On a vector bundle which cuts, bounces, embeds and measures waists

Pavle Blagojević

FREIE UNIVERSITÄT BERLIN & MATEMATIČKI INSTITUT SANU BELGRADE

JOINT WORK WITH FREDERICK R. COHEN, MICHAEL CRABB, WOLFGANG LÜCK & GÜNTER M. ZIEGLER

The vector bundles associated with the natural permutation representation $U_n := \mathbb{R}^n$, and the standard representation $W_n := \{(y_1, \ldots, y_n) \in U_n : \sum y_i = 0\}$, of the symmetric group \mathfrak{S}_n over a free *S*-spaces $X, S \subseteq \mathfrak{S}_n$, are defined by

$$\xi = \xi_{(\mathfrak{S}_n, S, X)}: \qquad U_n \longrightarrow X \times_S U_n \longrightarrow X/S,$$

$$\zeta = \zeta_{(\mathfrak{S}_n, S, X)}: \qquad W_n \longrightarrow X \times_S W_n \longrightarrow X/S.$$

These bundles, in the case when $S = \mathfrak{S}_n$ and X = F(M, n) is the classical configuration space of n pairwise distinct points on M, were originally studied and very efficiently used by Cohen, Cohen & Handel, Chisholm, Cohen, Mahowald & Milgram, Bödigheimer, Cohen & Taylor and many others. In the last decade, problems of

- the existence of convex measure partitions (the twisted Euler class of $\zeta_{(\mathfrak{S}_n,\mathfrak{S}_n,\mathrm{F}(\mathbb{R}^d,n))}^{\oplus (d-1)}$),
- the existence of ℓ -skew embeddings (the dual Steifel–Whitney classes of $\xi_{(\mathfrak{S}_n,\mathfrak{S}_n,\mathrm{F}(\mathbb{R}^d,n))}^{\oplus (d+1)}$),
- an estimation of waists of manifolds (the top Steifel–Whitney class of $\zeta^{\oplus(d-1)}_{(\mathfrak{S}_{2^m},\mathfrak{S}_{2^m}^{(2)},(S^{d-1})^{2^m-1})}$),
- counting periodic billiard trajectories (any non-zero characteristic class of $\zeta_{(\mathfrak{S}_p,\mathbb{Z}/p,\mathrm{G}(\mathbb{R}^d,n))}$),

motivated Gromov, Ghomi & Tabachnikov, Karasev, Hubard & Aronov, Crabb, and Blagojević, Lück & Ziegler, to start a new study on the properties of these vector bundles.

In this talk we go a bit deeper. Using an embedding of the product of spheres $(S^{d-1})^{2^m-1}$ into the configuration space $F(\mathbb{R}^d, 2^m)$, which is equivariant, only with respect to the action of a Sylow 2subgroup S_{2^m} of \mathfrak{S}_{2^m} , we first show that the cohomology ring $H^*(F(\mathbb{R}^d, 2^m)/\mathfrak{S}_{2^m}; \mathbb{F}_2)$ of the unordered configuration space can be seen as a subring of the cohomology ring

$$H^*((S^{d-1})^{2^m-1}/\mathcal{S}_{2^m};\mathbb{F}_2) \cong \mathbb{F}_2[V_{m,1},\ldots,V_{m,m}]/\langle V_{m,1}^d,\ldots,V_{m,m}^d\rangle \oplus I^*(\mathbb{R}^d,2^m),$$

where $I^*(\mathbb{R}^d, 2^m)$ is an ideal, and $\deg(V_{m,r}) = 2^{r-1}, 1 \le r \le m$.

In the next step we express the Stiefel–Whitney classes of the vector bundles $\xi := \xi_{(\mathfrak{S}_{2^m},\mathfrak{S}_{2^m},\mathsf{F}(\mathbb{R}^d,n))}$ in the language of $\operatorname{GL}_m(\mathbb{F}_2)$ -invariant Dickson polynomials. Then, using the subgroup $\operatorname{U}_m(\mathbb{F}_2)$ of $\operatorname{GL}_m(\mathbb{F}_2)$, of upper triangular matrices with ones on the main diagonal, we realize the generators $V_{m,r}$ as $\operatorname{U}_m(\mathbb{F}_2)$ -invariants. Expressing recursively $\operatorname{GL}_m(\mathbb{F}_2)$ -invariants in terms of $\operatorname{U}_m(\mathbb{F}_2)$ -invariants we explicitly identify the sequence $w_{2^m-2^0}(\xi), w_{2^m-2^1}(\xi), \ldots, w_{2^m-2^{m-1}}(\xi)$ of Stiefel–Whitney classes in the polynomial part of the cohomology ring $H^*((S^{d-1})^{2^m-1}/S_{2^m};\mathbb{F}_2)$.

In this way, we made a step closer towards understanding the ideal generated by the Stiefel-Whitney classes of the vector bundle $\xi := \xi_{(\mathfrak{S}_n, \mathfrak{S}_n, \mathbf{F}(\mathbb{R}^d, n))}$:

$$(w_1(\xi), w_2(\xi), \ldots, w_{n-1}(\xi)) \in H^*(\mathbb{F}(\mathbb{R}^d, n)/\mathfrak{S}_n; \mathbb{F}_2),$$

hoping to give complete answers to some of the questions listed above.