
choose a finite union of disjoint dyadic cubes 7" such that for

F o= (UQ’)AE
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we have

Let 7" be the collection of maximal (with respect to set inclusion) dyadic

cubes such that P
p(FrNQ) > e
Q)

FQ = U Q//

T//
which is a disjoint union due to maximality of the cubes in 7”. We have

(1) 1 21 ®3)
p(Fy) = ZN(QH) < ZEM(Fl ne") < EN(Fl) <

T// T//
where in (1) we use that Q" € 7", in (2) disjointness of Q" and in (3) that
w(Fy) < e2/2. Define now F := F; U Fy. Then u(F) < e. Denote by kg
be the largest scale of the cubes in 7'. Let k > ky and z ¢ F. Writing

f=>"71¢ we have

v(@Qh)
n(Q%)

Define

€
2

2 NN
oy @ i i)

g =0 since f(x)=f(x) on F¢
=0 (observe) ()=1) !

o(QF)
1(Q%)

d

~

o <[5 -

Since [v(QF) — p(QF)] is at most u(F; N QF), the last display is bounded by

p(Fr N Q) <

1(QF)
The last inequality holds by maximality of the cubes in F5. Indeed, if x € F'
then x ¢ F, and hence the above quotient is necessarily less than /2. This
finishes the proof of the special case 2).

DN ™

3) Let f be a measurable bounded function f = flg,. Let ¢ > 0. We can
approximate f by a finite linear combination of characteristic functions of
dyadic cubes f such that

f<f<f+e on Q

Then we use 2) finitely many times. Denote by F’ the union of the exceptional
sets one obtains in this process. We have p(F) = 0. If z ¢ F, then
: v(Q%) : (Q%) P
lim sup I~ < e+ limsup —= < e+ f(x) <2+ f(x
1 ) =TI gy S =2
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Similarly we show that

o v(Qh
ey

This implies that the limit exists and it equals f(z).

> f(x) — 2¢

4) Let f be a measurable (not necessarily bounded) function f = f1g,. Let
n € N and let 7' be the collection of maximal dyadic cubes such that

v(Q) _
Q) =

Define the exceptional set F,, = (J;, Q'. Then

P(F) <3 (@) <D 27" w(Q) < 270 (Qu)
T T

Choose f such that f(z) = f(z) if z ¢ F, and such that f is constant on
Q' € T' with [ flgdu = [ flodu if 2 € Q' € T. Note that one can choose
such a function. It is now an exercise that f is bounded almost everywhere
on F¢. Then one has to deduce that for every € > 0 there is a set F' of
measure less than ¢ and kg such that for all k > kg and x € F

QY e
5+ s — F@)] 1) — sl <<

v(QF) v(@Q)) (@
’TQ?E) _f(x)’ = ‘M(Q’é) (@ +‘

]

If we replace v by an arbitrary Radon measure, then we have the following
theorem.

Theorem 2.25. Let v be a Radon measure on R%. Then

(@)
lim —=
koo (QF)
exists for p-almost all x € RY.

Note that nothing is said about the value of the limit. It may also happen
that it is zero almost everywhere as it is the case if v is the Dirac measure.

Proof. By the same reasoning as in the previous proof it suffices to show the
claim for © of the form

T = I/(QHQO)
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for some dyadic cube @ of scale 0. So from now on assume v = . Let
n € N, k € Z and we denote [a,b) = [27%n,27%(n +1)). Define F, to be the
set of all z € R such that there exists a sequence k, such that for all n € N

v(Qp) v(Qt)

ok S @ and o 2 b
u(Qa™) Q")

In some sense, the interval [a,b) measures the convergence of the sequence
as it measures the difference between its liminf and lim sup. Our goal is to
show that u(F,,) = 0 for all intervals [a,b). Namely, if the limit does not
exist, then necessarily

QY Q"
lim MEQ; <l MEQ;

and hence there exits a, b of the above form such that

v(Q5) v(Qz)

liminf —= < a < b < limsup —=
koo 11(QF) koo (QF)

This implies x € F, . Thus, if this set has measure zero, then the limit exists
for almost all x € R?,

To prove p(F,;) = 0 we perform the following stopping time argument.
Define 77 to be the collection of maximal dyadic cubes () C @)y such that
1Q)

Define 75 be the collection of maximal dyadic cubes () such that there exists

Q' € T; with Q C Q" and @
v
i@ =

For any n € N we define 7,1 as follows. If n is even, then we define it as
the collection of all dyadic cubes such that there is Q' € 7T, with Q C Q" and

V(Q)
wQ ="

while for odd n we set 7,1 to be the collection of all dyadic cubes such that
there exists Q' € T, with Q C Q' and

v(Q)
Q) =
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Now we set

F, = U Q
Tn
which is disjoint by maximality of the cubes in 7,. Observe that
F., C()Fn

It remains to show that limsup,,_, . u(F,) = 0. If n is odd, then we have

Noow@< > Y w@ <> Q@)

Q€Tnt1 Q' eTn QCQ, QETrn+1 Q' €Tn

If n is even, then

ow@< > Y wQ
QETn+1 Q'eT, QCQ, QETn+1
<> ) %v(@)
Q Q
<> %M(Q’)
Q/

<(1-9)) w@)
Y

By induction we see that

uF) < (1—e)"u(Qo)
Letting n — oo finishes the proof. m

End of lecture 12. December 1, 2015

2.3 Structure of Radon measures

Let v be a Radon measure in R?. Last time we showed that the limit
(@)
g(x) := lim
Ty
exists p-almost everywhere. The set of all points for which the above limit

exists we call the Lebesgue points. Let us put g(x) := 0 for all = such that
the above limit does not exist or is equal to co. Observe that if

v(Q) = /led,u forallQ € T,

then one obtains g(z) = f(x) for u almost all x.
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Proposition 2.26. If v is a Radon measure in RY, then we have for all

QeT
/ glodu < v(Q).

Proof. Define

v(Q)
m= D (Q/)l @
Q:0rd(Q")=
Clearly g is a measurable function. Notice that

g < limkinf Gk

and the function on the right hand side is again measurable since it is the
liminf of a sequence measurable functions. Applying Fatou’s lemma we esti-
mate

Fatou

/ngd,u < /hminfgledy < limkinf/gledu

= hm inf Z / 1Qld,u = hm inf Z v(Q') = v(Q).
Q'cq
Ord(Q ) Ord(Q')=k
[

We will now use the function g to decompose our Radon measure v into two
parts of a character quite different from each other. Let v; be the Radon
measure generated by g, i.e. satisfying for any ) € T the relation

n(Q) = /ngdu'
Then by the previous proposition for any () € T we have the inequality

n(Q) < v(Q).

Example. If v = §y is the Dirac delta concentrated at 0, then g(z) = 0
for all the points x different from 0 and the limit at 0 is equal to oo, thus
g(xz) = 0 for all z. Note that in this case with the notation above we have
vy =0 and v — vy = &y, what shows that the inequality v; < v may be strict!

Notice that vy is absolutely continuous with respect to p and put v, := v—u.
V5 is a non-negative measure, because v dominates v;.
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Definition 2.27. A Radon measure v is called singular with respect to
p if there exists a set E with u(E) = 0 and such that for any F' C RY,
v(FNE)=v(F).

Remark. In the previous example v = ¢y is singular with respect to the
Lebesgue measure and E = {0}.

Theorem 2.28. vy s singular with respect to .

Proof. Let E be the set of the Lebesgue points of v. Let Ey C E be the set
of points for which

S glordp
S T

Put E, = R\ By, u(Ey) = 0. We know F is a set of full measure and the set
of the points for which g(x) is equal to the limit above has also full measure.
The intersection of two sets of full measure is still a set of full measure - this

shows that pu(Fy) = 0. Thus, we are left with proving that for an arbitrary
F C Rd, VQ(F N EQ) = VQ(F).

Let x € E;, we have
v(QF) n(QF)

(Qk> = lim — hm
w(@F) k(@) 1(Q%)

Fix a cube )y of order 0. Let ¢ > 0 and x € E; N (y. There exists a cube
Q. containing x with
V2(Q9:)

1(Qx)

Define 7" to be the collection of such (),’s that are maximal with respect to
inclusion. Notice that QN E; C |J 7" and the cubes in 7" are disjoint, hence

1a(QoN Ey) < ZVz <€ZM ) < ep(Qo)-

Q'eT’ Q' eT’

hm 1nf

= g(x) — g(x) = 0.

<e€

e > 0 was arbitrary what gives that v5(Qy N Ey) = 0. Moreover, Q) was
arbitrary, so v5(E;) = 0. This however, implies that for any F' C RY, vy(F N
E3) = v5(F') and finishes the proof. O

Theorem 2.29. Let 1 and v be Radon measures on R?. There exist two
Radon measures vy adn vy with v = vy 4+ vy such that vy is absolutely contin-
uous with respect to p and vy is singular with respect to . The measures vy
and vy n the decomposition are unique.
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Proof. We prove the existence the same way we did for the Lebesuge case.
Let us prove the uniqueness. Suppose that

V=1tV =11+ 1

are two decomposition of v with the demanded properties. Substracting v,
and r; on the both sides we obtain

I/l—ﬁlzljg—Vg.

Observe that the measure on the right hand side is supported on the FyU E,
which is has p-measure zero. Thus, for any F

(s — 1a)(F) = (5 — o) (F N (B2 U By)) = (5 — 1) (F N (Ey U E)) =0,

because both vy, ; are absolutely continuous. That implies 75 = 15 and
V~1 = 1. ]

A signed Radon measure is of the form 14y — v, for two non-negative Radon
measures vy, vy with v (R?) < 0o, 1»(R?Y) < oo.

Theorem 2.30 (Jordan-Hahn decomposition). Let v be a signed Radon
measure. Then there exist two disjoint v-measurable sets Ey and E_ with
E_UE, =R and such that for all F C R?

vV(FNE,)>0andv(FNE_)<O0.

Remark. Note that if v was generated by a function, then we could sim-
ply take the positive and the negative part of the function to obtain the
decomposition. That is the idea behind the proof of the theorem.

Proof. Let v = v; — vy as remarked before the statement of the theorem and
let © = 11 + 1,. Note that if for a set E, pu(E) = 0, then 11(E), 1n(E) <
wu(E) =0, so both v, and v, are absolutely continuous with respect to u. For
1 = 1,2 choose a function f; such that

(@) = [ flgdu
This gives us the possibility of writing v as
vQ) = [t~ o
Define E, and E_ followingly
Ep = {x: (fi = f2)(2) = 0},
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E_:={z: (fi — fo)(z) <0},

Both of them are p-measurable and clearly we have v(F N Ey) > 0 and
v(FNE.) <0 for any FF C R We just need to verify that F,, E_ are
v-measurable. Let Q € T

VQNEL)+rv(QNE) = /(fl — f2)lp, lodp + /(fl — f2)le_lodu
= /(f1 = f2)lgdp = v(Q).

]

We have already shown that there exists the unique decomposition of a Radon
measure into the singular and the absolutely continuous part. We are going
to decompose it further, namely split the singular part into a pure point
measure and a singular continuous measure.

Definition 2.31. A Radon measure v is called a pure point measure if it is

of the form
v(Q) = Z Ai

z;€Q

for a set of points () and real numbers \;.

Let v be an arbitrary Radon measure. Define

Az

—~
X = {x: lilgn v(QF) > 0}.

Observe that the limit inside the brackets is well defined since the sequence
v(Q%) is montonically decreasing. Moreover, X = J, X,,, where

X, = {x: lillgn v(QF) > 27,
Lemma 2.32. For Q €T

> A <@

IEXnﬂQo

Proof. Suppose that the statement of the theorem does not hold. Choose a
finite subset {x;} such that

ZAM > v(Q)
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and choose an integer k£ such that

27% < min(|z; — x;)).
2,)

With such choice of k the sets Q’;ji are pairwise disjoint, so
D A <D w(@h) <v(Q)

This is a contradiction. O

In particular, the last proof gives us that the sets X,, and X are countable.
Passing to the supremum

Tpp(@) = Z Ay = sup Z Az < V(Q)
£€EXNQ " zeXn.NQ

For () € T. Hence, 7,, generates a Radon measure v, such that forall Q € T'

V(@) < v(Q).

Moreover, one can observe that v,, < vy, where v, is the singular part of the
decomposition singular+absolutely continuous, because (v, is the absolutely
continuous part)

lim p(Q5) = lim v, (QF) + lim v (QF),
and the rightmost limit is equal to 0. Thus, we can write
Vs = Vge + Vpp,

where v, is the pure point measure defined above and v,. is a non-negative
Radon measure, which we call singular continuous.

Definition 2.33. A singular with respect to p measure v is called singular
continuous with respect to p if limy v(QF) = 0 for all .

After the considerations above we arrive at the following theorem.

Theorem 2.34. Let i be the Lebesque measure and v be a Radon measure.
Then there exists the unique decomposition

V= Vg + Vs + Vpp,

with v, absolutely continuous with respect to p, vs. singular continuous with
respect to | and vy, a pure point measure.

Remark. Observe that L'(R?) is equal to the set of signed Radon measures
absolutely continuous with respect to p. Two elements of this space are
equivalent if they differ from each other only on a set of measure zero.

End of lecture 13. December 3, 2015
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2.4 [L? spaces
The space L (R?) is defined as

the set A of all absolutely continuous (non-negative) Radon measures v with
v(RY) < oo

or, equivalently,

the set B of all equivalence classes of measurable functions f : R? — [0, 00)
with
Jdp < oo,
Rd
where f ~ g if f(z) = g(x) for p-almost all z.

We restrict our attention to non-negative functions an measures in order
to have simpler notation. We already know that A and B are in bijective
correspondence and hence the definitions are equivalent. Namely, if v € A,

then for )
fk = Z V—]_Q
ot 1MQ)

the limit limy_, fr(x) exists for almost all x. We define f(x) to be this
limit, whenever it exists, and 0 otherwise. If v is absolutely continuous, then
v(Q) = [ flodu and [ fdu = v(R?) < co. On the other hand, if we take an
equivalence class in B and a representative f, then we define 7(Q) = [ f1gdu
which generates a Radon measure (exercise). Note that 7 is independent of
the chosen representative.

However, the space L' is not suitable for a product theory. To elaborate
on this we first need to observe that one can define product on equivalence
classes. Indeed, if f; ~ fy and g; ~ ¢o, then fi1g91 ~ faogs since they differ at
most on the union of the sets where f; differs from f, and g, differs from gs.
This union has measure zero. Now, i frg € L'(R%), then the product fg
is in general not in L. To see this we consider

@) = gt

which is integrable, i.e. belongs to L. (R?). However,

1
fia) = o[ oL ()

0From now on we identify a function with its equivalence class
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is not integrable. (See Figure [2.4])

| |
T T

Figure 25: Functions f (left) and f? (right).

So the LY itself does not control products of functions. Because of that we
shall introduce spaces L%, 1 < p < oo. Although products of elements in
L¥ will in general not be in L%, we shall see that if f € L' and g € L*? for
some py, po, then fg € L% for some ps.

The space LY is defined as the set of all non-negative essentially bounded
measurable functions, i.e. bounded up to a set of measure zero. This is the
only L% space which is closed under multiplication.

For p € R with 1 < p < oo we define L% (R?) to be

the set A of all (non-negative) Radon measures v with

~—

v(Q)\?
sup Ord%:k (M(@) w@) < oo (8

or, equivalently,

the set B of all equivalence classes of measurable functions f : RY — [0, 00)
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with™]
fPdp < oo

R4
Note that in contrast with p = 1, in A we do not require absolute conti-
nuity of the measure. We shall see that this already follows from the other
assumption.
In Analysis II we already considered p = 2 when we defined the Hilbert space
L?*(R) via A. A construction via B was then not available as we did not have
the Lebesgue integration theory.
Before proving equivalence of both definitions we turn our attention to the
following inequality.

Holder’s inequality. Let a;,b; € [0,00) , i = 1,..., N, and %—i—% =1,
1 < p,qg <oo. Then

Za'zb < (Z > /p<Zb?>1/q

1=

Proof of H older s inequality. Without loss of generality we may assume Z

1 and Z = 1, otherwise we replace a;, b; by

111

a; b;

(=ra)” ™ ()

(This follows from homogeneity, i.e. S (Aa;)b; = A>_ azb; and (3" (Aa;)P)Y/P =
A2 a?)MP for A > 0). For a,b > 0 have
Sha 1a + 1b

p q
For p = ¢ = 2 this is just the arithmetic-geometric mean inequality. To see
the above inequality we observe that it is equivalent to

1 1 1 1
6;1na+glnb S _elna + _elnb

p q

which holds by convexity of the exponential function (see Figure . To
finish the proof of Holder’s inequality we now write

N N . ®1 1
aibi: 5 bq q< —(Z + bq —+—:1
where () holds by our normalization. O

HRecall that fP = ePn/f

84

111



Figure 26: Convexity of e”.

Holder’s inequality holds for countable sums as well and also for integrals.
In this case it takes the following form. If f g are measurable, then

/ fodp < < / f”du> ( / quu);

Note that measurability is necessary since in the last step of the proof (x)
we need additivity of the integral.

Now we are ready to show equivalence of definitions via A and B. If v € A,
then it is absolutely continuous. Indeed, let 7’ be any disjoint collection of
dyadic cubes. For 1 < p,q < o0, 1/p+ 1/q =1 we write

S @ =Y A9 gy

QeT’ QeT’ Q)
(e (20 @)’ (3 n@)
The claim is now that
v(Q) n _
Q%;/(M(Q)) < sup %k( ) (@) =C<oo

where boundedness by a finite constant C' follows by the definition of A. Note
that on the left hand-side the sum is over any disjoint collection of cubes 77,
while on the right hand-side the sums are over collections of cubes of the
same order. The claim implies

S <o (X n@)"

QeT’ QeT’

Q=
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which then implies absolute continuity of v (this is not hard to see).

To see the claim it suffices to consider finite collections 7" since the bound is
independent of the collection. Then we may assume that the order of Q € T’
is at most k. We need to show that if we partition ) € T’ into its children,
the sum on the left hand-side increases. Then we keep partitioning until all
cubes in the collection are of the same order. Since at each step the sum
does not decrease, we are done.

Figure 27: Partitioning of ) € 7' (all cubes are half open).

To see that at the partitioning the sum increases we write

Q=3 @)=Y 29 @)

o ooy Q)
k' =k+1 k' =k+1
v(@)N? )P N
<( Q’ZcQ <M(Q')> @) ( QIEC:Q w@))
k' =k+1 . K'=k+1 |
u(Q)é
Since % + % =1,ie. 1—p= _1507 this shows
v(Q)\P vV(Q)N\P
(o)) @ = Q% (o) @)
K =k+1

as desired. This in particular show that the sequence in is monotonously
increasing and so the supremum equals the limit as £ — oo.



Now we return to showing equivalence of the definitions of L. We have just
seen that if v € A, then it is absolutely continuous. Define

. v(Q)
fim 2 u(Q)lQ

ord(Q)=k

Then limy_,o fr(z) exists a.e. We set f(x) to be that limit, whenever it
exists, and 0 otherwise. We also set

~ [ 1o

It remains to check that f is p-integrable:

1)
/fpd,u: /li;ninff,f gliminf/f,f
—00

_hm 1nf Z (V(Q)> (Q)

(@)
@ lim Q)P
k—o0 ord%—k (,U,(Q)) M(Q)
(3)
<C <o

where (1): Fatou (2) monotonously increasing (3) A.

However, we also observe the reverse inequality. We write

V(@) _ [ flodn _ [ flolodu
Q) Q) Q)

(S r0)" (100

=

B Q)
Plodp 3
- (IJ;@Q) ")
Then
(fi@)) < [ o

Summing over () of order £ we obtain

> (@) s [

ord(Q)=k
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This shows that we actually have

We denote

Let now f € B. Then

/f1Qdu < (/medu);’(/le;L)‘I’ <

and we set this integral to be 7(Q). It is an exercise to check that T generates
a Radon measure.

Note that with the above introduced notation, Holder’s inequality reads

/ Fad < 1 flllglla

Minkowski’s inequality Let 1 < p < oo, f,g € LE(R?). Then f + g €
L% (RY) and
1f =+ gllp < Il + llglly

Proof. 1f p = 1 we have equality since

frea-fi+fs

Let now 1 < p < oo. Then there exists 1 < g < oo such that % + % =1. We
have

(f+9P=f(f+g" " +g9(f+9""

and hence
I+ 9l = [ (7 +g7du

=[5 artaus [olr+gr

< £ 1Cf + 9" o+ lallolI(F + 97 g
= (£l + gl + 9P g
= (£l + Ngllp) 1 + gllp
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which shows the claim. The last inequality is deduced by

1

149 = ([ 7+ 9 0)" = + gl = 1+ gl
since ¢(p — 1) = p. ]

From now on we always assume 1 < p < oc.
The spaces L% (R?) are metric spaces with the metric

d(f,9) = Ilf = gllly

We show that this is indeed a metric.

1. d(f,g) = d(g, f) is clear

2. d(f,h) = IIf = hlll, < IIf =gl +1g = 2lll, < Nf = alll, + lllg = Alll, =
d(f,g) +d(g,h)

3. d(f, f) =10]|, =0. Ifd(f, g) = 0, then we need to show that f—g ~ 0.
Assume that d(f,g) = 0. Then |||f — ¢|||, = 0 which means that

tA u(f — g > \)dA =0

Since u(|f —g|P? > A) is a monotonously decreasing function, for all A > 0 we
must have

plf =gl >A) =0
Since p(|f — g|P > 0) = Upezp(|f — g|P > 27%) and the union is countable,
we see that

u(lf —gl”>0)=0
But this means that f(z) = g(x) for almost all z and hence f and g belong
to the same equivalence class.

The spaces Lf (R?) are complete. To see this let f, be a Cauchy sequence in
LE (R?). Consider a subsequence which converges rapidly, i.e. a subsequence
fn,, such that

[ frmir = Frmllp <277

for all m > 1. Set now

M
an+1 = fn1 + Z fnm+1 - fnm
m=1

M
Inprir = |fn1| + Z |fnm+1 - fnm|

m=1
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By Minkowski’s inequality we have

M
1gmarialle < Wil + D s = Fanllp < C < 00
m=1
with C' independent of m. Since gf ~is monotonously increasing, by the
monotone convergence theorem

/gp = A}gﬂ@/gﬁM = lim {lgn, [I7 < oo
where we set g := limg_,00 Gn,, - Since |fn,,|P < g?, by the dominated conver-
gence theorem limy;,o fn,, =: f belongs to LE. Since |f — fn..[P < (29)7,
by the dominated convergence ||f — fo,, |l = 0 as M — oo. Let now ¢ > 0.
There exists N such that for all n,n’ > N we have || f,, — fi/||, < £/2. Choose
N such that || f,,, — fll, < /2. Then for all n > N

[ = fllp < fn = Fanllp + [ o = fllp < €

End of lecture 14. December 8, 2015

Now we are going to see that the class of functions constant on the cubes of
order k, for some k € Z, is dense in L% (R?) for 1 < p < co. Writing this out
in terms of Radon measures we have the following.

\

Figure 28: An example of a function constant on dyadic cubes of order £ on

R.
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Theorem 2.35. Let 1 < p < oo. The set of all measures v € L% (RY)
satisfying the condition:

There exists a k € Z with :Eg§ = Zégji, if Q' C Q, Ord(Q) =k,

is dense in L% (RY).
Proof. Let f € LY. Define a sequence
flodp
foim D fmc?) o
Q: Ord(Q)=Fk

At this point, our goal to show that

lim sup d(f7 fk) = 07

k—o0
i.e. we need to prove
limsup/ |f — fr|Pdu = 0.
k—o0

Notice that f; converges to f pointwise almost everywhere. Since we wish
to apply the Lebesgue dominated convergence theorem, we should validate
that

/ (St;p fr)Pdp < oo,

Because of the bound
Lf = fel? <2°(fp + f7) < QP(SI;p(fk)” + f7),

this would give that our sequence is dominated by an integrable function and
would let us to apply the theorem, since we have sup,(fx)? = (supy fx)?.
Let us then prove the boundedness of sup,, f in L.

/ (sip fe)Pdp = /O ) u((sip fi)? > N)dA

change of var.

= 2p/ p(sup fi > 22YP)d.
0 k

Given a function g, we decompose it as follows
g = g1 + g2, with gy = min(g, A\'/P).
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\

Figure 29: The idea of splitting a function g into g; + g». Function g, is equal
to function g(green) to the left of the left intersection point of the red dotted
line (which denotes the level A\ P) with the graph of g and to the right of the
right intersection point; it is equal to the red dotted segment between the
intersection points.

Notice that if at some point sup, fi > 2AY?, then either sup, (fi)1 > A? or
sup.(fx)2 > AP holds. But because of the way we defined (fi)1, supy(f1)r >
AP is not possible, hence

{sup fr > 2)\1/p} C {sup(fx)2 > Al/p}.
k k

Thus, using the monotonicity of p we obtain

27’/ p(sup fi > 22P)dx < 2p/ p(sup(fr)a > AVP)dA.
0 k 0 k
Let 77 be the family of maximal dyadic cubes with the property

R

Observe that {supy,(f)2 > AP} C |J T’ and moreover, because the maximal
cubes we have chosen are pairwise disjoint

S u@ =X Y [ fatodi <3 [

QeT’ QeT’
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Plugging this into our computation we get
:f fadp

27 /000 (sup(fk)g > A/P)d) < 2”/ 1/1”/ p(fa > t)dt dX

def. of f2
/ A~ / w(f > t)dtd\
)\1/17
=AU g / / u(f > AVPg)dsdx TR o / / u(f? > AsP)dAds

A=s P / / WP > w)duds :p2_1 u(f? > w)du

0

op
— 2 P
i1

Since f € L% we obtain that (sup,, fx) € L% what lets us to pass to the limit
as k — oo

I1Lf = fellly = 0.

Remark.
Mf = sup fi,
k

which appears in the previous proof, is called the maximal function of f. We
have shown that the following estimate holds

2
1M fll, < WHpr-
Proposition 2.36. Let 1 < p < oo, f € LL(RY) and q be such that

I/p+1/g=1.
Then there exists h € LL(R?) with |||, =1 and ||f|l, = [ fhdp.

Remark. The statement can also be read as follows: for every f € Lf there
exists an h € L% with

[ fhdu =171l

Proof. Let us put

(@t
h(z) = {J|c|f||f’“ if f(z) # 0

0, otherwise
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and note that

fret
hdy = dp = ||fll,-
/ Pha= [ = 1]

]

The next theorem, called the Riesz representation is a very important fact
telling us, that bounded functionals on L% with 1 < p < oo are given by
integrating against a function from L% for ¢ satisfying, 1/p +1/q = 1.

Theorem 2.37 (Riesz representation theorem). Let 1 < p < oo and
A: I (RY) — [0, 00)
be a functional satisfying the additivity property
A(f +9) = Af) + Alg)-

Then there exists h € L%(RY), where 1/q + 1/p = 1, such that for any
e LL(RY)

A = [ fhp

Proof. The first step of the proof is the following lemma, known as the uni-
form boundedness principle or the Banach-Steinhaus theorem.

Lemma 2.38. Let A be as in the statement of the theorem. There exists a
constant C' < oo such that for all f € L% (RY)

AC) < Cliflp-

Proof. Assume the opposite, i.e. that there exists a sequence of functions

{fn} with
A(fa) 2 277 fullp-

Without loss of generality, by linearity of the functional we may assume that
27" < | full, < 27" and then A(f,) > 2"

Define
N
gx =) fo
n=1

The series ||gn||, is uniformly in N and absolutely bounded by 1, because

N
lgnlly <D falls < 1.
n=1
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Hence the monotone sequence gy — ¢ pointwise and in L as N — oo and
llgll, < 1, by the Lebesgue monotone convergence applied for the sequence
{gn}. Since A maps L% to [0, 00) we get
A(g) < oc.
On the other hand, for any N € N
A(g) > Mg — gnv) + Algn) > Mgn) > A(fa) > 2V,

This is a contradiction. O
The second step of the proof is to show that the function 7(Q)) = A(1lg)
generates a Radon measure v € L.

By additivity of A we obtain the martingale condition for 7. We are thus
left with validating the regularity condition. It follows from the following

inequality
ap Y (”(@) w(Q) < oo,

E g oraigyr \UQ)

which we should check anyway, since we want v € L%. Without loss of
generality we may deal here only with the case when £ = 0. Hence, we shall
show that

1/q 1/q

> (9| e X wer] <

Q: Ord(Q)=0 Q: Ord(Q)=0

By the last proposition there exists a sequence {ag} with Zord(@:o ag =1

and
1/q

Y. w@)r] = Y ar(@.

Q: Ord(Q)=0 Q: Ord(Q)=0
Arguing similarly as in the proof of the uniform boundedness principle one
can show that the series
> aglg

Q: Ord(Q)=0
converges to a function in LY. Using this and assuming momentarily that
the functional A is continuous(we will show in a second) we obtain

continuit,
doagr@) = D agh(lo) ETAC DD agle)
Q: Ord(Q)=0 Q: Ord(Q)=0 Q: Ord(Q)=0

1/p
uni. bdd. principle

< cl Y aglell,=C| Y. d&| =cC

Q: Ord(Q)=0 Q: Ord(Q)=0
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A is indeed continuous, because

A(f) — Ag) < Alg) + AN —gl) = Ag) =AU —aD) "2 Clf = gl

Similarly we see that A(g) — A(f) < C|||f — gllp, what gives

[A(g) = AN < CIIF = glllp-

This means that A is Lipschitz and therefore continuous. We have already

seen that
[ flodp
(@)

converges to f in L% as k — oo. Thus, by this fact and continuity of A we
obtain

A(f) = lim A(fi) = lim > A<M1Q)

fr = 1g,

ko0 0: i)t (@)
J flodu . J flodp
= lim ——=—A(lp) = lim —=—v(Q)
A O;(Q) _, H@) koo . o;(g) Q)
o J flodp _
= lim 5 o;@) T 0 / hlodp = lim / hfredp = / hfdp,

where the last inequality follows from the Lebesgue dominated convergence,
because h is in LY, frh < (supy fr)h and by Holder’s inequality

[ s < s il 1], < .

End of lecture 15. December 10, 2015

3 An excursion to Probability theory

Definition 3.1. A (nonnegative) Radon measure on R with v(R) = 1 is
called a random variable.
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The actual word random variable refers to real variable implicit in the above,
it is the variable parameterizing R.

A different but closely related definition of random variable in the literature
makes the random variable a function (say x) on a measure space 2 with
total mass 1. The space () is thought of as the space of all possible events
of a random experiment, and the function x is a specific observable of that
experiment, which can take real values. One can think of “z(w)” for an w € )
as the observation resulting from of an experiment. The aim of probability
theory is to answer the question ‘what is the probability?’ of an event A
or equivalently ‘what is the measure?’ of the set {x € A}, that is why we
defined a random variable as a Radon measure. Hence, we are interested in
the values of “x” rather then the arguments and its domain. Our definition
of random variable does not rely on a space €2, relative to the just mentioned
definition it is the “push forward” of the measure €2 to the real line R under
the map z. (A formal definition of “push forward” is postponed, or can be
regarded as exercise.)

For a Borel set B C R, v(B) is called the probability that the random variable
takes a value in B, also written P(z € B) := v(B) where x makes an explicit
appearance though it is a dummy variable as much as an integration variable
is a dummy variable. Note x does not appear in the expression v(B).

Example. Consider rolling a 6-sided symmetric dice. The Radon mea-
sure/random variable associated with “x” in this case is simply

Definition 3.2. If [ |z|dv(z) < oo, then we define the expected value

Blz) = / v dv(z).

Write abs for the absolute value function and id for the identity function,
then we can write without dummy integration variable the condition on v as
[ absdv and the expectation value as [ iddv.

Analogously to a random variable, we define a random vector.

Definition 3.3. A random d-vector is a Radon measure v on R% with
v(RY) = 1.

Just as it is customary to give a random variable a dummy variable, a random

b

vector is customarily given a tuple of dummy variables “x = (z;)%,”.
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Given a random vector v on RY, we define the component v; as the Radon
measure generated by

7(Q) =v(R x ... x R x & xR x .. xR) =v({r € RY z; € Q}).

i-th component

We easily obtain that 7 satisfies the martingale condition. Regularity follows
from the fact that if E; C R is a sequence with ()2, £; = 0, then

L—oo

L
lim (R x ... X ﬂEl X ... xR)=0.
1=0

(Note that all measures involved are finite.) Thus, the generated v;’s are
indeed Radon measures with (exercise:)

vi(R) = v(RY) =1 and 14(Q) = 7,(Q).

Note that for a v; measurable function f we have

/ fdv; = / f o Idv. (9)

where 1I; is the projection x — z;, also written as x — (x,e;) with the i —th
unit vector e;. This is clear from the definitions if f is the characteristic
function of a dyadic cube. Then one proves the general case by first con-
sidering linear combinations of characteristic functions of dyadic cubes and
then limits thereof. We skip the details here.

Above we dealt with the i-th component of a random variable v satisfying

vi(Q)=v(Rx .. xQxRx..xR)=v({zeR z; € Q}).

One can also consider components of a rotation of a random vector. These
leads in general to a component relative to a unit vector. For a unit vector
v in RY i.e. a vector having the property that

we can obtain as above the v component of a random variable v satisfying

(Q) =v({z e R v-z € Q)),

where “-” denotes the scalar product.
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Next, let v, ..., vy be random variables. We define the independent product
of those random variables as the product measure generated by

d

7(Q) =[[%(Q), Q=@ x ... x Qu C R™.

=1

We shall not elaborate the details of this construction, as we have discussed
product measures before.

It is importnat to note that not every random vector is the independent
product of its components, as elaborated in the example below. This is
much like the fact that not every function in two variables can be written
as the product of two functions in one variable, f(z,y) = fi(z)f2(y). Hence
the word “independent”, which denotes an additional property.

Example. Let Q; = [0,1)? and Qo = [1,2)? and let pu denote Lebesgue
measure on R?. Define a random variable v with: v(Q) = $u(Q N Q1) +
%M(Q N @2) . Notice that v it is not the product measure of any vy, vs.
Indeed, suppose it was the product measure Then, the following three pairs

of equalities would hold

0 =v(Q1 x Q) = 11(Q1)12(Q2),
% =v(Q1 x Q1) = 11(Q1)r2(@Q1),
1

5 = v(Q2 X Q2) = 11(Q2)11(Q2).

v(Q1 X Q1), ¥(Q2 X (Q3) are nonzero, what gives that v1(Q1) and 15(Q2) are
nonzero. This contradicts the first equality.

We proceed with proving a “baby version” of the central limit theorem.

Let v be a random variable and let v¢ denote the d-dimensional product
measure. In probability this setup is called a d-tuple of ¢.i.d random variable
(this means “independent identically distributed”). Consider the unit vector

1
v = W<17 ceey 1)
and the random variable “W”, given by the v component of ¢ as
defined above
pa = ("),

Recall the Fourier transform of g at a point £ is equal to
€)= [ (o)
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Note that since yq is a random variable, the function e>®¥¢du,(y) is absolutely
integrable and we have |hq(€)| < 1, because

‘/ezmyfdud(y)' < /1dud =1

Using @D for the unit vector v we obtain with Fubini

d

hd(f) _ /62wi(z1+...+md)§dy(x1)...dV(Id) = H </ eZﬂ.id11/2xj€dV<,rj)> .

J=1

Since the random variables are i.i.d, we have in fact shown that

ha(§) = (f (%))d,

7€) = [ emtanta).

Let us assume that f is two times continuously differentiable at £ = 0 and
f"(0) # 0. Moreover, we have

where

f(0) =1, because f(0) = /1dl/ =1,

f(0) =0, because |f(£)| < /1dv =1= f(0), so f is maximal at 0.

f"(0) < 0, because at a local maximum < 0 and f”(0) # 0.

Let us denote —p := f”(0) < 0 and consider the Gaussian

g(§) =e ">
Observe the properties
9(0) =1
9'(0) =0,

Fix ¢ > 0 small. Notice that for £ small enough we have by considering
Taylor’s approximation

d
e_(p%)% =< (f (%)) <= 6_(’1_5)%.
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Now fix ¢ and let d be large enough. Then £/d"/? is small enough so the
above applies and we obtain.

d d
6—(p+s)§ _ (6—(p+s)%)d < (f <%>) < <e—(p—€)§z> = e—(P—a)g.

Here we have used in the first and last identity an invariance property of the
Gaussian function under scaling. Letting d tend to infinity we obtain

(r+e) £\ EN)' o€
R . pa)®
S (1 (5ha) ) < (1 (385) ) <00

Finally, letting e — 0 we get

5 d
o ((5)"

Written more explicitly:

d
& . § : 2
P _ miyé
=t (1 (i) = d [ o
That is what we have called the “baby version” of the central limit theo-
rem: the Fourier transform of pg converges pointwise to a Gaussian with the

appropriate scaling factor p as determined by v. The statement of a more
elaborate version of the theorem is the following.

Theorem 3.4 (Central limit theorem). Let v be a random variable with

o= /xQdy(:c) < 00.

Let pg = (%), as before. Then the following convergence in measure holds

o ForallQ € T: limg oo 1a(Q) = \/2170 fe’ng(x)dx, and

z2
o limy_,o pg(RY) = \/2170 [ e 2 da.

Proof. Left as an exercise. The condition of finiteness of ¢ is used to obtain
enough regularity of f as in the above calculations. Convergence is then
proved by approximating the characteristic functions from above and below
by piecewise linear functions, and use the de la Vallee Poussin kernel to
write these piecewise linear functions as superposition of functions e?™*¢ to
reduce to the above baby version. The proof of teh second property is a mere
observation that both sides of the identity are 1.

[]
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3.1 Infinite product measures

In the last subsection we saw a remarkable universal limit of averages of d
tuples of i.i.d. random variables as d — oo. Considering large products
of measures is of essence in probability theory. It is then only natural to
investigate infinite product spaces.

Let v; be a sequence of random variables for ¢ € N. Define the set of infinite
sequences taking values in R

X =R*® ={z = (2;)2,: v; € R}

and the family T associated with X to be the set of products of finitely many
dyadic intervals and infinitely many copies of R

T ={Q xR*": d € N,Q a dyadic cube in R?}
= {(2)2,: (1)L, € Q for some d, Q}.

Moreover, we define the generating function 7 as following

d 00 d
T(Q xR = || vi(Q)) - vi(R) = | | vi(@s).
<=1l 11 v =11

Let v be the outer measure generated by 7. The following is the infinite
dimensional version of an important observation that we made in R™. It is
a baby version of a family of theorems in the literature on infinite product
spaces.

Theorem 3.5. For all Q € T, 7(Q) = v(Q) holds.
Proof. We shall show that for any Q € 7 and a sequence Q' € T with
Q C U, Q" we have
T(Q) <> (@Y.
l

Let £ > 0 be small and let Ql be a sequence of compact intervals that satisfies

Qi C Q; and ) |
vi(Qi) > e %% 1 (Qy), for i < d,

vi(Q:) > e~ v(RY), for i > d.

The idea is that we approximate the measure of @); (in case i > d we ap-
proximate the measure of R) from below by a compact set contained in ;.
Similarly we approximate @} from above by open intervals. Let Q! be an
open interval with Q! > Q! and

v (Q) < @ Ny(Qh), for i < d,

102



QﬁzR, for i > d'.

By Cantor’s diagonal and a compactness argument (we skip the details) one
shows that there exists an L < oo such that

L
QclJe"
=1

Then, taking (max; d') < oo we can simply restrict ourselves to R(max ) for

which the statement is true by the theory of finite product measures, i.e.
L
T(Q) <> 7(QY.
=1

Letting ¢ — 0 we finish the proof. O

End of lecture 16. December 15, 2015

We elaborate on some notions introduced in the previous lectures. The prod-
uct measure of v; on R® and v, on R% is the measure v on R®**+% given

by
v(Q) = v1(Qr x -+ X Qa,)va(Qay 11 X -+ X Quy1dy)-

Not every measure on R? is such a product measure, just as not every function
is of the form

fxy,...,xq) = fi(zr, . xay) fo(Tay i1y -+ oy Taytdy)-

This construction of a product measure corresponds to the partition {1, ..., d}
{1,...,d1}U{dy+1,...,dy} where d = dy+ds. Analogously we define product
measures with respect to any partition

L
{1,....a} =N
/=1

where the union is disjoint.
Let v be a random vector on R? and n an injection from {1,...,d'} to
{1,...,d}. We define the projected random vector v/ by setting

V'(Ql><~~><Qd/):y(R><-~><Qn(1)><-«~><R><-~><Qn(d))
:V({QTJTZGQn(l),lSZSd/})
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A random vector is called an independent product with respect to a parti-
tion {1,...,d} = UEL:1 N, if it is the product of the corresponding projections.

Last time we also considered infinite product measures, see Section [3.1] For
infinite product measures we analogously define projections of random vec-
tors onto subsets of N and independent products with respect to partitions

of N.

A normalized Gaussian random variable is defined by

1 22
v(Q) = E/@e‘?dw.

2 is the Radon-Nikodym derivative of v with respect to
1

the Lebesgue measure. The factor —= is chosen such that v(R) = 1.
Since

(e [ %) - [ e [
e = € n = € s
1 V2T Jg, o Jg 27 Jo

N

. 1
The function oris

the independent product of d Gaussian random variables is given by

1 _l=?
Q)= —— L

Theorem 3.6. The independent product of d Gaussian random variables is
a rotation invariant Radon measure on R?.

Proof. Let A :R? — R be linear and |Az| = |z| for all z € R Let £ C R?
be Borel. Then

1 o|? 1 o|?
v(AE) = et du v ”] e dp
V2r JAE V2r JE
1 o|?
@ e_%d,u =v(E)

For the (1) we used rotation invariance of p and that if x = Az’ € AFE, then
2’ € E. For (2) we used |Az| = |z|. O

For an infinite product of i.i.d. normalized Gaussian random variables we
would like to discuss rotation invariance as well. To define rotations we need a
Hilbert space structure. An example of an infinite dimensional Hilbert space
is /?(N), the space of all square-summable sequences. The infinite product of

104



normalized Gaussians lives on the space RY of all sequences of real numbers,
such sequences are not necessarily in ¢*(N). Moreover, for any the space of
bounded sequence (i.e., £*°(N)) the following holds.

Lemma 3.7. The set (°°(N) has v-outer measure zero in RY, where v is the
infinite product of normalized Gaussian random variables.

Since (?(N) C ¢*°(N) then also ¢*(N) has measure zero. This indicates that
developing a suitable Hilbert space theory will not be possible without addi-
tional assumptions on the sequences.

Proof. Recall that x € ¢*(N) is a Banach space with the norm ||z]. =
sup; |;|. We need to show that for every k > 0

v({z € RY : |20 < Zk};) = 0.

N {z€RN:|z;|<2k}

It suffices to show that for every € > 0 there exists d € N such that

v({z e RY: sup |z <2F}) <e.
i=1,.,d

Thus we would like to compute

V(ﬁ{x cRY: x| < Qk}>

i=1

This is a d-fold product of Gaussian random variables

Hw/ Fw) -] T/ i) = (1)

= 5k>0

If d is large enough, the right hand-side is less than ¢. O

If we consider the set of sequences with square root logarithmic growth, the
result changes.

Theorem 3.8.
v({z € RN : 3kVi : |zi] < 2%(In(e +1))/?}) = 1

Thus almost all sequences satisfy a square root logarithmic growth estimate.
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Proof. We show that the complement has measure zero, i.e.

v({a : VETi ¢ |zl >v2k(ln(e + i))l/Z}I) =0.

Ny, {z:3i:|z;|>2% (In(e+4))1/2}

Thus it suffices to show that Ve > 03k such that

v({z : Vk3i : |z > 2%(In(e + i))l/z}) <e.

U {=zi:|lzs|>2*(In(e+4))1/2}

So it suffices to show that

Zl/({az:z | > 26(Ine +1))V?}) < e

(2

We have

2

v({z; : x| > 28(n(e +14))/?}) = e~ Tdx

2 / o
V2T Jok(In(eti))1/2

_ z2k (ln(e+i))1/2
2 X

2 / o
<= e
V2T J ok (in(e+4)) /2

2 2 22k In(ei)
2

V21 25 (In(e + )12

22k:—1

—~
~—

—~

<) 4 2 ( 1 )
T V2r 2k \e+i
In (1) we computed the integral, in (2) we used In(e 4+ i) > 1. If k is large

enough, then (1/e +4)**"" is summable in i and the term in (2) is less than
E. []

The following are two examples of measurable functions in RY with v as
above.

1. Functions which depend only on d variables (f(z) = f(2/) if z; = ]
for i = 1,...,d) and are measurable as functions on R?.

2. Linear functionals of the form

Zvixi =: f(x) (10)

with

o

Z |v;|(In(e 4 )2 < oc.

i=1
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The last condition means that a certain weighted ¢!-norm of the co-
efficients is finite. Functionals of the form are defined almost
everywhere. Indeed, if z is such that sup, |z;| < 2%(In(e +14))'/2, then
Y2, |villxi| < oo. By the previous theorem almost all z satisfy such a
condition. Functionals of the form (10 are measurable since they are
pointwise a.e. limits of measurable functions. To see that set

d
fa = Z Uiy
i=1
which is measurable by 1. Since

lim fy(z) = f(x) a.e,

d—00

f is measurable.

Let us call vectors v := (v;) as in 2. admissible. Note that such admissible
vectors are automatically in ¢*(N).

Theorem 3.9. If v is admissible, then v - x is defined almost everywhere in
RY and the random variable v, defined by

v, (Q) =v({z v -1 €Q})
1s normalized Gaussian distributed.

Proof. Consider a unit vector in R?

v _ - - 7
|(v1, .-, va)]
where we assume |(vy,...,vq)| # 0. By the rotation invariance result in R?,

d

f(d) (z) = sz‘(d)xi

=1

is normalized Gaussian distributed.
We need to show that for every ¢ > 0

V({;I::v-er})—L efgda:’ <e.

V2rm Jg
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Choose k large enough such that

1
v({z Vi |x] < 2%(In(e +14))Y?}) > 1 — 3¢
—F
It then suffices to show that
MzeBvreQ)) -~ [ T <
v({zx U T ——— [ e 0 —€.
V21 Jg 3

Note that v - x is well defined for x € E. By the dominated convergence
theorem v(@ - — v - z a.e. (exercise). So it suffices to show that

vz e B v s eQh - ¢% ] < oo

Removing E again, it suffices to show

1
\/27T Q

Observe that this holds by the rotation invariance result in R O]

‘l/({l’ @z eQ})) - e‘édx’ =0.

End of lecture 17. December 17, 2015

3.2 Brownian motion

Let us define

EO"NI‘W:{ RY : sup— 1%l }
(N.log™"%) = q= € ok Togle + 1)1z =

Last time we showed that v(¢*(N,log~"/?)) = 1. In other words, almost all
sequences are contained in ¢>°(N, logfl/z). Thus, if we take v € /}(N, logl/Q),
where

(N, log?) = {x cRY : Z 25| log (e +14)/? < oo}
ieN
then the sum x -v = Y, x;v; converges absolutely for almost all z € RN
(exactly for all z € £>°(N,log""/?)). In particular, this holds for v with
[ol3 = Yien|vi> = 1. Observe that if v, ... 0™ € ¢}(N,log"/?) and
0@y = 1, (@, v") = 0 fiir £ # ¢/, then the v, are pairwise independent.
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Roughly speaking, our goal is to replace the index set N by the dyadic num-
bers Y. Let Z be the set of dyadic intervals I = (2%, ”2—4,;1],16,71 € N. This

is a countable set so that it makes sense to consider an infinite product of
Gaussian random variables on the space RT = {(z/);ez : z; € R}. To a
dyadic interval I € Z, we associate the Haar function

hy = 1(1 —1)
I_\/T I[ Ir7

where Iy, I, denote the left and right child of I, respectively.

I

Figure 30: A Haar function h;.

It is normalized so that ||hr||2 = 1. Consider the space
{fohl X E RI}
Iez

This is the Gaussian free field. Naturally the definition needs to be taken
with a grain of salt. It is not immediately clear if and in what sense and for
which x the sum makes sense. But let us not worry about these issues here.
Instead, we will interpret elements of the Gaussian free field as martingales.
That is, given x, we would like to look at the averages

/szjhj.

Of course this integral doesn’t make any sense. However, we can define
JeT I

To stress the dependence on z we will also write p,(I). This sum converges
absolutely for almost all € RZ. This is because for fixed I € Z, the
coefficients || ; hy exhibit sufficient decay in J; we have
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0, fallsINJ =0,

’/hj‘ _ )0, fallsJCI,
1
I ek falls I C J.

For every k with 28 > |I| there is exactly one J € Z with [ C J and we

have | f L hal = 2',%)2 This exponential decay is certainly more than enough to

compete with any sort of logarithmic growth that we need to allow for the
admissible set of (z)7e7 to have full measure.
P is a martingale. Indeed, we have

p(I) = p(Le) + p(1y).
Moreover, the following properties hold.

1. LIII)I is normalized Gaussian distributed.

This follows as in Theorem [3.9] Tt suffices to check

> (o ) =Sl ml =l =

Here we used that the Haar functions form an orthonormal basis of L2.

2. If I,I' € T are disjoint and |I| = |I’|, then o) o) ape independently

VI V1T
distributed.
This is seen by changing coordinates to the basis

{ﬁ—fﬂ L JeT, I =1 = \H}U{fu I < | = !T’I}-

3. If I,... 1, € T are pairwise disjoint, then C/(II;_l)\’ cee :y(f;’_)' are indepen-
dently distributed.

A natural question is whether, or rather for which z, p, is a signed Radon
measure? We need to check the condition

sup Z lp(I)| < oc.

Ko rj=2 1c0,1]

Claim.

y({xeRI 30vE: > |p(D)] gc}) ~0.

|I|=2%,1C[0,1]
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Proof. Tt suffices to show
V({x eERT:VE Y (D)< (J}) )
|T|=2%,1C[0,1]

for a fixed C. Further, it suffices to show that for all ¢ > 0 and k£ we have
y<{a; eRT: Y |pD)| < c}) <e.

Define

for suitable a,b such that [xduy = 0 and [ 2?dp = 1. Then by the central
limit theorem

[I|=2*,1C[0,1]

converges to a normalized Gaussian random variable. The rest is left as an
exercise. [

That is, p(-, z) is almost never a Radon measure. In particular, the limit

C)

werjll—0 |[I]

almost never exists.

The Brownian motion is defined as a generalization of p as
t
U)(t) = Z:CJ/ hJ.
JeT 0

If (t1,ts] is a dyadic interval, then

w(tz2) —w(t) = p((t1,ta]).

The properties of p that we have seen carry over to w and also characterize
the Brownian motion in some sense.

1. wlt2)—w(t)
: Vio—1t1
crements).

, t1 < ta, are normalized Gaussian distributed (Gaussian in-
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2. If t; < ty < t3, then w(ijz;‘l’tib), w(iiz;’;gtl) are independent random
variables.

Theorem 3.10. Let a < % Then w is almost surely (up to sets of v-measure
0) a a-Hélder continuous function on [0, 1]. That is, there is C' such that for
all t1 7A ty € [0, 1],
[w(tz) — w(ty)|
[tz — £

It 1s almost surely not %—Hélder continuous.

<C.

The notion of Holder continuity is closely related to that of finite variation.

Theorem 3.11. Let o« > 2. Then w s almost surely of finite V, norm,
which is defined as

N-1 1/r
Jwllv, =  sup (Z!w(tm)—w(m\r) .

NeNt <<ty \ 5
It almost surely has infinite Vo norm.

We don’t discuss the proofs.
Variation is related to path integrals. The question is: when can we give
meaning to an expression of the form

/0 F(y()y (£)dt ?

What are the weakest possible assumptions on v for this object to have a
reasonable meaning?

This is simple if v has finite 1-variation. For v having finite V., » < 2 norm
one can define the integral in exchange for some regularity assumptions on
F (F € C") by means of Taylor series. For 2 < r < 3 we can do no such
thing, even when more regularity on F' is given (and therefore more terms of
the Taylor series are available). This leads to a theory of rough paths. Paths
given by Brownian motion give examples of such rough paths. The extra
information that we require to define the path integral is the value of the
integral

/0 Aty ()t

In the context of the Brownian motion it makes sense to define

This leads to Ito integrals.
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End of lecture 18. December 22, 2015

4 Integration on manifolds

We will be discussing integration on submanifolds of R¥. It is also possible
to define manifolds intrinsically, without reference to surrounding R?, but
for what we have to say this level of generality is unnecessary and has to be
deferred to later.

We first recall and highlight a few facts about Radon measures.

A Radon measure v on R? is an outer measure generated by the family of
dyadic cubes T and a positive function 7 thereon,

T = {Q a dyadic cube in R}

7: T — [0,00),

satisfying the martingale and regularity conditions

(1) Forall Q € T

Q'ca
K +1=k
(2) Forall Q e T
. ! o
2 T@=0
Q'cq
K +N=k
Q'ZQ

For an arbitrary subset £ C R? we defined v(F) via an infimum taken over
coverings of F by dyadic cubes:

v(E)= inf > 7(Q).
ECJT QET

Recall that we proved that for Q € T, 7(Q) = v(Q). We called a set E
measurable with respect to v if for any @Q € T the equality

v(ENQ)+r(ENQ) =v(Q)

holds. Note that in particular every () € 7T is measurable and therefore all
Borel sets are v-measurable. We called a function f: R — [0, oo] measurable
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if for all A > 0 the preimage f~1((\, o0]) is a measurable set. If a function f
is Borel measurable, then it is also measurable.
Next, for any function f: R? — [0, 0o] we defined the integral as

/fdy - /OOO vz fz) > \dA

with the right hand side understood as the integral of a monotonically de-
creasing function, which we introduced as Newton integral in Analysis I. The
integral has good properties if one restrict attention to emasurable functions.
In particular, for f, g both v-measurable, we have

/f+gdu:/fdu+/gdy.

Now, let 1 and v be Radon measures and let (), denote the unique dyadic
cube of order k that contains x. We proved that for u-almost all 2 € R? the

limit
V(Qx,k)
11m
k——o0 /,L(Q%k.)

exists. Then we defined g(x) to be equal to the limit above if it exists, if the
limit does not exists we put g(z) = 0. The function g is called the Radon-
Nikodym derivative of v with respect to p. It is gy-measurable as a.e. limit
of functions constant on dyadic cubes. It is also Borel measurable since the
set where a sequence of Borel functions conerges is Borel measurable. The
Radon Nikodym derivative is denoted by g = dv/dpu.

Recall that v is absolutely continuous with respect to p if for all @ € T

v(Q) = / gdp (in general we only have v(Q) > / gdp ).
Q Q

Note that if v is absolutely continuous with respect to u, then for all mea-

surable £ C R4
v(E) = / gdp.
E

By a covering argument the inequality > holds. Moreover:
(1) The statement holds for sets of p-measure zero.
(2) One can validate the equality for all Borel subsets.

(3) Putting the previous steps together it holds for all y-measurable sets.
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From this one can easily obtain that actually

/deZ/fgdu

holds for all Borel functions f. Let € > 0 be arbitrary and
Em — {2€m < f < 2€(m+1)}.
Indeed,

/fduzz i fdy§2€Z2€m/ 1dv

22522””/]3 gdu§2EZ/E fgdu=2s/fgdu-

Since € > 0 was arbitrary we obtain <.

[ tav< [ sgdn

The reverse follows similarly and we leave it as an exercise.

Suppose that v is absolutely continuous with respect to p and p absolutely
continuous with respect to v. Denote by g = dv/dp and g = du/dv the
respective Radon-Nikodym derivatives. Using the last statement we proved,
for any Borel function f

/fdv: /fngZ /fgédl/-

This, however, means that gg is v-almost everywhere equal 1: let

E.={x:gg(x) >1+¢};

/1EEdV:/1E€g§dVZ (1+5)/1E€dy,

which means that v(E.) = 0. The same argument applies to {gg < 1 —¢}, so
gg = 1 v-almost surely. Note that we have similarly that gg = gg is p-almost
everywhere equal to 1.

then

Definition 4.1 (Pushforward). Let (X3, 11) be an outer measure space, Xs
be a set and g: X; — X5. Define an outer measure on X,

n(E) =wn(g ' (E)),

where ¢g7!(E) denotes the preimage of E. The measure v, as above is called
the pushforward of 1.
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Note that g~ !'(E) = {z : g(z) € E} is defined even if g is not invertible. The
notation ¢7'(E) should not be mistaken as suggesting that ¢ is invertible,
though if it is, then we also have g7 (E) = {g~'(x),z € E}.
Let (X1,11), g and (Xs,12) be as in the definition. Let f: Xy — [0, 00]. We
have
/fdyg :/ vo({f > )\})d/\:/ n({fog>A}d\= /fogdl/l.
0

0

Example (Polar coordinates). Let v, be the Lebesgue measure on R? re-
stricted to [0, 00) x [0, 27], i.e.

v (Q) = (@ N0, 00) x [0, 2m]),
where p is the Lebesgue measure. Define
g: [0,00) x [0,27] — R?, g(r, ) = (rcosp,rsinyp).

The pushforward of v, is a measure on R?. One would like to relate that to
Lebesgue measure on R2.

Theorem 4.2. Suppose that vy is a Radon measure on R? and g: RY — RY.
Assume that the push forward vy of vy under g is a Radon measure, and
assume that Lebesgue measure ji on RY is absolutely continuous with respect
to vo. Then for any Borel function f and with h = du/dvs

[ tan= [ gani= [ (7o g)he v,

Proof. The first inequality follows, because h is the respective Radon-Nikodym
derivative and the second inequality follows from the remarks above. O]

End of lecture 19. January 7, 2016

Lemma 4.3. Let vy be a Radon measure on R, Let g : R — R? such that
1. vi(gHQ)) < oo forallQ € T
2. g71(Q) is vy measurable for all Q € T

3. There exists E C R? such that v,(E°) = 0, g is injective on E and
9(Q N E) is measurable for all Q € T.

Then the push forward of v1 under g is Radon.
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Proof. Define 7: T — [0,00) by

7(Q) == 11(97(Q))

Note that by 1., 7(Q) is always finite. From 2. it follows that 7 satisfies the
martingale condition. Indeed,

S @)= Y ng @) Q)

Q'cQ Q'cQ
K 41=k K l=k

To see that 7 satisfies the regularity condition fix ) and define

Ev=g( | Q)
Q'CQ
k' +N=k
QZQ
Note that () Ex = 0. We need to show that limy_,o v1(Ex) = 0. Define
Fy:=g¢ ' (Q)\ En, Gy:=Fy\Fy_1.

Note that the sets Gy are measurable. We have ¢71(Q) = Uy Fnv = F1 U
(Uy=1 Gn)- Then by measurability of Gy

vi(g71(Q) = m(F) + Y 1i(Gn)

N>1

Since the series on the right hand-side converges it must hold

n(Ex) = Y n(Gu) =0

M>N

as N — oo. So 7 generates a Radon outer measure v. For all Q € T we
have v(Q) = 7(Q) = 1»(Q). It remains to show that v(E) = 1v,(F) for all
E C R¢. We have
w(E) < il > n(Q) = v(E)
QeT’
where 7' goes over all subcollections of 7 which cover E. The last equality
is by the definition of the outer measure. The reverse inequality holds for

measurable sets without further conditions. Indeed, if F is v—measurable
we have for all Q € T

v
T

V(ENQ)+v(Q\ E)
(ENQ) +1n(@Q\ E)

(Q)
2(Q)
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Since (ENQ) <v(ENQ) and 15(Q \ E) < v(Q \ E) we must have

VENQ)=1n(ENQ)

for all @ € T and hence v(F) = 1v»(FE).

However, by the assumption 3. we have v(E) = 1»(E) for all sets E. To
see this, the idea is to restrict so a conull set £ on which g is injective and
consider a pushforward of v, under ¢g=! to obtain the reverse inequality. To
make this precise, let £ be the set from 3. Set F':= g(E) and let h : R? — R
be such that

Hz) 1z €F
h(@:{go cx & F

We have v5(F¢) = 0 and g~ (F°) C E°. (Use v1(E¢) = 0 and g~ (g(A)) D A,
g1 (A°) = (g71(A))°.) Define v5 to be the push forward of v, under h. Then
v3(Q) = 11(Q) for all Q € T since
- @ - N ) =y (3)
n(Q) =17 (Q) E (™ (@NE) En(@nE) 2 n(Q)

We used (1) : 1(h~H(QNE)) = 0, since ™Y (QNE®) C h™Y(E°) = h™Y(E)* =
g(E)¢ = F° (observe that by injectivity of g on E and injectivity (bijectivity)
of h on F we have g(E) = h™'(E) for any E C E), (2): bijectivity of h on F
(3): i (E°) =0

Moreover, for all E C E we have
1 2
vs(E) © va(g(B)) 2 ()

where (1) holds since v3 is a push forward of v, under h and g(E) = h™'(E)
by injectivity of g on E, while (2) holds since 15 is a push forward of vy under
g (again use injectivity of g). Thus, v, (E) = v5(E) for all E C E. We leave
it as an exercise to conclude that v = 5. O

Now we discuss absolute continuity. The following lemma allows to calculate
the Radon Nikodym derivative in some cases.

Lemma 4.4. Let vy, i be Radon measures on RY. Let g : R4 — R Let
E C R? be open such that g|g is injective, v1(E€) = 0, u(g(E)°) = 0. Let g be
continuously differentiable on E and assume its derivative is everywhere non-
singular. Moreover, let the assumptions of the previous lemma be satisfied.
Then the push forward vy of vy under g is a Radon measure, p is absolutely
continuous with respect to vy and for all x € E

e
dl/2

(9(x)) = |detDg],|. (11)
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The determinant in is called the Jacobi determinant of g.

Proof. Applying the inverse function theorem there exists a ball B(z1,r) such
that g is invertible in B(xy,r) and

D(g™)lar = (Dglan) ™"

Without loss of generality we assume that 1 = x5 = 0. Consider the parallel
epiped
PM,k = (Dg|l"1)_1<Q$2,k)v

and )
Pzz,k = (]- + g)sz,ka

which is a dilated parallelepiped, dilated by a factor 1+ ¢ with respect to the
center of P,, ;. Notice that for k small enough we have

Qfl(sz,k) - pxz,k'

It holds, because if y € ()4, x, then writing the Taylor expansion

(.

9 ()= (Dgle))" 'y +nlyl

EPy, i+ small-Ppy 1 CPpy i

since n — 0 as k — —o0.
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Let

P:Ez,k - (1 - 5)Px2,k>

scaled with respect to the center of P,, ;. Similarly as above, using the Taylor
expansion, one can see that

p:cz,k: C g_l(sz,k)'

The two inclusions that we have just shown give that

(1= ) u(Paye) = 1(Paye) < (g (Qua)) < 11 Pry) = (L4 &) u(Pryr)-

One can easily finish the argument now, since

M(Pm,k) = |det Dg|$1|_1:U’<QﬂC2J€)

and e > 0 is arbitrarily small. We leave the details as an exercise. O]

Polar coordinates in R¢

There are several assumption in the last two lemmata, but they are easily
satisfied in practice. To illustrate this we now discuss their application to
polar coordinates.

For d = 2 this has already been discussed in the previous lecture. However, in
this section we instead of (r,¢) € [0,00) x [—m, 7] consider (r,p) € R x [0, 7]
since this is be more convenient for certain arguments. That is, we consider
also negative radii but only half of the possible angles. Let v; be the Lebesgue
measure on R restricted to R x [0, 7]""1. Define

g(ryp1, ...y pa_1) = (rcos g,
7 81N Y1 COS P9,

7 Sin (1 Sin s oS Y3,

ey

r( Hsin ©i) cos @;),

i<j

.
d—1

r Hsin ©i)
=1

Let £ :=R\ {0} x (0,7)%. We claim that g is injective on E. To see that
assume that g(r,1,...,904-1) = (x1,...,x,). First, by induction on d one
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can show that
d
2 2
r = E x;.
i=1

For instance, if d = 2, then

(rcos p)? 4 (rsinp)? = r?

and the induction step proceeds similarly (exercise). Therefore, |r| is deter-

mined by (x1,...,2z4). Moreover, observe that sign(r) = sign(z4) since sin is
positive on (0,7). Since x; = rcos¢; and cos is invertible on [0, 7], we see
that ¢, is determined by x4, ..., x4 and so

x
Y1 = cos ! (—)
r

Inductively we proceed with ¢;. This shows that ¢ is injective on E. To see
that u(g(E)°) = 0 it suffices to show that g(E) contains the set

{(z1,...,2q) : x; # 0 Vi}.

This can again be seen by an induction argument (exercise). We have

d—1

|det(Dg|r,¢1w,¢n)‘ = ! H(sin ‘Pi)dil

J=1

(exercise). Thus, p is of the form

rdrde

d=2:
d=3: risingdrde;de,
d=4: 7r°sin® ¢ sin podrdpdpsdes

End of lecture 20. January 12, 2016

Recall, for a space with outer measure (X;,v1) and a map ¢g: X; — X, we
defined the pushforward measure on X, as

vy(E) = (g7 (E)).

The last two times we were discussing change of coordinates in R?, in par-
ticular the polar coordinates, and saw how it behaves under integration -
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we computed the pushforward for a continuosly differentiable, almost every-
where injective map ¢g. Today we will compute the pushforward of a from
R* to R? with k < d, what will let us to define integration on submanifolds
in R%.

We have the following result, similar to the case k = d, which we discussed
the last time.

Lemma 4.5. Let vy be a Radon measure on R¥, k < d, and let g: R¥ — R?,
If the following conditions are satisfied

(1) r1(g7H(Q)) < oo for every Q € T
(2) g Q) is vi-measurable for all Q € T

(3) There exists E C R* with v,(E¢) =0, g is injective on E and g(QNE)
is Borel for all Q € T,

then the pushforward vy is a Radon measure. Additionally vo(R?\im(g)) = 0.

Remark. We would like to integrate on manifolds with a help of the above
lemma. So far it is not clear how to do it. We shall understand the things
locally and in this situation unlike R? we prefer to use balls instead of cubes,
because of their rotational invariance - this way we do not have to worry
how ’tilted’ is a manifold at a certain point. Another thing is that for a
k-dimensional manifold S and y € S we naturally expect the measure of
SN B(y,r) to behave like r*¢;, for small r, where ¢}, is the Lebesgue measure
of the unit ball in R*.

Definition 4.6. A measure in R? is called k-rectifiable if for r-almost all

y € R4
i VB W:7))

- exists, is strictly positive and finite.
r—0 r

It is k-rectifiable and normalised if for v-almost all y € R?

. v(B(y,r))
= =%
where ¢ is the measure of the unit ball in R¥.

Exercise 4.7. Let v, pu be k-recitfiable and normalised Radon measures on
R?. If v is absolutely continuous with respect to  and p is absolutely con-
tinuous with respect to v, then v = u.

Let us consider an example of a Radon measure in R? for which the above
limit with & = 1 does not exists, although the quotient is uniformly bounded.
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Example. Let
po = - Lo 12,
be the Lebesgue measure p in R? restricted to the unit square. Next, divide

the square into 16 smaller squares of the same area. Let @} for i =1,2,3,4
be the ones that are in the corners of the big square, just as in the picture.

Define p; as follows
4
po=dope) lon
i=1

Figure 31: The first step of the construction. pu; is supported on the red
squares above.

Next, we take each of the corner squares, split it into 16 smaller ones and
take the little ones in the corners, just as we did in the first step of the
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construction (picture). This way we obtain 16 little squares Q?. Then we

can define p5 similarly
16

p2 =164 1.

=1

- .

Figure 32: The second step of the construction. Q? for i = 1,2, ..., 16 are the
red squares above. 5 is supported on their union.

Contiuining in this manner we obtain the sequence of measures py for k € N
and for each k € N, 114(R?) = 1. One can show that the limit 7 defined for
QeT
7(@) = lim 4,(Q)
— 00

generates a Radon measure p. We leave it as an exercise. Note that p is
supported on the intersection of the unions of the squares we chose at each
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step, i.e. the Cantor set C'. Next, we observe that v(B(y,r))/r is uniformly
bounded.

Lemma 4.8. There exist 0 < 1,72 < 00 such that for y € C we have

v(B(y,r
%SWSW

Sketch. This is not so difficult to see. Roughly, if y € C, then v(B(y,r))
behaves up to uniform constants v, and 7, like v, (Q?) where 272" is the order
of Q7 - the biggest cube contained in B(y,r). Next, notice that r ~ 272"
and v,(Q7) ~ 272" although the Lebesgue measure of Q7 is equal to 274",
that is where the scaling according to r! comes from. O]

Moreover, the liminf and lim sup are different. Take, for example, a point
y € C to be one of the corners of [0,1]?. There exist (picture) arbitrarily
small ry, ro with (14 €)r; < ry such that

B(yﬂ”l) nC = B(IUJ"Q) nc.

Figure 33: An example of B(y,r1), B(y,r2) with (14€)ry < 7 and B(y,r1)N
C' = B(y,rs) NC. Clearly this construction can be done for arbitrarily small
scales, preserving the ratio r1/rs.
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Theorem 4.9. Let 0 < k < d, u the Lebesque measure in R¥, g : R¥ — R4

and E C RF open such that g|g is injective. Assume that g is continuously
differentiable on E and that vrg(Dg|,) = k for all x € E. Then the push
forward vo of plg is a k-rectifiable Radon measure and the push forward of

pli\/det(Dg|T - Dgl,) (12)

1s k-rectifiable normalized.

Remark. Note that since Dg|,: R* — R Dg|l o Dg|,: R¥ — RF and is
nonsingular, so the determinant under the square root makes sense.

Observe that the theorem lets us to define the surface integral, since we have

| sdn= [ (fog)VIdet(DglE Dl
9(E) Rk

Sketch. The proof follows from approximation by linear functions. We leave
the details as an exercise and consider here only the case when ¢ is linear.
Let I be the image of g in R?. Denote by e; the i-th unit vector in R*. Hence

d

€; '& v = Z(Ui,€j>€j.

Jj=1

First case. Assume initially that vy, v, ..., vy form an orthonormal basis. Let
y € I', we have that

9 ' (B(y, 7)) = Blg~'(v), ),

because with this assumptions ¢ is an isometry. Hence,

u(g ' (Bly,r))) = cr™

Second case. vy, vy, ..., v linearly independent. Choose an orthonormal basis
wi, W, ..., wy of I'. Then we have

Let f be defined as

f(y) = ({y,w1), (Y, wa), ..., (Y, w)).
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Fory el

va(B(y,r)) = u(g™ (B(y,r))) = ulg™ f1(B(z,7))) = | det(f o )| csr",

for z = f(y), by the previous lecture, since fog: R¥ — R¥. This means that
we are just left with calculating the determinant in terms of g

det(fog)? = det((vi,wj>)2 = det((v;, w;)) det((w;, v;))
= det(D_ (vi, wy)(wy, ve)) = det(Y_(vi, ;) (wj, wy) (wy, ve))

j j
= det((v;, vy)) = det(g” o g).

[]

End of lecture 21. January 14, 2016

In the last lecture we discussed the following theorem regarding the surface
measure:

Let 0 < k < d, p the Lebesgue measure in R¥, g : R¥ — R? and £ C RF
open such that g|g is injective. Assume that g is continuously differentiable
on E and that rg(Dg|,) = k for all z € E. Then the push forward v, of ulg
is a k-rectifiable Radon measure and the push forward of

plpy/det(Dg|T - Dyl..) (13)

is k-rectifiable normalized.

Our goal is to calculate the determinant in (13]). Fix a point x € E and set
v; = 0igly for i=1,... k.
Since g maps into R? it is of the form g = (g1,...,44). Set
vy =09, for i=1,... )k, j=1,...,d
Then (v;;);; is the matrix Dgl,. [?] Observe that

det(Dgl; - Dyl.) = det(A)

124, is in the ¢ — th column and j — th row
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where the k£ x k matrix A is given by

d
Ay = Zvijvlj = <Ui,Uz>-
j=1

The determinant in question is the volume of the parallelepiped spanned by
v1,...,0. To compute this volume we are interested in the length of the
spanning vectors and the angles between them. Note that the scalar product
encodes exactly these quantities - the length of the vectors and the angle
between them.

To compute the determinant in ([13) we first recall some facts from linear
algebra. Write £ = {1,...,k}. The determinant of a k x k matrix A is
computed by the formula

det(A) = Z e(o)HAw(i)

o:k—k

bijective
where e(0) € {—1, 1} is the sign of the permutation . The sign is determined
by the properties e(05) = e(0)e(¢) and €(0) = —1 if ¢ is a transposition (a
permutation, which exchanges two elements and keeps all others fixed).
Then we can write

k d
det(Dg[l - Dglo) = > (o) [ vivow,

o:k—k i=1 j=1
bij.
1) :
= > cl0) X [T virwvemnn
o:k—k pk—d =1
bij.
) .
= el0) Yo vty vewonn
o:k—k pk—d i=1
bij. injective
(3)
=2 o) > > H“w& ()30 )
o:k—k pk—d G:k—ki=1
bij. monotone  bij.
() k k
=33 N c@e@e ™) [ vy [Jvir@@ ()
pk—d 6:k—k o:k—k =1 Jj=1
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In this calculation we have argued as follows.

(1): Distributive law. In each of the factors (parametrized by i) we pick the
element with the index v; piVs(i)p() (i-e. § = p(i)) and sum over all possible
choices.

(2): If p is not injective, i.e. if p(i) = p(i') = j for i # i, then for a fixed
o, the product contains a factor v,(;);vs();. Now consider a permutation o
for which (6(i),(i")) = (0(i),0(i")) and agrees with o on all other elements.
Then the product corresponding to ¢ contains the same factor, but the sign
of the permutation is different. So the terms corresponding to ¢ and & cancel
each other.

(3): Sorting. We write p = po where p is the monotone map which has the
same image as p.

(4): We write i = 071(j) and use £(5)* = 1, (o) = (o).

(5): We denote 6 = oo "

(6): The expressions corresponding to & and & split and are equal.

By this calculation we have

Vdet(Dg|T - Dgla) = | Y (det(viy(;)))%

p:k—d

mon.

The expression on the right hand side means that from the d x k matrix (v;)y
we choose k rows (corresponding to the image of p), get a k x k matrix and
compute its determinant. Then we sum the squares of these determinants
over all possible choices (monotone maps p) and finally take the square root.
The expression on the right hand side is the length of the vector

') = det(vi(j))

in R() (paramterized by p; dependence on x is understood despite not being
present in the notation). Therefore, the area of the parallelepiped spanned
by vy, ..., v is computed as

Vdet(((vi, vi))a) =
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By the above discussion, the right hand-side should be understood that we
project the parallelepiped onto k-dimensional subspaces, compute the vol-
umes of the projections and then take the Euclidean norm (in R(Z)) of the
vector of these volumes.

We claim that the direction of the vector ¢®) is, up to a sign, independent of
the parametrization g; it depends only on the tangent space at g(x) (i.e. the
k—dimensional space spanned by the vectors vy, ..., v;). To see that, assume
we change the coordinates such that

k
v; = g B,
i1

where B is a change of basis matrix. Then vq,...,0; span the same linear
space. We have

@(p) = det(@p(j))
k
= det <Z Bz’l'Ulp(j)>
=1

= det(B) det(vyy(;)
= det(B)p®

Thus, one vector is a multiple of the other (and the one-dimensional space
spanned by the vectors ¢*) is independent of the choice of the basis.) There-
fore, only the length of the vector ¢(”) depends on the parametrization g. Its
direction does not (modulo a sign).

Now let e;‘(’)w) be the unit vector in R() (depending on g(x)) which is par-
allel to ©® (pointing in the same direction such that their inner product is

positive). Then

V/det(Dg[T - Dgls) = e = > @el = (@ 0y (14)
P

Example. Recall that in Analysis IT we calculated lengths of Cl-curves ~ :
[0,1] = U C R? by the integral

/0 I (6 e (15)
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More generally, we introduced path integrals along ~y of (continuous) vector
fields F: U — R? as

[r=] (1) A ()

If the vector field is a gradient field, and v(0) = z, v(1) =y, then

/ F=fy) - f(z) = / VI (1) -7 (B (16)

These constructions should be compared to what we have done in today’s
lecture. The expression ||7/|| in should be compared to (14]). Generalizing

(14), for F : R* — R() we can define the integral

/1E<D9|§cp)a Fg((px))>dll’L

which should be compared with the right hand-side of (g corresponds to
the parametrization of v and we integrate in the parametrization parameter).
Such expressions lead to the theory of differential forms.

Example. Let £k = d — 1. Then e(g’a) is the unit vector orthogonal to the
tangent space at g(z).

To see that, first recall that ( dfl) = d. Let e be a unit vector orthogonal
to the tangent vectors vy, ...,v4_1. Now compute det(e, vy, ...,v4_1) by the
Laplace expansion, i.e. formula for the determinant of a matrix in terms of
its minors (exercise).

End of lecture 22. January 19, 2016

In the last two lectures we intoduced the surface integral via computing the
pushforward py/det(Dg|T o Dgl,) for a continuosly differentiable and almost
everywhere injective function ¢g: R¥ — R? with k < d. This time we are going
to follow a different approach. It will be particularly useful in the near future
while proving Stokes’ theorem. The idea is that we want make sense of the
following expression

| s,

where ¢ is the Dirac delta function. Heuristically it makes sense - we would
restrict ourselves to integration over the zero set of a function f, which defines
a subsurface in R?. How to make this idea precise?
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The plan is to approximate § by a family of ‘good kernels’, note that the defi-
nition is slightly different than the one we considered before. Later we correct
this definition of the delta integration a little bit (namely, we normalize) in
order to agree with our previous surface integral.

Definition 4.10 (Good kernels). We call a family of functions {¢.}.~0 a
family of good kernels if the following conditions are satisfied for each ¢ > 0
and a constant C' > 0

1. ¢.: R — R is continuously differentiable

[\]

: SUpp(gZSg) - [_676]
- pe(x)dr =1

Nl < 5

S W

\

Figure 34: Behaviour of good kernels as ¢ — 0. One can see that they
approach the Dirac measure, which can be imagined as a single point at
infinity for x = 0.

Let 1 be the Dirac measure at 0, i.e. satisfying

e

The first key property of good kernels is that ¢. converge to p in the following
sense.
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Proposition 4.11. Let g: R — R be continuous. We have that

lim [ g(2).(x)dz = g(0) = / gdp.

e—0

Proof.

/ 9(2)e(x)dz "L / " g(@)gu(x)da

—€

~ [ souteidn+ [ (o) - 900 (@)

—& —&

[ ¢e(z)da=1 ‘
2 g0)+ [ (ale) - 9(0)6-(a)o
We are just left with estimating the second term on the right hand side

€

[ 0@) ~ g6zt < [ o)~ g0)lon@)dr < sup lo(z) ~ g0}

z€[—e,¢]

The supremum on the right hand side tends to 0 as ¢ — 0 by continuity of
g O

The next proposition describes the behaviour of ¢. when composed with a
function f.

Proposition 4.12. Let f: R — R be a continuously differentiable function
with finitely many roots x1, xa, ..., x, and lim, s | f(x)| = 0o. Then it holds

that
1

(i)l
Proof. Choose p small enough so that f is well approximated by its Taylor

approximation on [z; — p,x; + p]. We will make this choice precise later in
the proof depending on €. Let 8 and (4, (s, ..., B, be nonnegative functions

with .
B+ Bi=1
i=1

satisfied pointwise, such that f3; is supported in [z; — p, x; + p] and equal 1 in
[x; — p/2,2; + p/2]. This can be done for p small enough since f has finitely
many roots, hence they are well separated. Moreover taking ¢ small enough
we can assume that supp(¢. o f) C supp(5)°. We have

DYRIUCITEDS

[ orania =3 [ ods@nsiaia+ [ ora)pade.

J/

~~
=0 for small
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29 +6/2 w2 +0

Figure 35: Example of 31, 52 and 8 in the case when f has two roots.

The construction of 5’s might seem a bit confusing at first, but the general
thing to keep in mind is that we want the above equality to hold, so we can
localize around each root, consider them separately and ‘forget’” about the £
part that is away from the roots. The last display, for € small enough so that
¢e o f is supported in the union of [z; — p/2,z; + p/2], is equal to

zit+p/2
S [ s

i i—p/2

xi+p/2
- Z/ ¢€(f/(zvz)(x —x;))dx

i i—p/2

x;+p/2
23 [ ) - o =

i i—p/2

x;+p/2
=3 [ @ i T

i i—p/2

N

-~

by change of variables equals _, m
k2

The last thing we need to do is to show that the first order Taylor expansion
is good enough to make ) . R; tend to 0 as e — 0 (together with a right
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choice of p). Let us estimate

f(z)
0o (f(2)) = b (f' (i) (z — 7)) = | ¢L(t)dt]
(@) (z—;)

< 6ol (@) = P (@) = 2] < 5 -l = il -1

The last inequality holds due to our assumption on the supremum norm of
¢.. Note also that we made a use of the fact that f(x;) = 0. Thus, making
sure that |x — z;] < Ce and by Taylor’s theorem we have that n — 0 as
e — 0. We can bound the last display by

1
—Ce-n=C n
€ €
This gives
for each . As we mentioned earlier n — 0 as € — 0, so we are done. O]

Example. By the previous proposition (one can also check it easily perform-
ing a direct change of variables) we have in particular

e—0

lim/¢5(ax)dx = 2.

Let us recall the implicit function theorem, it will be useful for us in the
proof of the main theorem of this lecture.

Theorem 4.13. Let f: R? — R be continuously differentiable with f(0,0) =
0 and Dfloo = (0,A), A # 0. If € > 0 is small enough, then there exists
a continuously differentiable v: [—¢,¢] — R with v(0) = 0 and having the
following property: if (x,y) € B((0,0),¢), then f(x,y) = 0 if and only if
(z,y) = (2,7(2)).

In other words, the theorem gives a parametrization of the set { f(z,y) = 0}
in the neighbourhood of (0, 0).

Now, let a € C.(R?) be supported in B((0,0),e) for a small e. Define
g: (—e,e) — R? as g(t) = (¢,7(t)). Then Dg = (1,7') and our former
surface integral is of the form

/ ot 4 ()T + 7 (02t
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We are going to it compare with the quantity

e—0

hm//¢a(f(l'1,ZEQ))O[(Z'l,ZEQ)dZL'QdI'l.

Passing to the limit under the innermost integral sign we obtain using the
last proposition that

1
(21, y(71))dwy,
/ Da f(z17(21))

where D5 is the second component of the gradient. We leave as an exercise
to work out the details. Now the question is: what is the factor A that makes
the equality

[ att )T - li_r}%//gzﬁa(f(xl, 1))z, 2) - A(2, 22)d1d
hold? A short computation based on the picture below shows that

T2 = VD1f?+ D, f?

D2 f|

(D1f, Dof) g=a Daof

V_...N

—_

VTP _ L _ /o

1 T cos?d | D2 f]
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Using this we obtain

/ alt, v ()T + (b dt
—tin [ [ oufr)ater a0\ Difl, oy + Daf, e

e—0
Finally, we can summarize our computation with the following theorem.

Theorem 4.14. Let f: R?> — R be continuously differentiable. Let o €

Ce(R?). Let Df|(y) # (0,0) for (z,y)’s with f(z,y) =0, (z,y) € supp(a).
Then the surface integral of o over the curve {f = 0} is given by

ity [ [ 6.7 (s, va)alior,aa)\/Dif T, oy + Do,y

e—0

Remark. For the limit above we also use the following notation

//5(f($1, z2))a(xy, $2)\/D1f|%x17x2) + Dgf(lem)dmd@.

End of lecture 23. January 26, 2016

Our plan now is to prove a counterpart of the previous theorem in more
dimensions for both functions and differential forms. Notice that the ac-
tual statement we are after is the equivalence of the surface integral for a
parametrised (in the last lecture given by a curve) submanifold and for an
implicitly defined (via the zeroes of a function) submanifold. The latter was
defined using the delta function and, after a careful computation, properly
normalised. We are going to perform similar computations in R?. Let us
start with the sequence of definitions.

Definition 4.15. A parametrised submanifold of dimension k in R? is a
map g: U C R¥ — R, where U is open and bounded and g is injective and
continuously differentiable; moreover Dg is continuous in the closure of U
and Dg|, has rank k for all z € U.

Definition 4.16. The surface integral of a continuous function h: R? — R
over a parametrised submanifold in R? is defined as

1/2
/U hg(x)) <Z<deth|z>2> dr.

p

The summation goes over all strictly monotone p: k£ — d and Dg|? is the
k x k matrix D;g,j) |-
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Definition 4.17. A differential form in R? is a continuous map w: RY —
d
R(:). We denote the components of w by w”.

Definition 4.18. The surface integral of a differential form over a parametrised
submanifold in R¢ is defined as

/U Z det Dg|?w’(g(zx))dz.

The summation goes over all strictly monotone p: k£ — d and Dg|? is the
k x k matrix D;g,) |-

Note that the last time we considered a parametrised curve, which of course
is a special case of a parametrised submanifold.

Definition 4.19. Let £ < d. An implicitly defined submanifold of dimen-
sion k in R? (defined implicitly due to the implicit function theorem) is a
continuously differentiable map f: R? — R** with limy,_,« | f(z)| = co and
the rank of Df|, is equal d — k if f(z) = 0.

One can define an implicitly defined submanifold as a function like we did
above, but it should kept in mind that we are actually interested in the set
{x: f(x) = 0}. The assumption lim,|—, | f(x)| = 0o is then needed to make
sure that this set is bounded. Observe that the implicit function theorem
automatically gives us regularity of the set {z: f(z) = 0}.

Definition 4.20. The surface integral of a continuous function h: R? — R
over an implicitly defined submanifold is defined as

1/2
/R O/ (@)h(x) (Z(det Df\§)2> dz,

p

where p: k — d is strictly monotone as before and p: d — k — d is a strictly
monotone function determined by p, i.e. im(p) Nim(p) = 0.

Definition 4.21. The surface integral of a differential form w: R? — R()
over an implicitly defined submanifold in R? is defined aq"]

| 807 3 o) det D)

where e(p) := e(0), 0: d — d is a bijection with o[, = p, o|4_r = p monotone.

13In this context, in the literature one also meets the ”"wedge” notation dx; Adza A--- A
dxy, or Einstein’s notation e, f;g; (tensor calculus).
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Theorem 4.22. Let g be a parametrised submanifold and f an implicitly
defined submanifold with

{z: f(x) =0} ={g(y): y € U}.

(the left hand side is a closed set, hence the closure on the right hand side)
Let h: R? — R continuous and w be a differential form. Then we have the
following.

1. The surface integrals of h with respect to f and g agree.

2. The surface integrals of w with respect to f and g agree.

We prove the second part of the theorem. Taking k£ = 1, we have (Z) =d, so
w: R? — R Observe that assuming the second statement and adjusting w
properly it implies the first one.
The full statement follows by decomposition of the submanifold into localized
pieces and the following lemma.

Lemma 4.23. For every reqular point £ € U (g(z) # g(y) for ally € U\U)
there exists € > 0 so that for each w supported in B(g(x),e) the theorem
holds.

Proof. Dg|, is of rank k so there exists p with det(Dg|?) # 0. By permuting

the coordinates without loss of generality we can assume that det(Dg| é’d)) #
0. Let g(Z) = (91, 92). The implicit function theorem implies that there exist
e1, €9 such that for all y; € B(y1,¢1) there exists exactly one x € U and
exactly one ys € B(¥s,e2) with g(z) = (y1, y2)-

€2
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Let w be supported in B(yi,e1) X B(y2,e2) and by the above discussion we
can write V = g~} (B(y1,£1) X B(y2,e2)). We compute

/V > det Dglfw?(g(x))dx

var. change / 1
(F1,61) | det Dg|

On the other hand

| 2 4t DIG 1y (s v () .
“Hyry()! p

n—0

li p)det D dys | d
1111 Rk[de f(y1,92) %:6 € f|yy2 W’ (y1,y2)dys2 | dyx

1
= Z (p )deth| @ (1 y2(y1))dyn
/ B .en) | det Df|(y1 y2(y1) )’ P o™

similarly as in the last lecture. Two last computations show that we just
need to prove that

det D f|?

p
(1) and det Dg|

L(y1,y2(y1))

(indexed by p and p) are parallel vectors. Here is a short argument why: first
of all, inside both integrals we take the inner product with the same vector
w(y1,y2(y1))?. Moreover, inside both integrals we divide by the respective
determinat so the vectors in the last display get normalized having the same
first component, at least up to a sign. Now, the signs agree choosing the
same orientation of integration on the submanifolds.

Notice that f o g(z) = 0 for all z, so by the chain rule

Df|g(x) © D9|$ =0

for all . The 0 on the right hand side denotes the zero k x (d — k) matrix.
This means that the vectors

v; = Dygly, fori=1,..,k and w; = Djg|,, for j=1,...,d—k
are orthogonal, in the sense that for all ¢, j, (v;,w;) = 0. Hence

(%1

det | % | = Y (detvg)? x > (detwigp)”

w1
p:k—d p: k—d
p str. monotone p str. monotone

Wd—k
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However, using another definition of the determinant we also obtain

U1

det 5)’1 Z va H Wio(j)

. o d j=k+1
Wd—k
k d
- X X @@ oo IT w0
p: k—d G k=k 5:d—k—d—k = =k

p str. monotone

Notice that the right hand side equals

Z det(vip(j)) det(wizim) )-

p:k—d
p str. monotone

Put a := det(viy(;)), b := det(wizmy). We just showed that

(a,b)y = +/{a,a)+/(b,b)

which means precisely that a and b are parallel (equality in the Cauch-
Schwarz inequality occurs only in this case).

End of lecture 24. January 28, 2016

4.1 Surface area of the unit sphere and volume of the
unit ball

The surface area of the unit sphere in R?

d

T ={zeR":)) 2f-1=0}

i=1

is the surface integral of the constant function 1 over S?1. In terms of the
delta notation introduced in the last lecture, it can be written as

d d
1/2
/Rdé(;x?—l ;x
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Here we have computed Dif = 2x; for f(z) == 2% 22 — 1 and thus
(32, IDifI)Y? = 2(3°%, 22)Y/? (observe that since k = d — 1, the matrix
D f has only one column and the summation over p translates into the sum—
mation over i = 1,...,d). Since the integral is non-zero only if Z r? =1

=11
(exercise), it equals

d
/ 5(2%2 —1)2dz =: ¢,
RE o

Let us denote

Then
I = (/e_Ide)d
R

:/ e” Zi% dy
]Rd

L LeEE

o e 2i%i§ x: —r)drdz
[ femms(a )

= 6_7"5 x2 — r)drdz
L Lot -n

:/ / (5 x; —T)dajdr
0 R4

2 o

®) 6 y; — d/Qdydr
e L Z

(:)/ efrrd/2*15(2yi2 — 1)dyd7"
0 i

—_— e T2y
2 Jo
Cq d

frg —F —
2 (2)7

where

I'(t) :/ e "rt~tdr
0

is the Gamma function.
In the computation we used the following rules of ”§-calculus”, which need to
be carefully justified using the definition of ¢, i.e. by considering a sequence

142



of good kernels and passing to the limit (exercise). (1): [d(c—r)dr =1 (+
Fubini) (2) : substitution y = \/ry (3) : (t) = rdé(rt) for r > 0,t € R.

If d = 2 we know that c¢; = 27 since the sphere is then just a circle with radius
1 (this relation is also often used as the definition of 7). Since I'(1) = 1, we
have I = /7 and therefore

N

r(5)

Cd

The volume of the unit ball in R? is the integral

/ d:t::/ / §(|z|* — r)drdx
|z|<1 lz|<1J0
1
—/ / d(|z| = r)dzdr
0 Jre
1
= [ [ o6 = vy
0 Jrd
Cd

1
——/ rd2=1 gy
2 Jo

Cq 2 . (&%]

2d d’

Note that we have first integrated over the spheres of radius » < 1 and then
over all radii. This is exactly what one does when integrating with respect
to polar coordinates. It is also possible to compute the surface area of the
unit sphere and the volume of the unit ball via polar coordinates. However,
the computation is more involved in this case.

The computation via delta calculus combined with the trick with the Gaus-
sian function e™*" is very elegant. One could also try to compute ¢, directly
by definition of

— 2 _ — ; 2 _
Ca = /]Rd (5(2 x; — 1)2dz /]Rd (11_{% gzﬁa(z x; — 1)2dx,

without referring to the Gaussian integral, however, this is much less conve-
nient.

4.2 Gauss’ theorem
The heaviside function is given by

1:2<0
H(z) = { 0:2>0
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Note that H' = —4, which should be understood in the limiting sense,
i.e. by considering a sequence of good kernels ¢. and observing that ¢. =

— 7 pe(t)dt + 1 converges to H

Figure 36: Heaviside function

Write . 22 = |z|%. Then, the volume of the unit ball can be expressed as

/Rd H(lap — 1)da

To pass from the first to the second line we have inserted é Zle Dz, = 1.
Integrating by parts we have (this step should be justified as described
above...)

SR
\M&

/Rd H(|z|* = 1) Diw;dx (17)

i=1

/Rd 5(|x|* = 1)2za:da = %l. (18)

)

|
Q| =
[]=
o

Observe that is the integral of a differential form over the sphere |z| = 1,
with f(x) = |z]* — 1, D;f = 2z; and z; corresponds to £(p)w”. On the other
hand, is the integral of the derivative of a differential form over the unit
ball. This should be compared with the fundamental theorem of calculus

F(b) — f(a) = / o

where f is a function on an interval [a,b]. The left hand-side is the delta
integral over the boundary of the interval, while the right hand side is the
integral of f’ over the interior of the interval.

140One should also recall the fact that the derivative of a monotone function is a Radon
measure. In our case, the derivative of the monotonously decreasing function H is (the
negative of) the Dirac measure.
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Theorem 4.24. Let f : R — R implicitly define a submanifold of R® with
f(z) > 0 for z large enough. Let (F;)%, be a Ct-vector field R — R?. Then

/R d 5(f(x)) Z D;f|Fy(x)dx = 5 H(f(x)) Z D;F,(z)dx

The quantity 27:1 D;F; is called the divergence of F', also denoted divF or
VF'. This theorem is called the Gauss’ theorem or the divergence theorem.
It follows by integration by parts in the language of delta calculus in the
same way as in the special case f(z) = |z|*> — 1, F;(z) = x;, which has been
discussed above. The condition f(x) > 0 guarantees that H(f(x)) = 0 for
large x and hence the boundary terms vanish. The term D;f is due to the
chain rule when deriving H(f(z)).

Observe that just as in the special case above, the left hand-side is the integral
of a differential form over the closedlﬂ surface given implicitly by f = 0, while
the right hand-side is an integral of the derivative of the form over the volume
enclosed by the surface.

Example (Graviational field of the earth). For x # 0 define the vector field

€ Z;

Tt T (X, 22

Fi(x)

We have

7

d . 4 p 02
daivF =3 Di(17p) - -3 R
z’zl || ZZI lz]d 2 (>, a2)d/2+1
Let f(z) = 2 — 3|z|> 4 |=|*. Note that it vanies iff € [1,v/2] and so

B =15 e,

Let us check the Gauss’ theorem on the region enclosed by the surface f = 0.
Since divE'=0, we have

H(f(x))divFdx =0

Rd

Now we compute D;f = —6x; +4x; ), z? On the boundary of the area in
question this equals —2z;, if |z|? = 1 and 2u; if |z]* = 2. We compute the

157 Closed” means compact and witout boundary.
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integral over the boundary on each of the pieces separately. Pick any point
in (1,v/2), say, ”2‘/5. We have (exercise)

o AT ) it

The left hand-side of the Gauss’ theorem equals

1 11
:/{Dm} S(f@N (D ‘Dif|2)1/2‘x|d_ldx = V2" 1F _—

For the first equality we used that the vectors (D;f); and (z;); are parallel
and pointing in the same direction, hence their scalar product is the product
of their lengths. Similarly we compute

L

/{ R S
1

B /{x>1+\/§} o (=) ( Z |Dif|2)1/2 |$Td71 dr = —cy.

Thus, the left hand-side of the Gauss’ theorem equals to zero and coincides
with the right hand side.

If d = 3, the vector field

Tz <1
E(x)_{ wi el =1

models the gravitational field of the Earth (up to a sign). Its maximum is on
earth’s surface and it decreases with altitude as one rises above the Earth’s
surface. Note that

d :lz| <1

dlvF:{O e > 1
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Gauss’ law for gravity states that
divF = vyp

where v is a certain constant and p mass density at each point. By the Gauss’
theorem, this can also be written in the form

H(f(2))ypd = / 5(f(x))Dyf Fda (19)

R3 R3

where f(x) = 0 determines a closed surface in R®. The left hand-side is is up
to a constant | (f(x)<0} P which is the total mass enclosed within the surface.
Therefore, Gauss’ law says that the gravitational flux through any closed
surface is proportional to the enclosed mass, where the gravitational flux is a
surface integral of the gravitational field over the surface (i.e. the right hand
side of (19))). In this example we calculated the flux over the region enclosed
by |z|> = 1 and |z|? = 2, which turned out to be zero. Note that no mass
was enclosed.

Seehttps://en.wikipedia.org/wiki/Gauss’s_law_for_gravity for more
details. There is also an analogous result for the electric field.

4.3 Stokes’ theorem

In the last chapter we related an integral of a differential form over a closed
surface to the integral of its derivative over the volume inside the surface.
Suppose we want to integrate over the upper hemisphere rather than over
the whole sphere. Analogously to the previous section, we would like to re-
late the integral over the upper hemisphere to an integral over its boundary
(which is the equator).

We first consider d = 3. Let F' : R® — R? be a vector field. Denote by
curl(F) the vector™¥]
curl(F) = _(D2F3 — D3F2, D3F1 — D1F3, DlFQ — DQFl)

Let h(x) = —x3 so that H(h(z)) = 1 if 3 > 0 and zero otherwise, i.e. we
are on the upper hemisphere. Integration by parts (in terms of the delta
calculus) yields

S DHM@) S Dif (curl(F)da

16Curl is usually defined without the minus sign in front of the bracket, but this definition
will be more convenient for us.
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3
— /R O (@)8(h(x)) > (Dis1fDith = D1 f Diprh) Fyda

i=1
Observe that the integral on the left hand-side is over the hemisphere, while
the one on the right hand-side is over its boundary. These integrals can be
expressed in the language of differential forms similarly as in the previous
section. The derivatives of h are due to the chain rule. This identity is a
special case of the Stokes’ theorem.

End of lecture 25. February 2, 2016

In this lecture we discuss Stokes’ theorem in full generality. First we recall
the Laplace expansion for the determinant of a matrix. Let k& < n and let
A be a k x n matrix, B an n — k X n matrix. Denote by (A, B) the n x n
matrix which is obtained by adding the rows of B to the matrix A. That is,
(A, B);; equals A;; for i < k and B(_y; for i > k. Then

det(A, B) = Z e(p) det A? det B?

where A” is a k x k submatrix of A whose columns are determined by p
(i.e. the i-th column of A” is the p(i)-th column of A), p: (1,...,n — k) —
(1,...,n) is a monotone injective map with im(p) Nim(p) (i.e. the ”com-
plement” of p, note that it is determined by p) and €(p) := (o) where o :
(1,...,n) = (1,...,n) is such that o]

Let everything be as above and let h be a 1 X n matrix (i.e. "a row”) and
p:(,....,k+1) = (1,...,n) a monotone injective map. By the Laplace
expansion applied to (A, h)? we have

det(A, h)"” = > e(7) det AP R T
7oLy k)= (L k1)
mon., inj
where 7 : (1) — (1,...,n) is related to 7 in the same way as p to p.

4.3.1 Exterior derivative.

Let w” be a k-differential form in R (an (}) map on R"). Define the & + 1

form

()= Y &N Do’

7:(1,....k)—=(1,....,k+1)
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where p/, 7 are as above. The form dw is called the exterior derivative of w.
If w” is the determinant of a k x k submatrix A” of a k x n matrix A (as
it was the case in Lecture 22), the exterior derivative can be formally seen
as adding the row of partial differential operators h = (D, Ds,...,D,) to A
and using the Laplace expansion on (A, h).

Note that ddw = 0 since

(ddw)”" = > > e(D)e(T)D oy Dprogoryw” "7 = 0
9:(1,....,k+1)—=(1,....k+2) 7:(1,....k)—(1,....,k+1)
mon. inj. mon. inj.

The details are left as an exercise, one has to use D;D; = D;D; and that the
corresponding terms appear with a different sign.

Stokes’ theorem.

Let f : R® — R* %1 and h : R®* — R be smooth maps such that the
rank of D(f,h)(x) is maximal whenever (f,h)(x) = 0. Let © be a surface
implicitly defined by f(z) = 0, h(z) < 0 and let 9 be its boundary (defined
by (f,h)(z) =0). Let w be a k-form. Then

/dw:/w
0 a0

where dw 1s the exterior derivative of w.

Note that Gauss’ theorem and the example discussed at the end of the pre-
vious lecture are just a special cases of Stokes’ theorem.

Proof. (Sketch) If § and H are defined as in the previous lecture (Dirac delta
and the Heaviside function), the left hand-side can be written as

o(f)H (h) > e(p) det D |7 (dw)” da

R™ 0 (L 1) = (1,.,m)
1 ~/ or
0 / S(f)H(h) > e(p') det Df|? > () D yor(yw” T da
" o' (1, k+1)—=(1,...n) (1, k)= (1, k+1)
2 [ 5050 3" 3 (9(IDesyhdet D7 da



@ [ 607, Zs )det D(f, h)|Pwrdx

We argue as follows.

(1) : The definition of the exterior derivative.

(2) : Partial integration in the language of delta calculus, which is left as an
exercise. One derives by the Leibnitz rule and notices that the only non-
zero term is when the derivative falls on H(h), which gives §(h) (and the
derivatives of h). A similar argument used to show ddw = 0 yields that
differentiating det D f|?" yields a zero term.

(3) : Define p : (1,...,k) = (1,...,n) by p = p/ o 7 and reparametrize the
”complement” of p/, 7 by o. Exercise: check that the signs match.

(4) : Laplace expansion. O

Let us discuss R? more thoroughly. If n = 3, then 0-forms map into R() =
R!, 1-forms into Rr(E) = R3, 2-forms into R(:) = R?® and 4-forms into R() =
R!. Observe that all target spaces have dimension either 1 or 3(= n) and
that 1- and 2- forms are vector fields. Only in three dimensions k- and & + 1-
forms can be vector fields. We compute the exterior derivative of a k-form
for k=0,1,2.

0 — 1. Let w be a O-form. Then for i =1,2,3

(dw)' = > &(T)Dporyw™” = D,
T:0—(1)

so dw is the gradient of w.
1 —2 Ifw=(w!,w? w?) is a 1-form, then

(dw)ij = Z €(T)Dpo7~—(1)(JJ'OOT = Djwi — Diw]'
7:(1)—(1,2)

Note that (w?, —w', w!?) = curl(w) and that ”d” maps vector fields to vector
fields. If we identify 2-forms with vector fields F' = (Fy, Fy, F3) as

(W' W, W) & (Fy, —Fy, FY),
then dw = curlF. Observe that if w is a O-form, by ddw = 0 we have
curlgrad w = 0.
2 — 3. If (w'?, W', w?) is a 2-form, then

(dw)123 — D3w12 - D2w13 4 D1w23

which is, using the above identification, the divergence of F' (recall divF =
D1F1 + D2F2 + D3F3). We have

divcurl ¥ = 0.
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4.3.2 Maxwell’s equations.

Maxwell’s equations describe how electric and magnetic fields are generated
and altered by each other and by charges and currents.

e In the last lecture we discussed Gauss’ law for gravity. There is an
analogous result for electric fields. Denote by p the electric charge
density and E the electric field. Then

EodiVE =p

where g¢ is a certain constant which can be determined experimentally.
By Stoke’s theorem, this is equivalent to

50/E=/P
a0 Q

The electric field leaving a volume is proportional to the charge inside.

e Gauss’ law for magnetism:

divB =0

/ B=0
i9)

(by Stokes). Here B stands for the magnetic field. This means that
there are no magnetic monopoles.

or, equivalently,

e Maxwell-Faraday equation (law for induction):

B
curll = _8_

ot

i)
EFE=—— | B
/89 ot Jo

The voltage accumulated around a closed circuit is proportional to the
time rate of change of the magnetic flux it encloses.

or, equivalently,
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e Ampere’s circuital law:

curlB = poj + ao,uoaa—]f
where i is a certain constant and j the electric current density. We
omit writing the equivalent integral form which is derived using Stokes’
theorem. This law says that electric currents and changes in electric
fields are proportional to the magnetic field circulating about the area
they pierce.

Electromagnetic wave equation in a vacuum. In a vacuum we may assume
the above equations read

0B oF
divE =0, divB=0, curlE = e curlB = 50;105

Then
0B

curl curl = — curl—
ot
0

=— a(cuﬂB)
0,08,
FTAarT
B O’F
= —&olo 012

We also compute

(curl curlE), = — D3Ey, — D3E, + DyD Ey + D3D, Es

3
=~ Y DJEy + Dy(divE)
=1

=—AF,

where we have denoted A = 377 D? (the Laplace operator) and used that
D;(divE) = 0 by our assumption. Performing analogous calculation for the
other two components of curl curlZ we obtain

—curl curlF = (AE;, AE,;, AE3)

and hence by the above calculation

O*F
AFE — MO&)W = 0.
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This is the so-called wave equation. (To gain more insight, in one dimension
it takes the form

1
aﬁf—gaffzo

where ¢ = \/;% Note that f(z — ct) and f(z + ct) solve the equation.
These are travelling waves, propagating with the speed ¢ (the propagation
direction depends on the sign). It turns out that any other solution is a
linear combination of these two.) The constant poeo has been determined
experimentally and it turns out to be the square of the reciprocal of the

speed of light, i.e.
1
VIS 3

The electromagnetic waves propagate with the speed of light. See https://
en.wikipedia.org/wiki/A_Dynamical_Theory_of_the_Electromagnetic|
Field for more on this topic.

End of lecture 26. February 9, 2016

5 Appendix

5.1 Riesz representation theorem

This is an appendix to Lecture 15.
Let us define

L'RY) ={f —g: f.9 € LLR)}.
Let us also define the set of nonnegative linear functionals defined on L7 (R?)
DY (RY) = {A: LE(RY) = [0,00), A(f+g) = A(f)+A(g) for f,g € L7 (RD)}
and the set of linear functionals on L% (RY)
DP(RY) = {A: LE(R%) — R, there exist A, Ay € DF(R?) with A = A;—A,}.
Recall that we proved the following.

Theorem 5.1 (Riesz representation theorem for nonnegative functionals).
Let 1 < p < oo and let A € DE(R?). Then there exists exactly one h €

LP (RY) with A(f) = [ f-hdp for all f € LE(R?), where 1/p+1/p' = 1.

153


https://en.wikipedia.org/wiki/A_Dynamical_Theory_of_the_Electromagnetic_Field 
https://en.wikipedia.org/wiki/A_Dynamical_Theory_of_the_Electromagnetic_Field 
https://en.wikipedia.org/wiki/A_Dynamical_Theory_of_the_Electromagnetic_Field 

The goal of this subsection is prove the counterpart of the above theorem for
the set of all functionals (not necessarily nonnegative) DP(R%).

Theorem 5.2 (Riesz representation theorem). Let 1 < p < oo and let A €
DP(R?). Then there exists exactly one h € LP (R?) with A(f) = [ f - hdu for
all f € LA (RY), where 1/p+1/p' = 1.

Proof. Let A € DP(R?). There exist A, Ay € DY (R?) with A = A; — As.
By the Riesz theorem for nonnegative functionals we obtain hy, hy € L? (RY)
such that

AP = [ b
for i = 1,2 and all f € L% (R?). We conclude putting h = hy — ha. O

Now suppose that we have a linear functional A € DP(R?) that is additionally
bounded, i.e. satisfies A(f) < C||f]|, for a constant C' and all f € Lf (R?).
Does there also exists a unique h € LP' (R?) such that A is given by integrating
against h? Can we possibly “extract” nonnegative Ay, Ay with A = Ay — Ao,
so it all boils down to the previous theorem? The following proposition gives
a positive answer to these questions.

Proposition 5.3. DP(RY) is equal to the set

[As LZ(RY) = R, 3C with A(f) < Cllflhy Af +9) = A) + Alg)}:
Proof. (C) Let A € DP(R?). There exist nonnegative functionals A, A, with
A = Ay — Ay. Hence by Hélder’s inequality

AN < M)+ 8o(9) = [ Sida+ [ Fhadic < (Uil + el 151,

This proves the first inclusion with C' = ||hq]|,y + ||zl -
(D) Define A; as follows

Al(f): sup A(SO)-
0<p<f
el (RY)

Note that A(0) =0, so A;(f) > 0. Moreover for 0 < ¢ < f
Alp) < Cllell, < CJlfllp < oo

The penultimate bound on the right hand side is uniform in ¢, hence taking
the supremum we obtain A;(f) < oco. Observe that if we show that A; is
additive, then we are done, because

Ao(f) = Aa(f) = A(S),
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defines a functional in D% (RY), since A;(f) > A(f) and both Ay, A are addi-
tive. Let us then prove that A; is additive.

(=)

A(f+g)= sup A(p) > sup sup A(pr+ p2).
0<p<f+g 0<p1<f 0<p2<g

By additivity this is equal to

sup A1) + sup A(p2) = Ai(f) + Ai(g).

0<p<f 0<p<yg
(<) Let 0 < ¢ < f+ g. Define p; = min(yp, f), vo = ¢ — 1. We have

Alp) = A1 +2) < sup A(gr1) + sup A(2) < Ai(f) + Az(g).

0<a<f 0<$2<g

We finish the proof taking the supremum on the left hand side. ]

End of lecture 27. February 9, 2016
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