Moduli Spaces

Two Riemann surfaces of the same topological type can, of course, be conformally inequivalent; but how many conformal structures are there, and how can one deform them ?

Take for example an annulus $A(r, R) = \{z \in \mathbb{C} \mid 0 < r < |z| < R\}$. Two annuli are conformally equivalent if and only if their ratio R/r of outer and inner radius coincide. Thus the space of all such conformal structures, called the *moduli space*, is the interval $]1, \infty[$ in this case. For a torus $F_1 = \mathbb{S}^1 \times \mathbb{S}^1$ the moduli space is the upper half-plane \mathbb{H} divided by the action of the group $SL_2(\mathbb{Z})$ of Möbius transformations; this moduli space is therefore the open unit disc.

In general, the moduli space \mathfrak{M}_g for a surface F_g of genus g is a complicated object. Already Riemann noticed that its dimension is 6g - 6 for $g \ge 2$; but a satisfactory definition of the space and its metric was possible only many years later via Teichmüller theory. The moduli space is a quotient of the contractible *Teichmüller space* \mathfrak{T}_g by the action of the *mapping class group* $\Gamma_g = \pi_0(\operatorname{Diff}(F_g))$, the isotopy classes of orientation preserving diffeomorphisms of F_g .

Teichmüller and moduli spaces of Riemann surfaces are studied by several fields of mathematics: complex analysis, real analysis, algebraic geometry, differential geometry, dynamical systems, geometric group theory, topology — and theoretical physics.

We are interested in the homotopy type and the homology of $\mathfrak{M}_{g,n}^m$, the moduli space of the surface $F_{g,n}^m$ of genus g with $n \leq 1$ boundary curves and $m \leq 0$ punctures. In these cases the mapping class group $\Gamma_{g,n}^m$ is torsion-free, the action on $\mathfrak{T}_{g,n}^m$ is free, and the moduli spac $\mathfrak{M}_{g,n}^m$ are manifolds homotopy equivalent to the classifying space $B\Gamma_{g,n}^m$.

C.-F. Bödigheimer (7.12.2004)