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TOPOLOGY OF TWO-ROW SPRINGER FIBERS FOR THE EVEN

ORTHOGONAL AND SYMPLECTIC GROUP

ARIK WILBERT

Abstract. We construct an explicit topological model (similar to the topological Springer fibers
appearing in work of Khovanov and Russell) for every two-row Springer fiber associated with
the even orthogonal group and prove that the respective topological model is homeomorphic to
its corresponding Springer fiber. This confirms a conjecture by Ehrig and Stroppel concerning
the topology of the equal-row Springer fiber for the even orthogonal group. Moreover, we show
that every two-row Springer fiber for the symplectic group is homeomorphic (even isomorphic as
an algebraic variety) to a connected component of a certain two-row Springer fiber for the even
orthogonal group.

1. Introduction

In [Kho04] Khovanov introduced a topological model for all Springer fibers of type A correspond-
ing to nilpotent endomorphisms with two equally sized Jordan blocks as a means of showing that
the cohomology rings of these Springer fibers are isomorphic to the center of the algebras appearing
in his groundbreaking work on the categorification of the Jones polynomial [Kho00,Kho02]. He also
conjectured that the topological models are in fact homeomorphic to the corresponding Springer
fibers [Kho04, Conjecture 1]. This conjecture was proven independently by Wehrli [Weh09] and
Russell-Tymoczko [RT11, Appendix] using results contained in [CK08]. The constructions and re-
sults were generalized to all two-row Springer fibers of type A in [Rus11]. In this article we define
topological models for all two-row Springer fibers associated with the even orthogonal (type D)
and the symplectic group (type C) and prove that they are homeomorphic to their corresponding
Springer fiber.

We fix an even positive integer n = 2m and let βD (resp. βC) be a nondegenerate symmet-
ric (resp. symplectic) bilinear form on Cn and let O(Cn, βD) (resp. Sp(Cn, βC)) be the corre-
sponding isometry group with Lie algebra so(Cn, βD) (resp. sp(Cn, βC)). The group O(Cn, β)
(resp. Sp(Cn, βC)) acts on the affine variety of nilpotent elements ND ⊆ so(Cn, βD) (resp. NC ⊆
sp(Cn, βC)) by conjugation and it is well known that the orbits under this action are in bijective
correspondence with partitions of n in which even (resp. odd) parts occur with even multiplicity
[Wil37,Ger61]. The parts of the partition associated to the orbit of an endomorphism encode the
sizes of the Jordan blocks in Jordan normal form.

Given a nilpotent endomorphism x ∈ ND, the associated (algebraic) Springer fiber F lxD of type
D is defined as the projective variety consisting of all full isotropic (with respect to βD) flags
{0} = F0 ( F1 ( . . . ( Fm in Cn which satisfy the condition xFi ⊆ Fi−1 for all i ∈ {1, . . . ,m}.
Analogously one defines the Springer fiber of type C (simply replace all the D’s in the definition
by C’s). These varieties naturally arise as the fibers of a resolution of singularities of the nilpotent
cone, see e.g. [CG97, Chapter 3]. In general they are not smooth and decompose into many
irreducible components.

The goal is to understand the topology of the irreducible components of the Springer fibers
and their intersections explicitly and provide a combinatorial description. In general this is a very
difficult problem (even in type A). Thus, we restrict ourselves to two-row Springer fibers, i.e. we
only consider endomorphisms of Jordan type (n− k, k), where k ∈ {1, . . . ,m}. Note that for type
D (resp. type C) that means that either k = m or k is odd (resp. even). Since the Springer fiber
depends (up to isomorphism) only on the conjugacy class of the chosen endomorphism it makes

sense to speak about the (n − k, k) Springer fiber, denoted by F ln−k,k
D (resp. F ln−k,k

C ), without
further specifying the nilpotent endomorphism.
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Henceforth, we fix a two-row partition (n − k, k) labelling a nilpotent orbit of type D. Note
that every two-row partition for an orbit of type C arises from a two-row partition of type D by
subtracting 1 in both parts of the type D partition.

Consider a rectangle in the plane together with a finite collection of vertices evenly spread along
the upper horizontal edge of the rectangle. A cup diagram is a non-intersecting diagram inside the
rectangle obtained by attaching lower semicircles called cups and vertical line segments called rays
to the vertices. We require that every vertex is joined with precisely one endpoint of a cup or ray.
Moreover, a ray always connects a vertex with a point on the lower horizontal edge of the rectangle.
Additionally, any cup or ray for which there exists a path inside the rectangle connecting this cup
or ray to the right edge of the rectangle without intersecting any other part of the diagram may
be equipped with one single dot. We do not distinguish between diagrams which are related by a
planar isotopy fixing the boundary. Here are two examples:

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Let Bn−k,k denote the set of all cup diagrams on m vertices with ⌊k2⌋ cups. This set decomposes

as a disjoint union Bn−k,k = Bn−k,k
even ⊔ B

n−k,k
odd , where Bn−k,k

even (resp. B
n−k,k
odd ) consists of all cup

diagrams with an even (resp. odd) number of dots.
Let S2 ⊆ R3 be the standard unit sphere on which we fix the points p = (0, 0, 1) and q = (1, 0, 0).

Given a cup diagram a ∈ Bn−k,k, we define Sa ⊆
(

S2
)m

as the submanifold consisting of all

(x1, . . . , xm) ∈
(

S2
)m

which satisfy the relations xi = −xj (resp. xi = xj) if the vertices i and j are
connected by an undotted cup (resp. dotted cup). Moreover, we impose the relations xi = p if the
vertex i is connected to a dotted ray and xi = −p (resp. xi = q) if i is connected to an undotted
ray which is the rightmost ray in a (resp. not the rightmost ray). The topological Springer fiber

Sn−k,k
D of type D is defined as the union

Sn−k,k
D :=

⋃

a∈Bn−k,k

Sa ⊆
(

S2
)m

.

The above definition generalizes the construction of the topological Springer fiber in [ES12, §4.1]
from the equal row case to the general two row case and returns (up to a sign convention) the
definition in the equal row case (cf. Remark 24 for the precise relationship).

The first main result (cf. Theorem 51) of this article proves a conjecture by Ehrig and Stroppel
[ES12, Conjecture C] on the topology of Springer fibers of type D corresponding to partitions with
two equal parts and at the same time extends the result to all two-row Springer fibers.

Theorem A. There exists a homeomorphism Sn−k,k
D

∼= F ln−k,k
D such that the images of the Sa

are irreducible components of F ln−k,k
D for all a ∈ Bn−k,k.

The Springer fiber F ln−k,k
D decomposes into two connected components. Under the inverse of

the homeomorphism in Theorem A the two connected components of F ln−k,k
D are mapped onto

Sn−k,k
D,odd :=

⋃

a∈B
n−k,k

odd

Sa and Sn−k,k
D,even :=

⋃

a∈B
n−k,k
even

Sa, respectively. Let F ln−k,k
D,odd denote the image

of Sn−k,k
D,odd under the homeomorphism Sn−k,k

D
∼= F ln−k,k

D , i.e. it is one of the connected components

of F ln−k,k
D . The following result relates the two-row Springer fibers of type C and D:

Theorem B. There exists an isomorphism of algebraic varieties F ln−k,k
D,odd

∼= F ln−k−1,k−1
C , i.e. the

(n − k − 1, k − 1) Springer fiber of type C is isomorphic (as an algebraic variety) to one of the
connected components of the (n−k, k) Springer fiber of type D, which can be written down explicitly.
In particular, the topological model of the type D Springer fiber also provides a topological model

for the type C Springer fiber. More precisely, we have a homeomorphism Sn−k,k
D,odd

∼= F ln−k−1,k−1
C .

In [HL14] two-row Slodowy slices of type C and D were studied via fixed-point subvarieties of
certain Nakajima quiver varieties arising from diagram automorphisms. The authors show that
the Slodowy slice of type D to the orbit with Jordan type (n− k, k) is isomorphic to the Slodowy
slice of type C to the orbit with Jordan type (n− k− 1, k− 1). They also ask whether there is an
isomorphism between the resolutions of these singular affine varieties or an isomorphism between
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the corresponding Springer fibers (cf. [HL14, 1.3]). Theorem B provides an affirmative answer to
the latter question.

Since nilpotent orbits of the odd orthogonal group (type B) are parameterized by partitions in
which even parts occur with even multiplicity it follows that there cannot exist a two-row partition
labelling a nilpotent orbit of type B and hence there are no two-row Springer fibers of type B.
The only interesting Springer fibers of type B would correspond to nilpotent endomorphisms with
at least three Jordan blocks (every one-row Springer fiber consists of a single flag only). Those are
a lot more difficult to treat and so far there has been no significant progress (not even in type A)
in determining their topology in an explicit and combinatorially satisfying way (at least there are
no results comparable to those obtained in e.g. [Fun03] or [Rus11]).

Overview of the article. In the following we discuss the contents of this article in more detail
and sketch the ideas behind the proofs of the main theorems.

In Section 2 we recall basic definitions and facts about the (algebraic) Springer fibers of type C
and D and review some known results concerning the combinatorics of the irreducible components.
In particular, we review the parameterization of the irreducible components of the Springer fiber
in terms of signed domino tableaux as introduced by van Leeuwen in his thesis [vL89] based on
earlier work by Spaltenstein [Spa82] (see also [Pie04]).

In Section 3 the topological Springer fibers are defined and in Proposition 27 we provide a
combinatorial description of the topology of the pairwise intersections of the submanifolds Sa ⊆
(

S2
)m

, a ∈ Bn−k,k, which yields (in connection with Theorem A) a combinatorial description

of the topology of intersections of the irreducible components of F ln−k,k
D . In contrast to type

A, the intersections of the Springer fiber F ln−k,k
D cannot be described using the highest weight

Lie theory combinatorics [LS13, ES13] if m 6= k (see also the discussion in [ES12, §6.5]). In

particular, the convolution algebras arising from the Springer fibers F ln−k,k
D (by mimicking the

approach of [SW12]) are in general not isomorphic to the corresponding Khovanov algebras of type
D constructed in [ES13] (this is true if and only if k = m).

Sections 4 and 5 are concerned with the proof of the main theorems. The main idea is the
following:

Let N > 0 be a large integer and let z : C2N → C2N be a nilpotent linear operator with two
equally-sized Jordan blocks. In [CK08, §2] the authors define a smooth projective variety

Ym =
{

(F1, . . . , Fm) | Fi ⊆ C2N has dimension i, F1 ⊆ . . . ⊆ Fm, zFi ⊆ Fi−1

}

and construct an explicit diffeomorphism φm : Ym
∼=−→

(

P1
)m

. The variety Ym should be seen as a
compactification of the preimage of a Slodowy slice of type A under the Springer resolution. The
diffeomorphism φm also plays a crucial role in establishing topological models for the Springer
fibers of type A which are naturally embedded in Ym (cf. [Weh09] and [Rus11]). It turns out that
the two-row Springer fibers of type D, resp. of type C, can also be embedded into Ym, resp. Ym−1

(see Section 4).

Furthermore, we introduce a diffeomorphism γn−k,k :
(

S2
)m →

(

P1
)m

(unlike the diffeomor-
phism φm this diffeomorphism actually depends on the partition). This diffeomorphism does not
play a vital role and it is only introduced for cosmetic reasons.

In order to prove Theorem A one needs to check that the image of Sn−k,k
D ⊆

(

S2
)m

under

the diffeomorphism φ−1
m ◦ γn−k,k is the embedded Springer fiber F ln−k,k

D ⊆ Ym. In Lemma 41

we provide the first step by giving an explicit description of the image of Sn−k,k
D under the map

γn−k,k. The following picture summarizes the results and constructions discussed so far:

(

S2
)m (

P1
)m

Ym

Sn−k,k
D
q

⋃

a∈Bn−k,k

Sa

γn−k,k

(

Sn−k,k
D

)

q
⋃

a∈Bn−k,k

γn−k,k (Sa)

F ln−k,k
D

Does φ−1
m restrict to

a homeomorphism with
image F l

n−k,k
D

?

embedding of
Lemma 38described

explicitly in
Lemma 41

γn−k,k

∼=

γn−k,k |
S

n−k,k
D

∼=

φ−1
m

∼=

∼=
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In Section 5 we answer the remaining question in the picture above by showing that φ−1
m does

indeed restrict to a homeomorphism γn−k,k

(

Sn−k,k
D

)

∼= F ln−k,k
D . Note that it suffices to prove the

following statement (cf. Proposition 42):

Proposition. The preimages of the sets γn−k,k(Sa) under φm are pairwise different irreducible

components of F ln−k,k
D ⊆ Ym for all a ∈ Bn−k,k.

Since the irreducible components of F ln−k,k
D are in bijective correspondence with cup diagrams

in Bn−k,k we deduce that the inclusion

φ−1
m

(

γn−k,k

(

Sn−k,k
D

))

=
⋃

a∈Bn−k,k

φ−1
m (γn−k,k (Sa)) ⊆ F ln−k,k

D

is in fact an equality which finishes the proof of Theorem A.
In order to prove the above proposition we proceed by induction on the number of undotted cups

in a ∈ Bn−k,k which is is more or less the same proof as in type A (cf. [Rus11]). One only needs to
be careful about the additional isotropy condition (cf. Lemma 39). Thus, the main difficulty lies
in establishing the induction start, i.e. to prove the claim for cup diagrams without any undotted
cups. This is done in Proposition 44 (which itself is a proof by induction on the number of dotted
cups) and is considered the technical heart of the argument because it requires new techniques
which are not straightforward generalizations of the type A case.

In order to prove Theorem B we consider the surjective morphism of varieties πm : Ym ։ Ym−1

given by (F1, . . . , Fm) 7→ (F1, . . . , Fm−1) and show (using similar arguments as in the proof of

Theorem A) that the restriction of πm to F ln−k,k
D,odd ⊆ Ym yields a homeomorphism (even an isomor-

phism of varieties) whose image is the embedded Springer fiber F ln−k−1,k−1
C ⊆ Ym−1. Deleting the

vector space Fm of a given flag (F1, . . . , Fm) ∈ F ln−k,k
D,odd in order to pass from type D to type C fits

nicely into the combinatorial picture since signed domino tableaux of type C can be obtained from
signed domino tableaux of type D by deleting the domino labelled m (cf. Lemma 34 for details).

Acknowledgements. This article is part of the author’s PhD thesis. The author would like to
thank his advisor Catharina Stroppel for many interesting and useful discussions.

2. Algebraic Springer fibers

We begin by defining the (algebraic) Springer fibers and provide an overview over some known
results concerning the combinatorics of the irreducible components. The purpose is to set up
notations and establish conventions used throughout this article which sometimes differ slightly
from the ones in related publications. Unless stated otherwise n = 2m denotes an even positive
integer.

2.1. Nilpotent orbits and algebraic Springer fibers. Let N ⊆ sl(Cn) be the nilpotent cone
consisting of all nilpotent endomorphisms of Cn (in the usual sense of linear algebra). The Jordan
normal form implies that the orbits under the conjugation action of the special linear group SL(Cn)
onN can be parameterized in terms of partitions of n, i.e. r-tuples λ = (λ1, . . . , λr) ∈ Zr

>0, r ∈ Z>0,
of positive integers such that λ1 ≥ λ2 ≥ . . . ≥ λr and λ1 + . . . + λr = n, where the parts λi of λ
encode the sizes of the Jordan blocks of the elements contained in an orbit. Let P(n) denote the
set of all partitions of n.

Fix an element ǫ ∈ {±1} and let βǫ be a nondegenerate bilinear form on Cn which satisfies
βǫ(v, w) = ǫ(v, w) for all v, w ∈ Cn. Let Aut(Cn, βǫ) denote the isometry group consisting of all
linear automorphisms of Cn preserving βǫ. The Lie algebra aut(Cn, βǫ) of Aut(C

n, βǫ) is the sub-
algebra of sl(Cn) consisting of all endomorphisms x of Cn which satisfy the equation βǫ(x(v), w) =
−βǫ(v, x(w)) for all v, w ∈ Cn. Note that Aut(Cn, β1) ∼= On(C) and aut(Cn, β−1) ∼= son(C) if βǫ is
nondegenerate and symmetric, whereas Aut(Cn, β−1) ∼= Spn(C) and aut(Cn, β−1) ∼= spn(C) if β is
symplectic.

We define Pǫ(n) as the subset of P(n) consisting of all partitions λ of n for which the cardinality
of {i | λi = j} is even for all j satisfying (−1)j = ǫ, i.e. even (resp. odd) parts occur with even
multiplicity. We refer to the partitions in P1(n) (resp. P−1(n)) as admissible of type D (resp. type
C) since they parameterize nilpotent orbits in the simple Lie algebra of the respective type. The
following classification of nilpotent orbits is well known [Wil37,Ger61].
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Proposition 1. The orbits under the conjugation-action of Aut(Cn, βǫ) on the variety of nilpotent
elements Naut(Cn,βǫ) = N ∩aut(Cn, βǫ) are in bijective correspondence with the partitions contained
in Pǫ(n). The parts of the partition associated with the orbit of an endomorphism encode the sizes
of the Jordan blocks in Jordan normal form.

Definition 2. A full isotropic flag in Cn (with respect to βǫ) is a sequence F• of subspaces
{0} = F0 ( F1 ( . . . ( Fm of Cn such that Fm is isotropic with respect to βǫ, i.e. βǫ vanishes on
Fm × Fm. The set of all full isotropic flags is denoted by F lβǫ

.

Since the inclusions of the subspaces of a flag F• are strict, Fm is maximal isotropic and we
have dim(Fi) = i for all i ∈ {1, . . . ,m}. The set F lβǫ

can be equipped with the structure of a
smooth projective variety, e.g. by identifying it with a homogeneous Aut(Cn, βǫ)-space. Adding the
vector spaces Fn−i = F⊥

i to a given full isotropic flag F• (the orthogonal complement is taken with
respect to βǫ) defines an embedding of F lβǫ

into the full flag variety F l of type A. Given any other
nondegenerate symmetric (resp. symplectic) bilinear form β on Cn, the corresponding varieties
F lβ and F lβ1

(resp. F lβ−1
) are isomorphic which allows us to speak about the full flag variety of

type D (resp. type C), denoted by F lD (resp. F lC), without further specifying a nondegenerate
symmetric (resp. symplectic) bilinear form.

Remark 3. According to our conventions the full flag variety F lD of type D is isomorphic to a
quotient of On(C) (and not SOn(C)). Hence, it consists of two isomorphic connected components.
The component containing a given flag F• is determined by Fm. More precisely, there is a unique
flag F ′

• such that Fi = F ′
i for all i ∈ {1, . . . ,m− 1} and Fm 6= F ′

m and the two flags lie in different
connected components (cf. [vL89, §1.4] or [ES12, Remark 2.2]).

Definition 4. The (algebraic) Springer fiber F lxβǫ
associated with βǫ and x ∈ Ngǫ

is the projective
subvariety of F lβǫ

consisting of all isotropic flags F• which satisfy the conditions xFi ⊆ Fi−1 for
all i ∈ {1, . . . ,m}.

If β is another nondegenerate symmetric (resp. symplectic) bilinear form on Cn and y a nilpotent
endomorphism of Cn contained in aut(Cn, β), then the Springer fibers F lyβ and F lxβǫ

are isomorphic

if and only if x and y have the same Jordan type. Thus, by Proposition 1, there is (up to
isomorphism) precisely one Springer fiber for every admissible partition λ of type D (resp. type
C) which we denote by F lλD (resp. F lλC) assuming that some nondegenerate symmetric (resp.
symplectic) bilinear form and a compatible nilpotent endomorphism of Jordan type λ have been
fixed beforehand.

2.2. Irreducible components and combinatorics. Recall that a partition λ = (λ1, . . . , λr) of
n can be depicted as a Young diagram, i.e. a collection of n boxes arranged in r left-aligned rows,
where the i-th row consists of λi boxes (this is commonly known as English notation).

Definition 5. A standard Young tableau of shape λ is a filling of the Young diagram of λ ∈ P(n)
with the numbers 1, 2, . . . , n such that each number occurs exactly once and the entries decrease
in every row and column. Let SY T (λ) be the set of all standard Young tableaux of shape λ.

Example 6. Here is a complete list of all elements contained in the set SY T (3, 2):

5 4 3
2 1

5 4 2
3 1

5 3 2
4 1

5 3 1
4 2

5 4 1
3 2

Let x ∈ N be a nilpotent endomorphism of Cn of Jordan type λ and let F lx be the associated
Springer fiber (of type A) consisting of all sequences {0} = F0 ( F1 ( . . . ( Fn = Cn of subspaces
satisfying xFi ⊆ Fi−1 for all i ∈ {1, . . . , n}. By work of Spaltenstein [Spa76] and Vargas [Var79]
there exists a surjection Sx : F lx ։ SY T (λ) which can be used to parameterize the irreducible
components of the Springer fiber as follows:

Proposition 7. The set SY T (λ) of standard Young tableaux of shape λ is in bijective correspon-
dence with the irreducible components of the Springer fiber F lx via the map which sends a tableau
T to the closure of the fiber of Sx over T .

In order to obtain a parameterization of the irreducible components of the Springer fibers of
type D and C one has to replace standard Young tableaux by admissible domino tableaux. For
the rest of this section we assume that n = 2m is even.
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Definition 8. A domino diagram of shape λ with m dominoes is given by a partitioning of the
set of boxes of the Young diagram corresponding to λ into two-element subsets, called dominoes,
such that any two associated boxes have a common vertical or horizontal edge.

We depict a domino diagram by deleting the common edge of any two boxes forming a domino.

Example 9. Here is a complete list of all domino diagrams of shape (5, 3):

Definition 10. An admissible domino tableau of shape λ, where λ ∈ Pǫ(n), is obtained from a
domino diagram of shape λ by filling the n boxes of its underlying Young diagram with the numbers
1, . . . ,m such that:

(ADT1) Each of the numbers 1, . . . ,m occurs exactly twice and any two boxes with the same
number form a domino.

(ADT2) The entries in each row and column are weakly decreasing from left to right and top to
bottom.

(ADT3) The partition corresponding to the shape of the diagram obtained by deleting the domi-
noes labelled with 1, . . . , i is admissible of type D (resp. type C) for every i ∈ {1, . . . ,m}
if ǫ = 1 (resp. ǫ = −1).

The set of all admissible domino tableaux of shape λ is denoted by ADT (λ).

When depicting an admissible domino tableau we draw dominoes instead of paired boxes and
only write a single number in every domino.

Example 11. Here is a complete list of all admissible domino tableaux of shape (5, 3):

4 3 2
1

4
3
2

1
4

3
1

2

.

Furthermore, here are all admissible domino tableaux of shape (4, 2):

3 2
1 3

2
1 3

1
2

.

Let x ∈ Ngǫ
be a nilpotent endomorphism of Cn of Jordan type λ. We define a surjection

Sxβǫ
: F lxβǫ

։ ADT (λ) as follows: Given F• ∈ F lxβǫ
, we obtain a sequence x(m), . . . , x(0) of nilpotent

endomorphisms, where x(i) : F⊥
i /Fi → F⊥

i /Fi denotes the map induced by x (the orthogonal

complement is taken with respect to βǫ). The Jordan types J(x(m−1)), . . . , J(x(i)), . . . , J(x(0)) are
admissible partitions, where successive Jordan types differ by precisely one domino. We label the
new domino by comparing Jordan types of x(i) and x(i+1) with i. More details can be found in
[Spa82], [vL89] or [Pie04].

Example 12. Let x ∈ sl(C8) be a nilpotent endomorphism of Jordan type (5, 3) and let

(1) e1 e2 e3 e4 e5 f1 f2 f3

be a Jordan basis (the arrows indicate the action of x, e1 and f1 are mapped to zero by x). Let β
be the nondegenerate symmetric bilinear form on C8 given by

β(ei, fj) = 0, β(ei, ei′) = (−1)i−1δi+i′,n−k+1, β(fj , fj′) = (−1)jδj+j′,k+1,

where i, i′ ∈ {1, . . . , 5} and j, j′ ∈ {1, 2, 3}. Then one easily checks that x ∈ Ng. Consider the flag
F• ∈ F lxβ, where

F1 = span(e1) , F2 = span(e1, f1) , F3 = span(e1, e2, f1) , F4 = span(e1, e2, f1, ie3 + f2).

Note that F⊥
1 is spanned by all vectors in (1) except e5, F

⊥
2 is spanned by all vectors except e5, f3

and F⊥
3 = span(e1, e2, e3, f1, f2). Hence, one easily computes the Jordan types

J(x(3)) = (1, 1) , J(x(2)) = (3, 1) , J(x(1)) = (3, 3) , J(x(0)) = (5, 3)

and the tableau associated with F• via Sxβ is constructed as follows:

4 ///o/o/o 4
3

///o/o/o 4
3
2

///o/o/o 4
3
2

1
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Remark 13. The closures of the preimages of the elements in ADT (λ) under the map Sxβǫ
are not

necessarily connected and hence cannot be irreducible (as in type A). Nonetheless, the irreducible
components of F lxβǫ

contained in the closure of (Sxβǫ
)−1(T ) are precisely its connected components

[vL89, Lemma 3.2.3].

Example 14. Consider the Springer fiber F lxβ as in Example 12. Then one can check (e.g. by

using the inductive construction in [ES12, §6.5]) that the fiber of Sxβ over T , where T denotes the

rightmost admissible domino tableau of shape (5, 3) in Example 11, is the union of the following
two disjoint sets of flags

{

span(µe1 + f1) ⊆ span(e1, f1) ⊆ span(e1, e2, f1) ⊆ span(e1, e2, f1, ie3 + f2) | µ ∈ C
}

{

span(µe1 + f1) ⊆ span(e1, f1) ⊆ span(e1, e2, f1) ⊆ span(e1, e2, f1, ie3 − f2) | µ ∈ C
}

each of which is isomorphic to an affine space A1. By taking the closure we add the possibility of
choosing span(e1) as a one-dimensional subspace of these flags. Thus, the closure of the preimage of
T under Sxβ is isomorphic to a disjoint union of two projective spaces P1 each of which corresponds
to an irreducible component of F lxβ .

By the above discussion the map Sxβǫ
does not provide a parameterization of the irreducible

components of F lxβǫ
. It is necessary to add more combinatorial data to the tableaux in order to

count the connected components.

Definition 15. A signed domino tableau of shape λ is an admissible domino tableau of shape λ
together with a choice of sign (an element of the set {+,−}) for each vertical domino in an odd
column if λ ∈ P1(n) (resp. λ ∈ P−1(n)). We write ADT sgn(λ) for the set of signed domino tableau
of shape λ. We define ADT sgn

odd(λ) (resp. ADT
sgn
even(λ)) as the set of all signed domino tableaux with

an odd (resp. even) number of minus signs.

Example 16. The set ADT sgn((5, 3)) consists of the following eight elements:

4
+

3 2
+

1 4
+

3 2
−

1 4
−

3 2
+

1 4
−

3 2
−

1

4
+

3
2

1 4
−

3
2

1 4
+

3
1

2 4
−

3
1

2

The set ADT sgn((4, 2)) consists of the following four elements:

3 2
+

1 3 2
−

1 3
2

1 3
1

2

The following Proposition summarizes the discussion above and should be seen as the analog of
Proposition 7 for two-row Springer fibers of types D and C:

Proposition 17 ([vL89, Lemma 3.2.3 and 3.3.3]). Let λ = (λ1, λ2) ∈ Pǫ(n) be a partition and
x ∈ Ngǫ

a nilpotent endomorphism of Jordan type λ.
For every T ∈ ADT (λ) the closure of the preimage of T under Sxβǫ

is a union of disjoint irre-
ducible components of F lxβǫ

indexed by all signed domino tableaux which equal T after forgetting the

signs. There exists a bijection between the set of all irreducible components of F lxβǫ
and ADT sgn(λ).

Remark 18. For general Jordan types the irreducible components are parameterized by equivalence
classes of signed domino tableaux. However, in the case of two-row partitions (which is the case we
are primarily interested in) this equivalence relation is trivial. We refer to [vL89, §3.3] or [Pie04, §3]
for details and the more general statement for arbitrary Jordan types.

Example 19. The two rightmost signed domino tableaux of shape (5, 3) in the second row of
Example 16 index the two disjoint irreducible components in Example 14. The sign on the vertical
domino corresponds to the two choices span(e1, e2, f1, ie3+f2) respectively span(e1, e2, f1, ie3−f2)
as the four-dimensional subspace (see also Remark 3).

3. Topological Springer fibers

In this section we fix a partition (n− k, k) of n = 2m, 1 ≤ k ≤ m, labelling a nilpotent orbit of
the orthogonal group, i.e. either k = m or k is odd.
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3.1. Definition of topological Springer fibers. We fix a rectangle in the plane with m vertices
evenly spread along the upper horizontal edge of the rectangle. The vertices are labelled by the
consecutive integers 1, . . . ,m in increasing order from left to right.

Definition 20. A cup diagram is a non-intersecting diagram inside the rectangle obtained by
attaching lower semicircles called cups and vertical line segments called rays to the vertices. In
doing so we require that every vertex is connected with precisely one endpoint of a cup or ray.
Moreover, a ray always connects a vertex with a point on the lower horizontal edge of the rectangle.
Additionally, any cup or ray for which there exists a path inside the rectangle connecting this cup
or ray to the right edge of the rectangle without intersecting any other part of the diagram is
allowed to be decorated with a single dot.

If the cups and rays of two given cup diagrams are incident with exactly the same vertices
(regardless of the precise shape of the cups) and the distribution of dots on corresponding cups
and rays coincides in both diagrams we consider them as equal.

We write Bn−k,k to denote the set of all cup diagrams on m vertices with ⌊k2 ⌋ cups. This set

decomposes as a disjoint union Bn−k,k = Bn−k,k
even ⊔Bn−k,k

odd , where Bn−k,k
even (resp. Bn−k,k

odd ) consists of
all cup diagrams with an even (resp. odd) number of dots.

We usually neither draw the rectangle around the diagrams nor display the vertex labels.

Example 21. The set B5,3 consists of the cup diagrams

a = b = c = d =

e = f = g = h =

where the diagrams in the first (resp. second) row are the ones in Bn−k,k
even (resp. Bn−k,k

odd ).

Let S2 ⊆ R3 be the two-dimensional standard unit sphere on which we fix the points p = (0, 0, 1)
and q = (1, 0, 0).

Given a cup diagram a ∈ Bn−k,k, define Sa ⊆
(

S2
)m

as the submanifold consisting of all

(x1, . . . , xm) ∈
(

S2
)m

which satisfy the relations xi = −xj (resp. xi = xj) if the vertices i and j are
connected by an undotted cup (resp. dotted cup). Moreover, we impose the relations xi = p if the
vertex i is connected to a dotted ray and xi = −p (resp. xi = q) if i is connected to an undotted
ray which is the rightmost ray in a (resp. not the rightmost ray). Note that Sa is homeomorphic

to (S2)⌊
k
2
⌋, i.e. each cup of a contributes a sphere.

Definition 22. The (n− k, k) topological Springer fiber Sn−k,k
D of type D is defined as the union

Sn−k,k
D :=

⋃

a∈Bn−k,k

Sa ⊆
(

S2
)m

.

Example 23. In the following we discuss in detail the topological Springer fiber S5,3D . The subman-

ifolds of
(

S2
)4

associated with the cup diagrams in B5,3 (cf. Example 21) are the following:

• Sa = {(x,−x, p,−q) | x ∈ S2}
• Sc = {(p,−q, x,−x) | x ∈ S2}

• Sb = {(p, x,−x,−q) | x ∈ S2}
• Sd = {(p, q, x, x) | x ∈ S2}

• Se = {(x,−x, p, q) | x ∈ S2}
• Sg = {(p, q, x,−x) | x ∈ S2}

• Sf = {(p, x,−x, q) | x ∈ S2}
• Sh = {(p,−q, x, x) | x ∈ S2}

Each of these manifolds is homeomorphic to a two-sphere. Their pairwise intersection is either a
point or empty, e.g. we have Sa ∩ Sb = {(p,−p, p,−q)} and Sa ∩ Sc = ∅ (cf. also Proposition 27).
The (5, 3) topological Springer fiber of type D is a disjoint union of two Kleinian singularities of
type D4, [Slo83].

S5,3D
∼=

Sb Sd

Sa

Sc

SfSe

Sg

Sh
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Remark 24. A topological model for the Springer fibers of type D corresponding to the partition
(k, k) using a slightly different sign convention was introduced in [ES12, §4.1]. In order to see that
this model is in fact homeomorphic to our topological Springer fiber one considers the involutory
diffeomorphism

Ik : (S
2)k → (S2)k , (x1, . . . , xk) 7→ (−x1, x2,−x3, . . . , (−1)kxk).

Note that if two vertices i and j of a given cup diagram a ∈ Bk,k are connected by a cup (dotted
or undotted) then either i is odd and j is even, or i is even and j is odd. Moreover, the ray in
a (which exists if and only if k is odd) must be attached to an odd vertex. Thus, the image of
the set Sa under Ik, denoted by S′

a, consists of all elements (x1, . . . , xk) ∈ (S2)k which satisfy the
relations xi = xj (resp. xi = −xj) if the vertices i and j are connected by an undotted cup (resp.
dotted cup), xi = −p if the vertex i is connected to a dotted ray and xi = p if i is connected to an
undotted ray. In particular, we have

Ik

(

Sk,kD

)

=
⋃

a∈Bn−k,k

Ik (Sa) =
⋃

a∈Bn−k,k

S′
a

This is precisely the definition of the topological Springer fiber as in [ES12, §4.1] (after reversing
the order of the coordinates).

3.2. Intersections of components. In the following we provide a combinatorial description of
the topology of the pairwise intersections of the submanifolds Sa ⊆

(

S2
)m

, a ∈ Bn−k,k, using circle

diagrams (see Proposition 27 below). In combination with the homeomorphism Sn−k,k
D

∼= F ln−k,k
D

(cf. Theorem 51) this yields a combinatorial description of the topology of the pairwise intersections

of the irreducible components of F ln−k,k
D .

Definition 25. Let a,b ∈ Bn−k,k be cup diagrams. The circle diagram ab is defined as the
diagram obtained by reflecting the diagram a in the horizontal middle line of the rectangle and
then sticking the resulting diagram, denoted by a, on top of the cup diagram b, i.e. we glue the two
diagrams along the horizontal edges of the rectangles containing the vertices (thereby identifying
the vertices of a and b pairwise from left to right). In general the diagram ab consists of several
connected components each of which is either closed (i.e. it has no endpoints) or a line segment.
A line segment which contains a ray of a and a ray of b is called a propagating line.

Example 26. Here is an example illustrating the gluing of two cup diagrams in order to obtain a
circle diagram:

a = b =
reflect a

and glue
///o/o/o/o/o ab =

Hence, ab consists of one closed connected component and one line segment which is propagating.

Proposition 27. Let a,b ∈ Bn−k,k be cup diagrams. We have Sa ∩ Sb 6= ∅ if and only if the
following conditions hold:

(I1) Every connected component of ab contains an even number of dots.
(I2) Every line segment in ab is propagating.

Furthermore, if Sa ∩ Sb 6= ∅, then there exists a homeomorphism Sa ∩ Sb
∼=

(

S2
)circ

, where circ
denotes the number of closed connected components of ab.

Proof. Assume that Sa ∩Sb 6= ∅ and let (x1, . . . , xm) ∈ Sa ∩Sb. Consider a connected component
of ab containing the vertices i1, . . . , ir which are ordered such that ij and ij+1 are connected by a
cup for all j ∈ {1, . . . , r − 1}. If the component is closed (resp. a line segment) the total number
of cups on the component equals r (resp. r − 1). We denote by c (resp. d) the total number of
undotted (resp. dotted) cups of this component.

1) If the component is closed we have equalities xij = ±xij+1
for all j ∈ {1, . . . , r − 1} and

xir = ±xi1 , where the signs depends on whether the cup connecting the respective vertices
is dotted or undotted. By successively inserting these equations into each other we obtain
xi1 = (−1)cxi1 = (−1)r−dxi1 . In order for this equation to hold, r− d must be even. Since r is
even for closed components we deduce that d is even which proves property (I1).
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2) If the component is a line segment and i1 is connected to the rightmost ray of either a or b we
have xi1 ∈ {±p} and thus xir ∈ {±p} because xi1 = (−1)(r−1)−dxir . This shows that ir is also
connected to a rightmost ray. In particular, this line segment is propagating which proves (I2).

Since r − 1 is even for a propagating line, xi1 = (−1)(r−1)−dxir reduces to xi1 = (−1)dxir .
If d is even both rays are either dotted or undotted and if d is odd precisely one of the two rays
is dotted (otherwise this equation would not be true). In any case, the total number of dots on
the line segment is even which shows (I1).

3) If the component is a line segment and i1 is connected to a ray which is not a rightmost ray
in a nor b we have xi1 = q and thus also xir = q because xi1 = (−1)(r−1)−dxir as in the
previous case. This implies (−1)(r−1)−d = 1. Moreover, d = 0 because we already know that
the rightmost ray is connected to the rightmost ray. Thus, r − 1 is even and hence the line is
propagating.

In order to prove the implication “⇐” we assume that a,b ∈ Bn−k,k are such that (I1) and (I2)
are true. Any element (x1, . . . , xm) ∈ Sa ∩ Sb can be constructed according to the following rules:

1) Given a closed connected component of ab containing the vertices i1, . . . , ir (ordered such that
successive vertices are connected by a cup) we fix an element xi1 ∈ S2 and then define xi2 , . . . , xir
by the relations imposed from a and b. More precisely, under the assumption that xi1 , . . . , xij
are already constructed we define xij+1

= ±xij , j ∈ {1, . . . , r − 1}, and proceed inductively.
It remains to check that xi1 and xir satisfy the relation imposed by the cup connecting i1

and ir (by construction xi1 , . . . , xir automatically satisfy all the other relations imposed by ab).

We have xi1 = (−1)(r−1)−d′

xir = −(−1)d′

xir , where d
′ denotes the number of dotted cups on

the component excluding the cup connecting i1 and ir. If d′ is even (resp. odd) this cup must
be undotted (resp. dotted) because of (I1). Hence, the equation gives the correct relation.

2) For every line segment of ab containing the vertices i1, . . . , ir (again, successive vertices are
assumed to be connected by a cup) we define xi1 = q if i1 is not connected to a rightmost ray
and xi1 = −p (resp. xi1 = p) if i1 is connected to an undotted (resp. dotted) rightmost ray. We
then define coordinates xi2 , . . . , xir by the relations coming from the cups in a and b (as in the
case of a closed component).

We need to check that xir satisfies the relation imposed by the ray connected to ir. We have
xi1 = (−1)(r−1)−dxir = (−1)dxir , where d is the number of dotted cups of the line segment
(r − 1 is even because the line segment is propagating by (I2)).

If xi1 = −p (resp. xi1 = p), i.e. i1 is connected to a rightmost ray which is undotted (resp.
dotted), then ir is connected to a rightmost ray as well (otherwise the diagram would not be
crossingless) and we have to show that xir = −p (resp. xi1 = p) if the ray connected to ir is
undotted (resp. dotted). In case that d is even and i1 is dotted (resp. undotted), then ir is also
dotted (resp. undotted) and in case that d is even and i1 is dotted (resp. undotted), then ir is
undotted (resp. dotted). In any case, everything is compatible.

If xi1 = q, i.e. i1 is connected to a ray which is not a rightmost ray, then ir is connected
to a ray which is not a rightmost ray either and we have to check that xir = (−1)dxi1 equals
q. Since there exists a propagating line in ab containing the two rightmost rays of a and b it
follows that d = 0.

Observe that this construction does not only prove the implication “⇐” but it also shows that

Sa ∩ Sb is homeomorphic to
(

S2
)circ

if Sa ∩ Sb 6= ∅. �

Remark 28. If a ∈ Bn−k,k
even and b ∈ B

n−k,k
odd there exists a connected component of ab with an odd

number of dots. Thus, it follows directly from Proposition 27 that Sa∩Sb = ∅ because ab violates

(I1). In particular, the topological Springer fiber Sn−k,k
D always decomposes as the disjoint union

of the spaces Sn−k,k
D,even :=

⋃

a∈B
n−k,k
even

Sa and Sn−k,k
D,odd :=

⋃

a∈B
n−k,k

odd

Sa.

3.3. Some combinatorial bijections. We finish this section by describing some combinatorial
bijections which already foreshadow the existence of the homeomorphisms in Theorem 51 and
Theorem 52 on a purely combinatorial level.

Let (n− k, k) be a two-row partition (not necessarily admissible of type C or D) and let T be
a standard Young tableau of shape (n − k, k). Let ψ(T ) be the unique undecorated cup diagram
on n vertices whose left endpoints of cups are precisely the k entries in the lower row of S.
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Lemma 29 ([SW12, Proposition 3]). The assignment ψ defines a bijection

(2) ψ : SY T (n− k, k) 1:1←→
{

undecorated cup diagrams
on n vertices with k cups

}

Example 30. Via (2) the five standard Young tableaux in Example 6 correspond (in the same
order) to the following undecorated cup diagrams on five vertices with two cups:

In the following we will establish a bijection between signed domino tableaux and cup diagrams
similar to the one between standard tableaux and undecorated cup diagrams (cf. [ES12, Sec-
tion 5]), thereby providing a precise connection between the combinatorics of tableaux and the
combinatorics of cup diagrams involved in the definition of the topological Springer fiber.

Note that condition (ADT3) implies that all horizontal dominoes of an admissible domino
tableau of shape (n − k, k) of type D have their left box in an even column. In particular, the
domino diagram underlying a given signed domino tableau can be constructed by placing the
following “basic building blocks” side by side:

(i) . . . (ii) . . . . . .

The left type of building block, called a closed cluster, consists of a collection of horizontal
dominos enclosed by two vertical dominoes. The vertical domino on the left lies in an odd column,
whereas the right one lies in an even column. Note that it might happen that a closed cluster has
no horizontal dominoes.

The right building block is called an open cluster. It consists of a vertical domino lying in an
odd column and a bunch of horizontal dominoes to its right. There is at most one open cluster in
a given signed domino tableau and if it exists it has to be the rightmost building block.

When decomposing a signed domino tableau into clusters we number them from right to left.

Example 31. The signed domino tableau

19
−

18
16

17
15

14 13
−

12 11
+

10
9

8
7

6 5
−

4
2

3 1

is built out of the following four clusters:

C1 = 5
−

4
2

3 1
, C2 = 11

+
10
9

8
7

6 , C3 = 13
−

12 , C4 = 19
−

18
16

17
15

14 .

In order to understand the relationship between cup diagrams and signed domino tableaux we
first explain how to assign a cup diagram to a cluster of a given tableau T .

Let C be a cluster (open or closed) of T and consider its standard tableau part, i.e. the part of the
cluster which remains after removing all vertical dominoes. By viewing the horizontal dominoes
as boxes of a Young tableau1 one can use bijection (2) to assign an undecorated cup diagram to
the standard tableau part TC of C.

The cup diagram associated with the entire cluster is constructed as follows:

• If C is a closed cluster then we enclose the cup diagram corresponding to the standard
tableau part by an additional cup. This cup is dotted if and only if the left vertical domino
of the cluster has sign −:

Ψ

(

. . .
+−

)

=















ψ (TC) if +,

ψ (TC) if − .

1If C is a closed cluster one has to subtract the number contained in the right vertical domino from the numbers
of the horizontal dominoes in order to obtain a correct filling.
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• If C is an open cluster we add a ray to the right side of the diagram corresponding to the
standard tableau part. This ray is dotted if and only if the vertical domino of the cluster
has sign −:

Ψ

(

. . . . . .
+−

)

=















ψ (TC) if +,

ψ (TC) if − .

Finally, we define Ψ(T ) as the cup diagram obtained by placing the cup diagrams Ψ(Ci) associ-
ated with each cluster side by side, starting with Ψ(C1) as the leftmost piece, followed by Ψ(C2) to
its right, etc. This is clearly a well-defined cup diagram. Note that the numbers contained in the
horizontal dominos in the lower row and the vertical dominos in an odd column are precisely the
left endpoints of the cups in Ψ(T ).

Lemma 32 ([ES12, Lemma 5.12]). Let (n − k, k) be an admissible partition of type D. The
assignment Ψ explained above defines bijections

ADT sgn
D (n− k, k) 1:1←→ Bn−k,k

ADT sgn
D,odd(n− k, k)

1:1←→ B
n−k,k
odd .

Example 33. To the signed domino tableau from Example 31, Ψ assigns the cup diagram

.

Lemma 34. Deleting the leftmost vertical domino in a signed domino tableau of shape (n− k, k)
gives rise to bijections

ADT sgn
D,odd(n− k, k)

1:1←→ ADT sgn
C (n− k − 1, k − 1)

ADT sgn
D,even(n− k, k)

1:1←→ ADT sgn
C (n− k − 1, k − 1).

Proof. This follows easily from the above. �

4. A smooth variety containing the algebraic Springer fiber

Let N > 0 be a large integer (cf. Remark 36 for a more accurate description of what is meant
by “large”) and let z : C2N → C2N be a nilpotent linear endomorphism with two Jordan blocks of
equal size, i.e. there exists a Jordan basis

(3) e1 e2 . . . eN f1 f2 . . . fN .

on which z acts as indicated (the vectors e1 and f1 are sent to zero). We equip C2N with a
hermitian structure by declaring e1, . . . , eN , f1, . . . , fN to be an orthonormal basis.

Let e, f be the standard basis of C2 and let C : C2N → C2 be the linear map defined by C(ei) = e
and C(fi) = f , i ∈ {1, . . . , N}. Note that C2 has the structure of a unitary vector space coming
from the standard Hermitian inner product.

The following lemma is well known [CK08, Lemma 2.2] (cf. also [Weh09, Lemma 2.1]).

Lemma 35. Let U ⊆ C2N be a z-stable subspace, i.e. zU ⊆ U , such that U ⊆ im(z). Then C

restricts to a unitary isomorphism C : z−1U ∩ U⊥
∼=−→ C2.

Following [CK08] we define a smooth projective variety

Ym :=
{

(F1, . . . , Fm) | Fi ⊆ C2Nhas dimension i, F1 ⊆ . . . ⊆ Fm, zFi ⊆ Fi−1

}

.

Remark 36. Note that the conditions zFi ⊆ Fi−1 imply

Fm ⊆ z−1Fm−1 ⊆ . . . ⊆ z−m(0) = span(e1, . . . , em, f1, . . . , fm).

In particular, the variety Ym is independent of the choice of N as long as N ≥ m. In particular,
we can always assume (by increasing N if necessary) that all the subspaces of a flag in Ym are
contained in the image of z.
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Proposition 37 ([CK08, Theorem 2.1]). The map φm : Ym → (P1)m defined by

(F1, . . . , Fm) 7→
(

C(F1), C(F2 ∩ F⊥
1 ), . . . , C(Fm ∩ F⊥

m−1)
)

is a diffeomorphism.

We fix a partition (n − k, k) of n = 2m > 0 labelling a nilpotent orbit of type D, 1 ≤ k ≤ m.
Let En−k,k ⊆ C2N be the subspace spanned by e1, . . . , en−k, f1, . . . , fk. We equip En−k,k with a

bilinear form βn−k,k
D defined as follows:

• If k = m we define for all j, j′ ∈ {1, . . . , k}:
βk,k
D (ej′ , fj) = βk,k

D (fj , ej′) = (−1)j−1δj+j′,k+1,

βk,k
D (ej , ej′) = 0 and βk,k

D (fj , fj′) = 0.

• If k < m we define

βn−k,k
D (ei, fj) = 0, βn−k,k

D (ei, ei′) = (−1)i−1δi+i′,n−k+1, βn−k,k
D (fj , fj′) = (−1)jδj+j′,k+1,

for all i, i′ ∈ {1, . . . , n− k} and j, j′ ∈ {1, . . . , k}.
Note that the bilinear form βn−k,k

D is nondegenerate and symmetric. Moreover, a straightforward

computation shows that βn−k,k
D (z(v), w) = −βn−k,k

D (v, z(w)) for all v, w ∈ En−k,k, i.e. the restric-
tion zn−k,k of z to the subspace En−k,k is a nilpotent endomorphism in the orthogonal Lie algebra

associated with βn−k,k
D .

Similarly, we equip En−k−1,k−1 ⊆ C2N , which is the span of e1, . . . , en−k−1, f1, . . . , fk−1, with

a bilinear form βn−k−1,k−1
C defined as follows:

• If k = m we define for all j, j′ ∈ {1, . . . , k − 1}:
−βk−1,k−1

C (ej′ , fj) = βk−1,k−1
C (fj , ej′) = (−1)j−1δj+j′,k,

βk−1,k−1
C (ej , ej′) = 0 and βk−1,k−1

C (fj , fj′) = 0.

• If k < m we define βn−k−1,k−1
C (ei, fj) = 0 and

βn−k−1,k−1
C (ei, ei′) =

{

(−1)iδi+i′,n−k if i < i′

(−1)i−1δi+i′,n−k if i > i′

βn−k−1,k−1
C (fj , fj′) =

{

(−1)j−1δj+j′,k if j < j′

(−1)jδj+j′,k if j > j′

for all i, i′ ∈ {1, . . . , n− k − 1} and j, j′ ∈ {1, . . . , k − 1}.
Note that the bilinear form βn−k−1,k−1

C is nondegenerate and symplectic. We also see that the
restriction zn−k−1,k−1 of z to En−k−1,k−1 is contained in the symplectic Lie algebra associated

with βn−k−1,k−1
C . The following observation is now trivial:

Lemma 38. We can view the Springer fiber F ln−k,k
D as a subvariety of Ym via the following

identification

(4) F ln−k,k
D

∼=
{

(F1, . . . , Fm) ∈ Ym
∣

∣

∣

∣

Fm is contained in En−k,k and

isotropic with respect to βn−k,k
D

}

and similarly

(5) F ln−k−1,k−1
C

∼=
{

(F1, . . . , Fm−1) ∈ Ym
∣

∣

∣

∣

Fm−1 is contained in En−k−1,k−1 and

isotropic with respect to βn−k−1,k−1
C

}

.

From now on we will always write F ln−k,k
D and F ln−k−1,k−1

C for the embedded Springer varieties
via identifications (4) and (5).

Lemma 39. Let U ⊆ C2N be a subspace. If zU is contained in En−k−2,k−2 (resp. En−k−3,k−3)

and isotropic with respect to βn−k−2,k−2
D (resp. βn−k−3,k−3

C ) then U is contained in En−k,k (resp.

En−k−1,k−1) and isotropic with respect to βn−k,k
D (resp. βn−k−1,k−1

C ).
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Proof. We only prove the lemma for the type D case since the type C case works completely
analogous. By combining the obvious inclusion En−k−1,k−1 ⊆ En−k,k with the inclusion

(6) U ⊆ z−1 (zU) ⊆ z−1 (En−k−2,k−2) = En−k−1,k−1

we obtain U ⊆ En−k,k. Hence, it suffices to show that U is isotropic with respect to βn−k,k
D .

Pick two arbitrary elements v, w ∈ U ⊆ En−k,k and write

v =
n−k
∑

i=1

λiei +
k

∑

j=1

µjfj and w =
n−k
∑

i=1

νiei +
k
∑

j=1

ξjfj.

Note that λn−k = νn−k = 0 and µk = ξk = 0 because v, w ∈ En−k−1,k−1 by (6). A straightforward
calculation (using the definition of the bilinear form) shows that

(7) βn−k,k
D (v, w) =

{

∑k−1
i=2 (−1)i+1 (ξiλk−i+1 + µiνk−i+1) if k = m,

∑n−k−1
i=2 (−1)i+1λiνn−k+1−i +

∑k−1
i=2 (−1)iµiξk+1−i if k < m.

In order to see that this is zero we apply z to v, w which yields

z(v) =

n−k−2
∑

i=1

λi+1ei +

k−2
∑

j=1

µj+1fj , z(w) =

n−k−2
∑

i=1

νi+1ei +

k−2
∑

j=1

ξj+1fj .

Another computation shows that

(8) βn−k−2,k−2
D (z(v), z(w)) =

{

∑k−1
i=2 (−1)i (ξiλk−i+1 + µiνk−i+1) if k = m,

∑n−k−1
i=2 (−1)iλiνn−k+1−i +

∑k−1
i=2 (−1)i−1µiξk+1−i if k < m.

By comparing (7) and (8) we deduce that βn−k,k
D (v, w) = −βn−k−2,k−2

D (z(v), z(w)). Since by

assumption zU is isotropic with respect to βn−k−2,k−2
D we know that the right hand side of this

equality must be zero. This proves the lemma. �

5. Proof of the main theorems

In this section we prove our main results (see Theorem 51 and Theorem 52). We fix an admissible
partition (n− k, k) of n = 2m > 0 of type D, 1 ≤ k ≤ m.

5.1. The diffeomorphism γn−k,k. In this subsection we define the diffeomorphism γn−k,k and

compute the images of the submanifolds Sa ⊂
(

S2
)m

for all a ∈ Bn−k,k.
Consider the stereographic projection

R3 ⊃ S2 \ {p} σ−→ C , (x, y, z) 7→ x

1− z + i
y

1− z
and the map θ : C → P1\{span(e)}, λ 7→ span(λe + f), which can be combined to define a diffeo-
morphism

γ : S2 → P1 , (x, y, z) 7→
{

θ (σ(x, y, z)) if (x, y, z) 6= p,

span(e) if (x, y, z) = p.

This induces a diffeomorphism γm :
(

S2
)m →

(

P1
)m

on the m-fold products by setting

γm(x1, . . . , xm) := (γ(x1), . . . , γ(xm)) .

Moreover, consider the diffeomorphisms s : S2 → S2, (x, y, z) 7→ (x, z, y), and t : S2 → S2,

(x, y, z) 7→ (z, y, x). These yield diffeomorphisms sm, tm :
(

S2
)m →

(

S2
)m

by taking m-fold prod-
ucts of the respective maps.

We define the diffeomorphisms γn−k,k :
(

S2
)m →

(

P1
)m

as follows:

γn−k,k :=











γm if m = k,

γm ◦ tm if m− k is odd,

γm ◦ sm if m− k is even.

Given a cup diagram, we write i—j (resp. i—• j) if the vertices i < j are connected by a cup
(resp. dotted cup) and i—p (resp. i—•p) if there is a ray (resp. dotted ray) attached to the vertex i.
If a ∈ Bn−k,k and k 6= m let ρ(a) ∈ {1, . . . ,m} denote the vertex connected to the rightmost ray
in a.
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Definition 40. Let a ∈ Bn−k,k be a cup diagram. We define Ta ⊂
(

P1
)m

as the set consisting of

all m-tuples (l1, . . . , lm) ∈ (P1)m whose entries satisfy the following list of relations:

• If k = m we impose the relations

(R1) l⊥i = lj if i—j (R3) xi = span(f) if i—p

(R2) li = lj if i—• j (R4) xi = span(e) if i—•p .
for all i, j ∈ {1, . . . ,m}.
• If k 6= m we impose the relations

(R1’) l⊥i = lj if i—j (R2’) li = lj if i—• j (R3’) li = span(e) if i—p

for all i, j ∈ {1, . . . ,m} \ {ρ(a)} and the additional relation

(R4’) lρ(a) =

{

span (e+ (−1)ǫf) if m− k is even,

span (ie+ (−1)ǫf) if m− k is odd,

where ǫ = 0 if ρ(a)—•p and ǫ = 1 if ρ(a)—p.

Lemma 41. We have an equality of sets γn−k,k(Sa) = Ta for every a ∈ Bn−k,k.

Proof. Since this follows easily from the definitions we omit the proof. �

5.2. Topology of the irreducible components. The goal of this subsection is to prove that
the diffeomorphism

(

S2
)m γn−k,k−−−−→

(

P1
)m φ−1

m−−→ Ym

maps each of the submanifolds Sa ⊂
(

S2
)m

onto an irreducible component of the Springer fiber

F ln−k,k
D ⊂ Ym. Moreover, if k > 1, we check that the composition

(

S2
)m γn−k,k−−−−→

(

P1
)m φ−1

m−−→ Ym ։ Ym−1

where πm : Ym → Ym−1, (F1, . . . , Fm) 7→ (F1, . . . , Fm−1), is the morphism of algebraic varieties
which forgets the last vector space of a flag, maps the submanifolds Sa onto an irreducible com-

ponent of F ln−k,k
C ⊂ Ym−1. By Lemma 41 it suffices to prove the following

Proposition 42. The preimage φ−1
m (Ta) ⊂ Ym is an irreducible component of the (embedded)

Springer fiber F ln−k,k
D ⊂ Ym for all cup diagrams a ∈ Bn−k,k. Moreover, if k > 1, πm

(

φ−1
m (Ta)

)

⊂
Ym−1 is an irreducible component of the (embedded) Springer fiber F ln−k−1,k−1

C ⊂ Ym−1 for all

cup diagrams a ∈ B
n−k,k
odd .

In order to prove the above proposition (which will occupy most of the remaining section) we
proceed by induction on the number of undotted cups.

5.2.1. Proof of Proposition 42: Base case of the induction. In the following we prove Proposition 42
for all cup diagrams without undotted cups contained in Bn−k,k. It is useful to distinguish two
different cases:

(1) If k is odd, Bn−k,k contains precisely two such diagrams, namely

. . . . . . and . . . . . .

which consist of m− k + 1 rays followed by k−1
2 dotted cups placed side by side.

(2) If k is even (which implies k = m), there is precisely one such cup diagram in Bk,k (namely
the one which consists of k

2 successive cups).

The following lemma treats the extremal case in which the cup diagram consists of rays only.

Lemma 43. The preimage φ−1
m (Ta) ⊂ Ym is an irreducible component of the (embedded) Springer

fiber F ln−1,1
D ⊂ Ym for all cup diagrams a ∈ Bn−1,1.



16 ARIK WILBERT

Proof. We distinguish between three different cases:

Let m = 1 and let a ∈ B1,1 be a cup diagram. By Definition 40 we have Ta = {span(f)} (resp.
Ta = {span(e)}) if the ray is undotted (resp. dotted). The preimage of Ta under the diffeomorphism

φ1 :

{

one-dimensional subspaces
F1 ⊂ C2N contained in ker(z)

}

∼=−→ P1 , F1 7→ C(F1)

is φ−1
1 (Ta) = {span(f1)} (resp. φ−1

1 (Tb) = {span(e1)}) because φ1(span(f1)) = C(span(f1)) =
span(f) and C(span(e1)) = span(e). Note that span(f1), span(e1) ⊂ E1,1 are clearly isotropic

with respect to β1,1. Hence, φ
−1
1 (Ta) is an irreducible component of the (embedded) Springer fiber

F l1,1D .

Assume that m > 1 is odd and fix a cup diagram a ∈ Bn−1,1. Then Ta consists of a single
element (span(e), . . . , span(e), span(e + (−1)ǫf)) ∈

(

P1
)m

, where ǫ = 0 if the rightmost ray is
dotted and ǫ = 1 if it is undotted. Let (F1, . . . , Fm) ∈ Ym be the preimage of this element under
the diffeomorphism φm. Since F1 ⊂ ker(z) we have F1 = span(λe1 +µf1) for some λ, µ ∈ C, λ 6= 0
or µ 6= 0. The condition C(F1) = span(e) together with

C(F1) = C (span(λe1 + µf1)) = span(λe + µf)

implies µ = 0 and hence F1 = span(e1). By induction we assume that we have already shown

F1 = span(e1), . . . , Fj = span(e1, . . . , ej), . . . , Fi = span(e1, . . . , ei),

for some i ∈ {1, . . . ,m− 1}. If i < m− 1 we are looking for Fi+1 such that zFi+1 ⊂ Fi and

span(e) = C(Fi+1 ∩ F⊥
i ) = C (Fi+1 ∩ span(ei+1, . . . , e2m−1, f1)) .

By Lemma 35 this subspace is unique. Since span(e1, . . . , ei, ei+1) satisfies these properties we
deduce Fi+1 = span(e1, . . . , ei, ei+1). If i = m − 1 we replace condition span(e) = C(Fi+1 ∩ F⊥

i )
by span(e + (−1)ǫf) = C(Fi+1 ∩ F⊥

i ). Note that span(e1, . . . , em−1, em + (−1)ǫf1) is a possible
choice and hence we deduce that this is Fm.

In order to check that F1, . . . , Fm are isotropic with respect to βn−1,1
D we note that the Gram

matrix of βn−1,1
D restricted to the span of the vectors e1, . . . , em, f1 is given by

(9)













0 0

0
0 . . . 0 1

-1













Thus, the vectors e1, . . . , em−1 are pairwise orthogonal which shows that F1, . . . , Fm−1 are isotropic.
Since em + (−1)ǫf1 is clearly orthogonal to e1, . . . , em−1 it suffices to compute

βn−1,1
D (em + (−1)ǫf1, em + (−1)ǫf1) = βn−1,1

D (em, em) + βn−1,1
D (f1, f1) = 1 + (−1) = 0

which shows that Fm is isotropic, too.

If m is even we have Ta = {(span(e), . . . , span(e), span(ie+ (−1)ǫf))} and obtain

F1 = span(e1), . . . , Fm−1 = span(e1, . . . , em−1), Fm = span(e1, . . . , em−1, iem + (−1)ǫf1)
by arguing similarly as in the case in which m is odd. Note that the two non-zero entries in
the Gram matrix (9) are both −1 if m is even. Hence, the additional factor of i in front of em
guarantees that Fm is again isotropic. �

Proposition 44 (Special Case of Proposition 42). Let a ∈ Bn−k,k be a cup diagram without
undotted cups, k > 1.

(1) The preimage φ−1
m (Ta) ⊂ Ym is an irreducible component of F ln−k,k

D ⊂ Ym contained in the

closure of
(

S
zn−k,k

D

)−1
(T ), where T ∈ ADTD(n− k, k) is the D-admissible domino tableau

obtained by forgetting the signs of Ψ−1(a), i.e. the domino diagram

. . . . . .

consisting of k vertical dominoes followed by m− k successive horizontal dominoes in the
first row together with the unique filling such that (ADT1)-(ADT3) are satisfied.
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(2) Moreover, πm(φ−1
m (Ta)) ⊂ Ym−1 is an irreducible component of F ln−k−1,k−1

C ⊂ Ym−1

contained in the closure of
(

S
zn−k−k,k−1

C

)−1
(T ′), where T ′ ∈ ADTC(n − k − 1, k − 1) is

obtained from T by deleting the leftmost vertical domino.

Notation 45. Let U ⊂ En−k−1,k−1 be a subspace. In the following we write U⊥D (resp. U⊥C ) to

denote the orthogonal complement of U with respect to βn−k,k
D (resp. βn−k−1,k−1

C ). We write U⊥

to denote the orthogonal complement of U in C2N with respect to the hermitian structure of C2N .

For the proofs of Lemma 47 and Lemma 48 it is useful to introduce a technical definition.

Definition 46. Let (F1, . . . , Fm) ∈ Ym be a flag such that Fi ⊂ En−k−1,k−1 and Fi is isotropic

with respect to both βn−k,k
D and βn−k−1,k−1

C . Moreover, assume that we have Jordan types

J(z
(i)
n−k,k) = (k − i, k − i) J(z

(i)
n−k−1,k−1) = (k − i − 1, k − i− 1),

where z
(i)
n−k,k is the endomorphism of F⊥D

i /Fi induced by zn−k,k and z
(i)
n−k−1,k−1 is the endomor-

phism of F⊥C

i /Fi induced by zn−k−1,k−1.
A collection of linearly independent vectors in C2N

e
(i)
1 , e

(i)
2 , . . . , e

(i)
k−i−1, e

(i)
k−i

f
(i)
1 , f

(i)
2 , . . . , f

(i)
k−i−1, f

(i)
k−i

(10)

where z maps each vector to its left neighbor (the leftmost vectors in each row are sent to Fi) is

called a simultaneous Jordan system for z
(i)
n−k,k and z

(i)
n−k−1,k−1 if their residue classes (modulo Fi)

form a Jordan basis of z
(i)
n−k,k and z

(i)
n−k−1,k−1 (the latter after excluding e

(i)
k−i and f

(i)
k−i).

A simultaneous Jordan system as above is called special if the following additional properties
hold:

(SJS1) The restriction of βn−k,k
D to the simultaneous Jordan system (10) is given by the formulae

βn−k,k
D

(

f
(i)
j , e

(i)
j′

)

= (−1)j−1δj+j′,k−i+1

for all j, j′ ∈ {1, . . . , k − i}. Moreover, the restriction of βn−k−1,k−1
C is given by

−βn−k−1,k−1
C

(

e
(i)
j′ , f

(i)
j

)

= βn−k−1,k−1
C

(

f
(i)
j , e

(i)
j′

)

= (−1)j−1δj+j′,m−i

for all j, j′ ∈ {1, . . . , k − i− 1}.
(SJS2) The vectors in (10) form an orthonormal system with respect to the hermitian structure

on C2N and they are all contained in F⊥
i .

(SJS3) We have equalities C(e
(i)
j ) = C(z(e

(i)
j )) and C(f

(i)
j ) = C(z(f

(i)
j )) for all j ∈ {2, . . . , k − i}.

Lemma 47. Assume that k > 1 is odd and let a ∈ Bn−k,k be a cup diagram without undotted cups
and (F1, . . . , Fm) ∈ φ−1

m (Ta).

Then F1, . . . , Fm−k+1 are contained in En−k−1,k−1 and isotropic with respect to βn−k,k
D as well

as βn−k−1,k−1
C , and we have

J(z
(i)
n−k,k) = (n− k − 2i, k), J(z

(i)
n−k−1,k−1) = (n− k − 2i− 1, k − 1),

for all i ∈ {1, . . . ,m− k}, and
J(z

(m−k+1)
n−k,k ) = (k − 1, k − 1), J(z

(m−k+1)
n−k−1,k−1) = (k − 2, k − 2).

Furthermore, there exists a simultaneous Jordan system for z
(m−k+1)
n−k,k and z

(m−k+1)
n−k−1,k−1 which is

special (in the sense of Definition 46).

Proof. Let (F1, . . . , Fm) ∈ φ−1
m (Ta), i.e. there exists (l1, . . . , lm) ∈ Ta such that

(11) C(F1) = l1, C(F2 ∩ F⊥
1 ) = l2, . . . , C(Fm ∩ F⊥

m−1) = lm.

As in the proof of Lemma 43 we distinguish between three different cases:

If k = m we have l1 = span(f) if a has an undotted ray and l1 = span(e) if a has a dotted
ray. It follows directly from (11) that F1 = span(f1) or F1 = span(e1) both of which are obviously

isotropic with respect to βk,k
D and βk−1,k−1

C .
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If F1 = span(e1), we have

F⊥D

1 = span(e1, . . . , ek, f1, . . . , fk−1) and F⊥C

1 = span(e1, . . . , ek−1, f1, . . . , fk−2)

which immediately yields the proposed Jordan types of z
(1)
k,k and z

(1)
k−1,k−1. Note that the vectors

e
(1)
j := ej+1 and f

(1)
j := fj , j ∈ {1, . . . , k − 1}

form a special simultaneous Jordan system for z
(1)
k,k and z

(1)
k−1,k−1. Similarly, if F1 = span(f1), we

have F⊥D

1 = span(e1, . . . , ek−1, f1, . . . , fk) as well as F⊥C

1 = span(e1, . . . , ek−2, f1, . . . , fk−1) and
the vectors

e
(1)
j := fj+1 and f

(1)
j := ej , j ∈ {1, . . . , k − 1}

form a special simultaneous Jordan basis for z
(1)
k,k and z

(1)
k−1,k−1.

If k 6= m and m− k is even we have

l1 = span(e), . . . , lm−k = span(e), lm−k+1 = span(e + (−1)ǫf)
where ǫ = 0 if the rightmost ray is dotted and ǫ = 1 if it is undotted. By arguing as in Lemma 43
we obtain Fi = span(e1, . . . , ei), 1 ≤ i ≤ m− k, and

Fm−k+1 = span (e1, . . . , em−k, em−k+1 + (−1)ǫf1)
Note that Fm−k+1 is indeed isotropic with respect to both βn−k,k

D and βn−k−1,k−1
C (the vectors

e1, . . . , em−k+1, f1 are isotropic and pairwise orthogonal with respect to either of the two forms).

In order to check the Jordan types first note that F⊥D

i = span(e1, . . . , en−k−i, f1, . . . , fk) and

F⊥C

i = span(e1, . . . , en−k−i−1, f1, . . . , fk−1) for i ∈ {1, . . . ,m− k}. The residue classes of the vec-

tors ei+1, . . . , en−k−i, f1, . . . , fk clearly form a Jordan basis of z
(i)
n−k,k of the correct type. Similarly,

we obtain a Jordan basis of z
(i)
n−k−1,k−1 after deleting en−k−i and fk. Furthermore, F⊥D

m−k+1 is
spanned by the linearly independent vectors

(12)
em−k+1 + (−1)ǫf1, . . . em−1 + (−1)ǫfk−1

e1, e2, . . . , em−k

em−k+1 − (−1)ǫf1, . . . em−1 − (−1)ǫfk−1, em − (−1)ǫfk.
Note that z sends a vector to its left neighbor (the leftmost vectors in the first and third row are

sent to the rightmost vector in the second row). Furthermore, F⊥C

m−k+1 is spanned by the same

vectors excluding em− (−1)ǫfk and em−1+(−1)ǫfk−1. It follows directly from (12) that z
(m−k+1)
n−k,k

and z
(m−k+1)
n−k−1,k−1 have the correct Jordan type. It is straightforward to check that the vectors

e
(m−k+1)
j :=

1√
2
(em−k+1+j + (−1)ǫfj+1) and f

(m−k+1)
j :=

1√
2
(em−k+j − (−1)ǫfj) ,

where j ∈ {1, . . . , k − 1}, form a special simultaneous Jordan system.

If m− k is odd we similarly get Fi = span(e1, . . . , ei), i ∈ {1, . . . ,m− k}, and
Fm−k+1 = span (e1, . . . , em−k, iem−k+1 + (−1)ǫf1)

which is isotropic with respect to βn−k,k
D and βn−k−1,k−1

C (again, e1, . . . , em−k+1, f1 are isotropic

and pairwise orthogonal). As in the case in which m−k is even one can show that the maps z
(i)
n−k,k

have the correct Jordan type for all i ∈ {1, . . . ,m− k + 1}. We omit the details and claim that

e
(m−k+1)
j :=

1√
2
(iem−k+1+j + (−1)ǫfj+1) and f

(m−k+1)
j :=

1√
2
(iem−k+j − (−1)ǫfj) ,

where j ∈ {1, . . . , k − 1}, yields a special Jordan system. �

Lemma 48. Let a ∈ Bn−k,k be a cup diagram without undotted cups and let (F1, . . . , Fm) ∈
φ−1
m (Ta).

If k > 1 is odd, then the vector spaces Fm−k+2, . . . , Fm are isotropic with respect to βn−k,k
D and

for all i ∈ {m− k + 2, . . . ,m} we have

J(z
(i)
n−k,k) = (k − i, k − i).
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Moreover, the vector spaces Fm−k+2, . . . , Fm−1 are isotropic with respect to βn−k−1,k−1
C and we

have

J(z
(i)
n−k−1,k−1) = (k − i− 1, k − i− 1)

for all i ∈ {m− k + 2, . . . ,m− 1}.
Furthermore, there exists a special simultaneous Jordan system for z

(i)
n−k,k and z

(i)
n−k−1,k−1 for

all i ∈ {m− k + 3,m− k + 5, . . . ,m− 2} (that is all right endpoints of cups except the rightmost
one).

Proof. Let (F1, . . . , Fm) ∈ φ−1
m (Ta), i.e. we have equalities

C(F1) = l1, C(F2 ∩ F⊥
1 ) = l2, . . . , C(Fm ∩ F⊥

m−1) = lm.

for some (l1, . . . , lm) ∈ Ta. Let i ∈ {m− k + 2, . . . ,m− 1} be a left endpoint of a dotted cup in a

and assume by induction that the claims of the lemma are true for Fm−k+2, . . . , Fi−1. The goal is
to show the claim for Fi and Fi+1.

By induction (or by Lemma 47 if the cup connecting i and i+1 is the leftmost cup) there exists
a special simultaneous Jordan system

e
(i−1)
1 , e

(i−1)
2 , . . . , e

(i−1)
k−i , e

(i−1)
k−i+1

f
(i−1)
1 , f

(i−1)
2 , . . . , f

(i−1)
k−i , f

(i−1)
k−i+1

(13)

for z
(i−1)
n−k,k and z

(i−1)
n−k−1,k−1. Since e

(i−1)
1 and f

(i−1)
1 form an orthonormal basis of z−1Fi−1 ∩ F⊥

i−1it

follows from Lemma 35 that C(e
(i−1)
1 ) and C(f

(i−1)
1 ) form an orthonormal basis of C2 and we can

write li = span(C(e
(i−1)
1 ) + µ(i)C(f

(i−1)
1 )), where µ(i) ∈ C, or li = span(C(f

(i−1)
1 )).

Check that Fi and Fi+1 are isotropic: In order to determine the vector spaces Fi and Fi+1

we first assume that li = span(C(e
(i−1)
1 ) + µ(i)C(f

(i−1)
1 )). Consider the z-invariant vector space

Fi−1 ⊕ span(e
(i−1)
1 + µ(i)f

(i−1)
1 ). Note that

C
((

Fi−1 ⊕ span(e
(i−1)
1 + µ(i)f

(i−1)
1 )

)

∩ F⊥
i−1

)

= C
(

span(e
(i−1)
1 + µ(i)f

(i−1)
1 )

)

= span
(

C(e
(i−1)
1 ) + µ(i)C(f

(i−1)
1 )

)

Hence, it follows that Fi = Fi−1 ⊕ span(e
(i−1)
1 + µ(i)f

(i−1)
1 ) because Fi is the unique z-invariant

subspace satisfying C(Fi ∩ F⊥
i−1) = li (cf. Lemma 35). Next consider the vector space Fi ⊕

span(e
(i−1)
2 + µ(i)f

(i−1)
2 ). Again, this space is z-invariant and we have

C
((

Fi−1 ⊕ span(e
(i−1)
2 + µ(i)f

(i−1)
2 )

)

∩ F⊥
i−1

)

= span
(

C(e
(i−1)
2 ) + µ(i)C(f

(i−1)
2 )

)

(3)
= span

(

C(z(e
(i−1)
2 )) + µ(i)C(z(f

(i−1)
2 ))

)

= span
(

C(e
(i−1)
1 ) + µ(i)C(f

(i−1)
1 )

)

.

Hence, Fi+1 = Fi ⊕ span(e
(i−1)
2 + µ(i)f

(i−1)
2 ) because C(Fi+1 ∩ F⊥

i ) = li.

If li = span(C(f
(i−1)
1 )) we argue as above and obtain Fi = Fi−1 ⊕ span(f

(i−1)
1 ) as well as

Fi+1 = Fi ⊕ span(f
(i−1)
2 ).

Using formula (1) and the fact that the vectors in (13) are perpendicular to Fi−1 it is now

easy to deduce that Fi and Fi+1 are isotropic with respect to βn−k,k
D . Moreover, Fi and Fi+1 are

isotropic with respect to βn−k−1,k−1
C if i < m− 1. If i = m− 1 only Fi is isotropic with respect to

βn−k−1,k−1
C .

Jordan types and special Jordan systems: It remains to compute the Jordan types of the maps

z
(i)
n−k,k, z

(i+1)
n−k,k and construct a special Jordan system.

Assume that Fi = Fi−1 ⊕ span(e
(i−1)
1 + µ(i)f

(i−1)
1 ) with µ(i) 6= 0 and consider the following

linearly independent vectors:

e
(i−1)
1 − µ(i)f

(i−1)
1 , e

(i−1)
2 − µ(i)f

(i−1)
2 , . . . , e

(i−1)
m−(i−1) − µ(i)f

(i−1)
m−(i−1)

e
(i−1)
1 + µ(i)f

(i−1)
1 , e

(i−1)
2 + µ(i)f

(i−1)
2 , . . . , e

(i−1)
m−(i−1) + µ(i)f

(i−1)
m−(i−1)

(14)
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Again, note that z maps each vector to its left neighbor (the lefmost vectors are sent to Fi−1).

Note that F⊥D

i is the direct sum of Fi−1 and the span of all the vectors in (14) except the

rightmost one in the first row. In particular, z
(i)
n−k,k has the correct Jordan type. Similarly, we see

that F⊥D

i+1 is the direct sum of Fi−1 and the span of all vectors in (14) except the two rightmost

ones in the first row. Hence, z
(i+1)
n−k,k also has the correct Jordan type.

Moreover, F⊥C

i is the direct sum of Fi−1 and the span of all the vectors in (14) except the two

rightmost ones in the first row and the last one in the second row. In particular, z
(i)
n−k−1,k−1 has

the correct Jordan type. Similarly, if i < m − 1, we see that F⊥C

i+1 is the direct sum of Fi−1 and
the span of all vectors in (14) except the three rightmost ones in the first and the two rightmost

ones in the second row. Hence, z
(i+1)
n−k−1,k−1 also has the correct Jordan type.

In order to finish the induction step we define linearly independent vectors

e
(i+1)
j :=

1√
2µ

(

e
(i−1)
j − µf (i−1)

j

)

and f
(i+1)
j :=

1√
2µ

(

e
(i−1)
j+2 + µf

(i−1)
j+2

)

for j ∈ {1, . . . ,m− i− 1}. It is straightforward to check that these vectors form a special simulta-
neous Jordan system.

If Fi = Fi−1⊕span(e(i−1)
1 ) or Fi = Fi−1⊕span(f (i−1)

1 ) we see that F⊥D

i is the direct sum of Fi−1

and the span of all vectors in (13) except f
(i−1)
m−(i−1), if Fi = Fi−1 ⊕ span(e

(i−1)
1 ), resp. e

(i−1)
m−(i−1), if

Fi = Fi−1⊕span(f
(i−1)
1 ). Similarly, we have that F⊥D

i+1 is the direct sum of Fi−1 and the span of all

vectors in (13) except f
(i−1)
m−i and f

(i−1)
m−(i−1), if Fi = Fi−1⊕ span(e

(i−1)
1 ), resp. e

(i−1)
m−i and e

(i−1)
m−(i−1), if

Fi = Fi−1 ⊕ span(f
(i−1)
1 ). In both cases we obtain the correct Jordan types for z

(i)
n−k,k and z

(i+1)
n−k,k.

If Fi = Fi−1 ⊕ span(e
(i−1)
1 ) or Fi = Fi−1 ⊕ span(f

(i−1)
1 ) we see that F⊥C

i is the direct sum
of Fi−1 and the span of all vectors in (13) except the rightmost one in the first (resp. second)

row and the two rightmost ones in the second (resp. first) row if Fi = Fi−1 ⊕ span(e
(i−1)
1 ) (resp.

Fi = Fi−1⊕span(f (i−1)
1 )). Similarly, we have that F⊥C

i+1 is the direct sum of Fi−1 and the span of all
vectors in (13) except the three rightmost vectors in the second (resp. first) row and the rightmost

one in the first (resp. second) row if Fi = Fi−1 ⊕ span(e
(i−1)
1 ) (resp. Fi = Fi−1 ⊕ span(f

(i−1)
1 )).

In both cases z
(i)
n−k−1,k−1 has Jordan type (m− i− 1,m− i− 1) and z

(i+1)
n−k−1,k−1 has Jordan type

(m− i− 2,m− i− 2).

In order to finish we set e
(i+1)
j := e

(i−1)
j and f

(i+1)
j := f

(i−1)
j+2 for j ∈ {1, . . . ,m − i − 1}

in case Fi+1 = Fi−1 ⊕ span(f
(i−1)
1 , f

(i−1)
2 ) and we set e

(i+1)
j := e

(i−1)
j+2 and f

(i+1)
j := f

(i−1)
j for

j ∈ {1, . . . ,m− i− 1} in case Fi+1 = Fi−1 ⊕ span(e
(i−1)
1 , e

(i−1)
2 ). �

Lemma 49. If k is even, then the vector spaces F1, . . . , Fm are isotropic with respect to βk,k
D and

J(z
(i)
k,k) = (k − i, k − i)

for all i ∈ {1, . . . ,m}. Moreover, the vector spaces F1, . . . , Fm−1 are isotropic with respect to

βk−1,k−1
C and we have

J(z
(i)
k−1,k−1) = (k − i− 1, k − i− 1)

for all i ∈ {1, . . . ,m− 1}.
Proof. The lemma can be proven by an inductive construction similar to the one in the proof of
Lemma 48. Note that this inductive construction starts with the Jordan basis e1, . . . , ek, f1, . . . , fk
of the restriction of z to Ek,k as special Jordan system. �

Proof (Proposition 44). By Lemma 47, Lemma 48 and Lemma 49 we see that the vector spaces of

an arbitrary flag (F1, . . . , Fm) ∈ φ−1
m (Ta) are isotropic with respect to βn−k,k

D and that the Jordan

types of the sequence of endomorphisms z
(m−1)
n−k,k , z

(m−2)
n−k,k , . . . , z

(1)
n−k,k are the following

(1, 1), (2, 2), . . . , (k − 1, k − 1), (k, k), (k + 2, k), . . . , (n− k, k)
if k < m, and

(1, 1), (2, 2), . . . , (k − 1, k − 1), (k, k)
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ifm = k. Moreover, the vector spaces of the flag (F1, . . . , Fm−1) = πm(F1, . . . , Fm) ∈ πm
(

φ−1
m (Ta)

)

are isotropic with respect to βn−k−1,k−1
C and the maps z

(m−2)
n−k−1,k−1, z

(m−2)
n−k−1,k−1, . . . , z

(1)
n−k−1,k−1 have

Jordan types

(1, 1), (2, 2), . . . , (k − 2, k − 2), (k − 1, k − 1), (k + 1, k − 1), . . . , (n− k − 1, k − 1)

if k < m, and

(1, 1), (2, 2), . . . , (k − 2, k − 2), (k − 1, k − 1)

if m = k. Thus, it follows that S
zn−k,k

D (F1, . . . , Fm) = T as well as S
zn−k−1,k−1

C (F1, . . . , Fm−1) = T ′

and (F1, . . . , Fm) is contained in the closure of
(

S
zn−k,k

D

)−1
(T ) and (F1, . . . , Fm−1) is contained

in the closure of
(

S
zn−k−1,k−1

C

)−1
(T ′). In particular, since (F1, . . . , Fm) is an arbitrarily chosen

flag in φ−1
m (Ta), we have proven the inclusion of φ−1

m (Ta) in the closure of
(

S
zn−k,k

D

)−1
(T ) and

πm
(

φ−1
m (Ta)

)

in the closure of
(

S
zn−k−1,k−1

C

)−1
(T ′).

Finally, note that φ−1
m (Ta) is a closed subvariety of F ln−k,k

D which is connected because it is
the preimage of Ta (which is obviously connected) under a diffeomorphism. Thus, φ−1

m (Ta) must
be contained in precisely one of the irreducible components whose disjoint union is the closure of
(S

zn−k,k

D )−1(T ). Since the dimension of φ−1
m (Ta) equals the dimension of F ln−k,k it follows that

φ−1
m (Ta) equals the irreducible component of F ln−k,k

D in which it is contained.

It follows that πm
(

φ−1
m (Ta)

)

is also an irreducible closed subvariety of F ln−k−1,k−1
C of the correct

dimension. �

5.2.2. Proof of Proposition 42: Inductive step. In [CK08, Section 2] the authors introduce a smooth
subvariety X i

m ⊆ Ym, i ∈ {1, . . . ,m− 1}, defined by

X i
m := {(F1, . . . , Fm) ∈ Ym | Fi+1 = z−1Fi−1},

and a surjective morphism of varieties qim : X i
m ։ Ym−2 given by

(F1, . . . , Fm) 7→ (F1, . . . , Fi−1, zFi+2, . . . , zFm) .

We want to make use of the following lemma (cf. [CK08, Theorem 2.1] and [Weh09, Lemma 2.4]):

Lemma 50. The diffeomorphism φm maps X i
m bijectively to the set

(15) Ai
m := {(l1, . . . , lm) ∈ (P1)m | li+1 = l⊥i }

and we have a commutative diagram

(16)

X i
m Ym−2

Ai
m

(

P1
)m−2

qim

∼=φm|
Xi

m
φm−2

∼=

fi
m|

Ai
m

where f i
m :

(

P1
)m

։
(

P1
)m−2

is the map which forgets the coordinates i and i+1. The orthogonal

complement in (15) is taken with respect to the hermitian structure of C2.

We prove the proposition by induction on the number of undotted cups in a. If there is no
undotted cup in a the claim follows from Lemma 43 and Proposition 44. Hence, we may assume
that there exists an undotted cup in a. Then there exists a cup connecting neighboring vertices i
and i+ 1. Let a′ ∈ Bn−k−2,k−2 be the cup diagram obtained by removing this cup.

We have

(17)
(

qim
)−1 (

φ−1
m−2(Ta′)

)

= φ−1
m

(

(

f i
m

)−1
(Ta′)

)

= φ−1
m (Ta),

where the first equality followes directly from the commutativity of the diagram (16) and the second

one is the obvious fact that
(

f i
m

)−1
(Ta′) = Ta. Thus, φ

−1
m (Ta) ⊆ Ym is a closed subvariety because

it is the preimage of the closed subvariety φ−1
m−2(Ta′) (which is even an irreducible component of

F ln−k−2,k−2
D by induction) under the morphism qim.
Thus, by (17), for any given flag (F1, . . . , Fm) ∈ φ−1

m (Ta), we have

qm,i(F1, . . . , Fm) = (F1, . . . , Fi−1, zFi+2, . . . , zFm) ∈ φ−1
m−2(Ta′)
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which shows that zFm is containd in En−k−2,k−2 and isotropic with respect to βn−k−2,k−2
D be-

cause φm−2(Ta′) ⊂ F ln−k−2,k−2
D by induction. Hence, by Lemma 39, Fm is contained in En−k,k

and isotropic with respect to βn−k,k
D . Thus, we have proven that φ−1

m (Ta) ⊆ Ym is an algebraic

subvariety contained in F ln−k,k
D .

Note that φ−1
m (Ta) is smooth and connected because it is the preimage of Ta (which is obviously

smooth and connected) under a diffeomorphism. This shows that φ−1
m (Ta) is irreducible. Finally,

the dimension of the variety φ−1
m (Ta) obviously equals the dimension of F ln−k,k

D (because the
manifold Ta has the correct dimension). To sum up, φ−1

m (Ta) must therefore be an irreducible

component of the (embedded) Springer variety F ln−k,k
D .

Let a ∈ B
n−k,k
odd . If a only has one undotted cup which connects the vertices m − 1 and m it is

easy to see that πm
(

φ−1
m (Ta)

)

equals πm
(

φ−1
m (Tb)

)

, where b denotes the cup diagram obtained by
exchanging the undotted cup connecting m− 1 and m with a dotted cup. Then the claim follows
from Proposition 44. Analogously, if i 6= m − 1, by applying πm to (17), it is easy to see that we
also have an equality of sets

πm
(

φ−1
m (Ta)

)

= πm
(

(qim)−1
(

φ−1
m−2(Ta′)

))

= (qim−1)
−1

(

πm−2

(

φ−1
m−2(Ta′)

))

.

Now the claim follows as for the type D Springer fiber. This finishes the proof of Proposition 42.�

5.3. Gluing the irreducible components. Now we state and prove our main results.

Theorem 51. The diffeomorphism
(

S2
)m γn−k,k−−−−→

(

P1
)m φ−1

m−−→ Ym restricts to a homeomorphism

Sn−k,k
D

∼=−→ F ln−k,k
D

such that the images of the Sa under this homeomorphism are precisely the irreducible components

of F ln−k,k
D for all a ∈ Bn−k,k.

Proof. We know that the image of Sn−k,k
D ⊂

(

S2
)m

under the diffeomorphism φ−1
m ◦γn−k,k is given

by

φ−1
m

(

γn−k,k

(

Sn−k,k
D

))

=
⋃

a∈Bn−k,k

φ−1
m (γn−k,k (Sa))

Lemma
=
41

⋃

a∈Bn−k,k

φ−1
m (Ta) .

If a 6= b we obviously have Ta 6= Tb and thus also φ−1
m (Ta) 6= φ−1

m (Tb) because φm is bijective.
In combination with Proposition 42 this implies that

⋃

a∈Bn−k,k φ−1
m (Ta) is a union of irreducible

components of F ln−k,k
D which are pairwise different. Since the cup diagrams in Bn−k,k are in

bijective correspondence with the irreducible components of the Springer fiber F ln−k,k
D (cf. Propo-

sition 17 and Lemma 32) we deduce that
⋃

a∈Bn−k,k φ−1
m (Ta) is the entire (embedded) Springer

fiber. In particular, the restriction of the diffeomorphism φ−1
m ◦ γn−k,k to Sn−k,k

D yields the desired
homeomorphism as claimed in the theorem. �

We define F ln−k,k
D,odd as the image of Sn−k,k

D,odd and F ln−k,k
D,odd as the image of Sn−k,k

D,even under the
homeomorphism of Theorem 51. It follows from Remark 28 that these are precisely the two

connected components of F ln−k,k
D . Since they are isomorphic we restrict ourselves to F ln−k,k

D,odd (the

results are also true for F ln−k,k
D,even).

Theorem 52. The morphism of algebraic varieties Ym
πm−−→ Ym−1 restricts to a homeomorphism

(even an isomorphism of algebraic varieties)

F ln−k,k
D,odd

∼=−→ F ln−k−1,k−1
C ,

i.e. F ln−k−1,k−1
C is isomorphic to one of the two (isomorphic) connected components of F ln−k,k

D .
In particular, in combination with Theorem 51, we obtain a homeomorphism

Sn−k,k
D,odd

∼= F ln−k−1,k−1
C

and thus an explicit topological model for F ln−k−1,k−1
C .
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Proof. Since F ln−k,k
D,odd is a connected components of F ln−k,k

D it follows directly from Remark 3 that

the restriction of πm to F ln−k,k
D,odd ⊂ Ym defines a continuous injection with image

πm

(

F ln−k,k
D,odd

)

=
⋃

a∈B
n−k,k

odd

πm
(

φ−1
m (Ta)

)

.

By Proposition 42 this is a union of irreducible components of F ln−k−1,k−1
C which are pairwise

different (because the restriction of πm to F ln−k,k,
D,odd is bijective and the φ−1

m (Ta) are pairwise dif-

ferent irreducible components of F ln−k,k
D by Theorem 51). Recall that the irreducible components

of F ln−k−1,k−1
C are in bijective correspondence with the cup diagrams in B

n−k,k
odd (combine Propo-

sition 17 with the bijections Lemma 32 and Lemma 34). Hence, the image of F ln−k,k
D,odd under πm

equals F ln−k−1,k−1
C ⊂ Ym−1. In particular, πm restricts to the desired homeomorphism.

Note that the homeomorphism πm : F ln−k,k
D,odd

∼=−→ F ln−k−1,k−1
C , which is even an isomorphism of

algebraic varieties. �
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